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Abstract—A stylistic device frequently employed by filmmakers
is the synchronous montage (composition) of audio and visual ele-
ments. Synchronous montage helps to increase tension and tempo
in a scene and highlights important events in the story. Sequences
with synchronous montage usually contain rich semantics which
is relevant for understanding a movie. This property is currently
not exploited in automated indexing, annotation, and summa-
rization of movies. We propose a cross-modal approach that
extracts sequences from a movie with synchronous audio-visual
montage. Experiments confirm that the extracted sequences have
high semantic relevance. Consequently, they represent a useful
basis for different high-level movie abstraction tasks such as
automated movie annotation and movie summarization.

I. INTRODUCTION

Film montage (also known as film editing) addresses among

others the composition of audio and visual elements for the

purpose of story telling. A well-established technique for

audio-visual composition is the synchronous montage. Syn-

chronous montage relates to the synchronicity between events

in the soundtrack (e.g. a sudden noise) and the cutting of the

movie (e.g. a shot cut). Note that this synchronicity is at a

different (higher) structural level than e.g. lip synchronicity

(which is not addressed in this work). Synchronous audio-

visual montage enables the director to accentuate important

events and actions and to increase tension and tempo (e.g.

in action scenes and dialogue sequences) [1]. Such sequences

contain rich semantic context which is important for under-

standing a movie.

A famous example for the synchronous montage technique

in film history stems from the film “Enthusiasm” by Dziga

Vertov from 1931. “Enthusiasm” is a Soviet propaganda film

about the first Soviet five-year plan. A central sequence in

the film shows several consecutive static shots of different

religious and monarchal symbols (e.g. a tsarist monogram,

statues of Christ, crucifixes). At each shot boundary between

two different symbols the director positioned the powerful

sound of a church bell in the soundtrack. The synchronous

church bells increase the perceptual salience of the sequence

and create a threatening and warning atmosphere. According

to the film literature, this is a key scene in the film that

expresses the rejection of religion and the tsarist regime by

the communist regime [2]. An excerpt of the sequence together

with the waveform of its soundtrack is shown in Figure 1.
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Fig. 1. A synchronous montage sequence. The keyframes of each shot show
different religious symbols. The peaks in the waveform’s amplitude at the
shot cuts correspond to the church bells.

Synchronous montage is still a popular technique in con-

temporary movies to emphasize important events (a detailed

discussion is provided in [1]). For example, in the movie

“The Hunt for Red October” from 1990 the director exploits

synchronous montage in dialogue sequences to emphasize the

speakers and the speech. Another example mentioned in [1] is

the end scene (the showdown) of “The Last of the Mohicans”

where the cutting of the movie is coordinated with the musical

rhythm.

Due to their rich semantics, synchronous montage sequences

are important for (automated) movie annotation, interpreta-

tion, and summarization. For example, synchronous montage

sequences are likely to contain key scenes which should be

part of an automated generated movie summary or trailer.

Additionally, film professionals are interested in the extraction

of such sequences for film and montage analysis.

In this paper, we investigate the automated extraction of

sequences with synchronous audio-visual montage. For this

purpose we develop a cross-modal approach that extracts

such sequences by detecting temporally correlating audio and

visual events. Unfortunately, the temporal correlation1 of audio

and video on the signal-level differs significantly from the

correlation on the perceptual level. Consequently, established

methods for the estimation of temporal correlations do not

work properly. We propose an approach for the extraction of

temporal correlations that are more meaningful and intuitive

for the human observer. First, we extract salient audio and

1Note that “correlation” in this work is not meant in a strict statistical sense.



visual events by the detection of onsets. In general, onsets

represent abrupt changes in the underlying signals. Visual

onsets refer to abrupt shot boundaries (cuts). In the audio

domain, onsets are for example musical beats, sudden sound

effects, and points in time when an actor starts to speak

after a pause. Next, we detect temporally correlated audio

and visual onsets by analyzing their coincidences and their

temporal neighborhoods. Finally, we extract entire sequences

that contain several subsequent correlated audio and visual

onsets (synchronous montage sequences). Experiments with

different films show that the approach is able to retrieve

relevant montage sequences. Additionally, the results include

key scenes with rich semantics.

The paper is organized as follows. In Section II we discuss

related work. Section III introduces the proposed approach.

The experimental setup and results are presented in Sections

IV and V. We conclude the paper in Section VI.

II. RELATED WORK

Audio-visual synchronicity (correlation) has been studied

by researchers in different domains such as sound source

localization [3], [4], talking face detection [5], [6], speech

recognition [7], and surveillance [8]. The computation of

temporal audio-visual correlation is performed at different

levels. Most approaches compute correlation directly between

audio and visual features (feature-level). Frequently employed

correlation measures are Pearson correlation [7] and mutual

information [5]. Some methods first reduce dimensionality

(e.g. by Canonical Correlation Analysis) and then perform

correlation computation in a lower-dimensional space [6].

On the feature-level we are able to capture the natural

correlation that exists between audio and visual signals (from

the same source), e.g. speech and lip movements. Conse-

quently, it is well-suited for talking face detection and person

identification. However, at this rather low level it is difficult

to integrate delays, tolerances, and irregularities into the

correlation computation. This limits the applicability of such

methods for the analysis of film montage since delays and

irregularities are sometimes introduced by the filmmaker for

stylistic reasons.

Other methods (especially from the surveillance domain)

compute temporal correlations on the basis of classified high-

level decisions (decision-level) [9]. Methods at this level learn

frequent audio and visual events (atomic events) autonomously

and recognize higher-level events (e.g. running, opening a

door) by merging co-occurring atomic event classifications [8].

Such methods are usually designed to operate in controlled

environments (e.g. a corridor in a building) and require recur-

ring events for learning. Both, recurring events and controlled

environments are not available in feature films.

For the analysis of audio-visual montage, a method is

required that (i) enables flexible temporal correlation assess-

ments and (ii) operates on an uncontrolled (general purpose)

set of events. For that reason, we perform the temporal

correlation analysis on an intermediate level: the landmark-

level.

On the landmark-level we operate on salient points (auto-

matically detected peaks and onsets) in the audio and visual

feature vectors [10]. This level facilitates the representation

of general purpose events and a flexible temporal correlation

estimation. Additionally, psychophysical research points out

that the human synchrony perception relies on the matching

of salient features (peaks and troughs) in the audio and visual

modalities [11].

Only little work on audio-visual correlation estimation on

the landmark-level exists. Barzelay and Schechner perform

sound localization by correlating audio and visual onsets [3].

The audio onsets are derived from a spectrogram and the

visual onsets are extracted from motion trajectories. Temporal

coincidences of onsets are detected by a likelihood func-

tion that yields high values where audio and visual onsets

temporally coincide. Similarly, Monaci and Vandergheynst

perform sound localization by correlating onsets in audio

and visual feature vectors [4]. From the audio and visual

onsets the authors first compute two binary vectors where

spikes indicate onset positions. Next, they broaden the spikes

with a rectangle function to increase the temporal tolerance.

Finally, they combine both vectors by a logical AND to obtain

temporally correlated audio-visual onsets. The method is for

example applied to talking face detection.

The approaches in [3] and [4] are not applicable to the

analysis of audio-visual film montage. First, the approaches are

designed for correlating sound with motion. For the analysis

of synchronous montage visual onsets are shot boundaries

and not motion. Second, the approaches above consider con-

secutive onsets as independent from each other and neglect

their neighborhood relationships. Thereby, information on the

temporal distribution of the onsets is lost which is important

to evaluate the salience of an onset. Third, both approaches

neglect the actual strengths of the onsets (their degree of

abruptness). In fact, the strength is a further indicator for the

salience and is important to obtain estimates in accordance

with human assessment.

III. ANALYSIS OF SYNCHRONOUS MONTAGE

An overview of the entire approach is depicted in Figure 2.

We first perform onset detection in the visual and audio

domains separately. Onsets in the visual signal represent shot

boundaries. Audio onsets correspond to musical beats, sound

effects (e.g. explosions, cries, sirens), and speech onsets. Next,

we detect temporally correlating (synchronous) audio and

visual onsets (for instance a sudden cry that occurs simul-

taneously with a shot boundary). Finally, we extract entire

sequences that contain several consecutive shot boundaries

with correlated audio onsets.

A. Visual Onset Detection

Shots are the most important building blocks of visual

film montage. We detect shot boundaries (visual onsets) as

described in [12]. First, we extract features for each frame

(Edge Histogram, DCT Coefficients). Next, we perform a

temporal self-similarity analysis (similarly to [13]) for both
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Fig. 2. Overview of the approach.

features and merge the outcomes. The result of self-similarity

analysis is a so called novelty curve which has peaks at

positions where the underlying signal changes abruptly. In the

case of the visual signal, peaks in the novelty curve indicate

shot boundaries. The shot boundary positions are extracted

by a peak detector (after normalization of the novelty curve)

and form the set of visual onsets for subsequent processing.

Finally, we interpolate the visual onset positions to make them

comparable with the audio onsets extracted in the next section.

We neglect gradual transitions (e.g. dissolves and fades) since

they do not represent distinct events in time that audio onsets

can be correlated with.

B. Audio Onset Detection

For audio analysis, we extract 24 Bark-frequency cepstral

coefficients (BFCCs) from audio frames of 30ms (20ms

overlap). BFCCs employ a psychoacoustically scaled filter

bank and compactly represent the coarse spectral frequency

distribution in an audio frame. The BFCCs are input to a self-

similarity analysis as well (like the visual features in Section

III-A). The result is again a novelty curve. In the case of

audio, peaks indicate abrupt changes (discontinuities) in the

audio stream. Such discontinuities occur for example at the

beginning of musical beats, speech, and special effects. The

stronger a discontinuity the higher is the amplitude of the

peaks. We normalize the novelty curve and extract salient

peaks with an adaptive peak detector. The positions and

heights of the extracted peaks form the set of audio onsets

for subsequent processing.

C. Temporal Audio-Visual Correlation Estimation

The goal of the next step is to find temporally correlated

(synchronous) audio and visual onsets which would also be

perceived synchronous by a human observer. In general, onsets

are perceived correlated if they are temporally near to each

other. This conforms with the assumptions made in [3], [4],

and [11]. In our case, the correlation of onsets means that

an audio onset occurs simultaneously with a shot boundary.

However, we observe that this assumption is not sufficient for

the detection of synchronous montage in feature films for two

reasons. First, stronger (more salient) onsets catch the viewers

attention more than weak onsets. Consequently, we integrate a

salience condition into the correlation computation that favors

stronger onsets (originating from higher peaks).

Second, the temporal distribution and the number of audio

onsets around a shot boundary influence synchrony perception:

if many onsets surround a shot boundary, they distract the

attention of the observer from detecting synchronicity. Con-

sequently, a single isolated audio onset at a shot boundary

leads to a stronger synchronicity than several audio onsets

surrounding a shot boundary (e.g. several overlaid musical

beats and background noise). To take this effect into account,

we integrate an isolation condition into the correlation com-

putation that favors isolated audio onsets.

For temporal correlation estimation we design a weighting

function that takes the salience and the isolation condition into

account. The weighting function (see Figure 3(a)) is centered

around a shot boundary. The amplitude represents the time-

dependent influence of an audio onset for temporal correlation

estimation. The function can be partitioned into two different

areas.

In area “A” centered around the shot boundary the function

is positive. Audio onsets that fall within this area influence

correlation positively (the nearer the audio onset is to the shot

boundary the higher is its influence). The weighting function

in area “A” models a simple principle of human synchrony

perception: Events that are temporally near to each other are

perceived as correlated. With increasing distance the perceived

correlation decreases.

In area “B” the function is negative. Onsets that fall into

this area get negative weights. If numerous audio onsets (e.g.

originating from different background sounds) surround a

shot boundary, they contribute negatively to the correlation

estimate. An example is shown in Figure 3(b). The peaks in

the audio novelty curve marked with an asterisk correspond to

detected onsets. Even though the central onset (marked with an

arrow) is close to the shot boundary, the overall correlation at

this shot boundary is low because the four surrounding onsets

have negative weights. This behavior models the isolation

condition: the surrounding onsets distract the observer from

the central onset which reduces the degree of perceived

synchronicity. Figures 3(b) and 3(c) illustrate the effect of the

isolation constraint. The shot boundary with the isolated onset

in Figure 3(c) yields a higher correlation cj than the boundary

with the surrounded onsets.

The correlation computation is performed as follows. Given

a set of audio onsets with positions pi and heights hi, i =
1, ...,M and a set of visual onset positions (shot boundaries)

bj , j = 1, ..., B, we center the weighting function w around

a shot boundary bj . Note that the weighting function is zero

outside of the negative area “B”. The correlation cj at shot
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(a) The weighting function (with temporal partition
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Fig. 3. The weighting function and examples of positive and negative
correlation: the isolated onset yields a higher correlation cj than a series
of onsets that surrounds a shot boundary.

boundary bj is the sum of the products of the weighting

function w (at position pi) with the corresponding heights hi

of the audio onsets: cj =
M∑

i=1

w(pi) ∗ hi.

By taking the actual onset heights hi into account we are

able to model the salience condition. Higher onsets are more

distinctive and influence correlation more than lower onsets.

The result is a correlation estimate for each shot boundary.

In the following, we consider shot boundaries with correlation

cj > 0 as synchronously edited boundaries and shot bound-

aries with cj ≤ 0 as asynchronously edited.

D. Extraction of Synchronous Montage Sequences

In the synchronous montage technique the director makes

repeated use of synchronously edited shot boundaries to

attract the attention of the viewer over larger time spans. In

practice however, such a sequence might contain also some

shot boundaries that are purposely not synchronized with

the audio track by the filmmaker (e.g. for stylistic reasons).

For automated sequence extraction on a technical level, we

therefore have to search for possibly interrupted temporal

groupings of synchronously edited shot boundaries.

For this purpose, we propose a tolerant segmentation

scheme consisting of two stages. In the first stage, we search

for neighborhood regions at each synchronously edited shot

boundary. The size of the neighborhood regions is maxi-

mized on the condition that the number of irregularities in

the neighborhood (asynchronously edited shot boundaries) is

minimized. In the second stage, we merge the (overlapping)

neighborhoods to obtain the final montage sequences.

The first stage is illustrated in Figure 4. The extraction

of neighborhood regions takes place at synchronously edited

bj Nmax

shot boundaries

-1 -2 -1 0 1 0 1 2 1sj:
neighborhood

{b ,...,b }j j+8

argmax(s ) = 8j

Fig. 4. The schema for the extraction of a neighborhood region at a shot
boundary bj . The maximum sum sj is obtained for a neighborhood of 8 shots.

shot boundaries (marked with “x” in Figure 4) only. Asyn-

chronously edited boundaries marked with “o” can be skipped.

At a given shot boundary bj we position a support window

of size n, where n defines the number of neighboring shot

boundaries that are taken into account. Next, we count the

number of positively correlated shot boundaries in the support

window and subtract the number of negatively correlated

boundaries. This results in a sum sj,n for the support window

of size n at boundary bj .

We perform the computation of sj,n for different support

windows sizes n = 1, ..., Nmax which results in a series

of sums sj = sj,1, ..., sj,Nmax
for the shot boundary under

consideration (see sj in Figure 4 for the sums of the example

sequence). Next, we estimate for which window size n the

maximum sum is obtained: nmax = argmax
n

(sj).

In the example in Figure 4 the maximum sum is obtained

for n = 8 (sum is 2). Finally, the region from shot boundary

bj to bj+nmax
is stored as a new neighborhood region. If the

maximum sum sj,nmax
is smaller than 2 no neighborhood

region is generated. The process described above is repeated

for all synchronously edited shot boundaries. The result is a

set of (possibly overlapping) neighborhood regions.

In the second stage, we compute the union of all neighbor-

hood regions in order to obtain the final montage sequences.

For each extracted sequence we compute a measure that re-

flects the confidence in the decision that an extracted sequence

actually is a synchronous montage sequence. A straight-

forward measure is the number of synchronously edited shot

boundaries in an extracted sequence. The higher this number

the likelier it is that the extracted sequence is a synchronous

montage sequence.

IV. EXPERIMENTAL SETUP

We evaluate the proposed method with contemporary

movies as well as historic film material from the early years of

sound film. Especially, the historic material is well-suited for

the evaluation of the proposed method because (i) it has low

sound and image quality (noise, distortions) and thus allows

for the evaluation of the robustness of the method and (ii) the

filmmakers of the early sound films intensively experimented

with the usage of sound in film montage and as a result the

films frequently contain montage sequences with strong audio-

visual correlations.



A. Data

The historic material includes the film “Enthusiasm” by

Dziga Vertov from 1931 and “October” by Sergei Eisenstein

from 1927. Both films stem from Soviet filmmakers who are

known for their innovative and experimental montage style.

Both films represent different types of soviet propaganda films.

In “Enthusiasm” Vertov deliberately coupled “visible and

audible moments” to create a strong tension between sound

and visuals. This resulted in a revolutionary style of audio-

visual montage [2]. The film “October” from Eisenstein is

an (originally silent) fictional film in celebration of the 10th

anniversary of the October Revolution. In 1966 a soundtrack

containing sound effects and music was added. “October” con-

tains highly formalistic visual montage which partly correlates

with the later added soundtrack [14].

The contemporary feature films include “The Hunt for Red

October” directed by John McTiernan and “Fight Club” by

David Fincher. “The Hunt for Red October” was selected be-

cause it is a good example of synchronous montage according

to [1]. For “Fight Club” no prior information on the montage

style was available. The movie was selected to broaden the

test set and to reduce the bias introduced by the other selected

movies.

B. Ground Truth

There is no ground truth available for the performed in-

vestigation. The consequences for our evaluation are twofold.

First, in absence of ground truth we cannot compute recall and

precision. Nevertheless, we are able to evaluate the retrieved

sequences manually and compute the precision for result sets

of different sizes (e.g. for the 3, 5, and 10 sequences with the

highest confidence).

Second, we attempt to generate a ground truth for selected

material to enable a more comprehensive evaluation. We select

“Enthusiasm” which makes the most intensive use of syn-

chronous audio-visual montage. Together with domain experts

we annotate synchronously edited shot boundaries and the

synchronous montage sequences.

C. Parameters

The correlation computation requires the specification of

two parameters: the width of the weighting function w (see

Section III-C) and maximum support window size Nmax (in

unit shot boundaries, see Section III-D). We experiment with

widths of w of 1 to 1.8 seconds. The wider the function

the more temporal tolerance is allowed in the correlation

computation. Typical values for Nmax are between 5 and 11.

The larger the values of Nmax the more irregularities are

tolerated during segmentation.

V. RESULTS

We first evaluate the retrieval performance of the proposed

method with the generated ground truth. For comparison, we

integrate the correlation computation by Monaci et al. [4] into

our method. We define two different system configurations:

TABLE I
PERFORMANCE OF THE TWO COMPARED SYSTEM CONFIGURATIONS

EVALUATED AGAINST THE GROUND TRUTH.

System P System A
Task Rec. Prec. F1 Rec. Prec. F1

#1 Boundaries 0.67 0.64 0.65 0.88 0.48 0.62
#2 Sequences 0.85 0.72 0.78 0.97 0.41 0.58

the proposed method with the weighting function as correla-

tion estimator from Section III-C, short: “System P” and as

alternative system the proposed method with the correlation

estimation of [4], short: “System A”. Both systems operate on

the same audio and visual onsets.

Table I presents the results of both systems for the film

“Enthusiasm”. We compute recall and precision for two dif-

ferent tasks: first, the detection of synchronously edited shot

boundaries (task #1) and second, the extraction of synchronous

montage sequences (task #2) which is based on the first task.

The probability for “Enthusiasm” that a shot boundary is

synchronously edited is 0.36. The probability of occurrence

of a synchronous montage sequence is 0.35. This means that

for both tasks random guessing would result in a recall of

approximately 0.5 and a precision of approximately 0.36 and

0.35, respectively.

From Table I we observe that System A yields a relatively

high recall but a precision which is near random. The reason is

that nearly all shot boundaries are classified as “synchronously

edited” and during sequence extraction large sequences are

extracted that cover nearly the entire film. This is best illus-

trated in Figure 5 (lower part) which shows the strong under-

segmentation produced by the alternative system.

A finer segmentation requires a better balancing between

recall and precision (especially a higher precision). System P

yields a higher precision and overall F1 measure. This sig-

nificantly improves the accuracy of the sequence extraction.

Again this is best observed from Figure 5 (upper part) where

the extracted sequences much better match with the ground

truth. Most of the ground truth sequences are partly or entirely

retrieved. There are only a few short false positive sequences.

The increase of precision is due to the consideration of the

isolation and salience condition in the weighting function.

From Table I we further observe that the proposed method

(System P) yields higher recall and precision for sequence

extraction (task #2) than for single shot boundaries (task #1),

although both tasks build upon each other. The reason lies

in the tolerance of the segmentation scheme which is able to

compensate for falsely classified shot boundaries.

Table II presents the retrieval performance in terms of

precision for differently sized result sets (short “P@N” for a

result set of size N) for the films from Section IV-A. We obtain

the different result sets by retrieving only the N sequences

with the highest confidence. Among the first ten retrieved

sequences in average 72% are relevant synchronous audio-

visual montage sequences. Furthermore, in the film “Fight

Club” where no prior information about the montage style

was available we discovered several synchronous montage
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TABLE II
PRECISIONS OF THE PROPOSED METHOD FOR DIFFERENT RESULT SET

SIZES (1, 3, 5, AND 10) AND FEATURE FILMS.

Feature Film P@1 P@3 P@5 P@10

Enthusiasm 1.00 1.00 1.00 0.90
October 1.00 0.67 0.80 0.50
Hunt for Red October 1.00 0.67 0.60 0.70
Fight Club 1.00 0.67 0.80 0.80
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Fig. 6. A sequence showing different religious symbols with synchronously
edited bell sounds at each shot cut.

sequences. False positives are returned mostly in situations

where a lot of background noise is present in the soundtrack.

From Table II we observe that the performance for historic

material is similar to that of the contemporary material. This is

remarkable since the historic material contains numerous arti-

facts in the visual signal (e.g. flicker, shaking, low contrast) as

well as in the audio track (e.g. broad-band noise, distortions).

There are two reasons for the robustness of the approach. First,

we rely on visual and audio onsets which correspond to peaks

that are robust to noise to a high degree. Second, even in case

of falsely detected onsets, the tolerant segmentation scheme

compensates for most of these errors.

The retrieved results include sequences of high semantic

interest. For example the top ranked sequence in “Enthusiasm”

is the already mentioned sequence of religious symbols from

Section I. An illustration of the sequence together with the

audio novelty curve is shown in Figure 6. The peaks clearly

correspond to the church bells at the shot boundaries.

An interesting observation concerning the sequence in “En-

thusiasm” is made from the results for the film “October”. One

retrieved sequence from “October” shows a similar sequence

of religious symbols which are emphasized by bell sounds

at each shot boundary. Since “October” was produced before

“Enthusiasm”, the soundtrack however much later, the pre-

sumption comes up that both films mutually influenced each

other. This example illustrates that the proposed method is

able to hint at correspondences between different films.

For the contemporary material the retrieved sequences con-

tain fast and synchronously cut dialogue sequences (e.g. dis-

cussions and arguments between protagonists) and action se-

quences (fights, shootings, accidents). The extracted sequences

are semantically important and may enrich further high-level

tasks such as movie indexing, abstraction, and summarization.

VI. CONCLUSION

Directors employ the synchronous montage technique to

increase the tension of a sequence and to highlight important

events. The detection of such sequences enables a new way

to extract semantically meaningful information from movies.

We propose an approach for the automated extraction of such

sequences based on a novel method for cross-modal temporal

correlation estimation and a tolerant segmentation scheme. The

retrieved sequences contain rich semantics which makes them

suitable for high-level video abstraction.

In future, we will extend the evaluation to a larger set of

movies and evaluate the benefit of the method to high level

tasks such as movie summarization.
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