

Saarland University

Department of Computer Science

Compiler-based Defenses

against

Code Execution Attacks

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

von

Markus Bauer

Saarbrücken, 2022

Tag des Kolloquiums: 11.01.2024

Dekan: Prof. Dr. Jürgen Steimle

Prüfungsausschuss:

Vorsitzender: Prof. Dr. Sebastian Hack

Berichterstattende: Prof. Dr. Christian Rossow

Dr. Michael Schwarz

Akademischer Mitarbeiter: Dr. Jordan Samhi

Zusammenfassung

Seit Jahrzehnten nutzen Angreifer Schwachstellen in der Speicherverwaltung nativer
Programme aus. Mittels dieser Fehler korrumpieren sie Daten, führen beliebigen Code aus,
und übernehmen angegriffene Systeme komplett. Besonders C- und C++-Anwendungen
sind gefährdet.

In dieser Dissertation beschreiben wir Compiler-basierte Lösungen, die bestehende
Anwendungen schützen, ohne dass Entwickler dafür Code umschreiben oder viel Zeit
aufwenden müssen. Alle gefährdeten Funktionen werden bedacht: Rücksprünge, indirekte
Sprünge (in C und C++) sowie unveränderbare Libraries. Erstens evaluieren wir bestehende
Schutzmaßnahmen für Rücksprungaddressen. Wir zeigen, dass viele Argumente gegen
den Einsatz dieser Techniken auf modernen Systemen nicht mehr relevant sind, und dass
bestehende Lösungen bereits eingesetzt werden können. Zweitens schützen wir virtuelle
Funktionsaufrufe in C++-Anwendungen. Wir nutzen eine Typ-basierte Analyse und eine
Transformation im Compiler, um diese Aufrufe effizient und ohne Funktionspointer zu
implementieren. Drittens schützen wir indirekte Aufrufe von Funktionsadressen in C. Wir
nutzen eine neue, typ-basierte Analyse um mögliche Aufrufziele zu finden und die Menge
gültiger Sprungziele zu minimieren. Zuletzt zeigen wir eine Methode, um möglicherweise
verwundbaren Code, beispielsweise ungeschützte Libraries ohne zugänglichen Quellcode,
in einer isolierten Umgebung auszuführen.

iii

Abstract

Memory corruption attacks have haunted computer systems for decades. Attackers
abuse subtle bugs in an application’s memory management, corrupting data and executing
arbitrary code and, consequently, taking over systems. In particular, C and C++ applications
are at risk, while developers often fail or lack time to identify or rewrite risky parts of their
software.

In this thesis, we approach this problem with compilers that protect applications with-
out requiring code changes or developer effort. We cover all treated aspects in legacy
applications: returns, indirect forward jumps in both C and C++, and immutable libraries.
First, we re-evaluate existing return address protections. In particular, we show that most
adaption-preventing arguments have become less critical in the modern world and that
already existing solutions can be deployable in production. Second, we protect virtual
dispatch in C++ applications from hijacking. We employ a type analysis and a compiler
transformation that implements virtual dispatch efficiently without hijackable pointers.
Third, we protect indirect calls to function pointers in C applications. We use a new type-
based analysis to find indirect call targets and transform indirect calls into a secure and fast
version with limited targets. Finally, we propose a method to isolate potentially vulnerable
code, particularly unprotected closed-source libraries, into compartments with restricted
access to its environment.

v

Background of this Dissertation

This dissertation is based on three peer-reviewed papers that are published at IEEE EuroS&P
2021 [P1], ACM ACSAC 2022 [P2], and ACM Asia CCS 2021 [P3]. I contributed to all
papers as the only author at PhD student level, and two of them [P1, P3] even as a single
person next to faculty-level co-authors. These papers form Chapter 5 [P1], Chapter 6 [P2],
and Chapter 7 [P3] of this thesis.

[P1] M. Bauer and C. Rossow. NoVT: Eliminating C++ Virtual Calls to Mitigate Vtable
Hijacking. In: 2021 IEEE European Symposium on Security and Privacy. EuroS&P ’21.
Sept. 2021. DOI: 10.1109/EuroSP51992.2021.00049.

[P2] M. Bauer, I. Grishchenko, and C. Rossow. TyPro: Forward CFI for C-Style Indirect
Function Calls Using Type Propagation. In: Proceedings of the 38th Annual Computer

Security Applications Conference. ACSAC ’22. Dec. 2022. DOI: 10.1145/3564625.
3564627.

[P3] M. Bauer and C. Rossow. Cali: Compiler Assisted Library Isolation. In: Proceedings

of the 2021 ACM Asia Conference on Computer and Communications Security. ASIA
CCS ’21. May 2021. DOI: 10.1145/3433210.3453111.

Further Contributions of the Author

I also contributed to one additional paper [S1] as one of the main authors. Switchpoline,
the presented tool, protects C and C++ applications from Spectre-BTB attacks on ARM
devices. To this end, it builds application binaries that do not contain any indirect branch
instruction. It is based on NOVT [P1] and TYPRO [P2]. The paper is not part of this thesis,
Section 6.12.1 summarizes its content.

[S1] M. Bauer, L. Hetterich, C. Rossow, and M. Schwarz. Switchpoline: A Software
Mitigation for Spectre-BTB and Spectre-BHB on ARMv8. In: Proceedings of the 2024

ACM Asia Conference on Computer and Communications Security. ASIA CCS ’24.
2024.

vii

https://doi.org/10.1109/EuroSP51992.2021.00049
https://doi.org/10.1145/3564625.3564627
https://doi.org/10.1145/3564625.3564627
https://doi.org/10.1145/3433210.3453111

Acknowledgments

This dissertation would have been impossible without the motivation, support, and
company of many great people. I want to thank everybody who supported me during my
studies, my work, and the preparation of my dissertation.

First and foremost, I want to thank my supervisor Christian Rossow for being a great
mentor, for giving me the opportunity to do exciting projects, for the funding, for giving me
the freedom to explore, and for having trust in me. I am deeply grateful for the introduction
and support in academic writing and the great introductions in all our publications. Special
thanks also go to Michael Schwarz for the time and effort in reviewing my dissertation.
I want to give a special thank you to my co-authors, namely Ilya Grishchenko, Lorenz
Hetterich, and Michael Schwarz. I am grateful for your ideas, the discussions, and the work
you put in our joined publications. It has been a pleasure to work with you.

My deepest gratitude goes to my colleagues. First and foremost, I want to thank Fabian
Schwarz for being such a nice office mate over the whole time, for all the talks, and for being
able to share all the frustration that comes with technical work. I want to thank Johannes
Krupp for his help in structuring and preparing this dissertation. Special thanks go to all
members of our System Security Group: Benedikt Birtel, Michael Brengel, Jonas Bushart,
Ahmad Ibrahim, Giorgi Maisuradze, Giancarlo Pellegrino, and Leon Trampert. I thank you
for the endless discussions during lunch, the constant stream of ideas, for testing the CALI

prototype, and for the company over the last six years. I also want to express my gratitude
towards all CISPA employees for providing such a pleasant working atmosphere.

Solving new problems is impossible without a solid foundation and rich background
knowledge. During my studies at Saarland University, I found many lecturers that put so
much effort into their courses to give us students the best possible learning opportunity.
Thank you all for providing such high-quality courses and teaching me that computer science
is more than just programming. I also want to thank all members of our CTF team saarsec,
particularly Ben Stock, who introduced me to the secrets of attack-defense competitions. I
learned much about security and systems during the saarsec meetings, playing competitions,
developing new tools, and during infrastructure preparation. The skills I learned here greatly
supported my research and my future career. Thank you all for being such a fantastic team.

I want to thank my Bachelor’s thesis advisor Sebastian Meiser who brought me on the
path toward a doctoral degree. Finally, I want to thank Michelle Carnell from the Graduate
School of Computer Science for rescuing my promotion studies twice.

I want to thank my family for their strong support, especially my parents, Karin and
Manfred. I am grateful for all the times you helped me in many ways. You always had my
back and supported me wherever possible. This dissertation would have been impossible
without you. I also want to thank my brother Michael and my grandparents for their support
and belief in me. I want to thank my friends for always supporting me, cheering me up, and
for being there when I needed them.

ix

Contents

1 Introduction 1

2 Background 9

2.1 C and C++ from a security perspective . 11
2.2 Memory Corruption Vulnerabilities and Attacks 12
2.3 Attacker Model . 14
2.4 The LLVM Compiler Framework . 14

2.4.1 Clang . 15
2.4.2 Linkers and Link-Time-Optimization. 15
2.4.3 Multi-Module Programs. 17

3 Related Work 19

3.1 Preconditions for Code Execution Attacks . 21
3.2 Separating Code from Data . 21
3.3 Preventing Memory Corruption . 22
3.4 Protecting Code Pointers (Code Pointer Integrity) 23
3.5 Hiding Gadgets . 24
3.6 Control Flow Integrity . 25

3.6.1 Backward CFI . 25
3.6.2 Forward CFI . 26

3.7 Isolation and Compartmentalization . 26

4 SoK: Evaluation of Return Address Protections 29

4.1 Motivation . 31
4.2 Problem Description . 31
4.3 Contributions . 31
4.4 Background: Attacks on Return Addresses . 32
4.5 Backward CFI schemes . 32

4.5.1 Stack Canaries . 33
4.5.2 Shadow Stacks . 33
4.5.3 Return Address Encryption . 34

4.6 The SPEC CPU Benchmark Suite . 35
4.7 Implementation . 36

4.7.1 Stack Canaries . 36
4.7.2 Shadow Stack . 36
4.7.3 Return address encryption . 37

xi

CONTENTS

4.7.4 Optimizations . 38
4.7.5 Evaluating Implementations . 39
4.7.6 Evaluating Security . 41

4.8 Performance Evaluation . 43
4.8.1 Methodology . 43
4.8.2 Measurement Soundness . 44
4.8.3 Performance Overhead on SPEC . 46
4.8.4 Overhead per programming language . 49
4.8.5 Overhead Comparison With Literature . 50
4.8.6 Binary Size Overhead . 52

4.9 Compatibility Evaluation . 52
4.10 Excursion: Return Address Protections on ARM 54
4.11 Conclusion . 54

5 NOVT: Eliminating C++ Virtual Calls to Mitigate Vtable Hijacking 57

5.1 Motivation . 59
5.2 Problem Description . 59
5.3 Contributions . 60
5.4 Background . 61

5.4.1 C++ Inheritance and Vtables . 61
5.4.2 C++ Multiple Inheritance . 61
5.4.3 C++ Virtual Inheritance . 63
5.4.4 Vtable Hijacking . 64

5.5 Attacker Model . 65
5.6 Design and Implementation . 65

5.6.1 Class Hierarchy Analysis . 65
5.6.2 Class Identifiers . 66
5.6.3 Dispatch Function Generation . 67
5.6.4 Storing Class IDs and Removing Vtables 69
5.6.5 Optimizations . 69
5.6.6 Implementation . 71
5.6.7 Compiler-Assisted Optimizations . 72
5.6.8 Usability . 73

5.7 Evaluation . 73
5.7.1 Security Evaluation . 73
5.7.2 Runtime Evaluation . 76
5.7.3 Generated Code Evaluation . 80
5.7.4 Binary Size and Memory Overhead . 81

5.8 Compatibility and Limitations . 82
5.9 Related Work . 83

5.9.1 Attacks on Vtables . 83
5.9.2 Vtable Protections . 83
5.9.3 Alternatives to Vtables . 85
5.9.4 Replacing Pointers with Identifiers . 86

5.10 Conclusion . 86

xii

CONTENTS

6 TYPRO: Forward CFI for C-Style Indirect Function Calls Using Type Propagation 89

6.1 Motivation . 91
6.2 Problem Description . 91
6.3 Contributions . 92
6.4 Overview . 93

6.4.1 Attacker Model . 93
6.4.2 Challenges . 93
6.4.3 Methodology at a Glance . 94
6.4.4 Type Propagation vs. Data Flow . 96

6.5 Target Set Computation . 96
6.5.1 Analysis Input Generation . 98
6.5.2 Type Analysis . 101

6.6 Call Target Enforcement . 105
6.7 Dynamic Modules . 106

6.7.1 Additional Input Generation . 107
6.7.2 Additional Type Analysis . 107
6.7.3 Dynamic Call Target Enforcement . 108

6.8 Implementation . 109
6.8.1 C Standard Libraries . 110
6.8.2 Optimizations . 110

6.9 Evaluation . 111
6.9.1 Correctness . 112
6.9.2 Security . 112
6.9.3 Performance . 114
6.9.4 Dynamic Loading . 116

6.10 Limitations & Discussion . 117
6.11 Related Work . 118
6.12 Conclusion . 119

6.12.1 Future Work—Switchpoline . 119

7 CALI: Compiler-Assisted Library Isolation 121

7.1 Motivation . 123
7.2 Problem Description . 123
7.3 Contributions . 124
7.4 Background and Related Work . 125

7.4.1 Compartmentalization . 125
7.4.2 Isolation Primitives . 127

7.5 General Overview . 128
7.5.1 Compiler-Assisted Library Isolation . 128
7.5.2 Overview . 128

7.6 Shielding Compartments . 129
7.6.1 Basic Compartment Structure . 129
7.6.2 Shared Memory . 129
7.6.3 Library Calls . 130
7.6.4 Callbacks, Signals, and File Descriptors 130

xiii

CONTENTS

7.6.5 Isolation . 131
7.6.6 Threading, Forks, and Concurrency . 131

7.7 Compiler-Assisted Separation . 132
7.7.1 Background: Call Graphs and SCCs . 133
7.7.2 Analysis Phase: Overview . 133
7.7.3 PDG Construction . 135
7.7.4 Data Flow in PDGs . 137
7.7.5 Reachability Analysis . 138
7.7.6 Function Specialization . 141
7.7.7 Tracing File Descriptors . 142
7.7.8 Rewriting Memory Allocations . 142
7.7.9 Data-Transferring Call Graph Analysis . 142

7.8 Evaluation . 143
7.8.1 Correctness Evaluation . 143
7.8.2 Usability Evaluation . 144
7.8.3 Compilation and Size Overhead . 146
7.8.4 Security Evaluation . 146
7.8.5 Performance Evaluation . 149

7.9 Conclusion . 150

8 Conclusion 153

Bibliography 159

xiv

List of Tables

4.1 Overview of SPEC 2017 benchmarks, their size, the protection coverage of
different canary modes, and coverage of our optimization strategy. Additional
summary of code locations where scratch registers were detected. 40

4.2 Overhead of all protections on all benchmarks. 47

4.3 Mean overhead of all protections per language and summary of overheads. . 51

4.4 Mean binary size overhead of all protections per language and summary of
additional binary size. 52

5.1 Number of protected operations per benchmark. 79

5.2 Summary of assembly constructs used to build virtual function dispatchers. . 80

5.3 Size of binaries before and after protection. 81

5.4 Related work to NOVT, grouped by binary- and source-based solutions. 84

6.1 Average number of call targets per indirect call on SPEC. TYPRO compared to
Clang CFI, IFCC, CFGuard and MCFI. 113

6.2 Average number of call targets per indirect call on various real-world server
applications. 113

7.1 Remaining shared memory allocations and the number of specialized func-
tions in the main program. 146

List of Algorithms

1 Class identifier assignment algorithm from NOVT. 71

xv

LIST OF FIGURES

List of Figures

2.1 Compilation and Linking of C/C++ programs with the Clang/LLVM toolchain. 16

4.1 Stack layout of C/C++ programs and the impact of buffer overflows. 32
4.2 Stack layout with canary. 33
4.3 Stack layout with shadow stack. 34
4.4 Stack layout with return address encryption. 35
4.5 Benchmark results and clusters of omnetpp and xalancbmk 45
4.6 Overhead of all protections on all benchmarks. 46
4.7 Overhead of all relaxed and optimized protections on all benchmarks. 48
4.8 Overhead per programming language. 50

5.1 C++ code as running example with multiple and virtual inheritance 62
5.2 Class hierarchy graph for our running example (Figure 5.1). 62
5.3 Memory layout of our example classes according to the Itanium ABI. 63
5.4 Class identifier graph including all possible construction identifiers. 68
5.5 Virtual dispatchers broken down by their number of possible call targets. . . . 74
5.6 Performance overhead of NOVT on all programs. 77
5.7 Performance overhead of NOVT on Chromium. 78
5.8 Virtual actions (calls, vbase offset, etc) per second, broken down by the

number of switch cases in the NOVT dispatcher functions. 78

6.1 Code example showing different ways to transfer function pointers. 94
6.2 TYPRO’s workflow. 95
6.3 Graphical representation of the collected and derived facts for “scene1_a”

and “scene1_b”. 97
6.4 Graphical representation of the collected and derived facts for “scene2_a”

and “scene2_b”. 97
6.5 Graphical representation of the collected and derived facts for “scene3_a”

and “scene3_b”. 98
6.6 Predicate signatures for the facts used by analysis. 98
6.7 Rules for computing the final result (all possible function types for each call). 103
6.8 Rules demonstrating the core of Clang CFI and IFCC computation of the final

function types for each call. 103
6.9 Example showing a simple indirect call before and after transformation. . . . 106
6.10 Additional predicate definitions for dynamic module support, and additional

rules for module summaries. 107
6.11 Runtime overhead of TYPRO on SPEC 2006 benchmarks. 115
6.12 Runtime overhead of TYPRO on real-world applications. 115
6.13 Additional size of SPEC and other example programs on x86 (in KB). 116
6.14 Runtime computation time for dynamic linking (SPEC / musl libc) 116

xvi

LIST OF FIGURES

7.1 Overview of recent program isolation schemes. 127
7.2 Example program passing memory to a library. 134
7.3 Simplified LLVM code of the example in Figure 7.2. 135
7.4 Excerpt of the PDG from the example program. 136
7.5 Recursive algorithm to generate subnodes of a value node n with type t. . . . 136
7.6 Rules to determine data flow for LLVM instructions. 137
7.7 Full Program Dependence Graph with all analyses applied. 139
7.8 Configuration file for ImageMagick convert. 145
7.9 Compile time without and with CALI. 146
7.10 Performance impact of CALI. 148

xvii

1
Introduction

1

The most popular programs are still written in memory-unsafe languages like C and
C++ [84]. From browsers over operating systems to end-user applications, today’s com-
puter systems rely on massive amounts of C and C++ code. Errors in this code can easily
open up memory corruption vulnerabilities that can enable code execution attacks. Attackers
can corrupt the entire system, executing arbitrary code, possibly even over the internet.
And because C and C++ are low-level languages without any sophisticated memory pro-
tection, these programs are particularly prone to memory corruption attacks. In the real
world, we see plenty of these attacks, for example, on operating systems [103, 72, 162],
browsers [167], and servers. The underlying vulnerabilities are common—for example,
70% of all vulnerabilities in Google Chrome are memory safety problems [167], around
80% of all Android vulnerabilities are caused by memory issues [162], and use-after-free
heap corruption bugs are the primary source of vulnerabilities in Microsoft Windows [103].

This dissertation will present and discuss methods to protect applications from code
execution attacks. While we do not prevent memory corruption vulnerabilities, we can
prevent the escalation to code execution and system corruption.

In an ideal world, developers would solve this problem by rewriting applications in
memory-safe languages like Rust [147]. These languages should not have memory corruption
vulnerabilities by design, preventing the root cause of code execution attacks. However, the
sheer amount of code that is currently in use makes rewriting a tedious, longterm (if not
impossible) task. While more and more developers consider Rust a potential language for
new code, existing code is often left untouched [25]. Unsafe legacy C/C++ code will be
around for the decades to come, and with it, the risk of code execution attacks.

For years, researchers have identified the need for protection against this problem,
leading to an arms race between attackers and defenders. Automatic, program-agnostic
protections have been proposed; they try to protect legacy applications from different types
of code execution attacks. For example, data execution prevention (DEP) [102] or W⊕X [188]
prevent code injection attacks, address space layout randomization (ASLR) [137] hides crucial
information from the attacker, and stack canaries [37] prevent attacks based on memory
corruption from stack buffer overflows. Built into major C/C++ compilers, applying these
defenses is simple for programmers; they require no changes in the source code. Following,
these defenses have seen widespread adoption in real-world programs. By now, they are
even enabled by default in many popular compilers.

But attackers have reacted to the emerging spread of these defenses, and have developed
newer, stronger attacks countering many existing defenses: code-reuse attacks have replaced
code injection attacks, information leaks defeat ASLR, and heap-based memory corruption
evades stack-based protections like stack canaries. Stronger protections are necessary that
cover the missing parts of C/C++ applications.

This dissertation will present such stronger protections and how we can isolate the
effects of code execution attacks. To this end, we will answer two research questions (RQ):

(RQ1) How can we prevent the escalation from memory corruption to attacks

on an application’s control flow? Attacks on the control flow are the crucial step of
code execution attacks. By bending an application’s control flow, attackers can ultimately
determine which code will execute next, which usually results in a complete take-over of
the application process. In Chapter 2, we will detail the background of these attacks more.
In Chapter 3, we will review the plethora of existing work on this topic. We will see that

3

CHAPTER 1. INTRODUCTION

many defenses have been proposed, but only a few have been actually deployed in practice,
and clever attackers can circumvent most deployed solutions. From the related work, we
conclude that control flow integrity (CFI) systems are the best possibility to prevent code
execution attacks today, either in software or hardware.

CFI schemes must protect backward control flow (returns) and forward control flow
(indirect calls). So far, backward CFI schemes exist, but they are considered slow or weak.
We re-evaluate three of these schemes in Chapter 4 in a modern setting and show that their
performance overhead is much lower than expected. In particular, we show that strong and
fast schemes exist, and they might see real-world adoption in the coming years.

Protecting forward control flow is still an ongoing topic in research. Current schemes
are either complex, slow or require code modifications. In Chapter 5, we present NOVT,
a forward CFI scheme for C++ applications. NOVT protects existing code without any
modifications, additional complexity, or performance overhead. In Chapter 6, we present a
similar system for C applications: TYPRO. TYPRO protects C-style indirect calls with little to
no performance cost. Together, NOVT and TYPRO cover forward control flow completely.

However, even a perfect CFI scheme might not be enough to prevent code execution
attacks completely in every scenario. In particular, we identified third-party libraries as
a threat to security. Not only have bugs in application dependencies been the root cause
for many attacks in the real world, but state-level attackers have successfully executed
supply chain attacks. Attackers have submitted intentionally vulnerable or malicious code to
third-party libraries used by their victims. If the victim does not detect the evil nature of
these contributions, it includes malicious code in the application, which becomes an easy
target for the attackers. But libraries impose a security risk even if they do not contain
malicious code. If source code is unavailable, the proposed CFI schemes cannot protect
the library, and memory corruption attacks on the library’s code can take over the whole
application process. And some libraries might be old, unmaintained, or known for the
regular discovery of vulnerabilities.

Application maintainers can hinder but hardly prevent code execution attacks originating
in library code. In these scenarios, there is a need for additional protection, which we will
research in our second research question:

(RQ2) How can we isolate application memory and underlying system from attack-

ers that exploit a code execution vulnerability in a library? While the operating system’s
user and permission system can already limit system corruption to a single user account,
we want to limit libraries further: In Chapter 7, we will isolate parts of the application,
e.g., libraries, minimizing their system privileges and, thus, possible corruptions in case of
code execution attacks. Developers can use CALI, our protection, with minimal effort to
isolate third-party libraries or other untrusted components from their main application. The
isolated code can only access files, networks, or other resources if explicitly permitted by the
developer; thus, the impact of an attack on the system is minimized. With a proper isolation
policy, developers can even limit the damage of potential supply chain attacks in their
dependencies. Isolation can also include closed-source libraries where CFI is not applicable.
CALI thus completes the protection of CFI-protected applications with unprotected modules.

We publish all our protections as open-source software.

4

Contributions

This dissertation comprises three publications [P1, P2, P3] and one still unpublished report,
outlined below.

Evaluation of Existing Return Address Protections (RQ1)

In “SoK: Evaluation of Return Address Protections” (see Chapter 4), we evaluate the perfor-
mance, security, and compatibility of three return address protection schemes in a modern
setting. So far, researchers have believed that these protections are either weak or too slow
for widespread real-world adoption.

We re-implement stack canaries, shadow stacks, and return address encryption and
re-evaluate these protections on modern hardware, software, and compilers. We show that
their performance overhead has degraded well over time—up to a point where it might not
prevent wider real-world adoption. In particular, a software-only shadow stack has a mean
performance overhead of 2.7% if optimized for speed, so it is faster and more secure than
stack canaries on every function. We further highlight the impact of programming languages
on the expected performance overhead—C, C++, and Fortran are differently affected.

Protecting Virtual Dispatch in C++ Programs (RQ1)

In “NOVT: Eliminating C++ Virtual Calls to Mitigate Vtable Hijacking” [P1] (see Chapter 5),
we protect C++ applications against vtable hijacking attacks.

All major C++ compilers use virtual function tables (vtables) to implement class inheri-
tance and dispatch of overridden methods. Attackers can corrupt pointers to these vtables
in memory to get code execution. Our solution replaces vtables with switch-case constructs
that are inherently control-flow safe, thus preserving the control flow integrity of virtual
dispatch.

To this end, NOVT extends the Clang C++ compiler to perform a class hierarchy analysis
on C++ source code. This lightweight static analysis can infer which method implemen-
tations are valid targets for a virtual call. Instead of a vtable, we give each class a unique
identifier number that is used to dispatch the correct method implementation. As a bonus,
NOVT inherently protects all usages of a vtable, not just virtual dispatch.

We evaluate NOVT on the SPEC CPU 2006 benchmark and real-world programs, including
Chromium. Despite its strong security guarantees, NOVT improves runtime performance of
most programs (mean overhead -0.5%, -3.7% min, 2% max). In addition, protected binaries
are slightly smaller than unprotected ones. NOVT works on different CPU architectures. It
protects complex C++ programs against attacks that have been used to defeat previous,
weaker solutions.

Protecting Indirect Calls in Legacy C Programs (RQ1)

In “TYPRO: Forward CFI for C-Style Indirect Function Calls Using Type Propagation” [P2]
(see Chapter 6), we focus on legacy C applications: We protect function pointers from
arbitrary modifications, thus enforcing forward control flow integrity over the whole program,
including libraries.

5

CHAPTER 1. INTRODUCTION

To protect indirect calls to function pointers, we must know which functions a pointer
might point to at runtime. Then we can restrict indirect calls to target these functions only.
Existing CFI schemes are either too permissive (thus weakening security guarantees) or too
strict (thus breaking compatibility and introducing crashes). Furthermore, many existing
schemes depend on specific hardware capabilities that are not generally available.

Our solution TYPRO solves both issues. It uses a new static analysis, called type propaga-
tion, to follow function pointer types through C programs. Type propagation can determine
the possible target functions for indirect calls at compile time with high precision. We will
show that TYPRO does not underestimate possible targets and does not break real-world
programs, including those relying on dynamically-loaded code.

Instead of checking indirect call targets at runtime, TYPRO converts indirect calls into
a set of direct calls, similar to NOVT. Instead of function pointers, TYPRO uses unique IDs
to trigger the correct direct call. This transformation is implemented in the compiler; it is
software-only and fast: TYPRO has no runtime overhead on average, both in benchmarks
and real-world applications. It does not depend on special hardware features and works on
different CPU architectures.

So far, TYPRO provides a good trade-off between compatibility, reliability, and security.
These properties make TYPRO ideal for real-world adoption.

Defending Applications against Vulnerabilities in Libraries (RQ2)

Even though the proposed protections counter code execution attacks in many legacy
programs, an attacker might find ways to break through: Most prominently, code not
covered by the proposed protections could be exploited, like libraries without accessible
source code. Software libraries can freely access the program’s entire address space and
inherit its system-level privileges. This lack of separation regularly leads to security-critical
incidents once libraries contain vulnerabilities or turn rogue.

In “CALI: Compiler-Assisted Library Isolation” [P3] (see Chapter 7), we propose library
isolation to solve this problem: CALI can automatically isolate unprotected or potentially
risky parts of the overall application into restricted compartments. While this does not
prevent the actual exploit, it prevents attackers from damaging the system. CALI is fully
compatible with mainline Linux and does not require supervisor privileges to execute. We
compartmentalize libraries into their own process and kernel namespace context with well-
defined security policies. To preserve the functionality of the interactions between program
and library, CALI uses a Program Dependence Graph to track data flow between the program
and the library during link time.

We evaluate our open-source prototype against three popular libraries: Ghostscript,
OpenSSL, and SQLite. CALI successfully reduced the amount of memory that is shared
between the program and library to 0.08%–0.4% and retained an acceptable program
performance.

6

Outline

The remainder of this dissertation is structured as follows: We first introduce the concepts we
based our work on in Chapter 2: the C/C++ languages, memory corruption vulnerabilities,
and the LLVM compiler framework. In Chapter 3, we summarize the most important related
work on these topics. We will discuss topic-specific related work in the appropriate chapter.
In Chapter 4, we re-evaluate existing protections for return addresses. Next, we discuss
our own three protections: the C++ protection NOVT in Chapter 5, the function pointer
protection TYPRO in Chapter 6 and the library isolation tool CALI in Chapter 7. Finally, in
Chapter 8, we summarize our results and give an outlook on future work.

7

2
Background

9

2.1. C AND C++ FROM A SECURITY PERSPECTIVE

This chapter will provide the necessary background information about concepts, pro-
gramming languages, and tools that we will use in later chapters. This thesis considers
applications written in C/C++ (Section 2.1), some of the most common programming
languages. Subtle programming errors in C/C++ can easily impose memory corruption
vulnerabilities (Section 2.2) that attackers can abuse to run arbitrary code. We define the
capabilities of such an attacker in Section 2.3. Our defenses against this threat rely on the
LLVM compiler framework and its Clang compiler, which we introduce in Section 2.4.

2.1 C and C++
from a security perspective

C is a low-level, imperative, statically typed language focusing on efficiency. Since 1972,
C has been widely used in systems programming, including operating systems. C requires
programmers to manage the application’s memory manually. Memory addresses are an
essential concept of the C language in the form of typed pointers. These pointers contain only
an address of data or code but no boundary or allocation information, which programmers
must manage themselves. In all typical implementations, the referenced memory can come
from three different pools with unique characteristics:

• the data segment: Global variables are located in a preallocated piece of memory at
a fixed address, which is available for the whole runtime of the application.

• the stack: For each called function, a C program automatically reserves a piece of
memory on a stack; this piece of memory is called the stack frame. It contains mainly
the function’s local variables and some information relevant to the machine’s calling
convention. It is automatically released when the function returns.

• the heap: Data that is not function-local can be stored on the heap, which the C
runtime provides. Programmers can reserve variable-sized chunks of memory from
the heap at any time, which remain allocated until the programmer manually releases
them. The C runtime then allocates the necessary memory from the operating system
and manages the released chunks of memory.

This example code shows the different types of memory. For each type, it contains one
memory allocation:

1 int a = 0; // a 4-byte number in data segment

2 void main() {

3 char buffer[16]; // a 16-byte buffer on the stack

4 char *c = malloc(32); // a 32-byte chunk on the heap

5 // ... c is now a pointer to the heap chunk ...

6

7 printf("%p %p %p\n", &a, buffer, c); // show pointers

8

9 free(c); // manually release heap memory ("c")

10 return; // stack var "buffer" is released here

11 }

11

CHAPTER 2. BACKGROUND

C++ is an object-oriented language based on C. It extends pure C with many new
language features, with classes and inheritance being the most prominent ones. A class is
a structural type combining data with functions operating on it (called methods). Classes
can inherit from others, adding additional data or methods. An inheriting class can override

methods it inherited from its parent class. Similar to C, memory management is done
manually using pointers. Newer versions of the C++ runtime provide constructs to make
memory management easier, preventing some but not all possible memory corruptions when
used correctly. On the other hand, inheritance and overridden methods are good targets for
memory corruption from an attacker’s perspective.

2.2 Memory Corruption Vulnerabilities and Attacks

As of the C/C++ specifications [67, 68], any memory or pointer management error like
out-of-bounds access is undefined behavior—it is up to the compiler, hardware, and operating
system how the application behaves in these cases. In particular, a pointer handling error
does not necessarily terminate the application, leaving it in a corrupted state. This section
shows how attackers can trigger undefined behavior, exploit the underlying implementation
and bend an application’s actual behavior to their needs.

Attacks on C/C++ programs usually start with an error in the memory-managing code,
producing an invalid pointer. Such a pointer can either be a spatial violation (e.g., go out of
bounds) or a temporal violation (e.g., point to memory that is no longer valid). When such
a pointer is used to read from or write to the pointed memory, the application’s behavior
starts deviating from the expected behavior—operations on invalid pointers do not crash
the program but access memory that the program has in use for other purposes. The actual
attack and the possible impact depend on the memory type the invalid pointer is referencing.

• Data segment pointers can only violate spatial safety because the data segment has an
unbounded lifetime. An attacker with an out-of-bounds pointer to the data segment
can tamper with global variables. In particular, global variables might contain data
structures with function pointers. Overriding a function pointer can divert control flow
and be the start of arbitrary code execution. Similarly, global variables might contain
C++ objects or pointers to C++ objects. These objects might have an associated virtual
function table, which attackers can override to divert control flow (see Section 5.4.4
for details). Depending on the operating system and binary layout, a global offset table

might be located next to the data segment. It contains plenty of function pointers
necessary for the interaction with libraries and therefore is a viable target for attackers.

• Stack pointers have been a primary target for a long time. The most common error
source were stack buffer overflow bugs, where user input is too long to fit into a
buffer, consequently overwriting subsequent memory chunks. Because stacks grow
backward (in terms of addresses) on most architectures, such a (forward) overflow
can corrupt everything allocated earlier on the stack. Next to overflows, violations
in the calling convention can produce spatially invalid stack pointers. For example,
functions accepting a variable number of arguments might be tricked into reading
more arguments than actually passed, as in format string attacks. A temporal violation

12

2.2. MEMORY CORRUPTION VULNERABILITIES AND ATTACKS

of stack pointers is possible: A pointer to a local variable might be moved outside of
the function containing the local variable. If this pointer is used after the function has
returned, it is invalid: the local variable is no longer allocated, and another function’s
stack frame might have taken its place.

For an attacker, the stack usually contains plenty of interesting targets: Next to local
variables and pointers to almost any other data structure, it includes the return address

of each function—the address in code that the program should jump to once the
function returns. This address has been the primary target in attacks: overwriting
this return address using an invalid stack pointer directly changes the control flow. It
gives an attacker the possibility to execute almost arbitrary code.

• Heap pointers can violate spatial safety similar to stack pointers: a heap buffer overflow

might write into the following chunks. Furthermore, a heap pointer going out-of-
bounds to a lower address (for example, as the result of an integer overflow) can
write into previous chunks or the control data of the heap’s implementation. But
more prominent are temporal safety violations that occur as a result of faulty memory
management: A double-free attack gets possible when the same chunk of memory is
reserved once but released multiple times. As a result, the heap implementation might
allocate the same memory for multiple chunks, producing more invalid pointers. Most
prominent are use-after-free bugs, where a chunk is released, but its pointer is still
used afterwards, accessing either the heap’s implementation control data or another
unrelated chunk of memory. Use-after-free bugs are the single most common source
of errors in Google Chrome [167], the most popular web browser today.

For attackers, the heap often stores C++ objects. Objects with virtual function tables
are a viable target for corruption. The heap might also store function pointers in
complex data structures in C programs.

From an initial safety violation, the attacker can chain attack vectors. For example, the
attacker can use an initial stack pointer going slightly out of bounds to corrupt a heap pointer.
The attacker can then use this heap pointer to access the data segment and overwrite one of
the function addresses stored there.

To get from a memory corruption to code execution, the attacker always triggers the
vulnerability to finally corrupt a code address in memory, be it a return address, a function
pointer, or a global offset table entry. In earlier times, it was easily possible to execute
arbitrary code at this point: The attacker could set the code address to an attacker-controlled
buffer and place machine instructions there.

Today, all major architectures and operating systems employ a hardware-based defense
called W⊕X or data execution prevention, where writeable memory is not generally executable
(see Section 3.2 for details). Consequently, attackers rely on code-reuse attacks: Instead
of bringing their own machine instructions, they reuse existing instruction snippets in a
different order. To this end, the attacker must find suitable gadgets in the program’s machine
code. A gadget is a series of instructions that end with a control transfer instruction with
an attacker-controllable target. The attacker can use the final instruction to chain these
gadgets together, building new program behavior out of existing code. The most well-known
method is return-oriented programming (ROP) [15]: Attackers search for gadgets ending

13

CHAPTER 2. BACKGROUND

with a ret instruction. This instruction pops an address off the stack and jumps to it.
If the attacker places the addresses of multiple gadgets next to each other on the stack,
they will be executed one after another. A modern alternative is call-oriented programming

(COP) [19] based on indirect jump and call instructions, which do not rely on the stack. For
C++, researchers have developed counterfeit object-oriented programming (COOP) [151]
based solely on C++ virtual methods. For all these methods, the attacker has to rely on the
presence of enough suitable gadgets for his intention. Given these gadgets and an initial
code address, he can build a code execution attack from a memory corruption vulnerability.

Having achieved code execution, the attacker has numerous possibilities to proceed:
In the real world, the deployed code would, for example, install malware to get persistent
control over the attacked system, leak sensitive data or make the system inoperable.

2.3 Attacker Model

In this thesis, we will consider attacks on C or C++ programs. These programs include
large programs, legacy programs not maintained well, and programs where the original
developers are unavailable. In this scenario, we do not assume that the users of our tools
have much knowledge about these programs. In general, we can assume that language,
the build scripts, library dependencies, and the expected functionality of the program are
known, but no profound knowledge of the code is given. A typical real-world incarnation of
this scenario is a Linux package maintainer, who is building and distributing software, but
rarely writing code. In this scenario, solutions must be automatic: apart from the details
outlined above, our solution must infer all necessary knowledge independently without
requiring user interaction.

In our model, this program is the target of an attacker. We assume that the attacker has
found memory corruption vulnerabilities in the program. The attacker can trigger them
to change the content of writeable memory in the target process, i.e., change all data but
not the (read-only) code. We have no further assumptions on timing, memory location
or content the attacker writes. Our attacker’s goal is first to reach code execution, then
change the underlying system. Our solutions aim to stop relevant changes by preventing
the attacker’s code execution or limiting the impact of the attacked code on the system.

We give more details on the exact goals in the respective chapters: Section 5.5, Sec-
tion 6.4.1, and Section 7.5.1. Each of our solutions covers a specific kind of attack. In
the respective attacker models, we do not limit the memory corruptions but assume other
orthogonal protections are in place. For example, we assume a return address verification
scheme if return addresses are out of scope.

2.4 The LLVM Compiler Framework

Before a computer can execute C and C++ programs, they must be translated into machine
instructions. A program named compiler does this translation. A compiler must check if a
program is syntactically and semantically valid, it must combine all source code files, and
translate them into an executable file. There are many C/C++ compilers used in practice,
with the Gnu Compiler Collection (gcc), Visual C++, and Clang being most common.

14

2.4. THE LLVM COMPILER FRAMEWORK

2.4.1 Clang

In this dissertation, we focus on the Clang compiler because it is open source, well-
maintained, and easily extendable. Clang is part of the LLVM (“low-level virtual machine”)
framework, an intermediate language (IR) with associated tooling. Compiling programs with
LLVM is a four-step process: First, different frontends like Clang translate different program-
ming languages into the LLVM intermediate representation (IR). Second, this representation
can be transformed, processed, and optimized by language-agnostic and hardware-agnostic
methods, so-called passes. Third, different backends translate the intermediate represen-
tation to hardware-specific assembly or machine code. Finally, the linker combines one
or multiple machine code files into a single executable file. This separation of concerns
makes LLVM pretty modular—in particular, it is possible to add new transformations with-
out considering source languages or target hardware. Our solutions mainly operate in
the optimization stage of LLVM, transforming the intermediate representation into a more
secure program representation. Furthermore, some of our solutions rely on source code
information collected in the frontend, and some solutions add additional code (runtime
libraries) to the final linking step. Thus, apart from the runtime libraries, our solutions are
independent of the concrete backend, i.e., the target hardware.

2.4.2 Linkers and Link-Time-Optimization.

Most C and C++ programs consist of many source code files. Figure 2.1a shows how all
major build systems handle programs with multiple files. The compiler processes each file
independently, from the frontend over the optimization stage to the backend. An object

file is produced for each source code, containing the generated machine code. When all
files have been converted to machine code, they are combined in the fourth step: The
linker concatenates all object files, resolves any links between them, adds boilerplate code if
necessary, and combines everything into a single executable file. This scheme is very efficient
in terms of compilation time because it allows parallel compilation, and tools can cache the
compilation result of unchanged source files. However, this scheme is not well suited for
passes that benefit from knowledge about other source code files: For example, “dead code
elimination” can only remove a function after ensuring that no other source file calls it, and
function inlining can only integrate functions if both caller and callee are present in the same
IR file. In particular, advanced security schemes working on the architecture-independent IR
are affected: When IR is processed, only the source information from one single source code
file is available. But many schemes require knowledge about the whole program, making
the traditional compilation mode an obstacle.

Compiler designers have solved this problem by introducing link-time optimization

(LTO). Figure 2.1b shows the difference from the traditional build system. Each source file is
compiled into a file containing IR, not an object file containing machine code. The backend
does not execute as part of the source file compilation process but is moved into the linker.
When the program is linked, the linker merges all IR files into one big IR unit, in contrast to
one big machine code unit. Additional more powerful compiler passes inside the linker can
optimize this single unit. Finally, the compiler’s backend is invoked, transforming the IR unit
to a single machine code file, which is then linked. Reordering the four compilation phases
increases the compilation time but can result in better-optimized programs. So far, link-time

15

CHAPTER 2. BACKGROUND

Object File
(machine code)

Executable

clang
frontend

clang
backend

In
te

rm
ed

ia
te

R

ep
re

se
nt

at
io

n
So

ur
ce

 C
od

e

Linker

Object File
(machine code)

(a) Traditional compilation steps. Each file is compiled and optimized independently to machine
code, then object files are linked together. The dragon is LLVM’s logo.

Executable

clang
frontend

In
te

rm
ed

ia
te

R

ep
re

se
nt

at
io

n
So

ur
ce

 C
od

e

lld backend

Object File
(machine code)

Linker

(b) Compilation steps with link-time optimization. Each file is compiled to the intermediate
representation. All files are first combined, then optimized and converted to machine code.

Figure 2.1: Compilation and Linking of C/C++ programs with the Clang/LLVM toolchain.

16

2.4. THE LLVM COMPILER FRAMEWORK

optimization has been integrated in all major compilers. Almost any C or C++ program
supports link-time optimization. Even massive programs such as Chromium compile with
link-time optimization in feasible time.

With link-time optimization enabled, LLVM produces bitcode files containing pre-optimized
IR instead of object files. LLVM’s linker lld is aware of these bitcode files and runs a set of
additional optimization passes on the given IR. lld also contains the compiler backends,
transforming IR into machine code. As an alternative, LLVM offers a plugin for traditional
GNU linkers, doing the same job.

Our solutions rely on link-time optimization and put additional IR passes in lld. At this
point in the compilation process, our solutions see all information collected in the frontend,
can collect additional information from the whole program’s IR, and can transform the
whole program at once. Furthermore, extending the linker lld makes it easy to add custom
runtime libraries into the program. None of these changes requires additional input from or
modifications to the program or build system, making the solutions easily applicable.

2.4.3 Multi-Module Programs.

C and C++ applications often reuse code from other projects packaged in libraries. A library
is a single file containing reusable, binary machine code. Applications can load this file into
their process at runtime; the loaded code executes within the application’s process. The
process of loading other executable files at startup is called dynamic linking. Dynamically
linked libraries might be shipped as a pre-compiled file without source code. So the code to
be loaded is often not known in advance, nor can it be analyzed together with the application.
A C/C++ application only needs a library’s header files to interact with it. They contain
names and types of the library’s exported functions and global symbols, its interface, which
our solutions can use for reasoning. In Chapter 7, we will present CALI, a system dealing
with the risks of libraries and dynamic linking.

Some applications can even load libraries after startup that have not been linked. For
example, applications can have a plugin system where users can extend it with custom
functionality. Dynamic loading allows applications to load any library at any time into a
process and access its interface. Neither the libraries’ names, interface, or header files are
known at compilation time. Therefore, no whole-program analysis is possible, and compile-
time solutions cannot infer any knowledge about this application, except that it might load
code in the future. The function pointer protection TYPRO, presented in Chapter 6, supports
dynamic linking and dynamic loading, despite relying on compile-time type analysis.

In contrast to dynamic linking and loading, static linking allows a developer to combine
multiple modules in a single executable; application and libraries are combined at build time.
Therefore, statically linked applications are more independent of the underlying operating
system and the libraries installed there, e.g., avoiding problems with incompatible versions.
However, static linking increases file size and has potential licensing problems, e.g., when
combining LGPL [42] libraries with proprietary applications. In practice, applications can use
static and dynamic linking together—some system-dependent libraries might use dynamic
linking, while other version-dependent libraries might use static linking. In Chapter 5, we
present a system (NOVT) relying on static linking for whole-program analysis and hardening.

17

3
Related Work

19

3.1. PRECONDITIONS FOR CODE EXECUTION ATTACKS

3.1 Preconditions for Code Execution Attacks

Memory corruption vulnerabilities and code execution attacks are long-known problems
and have been under research for some time.

Researchers have proposed many defenses, while other researchers and real-world
attackers have invented new ways to circumvent these defenses. Szekeres et al. summarize
both attacks and defenses in their paper “SoK: Eternal War in Memory” [164]: In their
attack model summary, an attacker with a memory corruption vulnerability has two ways to
reach code execution, with different preconditions:

1. code corruption attack: the attacker can modify existing code and replace it with the
desired functionality. According to Szekeres et al., the attacker must be able to:

(a) modify existing, executable code and

(b) write machine-specific instructions.

2. control-flow hijack attack: the attacker can re-purpose existing control-flow instructions
to re-use existing code. This is today’s primary attack method, which we already
described in Section 2.2. To perform this attack, an attacker must be able to:

(a) modify a code pointer

(b) know the addresses of useful code or gadgets and

(c) trigger an indirect control flow transfer using this pointer.

The model of [164] contains two more attacks (information leaks and data-only attacks),
but they are not relevant for code execution attacks or this thesis. Similar, attacks can
be chained together, e.g., attackers can use a weak control-flow hijack attack to invoke
mprotect, which in turn enables a more powerful code corruption attack. This problem is
solved if both attack types are mitigated—stopping the first of a chain of attacks is enough
to protect the application.

In this chapter, we will introduce existing defenses against code execution attacks. Some
of these defenses are already deployed in real-world programs; we will show which attack
conditions they target. We will also show the covered parts and the weaknesses these
defenses might have; and we will show where our protections from the following chapters
will fit in.

3.2 Separating Code from Data

As a basic defense, memory corruption attacks must not be able to write code. This policy
is named W⊕X [188] or data execution prevention (DEP) [102]. No part of a program’s
memory can be writeable and executable simultaneously. In some way, W⊕X creates a
runtime distinction between code and data: Code is executable but must be read-only (rx),
i.e., attackers cannot overwrite code. Data can be writeable but must not be executable
(rw), i.e., attackers cannot write new code in data memory.

The strict enforcement of W⊕X prevents code corruption attacks completely by invalidat-
ing condition 1(a). Instead, attackers can only try to mount code-reuse attacks [15]: Their

21

CHAPTER 3. RELATED WORK

code execution capabilities are limited to the gadgets in the original program—the attacker
cannot create new gadgets. Furthermore, the number of gadgets is reduced considerably
because all data is not executable anymore. Thus, condition 2(b) is harder to fulfill for
attackers because only existing gadgets from the existing code can be reused.

All major compilers and operating systems have adopted this policy and produce pro-
tected binaries by default. Existing code did not need changes, apart from just-in-time
compilers, which required little patches. The permissions of memory pages are implemented
in the system’s pagetables and are enforced by the CPU. Therefore, this defense has no
performance overhead. W⊕X is widely adopted; we consider it active in all our threat models.
All further presented defenses can also focus on the remaining threat: control-flow hijack
attacks.

3.3 Preventing Memory Corruption

The root cause of most code execution attacks is the existence of memory corruption
vulnerabilities. Thus, researchers have developed defenses against memory corruption in
general, denying condition 1(a) and 2(a) of the considered attacks. So far, no defense has
seen relevant adoption in practice, in particular, because they impose high runtime overhead
or are incompatible with many legacy programs.
Memory Corruption Checkers in Academic Research. CCured [125], SoftBound [122],
WIT [2] and the tool from [204] track potentially insecure pointers and insert runtime
checks around their usages. BinArmor [157] stops buffer overflows even in closed-source
binaries. CRED [148], “backwards-compatible array bounds checking” [33], “baggy bounds
checking” [3], and PAriCheck [205] detect buffer overflows at runtime, at different precision
and performance penalties. [33] and [82] propose memory partitions to reduce the impact
of memory corruptions. PARTS [86] uses ARM’s pointer authentication [142] instructions to
detect modified pointers at runtime. Data-Flow Integrity [21] statically determines which
data can be written to certain memory regions and enforces this at runtime. Cling [4] or
CETS [123] counter temporal attacks like use-after-free: Cling is a custom memory allocator
that does not reuse addresses for incompatible types. At the same time, CETS detects
reused pointers at runtime. Cyclone [70] proposes a safe dialect of C, preventing memory
corruption errors.

Valgrind Memcheck [126, 154] and AddressSanitizer [153, 171] (with its spin-offs
MemorySanitizer [174], ThreadSanitizer [177] and UndefinedBehaviorSanitizer [178])
detect common memory errors at runtime with performance overhead starting at 2×.
Developers often use these sanitizers to check for subtle memory errors during application
testing, but not in production.

In the meantime, hardware features like ARM’s Memory Tagging Extensions [7] have
been introduced to catch invalid memory access with little performance penalty. However,
the implementable policies can only catch few memory corruptions because only few (16
for ARM) memory classes are possible. For example, a typical implementation might catch a
heap-based out-of-bounds memory access only if it overflows from an allocated heap chunk
into another one. Overflows within data structures or between stack variables of the same
function are undetectable. As soon as attackers can corrupt a pointer within the same data
structure, memory tagging can be completely broken with some non-negligible probability.

22

3.4. PROTECTING CODE POINTERS (CODE POINTER INTEGRITY)

Safe Languages. Memory corruption vulnerabilities occur because C and C++ are inherently
memory-unsafe. To this end, developers have started adopting new, memory-safe languages.
In these languages, the language design and compiler-enforced rules forbid constructs that
might not be memory-safe, preventing accidental memory corruption bugs. In particular,
Rust [147] is a low-level system programming language that uses extensive compiler-based
verification and runtime checks to generate safe executables. It can be as fast as C/C++
and is compatible with legacy C libraries. However, a major effort is necessary for adoption
in legacy projects, as developers must rewrite all source code in the new language. For new
projects, this is not a problem: For example, new parts of the Firefox engine are written in
Rust [116].

3.4 Protecting Code Pointers (Code Pointer Integrity)

As outlined in the previous section, there is no accepted solution to protect an existing
program’s memory from attacker-controlled memory corruptions. Attackers can still modify
a code pointer (conditions 2(a)) as the first step toward control-flow hijack attacks. Re-
searchers have proposed schemes like Code Pointer Integrity (CPI) [79] that protect these
code pointers in particular, but not the remainder of a program’s memory. Protection of all
code pointers would stop code-reuse attacks at the very first step. However, such protections
are very complicated because any pointer that might point to code directly or indirectly must
be moved to specially secured memory, and every write access to this protected memory
must be checked. This is inefficient for real-world deployment. So, in general, the integrity
of code pointers in applications is not protected, with two exceptions: SafeStack and RELRO.
SafeStack. As a weak form of code pointer integrity, SafeStack [175] is part of the Clang
compiler. Programs with SafeStack use two stacks: the safe stack contains return addresses,
spilled registers, and “safe” local variables, while the unsafe stack contains “unsafe” local
variables. Local variables are unsafe if the program accesses them in a way that involves
pointer arithmetic or if the function might leak their address. A stack-based attack can only
occur from variables on the unsafe stack. Attackers can only target other variables on the
unsafe stack; the return addresses on the safe stack are not located nearby. Furthermore,
the address of the safe stack is kept secret and never stored in the unsafe stack or heap.
Therefore attackers with strong memory corruption abilities cannot target the safe stack.

SafeStack has little to no performance overhead but is not fully compatible with all
application designs: it cannot be applied to dynamic libraries and requires a specific compiler
runtime (LLVM’s compiler-rt) bundled with the application.
RELRO. The C runtime and the linker also introduce some code pointers into applications,
invisible to the programmer. Most prominent, relocations [182] are necessary to connect an
application with its runtime-loaded libraries. To this end, a program or library contains one
code pointer for each function it imports from other modules. When this function is first
called, the dynamic linker sets the code pointer to the actual address of the desired function.

Newer operating systems support relocation read-only (RELRO) [156] mode to prevent
attacks on relocations. When enabled, the dynamic linker sets all relocations to the cor-
responding addresses at startup, and lazy evaluation is disabled. Then the whole section
containing relocations is read-only—attackers cannot tamper with it anymore. RELRO
prevents attacks on code pointers outside of the application scope, and precondition 2(a) is

23

CHAPTER 3. RELATED WORK

invalidated for these pointers.
Today, RELRO is available in major compilers and linkers but not enabled by default.

While RELRO has no compatibility problems, it can considerably increase the startup time
of large applications.
Remaining Code Pointers. Even if both SafeStack and RELRO are active, many code pointers
remain for attackers to target. In particular, function pointers in C programs and vtable
pointers in C++ programs remain accessible to attackers. If an application faces compatibility
problems with SafeStack, even return addresses on the stack are accessible again. With the
current state of the art, protecting code pointers (condition 2(a)) is impossible under the
harsh conditions for real-world adaption.

3.5 Hiding Gadgets

Attackers can only perform code-reuse attacks if the application contains enough valuable
gadgets and the attacker knows their address (condition 2(b)). All major operating systems
try to hide these addresses from attackers using randomization. All deployed or experimental
randomization-based schemes have in common that sufficient information about a program’s
memory can defeat its protection.
Address Space Layout Randomization (ASLR). ASLR [137] aims to hide the program’s
memory layout from attackers. All libraries are loaded to a random memory location each
time the application is started. Attackers can use gadgets from this library only if they
know the random memory locations and can adapt their attack to the current addresses.
Thus, precondition 2(b) is not given anymore. Later, position-independent executables [144]
extended the randomization to the program itself—in these programs, attackers cannot
know any address in advance. To defeat ASLR, attackers need an additional vulnerability
that leaks at least one address from a library. To defeat position-independent executables,
attackers must leak a code address from the program. After that leak, attackers must be able
to trigger their actual code execution attack before the application terminates or restarts.
This adaptive attack schema is hardly possible for offline targets, e.g., applications that are
attacked by malicious input files.

Today, all major compilers and operating systems support randomization and enable it
by default for libraries. Some compilers (like gcc on Ubuntu or Debian) produce position-
independent executables by default. On the application side, compilers can add ASLR
support alone—no source code changes are required. Programs and operating systems
with and without ASLR support are compatible. Specific hardware support is not required,
and performance impact is minimal: we measured a median runtime overhead of 0.1% of
position-independent executables on the SPEC CPU 2017 benchmark.

In our thread models, we usually assume that attackers have already defeated ASLR;
our solutions do not rely on randomization. Our solutions remain compatible with ASLR.
Hiding Gadgets and Information by Randomization. Substantial research has been done
to hide addresses, useful gadgets, and the program’s memory layout from attackers beyond
ASLR. All these defenses randomize different parts of the application at different granularity.
Attackers can defeat these schemes by leaking enough information about the randomization;
the necessary amount varies from single addresses to complete memory dumps. None of
these defenses has seen real-world adoption.

24

3.6. CONTROL FLOW INTEGRITY

Address Space Layout Permutation [75] randomizes all mapped addresses and the order
of functions and variables. Binary Stirring [196], Xifer [30], and ILR [59] further randomize
addresses of individual basic blocks or instructions. Software Diversity approaches [81]
randomize the whole code so attackers cannot search for gadgets in advance. Data Space
Randomization [9] and CoDaRR [143] randomize the addresses and layout of data in the
program, thwarting not only code execution but also data-only attacks. Address space
randomization has been further extended to shared libraries [8], just-in-time compiled
code [8] operating system kernels [48], while runtime re-randomization after forks [94]
or any output [10] defeats certain information leaks. As additional protection on top of
randomization-based solutions, PointGuard [26] encrypts pointers in memory—information
leaks cannot reveal randomized addresses anymore.

3.6 Control Flow Integrity

So far, we have seen defenses trying to invalidate conditions 2(a) and 2(b). In many cases,
attackers can still modify code pointers and find suitable gadgets in existing code. In the
final step of a control-flow hijack attack, attackers trigger an indirect control flow transfer
to a modified code pointer.

Control flow integrity (CFI) [1] tries to prevent this step. A CFI scheme checks each code
pointer for validity before allowing its use in a control flow transfer. CFI schemes terminate
the application under attack if a modified code pointer is detected, preventing the code
execution and further damage. Thus, precondition 2(c) is invalidated. Code pointers in
applications are manifold; most CFI schemes target only specific classes of code pointers.
We can categorize these code pointers into four classes: return addresses, indirect call
targets (including C++ virtual dispatch), relocations, and jumps in hand-written assembly.
Developers can protect relocation code pointers with RELRO, and jumps in hand-written
assembly are very rare: we found only two in musl libc, and none in any of the reviewed
applications. Thus, we must focus on return addresses and indirect call targets.

3.6.1 Backward CFI

C and C++ applications store a code pointer on the stack for each function call—the return
address. When the called function has completed its execution, this code pointer is used
to resume the execution of the calling function. While function calls go forward in the
program, function returns go back to the calling function; therefore, returns are named
“backward control flow.” Return addresses have been a primary target for attackers for years.
Different CFI-based defenses with different strengths have been proposed, for example,
stack canaries [37], shadow stacks [29], and return address encryption [133]. We explain
these schemes in more detail in Chapter 4, where we evaluate these defenses.

In the real world, only stack canaries have seen widespread adoption due to their
compatibility and performance (around 1% overhead). We will show in Chapter 4 that
shadow stacks can be implemented with acceptable performance overhead on modern
systems. Furthermore, recent x86 CPUs have gained hardware support for shadow stacks as
part of Intel CET [155, 136], removing their performance penalty. Recent ARM CPUs have
hardware support for Pointer Authentication [142] which compilers can use to implement a

25

CHAPTER 3. RELATED WORK

stronger version of return address encryption. We therefore expect increasing adoption of
return address protections in the years to come.

3.6.2 Forward CFI

Forward CFI protects all code pointers explicitly managed by C and C++ applications, namely
C-style function pointers and C++ virtual dispatch. Programmers use this functionality
to build modular software—modules can be extended with additional functionality, i.e.,
additional code referenced by code pointers. On the hardware level, these features translate
into indirect calls to code pointers loaded from mutable memory, which an attacker could
have modified. So far, numerous defenses are trying to enforce CFI. However, many of
these schemes have limitations regarding CFI policy, compatibility, hardware requirements,
or performance. In Chapter 5 and Chapter 6, we present two forward CFI solutions that
tackle many of these problems. We present existing C-based CFI solutions in Section 6.9 and
Section 6.11, where we compare them to our solution TYPRO from Chapter 6. We present
related C++-based CFI solutions in Section 5.9.2, where we compare them to our solution
NOVT from Chapter 5.

In the real world, no forward CFI scheme has seen widespread adoption. Some major
compilers already contain CFI schemes, such as Clang CFI [170] or CFGuard [101] in the
Microsoft Visual C++ compiler, but applications rarely use these defenses. Again, recent x86
CPU’s have gained hardware support (Intel CET indirect branch tracking [136]) to improve
the performance of forward CFI checks, which could boost the adoption of a weaker but
compatible CFI scheme. ARM CPUs feature Pointer Authentication [142] which can be used
by compilers to implement CFI policies of different strength.

3.7 Isolation and Compartmentalization

If code execution attacks succeed, attackers can use all of the program’s privileges to damage
the underlying system. For example, attackers can leak sensitive files, install backdoors,
misuse computational resources for their own purpose, or delete important data. As a last
line of defense, developers of high-risk applications try to isolate potentially dangerous code
from the system. This code runs in special compartments that cannot have any meaningful
impact on the system. These compartments are either processes with extremely low privileges
or software-based execution environments like NaCl [203] or WebAssembly [54].

For example, the popular browser Google Chrome has separate processes for interpreters,
parsers, and rendering code [168]. These “sandboxed” processes have no network or disk
access; only a central, privileged process can access these resources. It contains the I/O code
only and sends all received data to the restricted processes for further processing. If a memory
corruption or code execution vulnerability occurs, it is likely in the restricted code. Apart
from crashing the application, it cannot have any malicious impact. Furthermore, Chrome’s
approach provides some level of memory compartmentalization: Using multiple processes for
different websites (origins) and tabs, Chrome can isolate all sensitive data between different
websites. An attack from one website cannot use memory corruption vulnerabilities to
access the sensitive data in another website’s memory. Thus, isolation targets not only code
execution attacks but also memory corruption vulnerabilities themselves.

26

3.7. ISOLATION AND COMPARTMENTALIZATION

While other high-risk applications such as Mozilla Firefox [117] or OpenSSH [43] imple-
ment similar schemes, defenses based on program isolation are not widely deployed. The
primary reason is the developer’s effort to implement, test, and maintain proper isolation—as
of today, software isolation is mostly performed manually. In Section 7.4, we show how
researchers and other developers have approached isolation and compare these approaches
to our solution for automated library isolation—CALI.

27

4
SoK: Evaluation of

Return Address Protections

29

4.1. MOTIVATION

4.1 Motivation

In the past two decades, stack-based attacks targeting return addresses have been a major
threat to computer systems. Researchers have proposed countermeasures that detect and
prevent these attacks at runtime. However, most of these protections have been reported
to be too slow for wide-spread real-world adoption, i.e., slow down programs by 5%–10%.
Only one countermeasure received more wide-spread adoption in a weakened version—in
many cases, attackers can circumvent the provided protection with improved attacks.

In this chapter, we re-implement three well-known return address protections: stack
canaries, shadow stacks and return address encryption. We re-evaluate the protections on
modern hardware, software, and compilers. We show that their performance overhead has
degraded well over time—up to a point where it might not prevent wider real-world adoption:
In particular, we show that a speed-optimized shadow stack has a mean performance
overhead of 2.7% only—it is faster and more secure than using stack canaries in every
function (4.1% overhead). We further highlight the impact of the chosen programming
languages on the expected performance overhead—C, C++ and Fortran are differently
affected.

4.2 Problem Description

For decades, attackers have been using stack-based memory corruptions to take over entire
applications and systems. Since the initial invention of stack smashing attacks [134] in
1996, attackers have targeted an uncountable number of applications. Information leakages
and return-oriented programming (ROP) techniques worsen this, as they allow attackers to
evade most deployed countermeasures like W⊕X or ASLR, as outlined in Section 3.2 and
Section 3.5.

Shortly after stack-based attacks became common, researchers developed countermea-
sures: Stack Canaries [37] made it into major compilers, while more robust protections like
Shadow Stacks [189] have not seen any relevant adoption. Two decades later, hardware
architectures, processors, and software have changed considerably. However, little work has
been done to re-evaluate the existing protection techniques after their initial publication
and the initial reservation against stronger protections has not vanished. Shadow stacks
are still mainly used in research prototypes only. While Intel CET [155, 136] will provide
hardware-assisted shadow stacks, and ARM Pointer Authentication [142] signs valid return
addresses, the supporting hardware is still rare—the need for fast, software-based return
address protections is still present.

4.3 Contributions

In this chapter, we want to evaluate the state of software-only return address protection in
2022. We re-implemented three protections, namely stack canaries [37], shadow stacks [29,
189] and return address encryption [133]; our implementations are open-source1. We mea-
sure the performance overhead on a modern system with modern hardware and a modern

1https://github.com/MarkusBauer/return-address-protections

31

https://github.com/MarkusBauer/return-address-protections

CHAPTER 4. SOK: EVALUATION OF RETURN ADDRESS PROTECTIONS

benchmark, and further, we evaluate how this overhead changes for different programming
languages. We will show that most protections have much lower performance overhead
in these modern scenarios than initially assumed. We will also introduce benchmarks,
their usage, and methods to check the significance of results, which we will use in later
chapters. Finally, we conclude that software-only return address protections have matured
well. Considering backward CFI a solved problem, we can focus more on forward CFI in the
following chapters.

4.4 Background: Attacks on Return Addresses

Backward CFI schemes defend against stack-based memory corruption attacks, as explained
in Section 2.2. Figure 4.1 shows the typical stack layout on 64-bit x86 systems. The stack
grows downwards and contains each function’s local variables, plus an address of its calling
function (the return address). This allows for the exploitation of a stack-based memory error,
often a buffer overflow [134]. By exploiting this error, attackers can change memory from
a local array upwards, thus reaching the return address. Overwriting any return address
allows an attacker to change the program’s control flow arbitrary as soon as the stack frame
is released and the function returns.

...

return address

...

calling
function

return address

local array

local var rsp

current
function

...

stack
grows
down

...

return address

...

calling
function

return address

local array

local var rsp

current
function

...

(attacker-
controlled)

overflow
writes

upwards

Figure 4.1: Stack layout of C/C++ programs. Left: typical layout with two functions.
Right: Impact of a buffer overflow memory corruption (red).

4.5 Backward CFI schemes

We have chosen three backward CFI schemes of similar complexity: Stack Canaries, Shadow
Stacks, and Return Address Encryption. All three backward CFI schemes have a similar
functionality—they check if the return address on the stack has changed between a function

32

4.5. BACKWARD CFI SCHEMES

call and the following function return. If the address has been altered, the program is
stopped and an error is reported. Attacker-overwritten return addresses do not pass this
check and will never be used. Thus, no attacker-chosen code is executed.

4.5.1 Stack Canaries

...

return address

canary

...

return address

canary

local array

local var rsp

...

Figure 4.2: Stack layout with canary.

Stack canaries [27] insert a secret value
called the canary in each function’s stack
frame, i.e., the canary is stored just below
the saved return address on the stack, see
Figure 4.2. Before using the return address
upon function exit, the function epilogue
checks the secret value for changes, and if
the canary has changed (e.g., due to a stack-
corrupting attack), the program terminates.

Stack canaries mainly detect buffer over-
flow attacks. An overflow overwriting the
return address also overwrites everything
between buffer and return address, includ-
ing the canary. The original canary value is
secret and random; thus, the overflow will
have to change the canary’s content.
Security. A stack canary does not protect
against attacks that overwrite the return ad-
dress directly, i.e., without affecting other
memory locations. For example, format
string attacks can circumvent stack canaries.
Furthermore, canaries can be defeated with a sufficient information leak because each
process has only one fixed canary value shared by all functions. If an attacker can leak this
canary value, the process is vulnerable to buffer overflows again.
History. Stack Canaries were suggested in 1998 [27] and have seen wide-spread adoption.
By now, all major compilers implement Stack Canaries. Many compilers enable them by
default on vulnerable functions.

4.5.2 Shadow Stacks

A shadow stack [189] acts as a second stack to protect return addresses. After calling a
function, the return address is pushed to both stacks (the original stack and the shadow
stack). Before returning, the program compares the addresses on top of the original stack
and on top of the shadow stack. The basic idea is that buffer overflows allow attackers to
modify the original stack only, not the shadow stack. If the addresses stored on both stacks
differ, the return address on the original stack has changed, and the application terminates.

Dang et al. [29] proposed a computationally more efficient variant of this traditional
shadow stack scheme: the parallel shadow stack, as shown in Figure 4.3. In this variant,
the shadow stack grows parallel with the original stack, leaving all memory but the return
address locations unused. This way, one can replace the second stack pointer with the

33

CHAPTER 4. SOK: EVALUATION OF RETURN ADDRESS PROTECTIONS

...

return address

...

return address

local array

local var rsp

...

...

shadow return address

shadow return address

...

rsp+offset

...

Figure 4.3: Stack layout with shadow stack. Left: regular stack. Right: shadow stack.

standard stack pointer and a constant but possibly random offset. If the offset is constant
and fixed, the second shadow stack address can now be computed using one add instruction
and the stack pointer register—no memory access is needed to compute the address of the
respective item on the shadow stack. While this scheme is faster than the traditional shadow
stack, it requires more memory.
Security. A shadow stack protects against attacks that overwrite the return address pointer,
as long as the attacker cannot overwrite the address on the shadow stack before the function
returns. To do so, an attacker requires a vulnerability that allows multiple arbitrary memory
writes. Most shadow stack implementations place the shadow stack at a random memory
address. In this case, overwriting the address on the shadow stack is only possible if the
attacker has leaked the shadow stack’s address before.
History. Shadow Stacks have been around for more than 20 years [189]. So far, they
have been used in different research prototypes but not in production. No major compiler
implements a general shadow stack by today—only Clang provides an implementation for
64-bit ARM [176]. This situation might change with the upcoming Intel CET hardware
extensions, improving shadow stack performance considerably.

4.5.3 Return Address Encryption

Return Address Encryption [133] uses a secret key k of size equal to the return address
size to xor-encrypt the return addresses, as depicted in Figure 4.4. After calling a function,
the saved return address is replaced with returnaddress⊕ k. Before returning, the same
operation is applied again, which restores the old address. If an attack overwrites the saved
return address, the overwritten value is clobbered with k before usage. If the attacker cannot
guess k, the attacker-controlled but xor-decrypted return address is invalid. This way, an
attacker cannot predict the jump target of his attack, and the program will likely crash due
to an invalid jump target.

34

4.6. THE SPEC CPU BENCHMARK SUITE

...

(returnaddress⊕ k)

...

(returnaddress⊕ k)

local array

local var rsp

...

Figure 4.4: Stack layout with return ad-
dress encryption.

Security. Return Address encryption protects
against any overwrites of the return address, as
long as the secret value does not leak. Alterna-
tively, an attacker can leak an encrypted return
address and an arbitrary unencrypted code ad-
dress to recover the secret key. Return address
encryption works best when the address space is
much larger than the executable memory; other-
wise, spraying attacks are possible.
History. Onarlioglu et al. introduced Return Ad-
dress Encryption in 2010 as part of the gadget
removal tool GFree [133]. So far, it has not been
implemented in a major compiler and has not
been used in practice. ARM Pointer Authenti-
cation [142] proposes a similar concept which
requires special hardware. Instead of a simple
xor, ARM Pointer Authentication uses a crypto-
graphic signature that is stored in the unused bits
of the return address.

4.6 The SPEC CPU Benchmark Suite

To perform our measurements, we focus on the SPEC CPU 2017 benchmark [160], the
modern successor of the well-adapted SPEC CPU 2006 [58]. SPEC CPU has several advan-
tages: It is a well-established industry standard focusing on CPU performance only and
contains several common, real-world programs written in different languages (C, C++, and
Fortran). In contrast to the many closed-source benchmarks, SPEC CPU builds its programs
from source code. It is possible to adapt this benchmark to almost any system, and adding
compiler-based security mechanisms at build is easy.

We use SPEC CPU 2017’s “rate” benchmark, which includes 23 programs. These programs
are separated into two groups: 10 integer benchmarks and 13 floating-point benchmarks.
The integer benchmark suite contains, for example, compilers, compression tools, and
artificial intelligence algorithms, while the floating point benchmark suite contains mainly
simulations for physical or chemical systems. Table 4.1 summarizes the benchmarks in
SPEC CPU 2017; additional details can be found in [135]. The program size varies greatly,
from programs with 1300 lines of code and only six functions up to 1.7 million lines and
more than 37000 functions. Nine programs are plain C, seven include C++, and seven
include Fortran code. Some programs are written in more than one language—we have
analyzed these programs and report only their primary programming language in which the
application’s core parts are written. Each program comes with a reference input data set.
Each program runs between 5–10 minutes on our machine, and any startup or initialization
overhead is thus negligible.

Usually, the predecessor SPEC CPU 2006 is used in academic works to evaluate all kinds
of protections, even if it has been deprecated for years. For this work, we focus on the
modern SPEC CPU 2017. Our results are thus not easily comparable to older results but

35

CHAPTER 4. SOK: EVALUATION OF RETURN ADDRESS PROTECTIONS

capture the protection’s performance on modern and, in particular, much larger programs.
In Chapter 5 and Chapter 6 of this thesis, we will use SPEC CPU 2006 instead to compare
our solutions to related work. Most related work benchmark only parts of the SPEC suites,
whereas we use all programs despite the necessary engineering effort. This complete set
of test programs allows us to reason about the impact of different languages and program
types on the performance overhead.

4.7 Implementation

In our experiments, we will compile and run all SPEC CPU 2017 benchmarks. For each
protection, we build a protected version of each benchmark program, run it, and compare the
runtime to the runtime of an unprotected version. We use the Clang/LLVM 13 compiler for C
and C++ code. While an LLVM-based Fortran compiler is currently under development [179],
it is not yet able to compile the Fortran programs from standard benchmarks (lacking full
Fortran-95 support). To this end, we use gfortran 10 from the GNU compiler collection to
compile Fortran code. We compile all benchmarks with full optimization settings, including
link-time optimization: -O3 -flto. We omitted link-time optimization for the benchmark
wrf only; gfortran’s link-time optimization consumes more than the 32GB memory available.

While both compilers already implement stack canaries, we implement shadow stacks
and return address encryption as assembly rewriters, wrapping the system’s assembler
as. Our implementations are thus compiler-agnostic and work with Clang and gfortran
interchangeably but support only one target architecture (64-bit x86).

4.7.1 Stack Canaries

We use the built-in stack canaries from Clang/LLVM and GCC, as enabled with the flag
-fstack-protector-all on both compilers. The dynamic loader initializes the 8-byte-
long canary before the program starts and stores it in the thread-local storage at fs:[0x28].
Compilers instrument function prologues, ret instructions, and tail-calls.

; function prologue - set canary

sub rsp, 0x18 ; allocate stack frame

mov rax, QWORD PTR fs:0x28

mov QWORD PTR [rsp+0x10], rax

; function epilogue - check canary

mov rax, QWORD PTR fs:0x28

cmp rax, [rsp+0x10]

jne __canary_chk_fail

ret

In addition to the canary itself, LLVM reorders the stack layout by moving buffers close to the
canary, protecting local variables. This implementation increases each function’s memory
usage by 8 bytes on average.

4.7.2 Shadow Stack

We implement a parallel shadow stack, as proposed in [29], which is faster than a tra-
ditional shadow stack. We decided to use a fixed memory offset for the shadow stack

36

4.7. IMPLEMENTATION

(-0x70000000) instead of a random one because we want the benchmark to be stable
and reproducible. A production-grade implementation could add a random offset with
constant performance overhead at startup only: It could replace all shadow stack offsets in
the machine code with a new random number at startup. This negligible one-time operation
allows a randomized shadow stack without further performance penalties compared to
our version with a constant offset. To simplify our implementation, we did not implement
a growing shadow stack but reserved enough memory at the program’s startup—around
400MB suffice for all programs. Initial experiments confirmed that this additional memory
usage had no impact on the performance of the programs, as our test machine always
has more than enough free memory. A production-grade shadow stack implementation
would thus double the amount of stack memory. We instrument the same locations as stack
canaries: function prologues, returns, and tail calls.
Scratch Registers. For our prologue and epilogue instrumentation, we require one scratch
register because x86 instructions can have only one memory operand and we have two
memory locations to access. However, a free register is not always available: LLVM can
change the calling convention of functions during link-time optimization, including the
registers used for parameters and the caller-saved registers. Thus, without breaking the
program, we cannot modify any register in function pro- and epilogues. To this end, our
implementation analyzes the function’s assembly to find registers that get overwritten before
being read. This analysis can also move the instrumentation point by a few instructions
if necessary, as long as the instrumentation occurs before the first unsafe memory access.
For example, many functions initially push callee-saved registers and restore them before
returning. If a function starts with push r11 ; mov r11, ..., we can insert our
function prologue code after the push instruction and use r11 as a scratch register. If a
function ends with pop r11 ; ret, we can insert our function epilogue code before the
pop instruction and use r11 as a scratch register.

This heuristic succeeds for 80% of all function prologues and 69% of all function
epilogues. For all other functions, we save one register on the stack and restore it after
our code has been executed, which might include some additional performance penalty.
Alternatively, one could modify the compiler to have one register always caller-saved, but
then our solution would depend on a single, modified compiler. Currently, there is no single
compiler that handles all necessary languages.

; function prologue - store ra on shadow stack

mov r11, QWORD PTR [rsp]

mov QWORD PTR [rsp-0x70000000], r11

; function epilogue - check ra from shadow stack

mov r11, QWORD PTR [rsp-0x70000000]

cmp QWORD PTR [rsp], r11

jne __shadow_stack_fail

ret

4.7.3 Return address encryption

Return address encryption relies on secret key storage. To simplify our implementation, we
re-used the system’s stack canary value stored in thread local storage because the dynamic
loader cares about proper initialization. A production-grade implementation would modify

37

CHAPTER 4. SOK: EVALUATION OF RETURN ADDRESS PROTECTIONS

the dynamic loader to initialize a new secret value, but design and performance would not
change otherwise. Our encryption is a simple xor cipher like [133], which is fast and secure
enough for our purpose—all under the assumption that there are no information leaks.

In every function prologue, we load the secret key and xor the return address stored on
the stack with that key. Before all function exit points, including tail calls, we restore the
original saved return address by xoring it with the secret key again. There is no need for an
explicit check or branch here—a tampered address will be invalid, and ret will raise an
interrupt. Return Address Encryption requires a scratch register. We use the same scratch
register detection as the shadow stack implementation outlined above.

; function prologue - encrypt

mov r11, QWORD PTR fs:0x28

xor QWORD PTR [rsp], r11

; function epilogue - decrypt

mov r11, QWORD PTR fs:0x28

xor QWORD PTR [rsp], r11

ret

The drawback of this method is that the saved return address is first written to the stack
by the function call, and then instantly read back and modified for encryption. However, a
scheme with a single write cannot use the current processor’s call and ret instructions,
sacrificing all hardware optimizations made to call and returns.

One challenge with return address encryption was C++ exceptions support, as they rely
on the stored return addresses for stack unwinding. We solved this issue using a patched
version of LLVM’s libunwind, which can detect and decrypt stored return addresses. Only
two benchmark programs rely on C++ exceptions, which occur only once for each program
run. Thus, in a complete benchmark, the changes to the unwind functions have negligible
performance overhead if any.

4.7.4 Optimizations

When stack canaries were initially deployed, they introduced some non-negligible perfor-
mance overhead in the protected programs. Compiler engineers developed some relaxed
modes of operation which do not protect functions that are likely not vulnerable. In particu-
lar, small but frequently called functions without stack buffers can reduce the overhead a
lot if not protected. Trading security for performance made stack canaries fast enough to
be enabled by default. We implement a similar optimization for shadow stacks and return
address encryption, omitting “safe” functions.
Partial Stack Canaries. By now, GCC [35] and Clang [96] know three modes of operation
for canaries: regular mode (activated with flag -fstack-protector), strong mode
(-fstack-protector-strong) and complete mode (-fstack-protector-all).
We call the regular and strong modes “partial modes” because they protect only parts of the
program.

In the regular mode, a function is protected if it contains a stack-allocated array with at
least 8 bytes length. GCC uses this mode by default in many Linux distributions.

In the strong mode, the compiler adds canaries to functions that either contain any
stack-allocated array independent of its length, use the address of a local variable in a
function call, or assignment or use the local register variables extension.

38

4.7. IMPLEMENTATION

Finally, the complete mode claims to add a canary to all functions. We show some
exceptions in Section 4.7.5.
Optimized Shadow Stack / Return Address Encryption. We implement a similar opti-
mization for our shadow stack and return address encryption tools. The optimized mode
of our tools omits functions that can’t overwrite the stored return address. As an assembly
rewriter, we do not have information from the source code but rely on assembly analysis.
To this end, a function is unsafe and needs protection if:

• the function calls another function (excluding tail calls)

• the function contains a syscall

• the function contains an instruction that writes memory and

– the instruction is not push or pop (including their derivates) with a register
operand and

– the written address is not a local variable on the stack (i.e., the operand has the
form [rsp+0xc] for some constant 0xc) and

– the written address is not a global variable (i.e., the operand has the form
[rip+0xc] or [0xc] for some constant 0xc)

On average, 15% of all functions do not need protection according to our rules. We
evaluate the effectiveness of this optimization in the next section.

We implement one further optimization for shadow stack function prologues borrowed
from [29]. If we cannot find a scratch register, we implement the prologue as a pop with
memory operand, one of the very few x86 instructions that read and write memory at the
same time. The final prologue will be pop [rsp-0x70000000] ; sub rsp, 8. The
first instruction copies the return address to the shadow stack, but moves the stack pointer.
The second instruction reverts this change to the stack pointer. This implementation does
not need a scratch register; we save two memory-accessing instructions.

4.7.5 Evaluating Implementations

Table 4.1 summarizes all details of our implementation and the various optimizations
evaluated on the SPEC 2017 benchmark programs. To this end, we compiled all programs
to text assembly and analyzed the generated instructions.
Stack Canary Modes. First, we investigate how many functions get stack canaries added by
the compiler in the different modes. Surprisingly, we found that compilers do not protect all

functions even if -fstack-protector-all is set, but only 99% on average. In particular,
C++ programs are affected—in the worst case, 3.8% of all functions remained unprotected.
A deeper investigation shows that none of the unprotected function returns—functions that
abort the program or end with tail calls are not considered. The second case could be a
security risk. On the one hand, attackers can exploit only functions ending with ret. On
the other, attackers can compromise the return address between prologue and tail call. The
tail-called function cannot guard the return address with its canary in time, so its final ret
can be exploited. Omitting tail-calling functions is an optimization compared to the other
protections that cannot be disabled.

39

C
H
A
P
TE
R
4
.
S
O
K
:
E
V
A
LU

A
TI
O
N

O
F
R
E
TU

R
N

A
D
D
R
E
S
S
P
R
O
TE
C
TI
O
N
S

Table 4.1: Overview of SPEC 2017 benchmarks, their size, the protection coverage of different canary modes, and coverage of our
optimization strategy (“optimized”). Additional summary of code locations where scratch registers were detected.

Benchmark Lang. LoC.
no. Number of protected functions Scratch register available in

funcs canary all canary strong canary basic optimized prologues returns tail calls

blender_r C++ 1726K 37167 36636 (98.6%) 6933 (18.7%) 969 (2.6%) 27540 (74.1%) 31512/37167 (84.8%) 20509/40633 (50.5%) 3462/4688 (73.8%)

bwaves_r Fortran 1304 6 6 (100.0%) 2 (33.3%) 1 (16.7%) 6 (100.0%) 5/6 (83.3%) 5/5 (100.0%) 1/1 (100.0%)

cactuBSSN_r Fortran 170K 2630 2621 (99.7%) 442 (16.8%) 37 (1.4%) 1907 (72.5%) 2277/2630 (86.6%) 1798/2540 (70.8%) 620/693 (89.5%)

cam4_r Fortran 243K 2383 2376 (99.7%) 1066 (44.7%) 276 (11.6%) 2187 (91.8%) 2086/2383 (87.5%) 2024/2598 (77.9%) 423/527 (80.3%)

deepsjeng_r C++ 7284 109 109 (100.0%) 21 (19.3%) 12 (11.0%) 69 (63.3%) 84/109 (77.1%) 60/123 (48.8%) 20/22 (90.9%)

exchange2_r Fortran 1478 13 13 (100.0%) 8 (61.5%) 0 (0.0%) 12 (92.3%) 12/13 (92.3%) 15/15 (100.0%) 0/0 (-)

fotonik3d_r Fortran 8887 40 40 (100.0%) 24 (60.0%) 4 (10.0%) 39 (97.5%) 38/40 (95.0%) 32/34 (94.1%) 7/7 (100.0%)

gcc_r C 972K 12123 12121 (100.0%) 2543 (21.0%) 383 (3.2%) 10287 (84.9%) 10029/12123 (82.7%) 10790/13322 (81.0%) 3350/3693 (90.7%)

imagick_r C 174K 2077 2073 (99.8%) 553 (26.6%) 288 (13.9%) 1617 (77.9%) 1602/2077 (77.1%) 1688/2233 (75.6%) 257/477 (53.9%)

lbm_r C 1037 18 18 (100.0%) 5 (27.8%) 0 (0.0%) 18 (100.0%) 14/18 (77.8%) 8/14 (57.1%) 3/4 (75.0%)

leela_r C++ 31K 382 372 (97.4%) 85 (22.3%) 3 (0.8%) 287 (75.1%) 297/382 (77.7%) 205/365 (56.2%) 73/80 (91.2%)

mcf_r C 2669 38 38 (100.0%) 4 (10.5%) 2 (5.3%) 31 (81.6%) 33/38 (86.8%) 24/44 (54.5%) 0/0 (-)

nab_r C 16K 222 220 (99.1%) 54 (24.3%) 29 (13.1%) 198 (89.2%) 160/222 (72.1%) 178/225 (79.1%) 13/21 (61.9%)

namd_r C++ 6396 124 120 (96.8%) 19 (15.3%) 7 (5.6%) 121 (97.6%) 50/124 (40.3%) 40/117 (34.2%) 17/72 (23.6%)

omnetpp_r C++ 86K 6146 5915 (96.2%) 838 (13.6%) 99 (1.6%) 4802 (78.1%) 4914/6146 (80.0%) 3852/5272 (73.1%) 2435/2789 (87.3%)

perlbench_r C 291K 2395 2322 (97.0%) 623 (26.0%) 136 (5.7%) 2130 (88.9%) 1966/2395 (82.1%) 2270/2598 (87.4%) 483/577 (83.7%)

povray_r C++ 81K 1541 1530 (99.3%) 354 (23.0%) 48 (3.1%) 1340 (87.0%) 949/1541 (61.6%) 997/1540 (64.7%) 306/359 (85.2%)

roms_r Fortran 220K 81 81 (100.0%) 48 (59.3%) 8 (9.9%) 78 (96.3%) 78/81 (96.3%) 68/82 (82.9%) 29/29 (100.0%)

wrf_r Fortran 494K 7921 7885 (99.5%) 1615 (20.4%) 673 (8.5%) 6817 (86.1%) 6710/7921 (84.7%) 3171/7899 (40.1%) 1440/1570 (91.7%)

x264_r C 73K 1221 1216 (99.6%) 185 (15.2%) 37 (3.0%) 1075 (88.0%) 921/1221 (75.4%) 744/1224 (60.8%) 183/216 (84.7%)

xalancbmk_r C++ 295K 13761 13251 (96.3%) 2356 (17.1%) 35 (0.3%) 9842 (71.5%) 10538/13761 (76.6%) 9300/12423 (74.9%) 2308/3306 (69.8%)

xz_r C 20K 369 362 (98.1%) 64 (17.3%) 21 (5.7%) 269 (72.9%) 276/369 (74.8%) 247/433 (57.0%) 62/103 (60.2%)

(average)
C 194K 2307.9 99.2% 21.1% 6.2% 85.4% 78.6% 69.1% 72.9%

C++ 319K 8461.4 97.8% 18.5% 3.6% 78.1% 71.1% 57.5% 74.6%

Fortran 163K 1867.7 99.8% 42.3% 8.3% 90.9% 89.4% 80.8% 93.6%

(average) (all) 224K 4125.8 99.0% 27.0% 6.0% 84.8% 79.7% 69.1% 79.7%

4
0

4.7. IMPLEMENTATION

The canaries in the strong mode protect 27% of all functions on average. The percentage
in C/C++ programs is a bit lower (19.9% average). In the basic (default) mode, on average
6% of all functions get protected (5% in C/C++ programs). The majority of functions
remain unprotected, reducing the performance penalty of the protection. These numbers
align with related work: Molnar et al. [35] reported that 20.5% of all Linux kernel functions
are protected in strong mode, and 2.8% of all functions are protected in basic mode.
Our Optimized Mode. In contrast, our optimized mode protects 85% of all functions (82%
in C/C++ programs). There are two main differences between the relaxed canary modes
and the optimized shadow stack and return address encryption modes: language knowledge
and security. First, the compiler has much more source information to determine if a piece of
code is safe or not. It can use detailed information about stack variables, layout, and variable
usage. In contrast, our optimization is assembly-based and can’t prove a function safe if
pointer arithmetic is used for write access. Second, stack canaries have a weaker level of
protection which is threatened by fewer functions. Canaries protect only against consecutive
overwrites; therefore, a canary in an unsafe function protects all functions higher in the call
stack. Furthermore, only specific primitives like arrays are prone to overflow attacks. In
contrast, shadow stacks protect against all kinds of overwrites, no matter if the attack was
started on local variables or in the local function. Therefore, all functions that might be
memory-unsafe must be protected, and any function that calls memory-unsafe functions
must be protected, too. Our optimization maintains these higher security properties without
trading security for performance.
Scratch Registers. Finally, we analyze the availability of scratch registers in function
prologues (where the function starts), before a function returns, and before the function
exists by jumping into another function (tail calls). 80% of all prologues have a scratch
register available, while only 69% of all returns have one available. In the remaining cases,
we need two additional instructions. Before our inserted code, we save the scratch register’s
value to the stack with mov [rsp-8], r11. After our code, we restore this value from
the stack with mov r11, [rsp-8]. 80% of all tail calls have a scratch register available.
On average, we find fewer scratch registers in C++ programs and more scratch registers
for Fortran code. We also note that scratch register discovery works especially bad for one
particular SPEC2017 target: namd_r—on 40% of all prologues and 34% of all epilogues
have scratch registers available.

4.7.6 Evaluating Security

Comparison. We already summarized the security level of our three protections in their
initial description; see Section 4.5: Stack canaries are strictly weaker than shadow stacks
and return address encryption because they only protect against consecutive overwrites like
a buffer overflow. In contrast, shadow stacks and return address encryption protect against
any modification of the return address. Defeating canaries is easiest: the attacker must
leak the canary from the stack. Defeating return address encryption is more challenging:
the attacker must not only leak an encrypted return address from the stack but also leak
enough information to compute (parts of) the unencrypted return address. If the attacker
knows both encrypted and unencrypted return addresses, he can recompute the secret key
k and break the protection in subsequent attacks. Defeating shadow stacks is the hardest:

41

CHAPTER 4. SOK: EVALUATION OF RETURN ADDRESS PROTECTIONS

the attacker must be able to write multiple values to arbitrary addresses during a single
function execution, i.e., overwrite the return address on both local and shadow stacks. The
attacker must also leak the random offset between the default stack and shadow stack if it
is randomized. In contrast to the required leaks from all other schemes, this information is
likely not stored on the stack.
Security of Modes. All protections can be applied to a subset of functions for performance
reasons, see Section 4.7.4. In particular, stack canaries have very relaxed modes that protect
only 6% (basic) or 27% (strong) of all functions. In the basic mode, stack canaries lose
parts of their security. Many vulnerabilities are not covered, particularly vulnerabilities
involving more than one function or small buffers. In the strong mode, stack canaries
retain most of their security. Only a few rare and very specific vulnerabilities can target
the now unprotected functions. For example, when handling a buffer at a higher stack
address, an integer overflow might allow attackers to corrupt the return address of unrelated
functions—functions that might not have a canary even in strong mode.

In principle, the shadow stacks and return address encryption could ignore the same
functions and obtain similar guarantees. However, this partial mode would remove all
the additional protection compared to stack canaries. Shadow stacks and return address
encryption include protection against arbitrary writes, in contrast to stack canaries, which
protect against consecutive overwrites only. This higher level of protection is only enforceable
if all return addresses on the stack are covered when memory corruption occurs—in contrast
to stack canaries, where only the return address nearest to the corruption must be covered.

For example, let us assume a function that calls other functions but does not use stack
variables. The canary in a called function will stop any consecutive overwrite in the called
function—the called function does not threaten the calling function’s stack frame. Thus,
the calling function does not need a canary if it does not write to the stack itself. This is
different for protections that are not limited to consecutive overwrites. If the called function
can selectively overwrite the return address of the calling function, then the calling function
must also protect its return address. Thus, protecting only the subset of functions like
the strong canary mode would weaken the security of shadow stacks and return address
encryption; it is not applicable for stronger protections.

We proposed a custom optimization mode for shadow stacks and return address en-
cryption that ignores functions only if no unsafe memory write can occur, including called
functions. In contrast to optimized canaries, we protect any function that call other functions.
Thus, only the most recent stackframe can contain an unprotected return address, and this
return address can only be unprotected while memory-safe instructions are executed. To
this end, the optimized shadow stack and optimized return address protections do not lose
security compared to their unprotected versions.
TOCTTOU. There is one potential threat remaining in our implementations: time-of-check-to-

time-of-use (TOCTTOU) vulnerabilities. In principle, an attacker can try to change the return
address on the stack after the protection’s checks ran but before the actual return executes.
If the timing fits, the protection’s check succeeds, but the return still jumps to an attacker-
controlled address. A second TOCTTOU vulnerability opens in the function prologue: An
attacker can try to modify the stored return address between call instruction and the
protection’s prologue when the protection is not yet active. If successful, the protection will
consequently check for the attacker-modified address later.

42

4.8. PERFORMANCE EVALUATION

Stack canaries do not have to consider TOCTTOU attacks. They only protect against
stack-based buffer overflows. Having a buffer overflow on one stack corrupt a return address
on another thread’s stack is impossible; therefore, concurrent modifications are no additional
issue for stack canaries.

We decided not to defend against TOCTTOU attacks for shadow stacks and return
address encryption because such a defense would come with performance and compatibility
problems. The risk of a successful TOCTTOU attack is low; we would consider it negligible.
Most stack-based attacks start from variables and arguments on one stack and only affect
this stack or potentially known global addresses (e.g., global data or heap). It is unlikely
that an application shares a stack address with structures outside of this stack. While it is
theoretically possible that a vulnerability on one stack can be re-purposed to target leaked
addresses of other stacks, this is a very unusual scenario. Next, TOCTTOU attacks require
very precise timing. The checks read the return address from the stack to check it only a
few instructions before the actual return. The actual return will execute only a few cycles
after the check and will be fast itself—it has the return address already in L1-cache. A
concurrent modification would not only require perfect timing down to cycle level but also
a way to invalidate or flush the attacked thread’s CPU caches. Finally, there is only one try
for a TOCTTOU attack—if the attack starts a few cycles too early, the whole program will
crash. Even for local attackers, TOCTTOU attacks are often impossible to execute. On the
contrary, defending against TOCTTOU is possible but has a huge performance overhead
that hinders the adoption of a protection scheme. Dang. et al. [29] suggest replacing the
final ret with a jmp that reads the checked return address from a register, which could
prevent TOCTTOU attacks in the function epilogue. This change costs an additional 4.7%
of performance (on SPEC CPU 2006, excluding Fortran) and is incompatible with certain
protections (such as Intel CET’s [136] indirect branch tracking or the “retpoline” defense
against microarchitectural attacks). Defending against the TOCTTOU possibility in the
prologue is even harder—the only possible defense is a change in the calling convention,
where the original return address is passed to the callee by register or where the protection’s
prologue is moved to the caller. These changes make protected code inherently incompatible
with unprotected code, further hindering its adoption.

We conclude that timing-based circumvention of the protections are possible in the-
ory. Still, their probability is negligibly low and does not justify strong performance and
compatibility penalties that can prevent adoption. We will thus measure the protection’s
performance without any TOCTTOU-specific changes.

4.8 Performance Evaluation

4.8.1 Methodology

We run all benchmarks on an Intel i5 4690 CPU (4× 3.5GHz) with 32GB of memory. We
store benchmarks on a SSD drive; initial measurements with am in-memory storage showed
that disk speed does not affect performance measurements. We use Debian 11 with Linux
kernel 5.10 as the operating system.

Our benchmark environment should generate sound, reproducible results: First, we
disabled all unnecessary services during benchmarks to avoid any influences from external

43

CHAPTER 4. SOK: EVALUATION OF RETURN ADDRESS PROTECTIONS

software. Furthermore, we use cpuset [87] to shield one CPU core—only the benchmark
itself and necessary kernel threads can use this core. We also increased the process priority
of benchmarks to their maximal value, avoiding any slowdown from potential other activity.
The operating system is configured to give each benchmark run the same initial state: before
each run, all caches are flushed, and ASLR has been disabled so that memory addresses
are reproducible. We set the CPU scheduler to “performance” and disabled CPU turbo
boost—the benchmarking CPU core runs at a constant frequency. We further fixed the clock
frequency to 3.0GHz (out of the possible 3.5GHz) and monitored it constantly to avoid any
thermal or power-based throttling.

The runcpu command from the SPEC CPU benchmark suite runs every program three
times and reports the median runtime of these three runs. The median should avoid
outliers in the measured numbers—although this is not enough in some cases, as we
show in Section 4.8.2. The benchmark also checks the output of the programs, ensuring
that the protections do not cause any error or behavior change. We tested all compiler-
based protection mechanisms with at least 10 complete SPEC CPU 2017 benchmark runs;
thus, we execute each program 30 times per protection. In total, we spend more than 38
days executing SPEC benchmarks. We compared the average runtime of each benchmark
program with the wall clock time an unmodified benchmark run required. The overhead of
a protection mechanism is then calculated per program by dividing the additional time by
the unmodified benchmark run time:

overhead :=
tprotected − tbase

tbase

This factor expresses how much more time a computation will take if the protection mecha-
nism is applied; it is commonly used in system security research.

We are confident that our setup, benchmarks, and evaluation methodology conform to
the best practices in performance measurement, such as outlined in related work [57, 77].
Our setup also follows all benchmarking suggestions from the LLVM project [93].

4.8.2 Measurement Soundness

To check our measured result for validity, we review the standard deviation of all results.
If results vary too much between runs, this variation could indicate a problem with our
benchmarks. It quickly turns out that most benchmarks have a pretty low standard deviation
of 0.02% up to 0.27% of their respective runtime. However, two benchmarks stood out:
omnetpp (up to 3.55% standard deviation) and xalancbmk (up to 2.67% standard deviation).
In absolute numbers, runtime changed about 30–40 seconds in a 380–480 seconds execution.

First, we triple-checked our setup for potential problems or overseen sources of random-
ness and asked fellow researchers for advice. We found no problems. Then we used perf

to profile the benchmarks in question. We did not find any meaningful insight. In particular,
the correlation between cache performance and runtime was weak. We further looked for
problems or overseen features in the hardware. We re-ran the two problematic benchmarks
on two more different machines to see if we could reproduce the randomness in the results.
We saw the same variance in the results on a modern Intel i7 9700K (4×3.6GHz) from 2018
with 64GB of memory. We did not see any variance on an old Intel Q6600 (4× 2.4GHz)

44

4.8. PERFORMANCE EVALUATION

from 2007 with 8GB of memory, even if booted with a one-to-one copy of our primary
benchmarking system. We thus have the justified assumption that any hardware feature in
modern CPUs can either improve or slow down these two benchmarks considerably. Without
more profound knowledge about the CPU internals and without a possibility to debug them,
we can neither prove this assumption nor fix the underlying issue.

To get reasonable, comparable, and valid results, we use mathematical methods to clean
up the measured results of the two affected benchmarks. In our analysis, we will consider
no absolute runtime but overheads, i.e., the absolute runtime is not too important, as long
as the relative runtime between different runs is not affected. To this end, we must ensure
that any applied method is applied equally to the results of each protection; no protection
must be preferred or disadvantaged.

reference stack canary shadowstack ra encryption

380s

400s

420s

440s

460s
omnetpp_r
xalancbmk_r

Figure 4.5: All benchmark runtime results of omnetpp and xalancbmk. Circles show the
cluster that remains after data cleaning.

When inspecting the raw results for the two benchmarks in Figure 4.5, we notice a
pattern in all results: In both benchmarks, the results are grouped into two clusters. For
example, the reference benchmark for omnetpp seems to take either around 395 or around
430 seconds, with no results in between. From this observation, we build the justified
assumption that there is an unknown source of overhead in the benchmarking system, which
triggers not in every benchmark run. We can, however, see for each result if the overhead’s
condition has been triggered or not.

With this knowledge, we decided to pick each protection’s lower cluster for these two
benchmarks and drop the remaining results. This result selection is analogous to the
minimum runtime selection that is often used in smaller benchmarks [22]. We repeated
these two benchmarks until the lower cluster had at least 30 results—comparable to other
benchmarks. To this end, we did 30–85 additional executions per benchmark and protection.
Finally, we have a standard deviation of 0.19% for omnetpp and 0.35% for xalancbmk,
which is in line with the other results.

Is this fair? From our initial inspection, the clustering and the difference between the
clusters were similar for all protections; thus, no protection was preferred or disadvantaged.
The two clustered benchmarks have the same number of considered runs as all other
benchmarks. The standard deviations between all benchmarks are in line, so no benchmark’s

45

CHAPTER 4. SOK: EVALUATION OF RETURN ADDRESS PROTECTIONS

variation can influence the final overhead results disproportionately. We conclude that
cluster-based filtering of the two benchmarks is fair concerning the overall result and yields
proper overhead measurements.

For transparency, we list the standard deviation (σ) of all benchmarks in Table 4.2. The
majority has a standard deviation of 0.07% or lower, so we can see one digit after the point
as significant.

4.8.3 Performance Overhead on SPEC

 28%

 30%

 32% Stack Canary
Shadow Stack
Return Address Encryption

blender
bwaves

cactuBSSN
cam4

deepsjeng
exchange2

fotonik3d
gcc

imagick
lbm

leela mcf nab
namd

omnetpp
parest

perlbench
povray

roms wrf x264
xalancbmk

xz

 -2%

 0%

 2%

 4%

 6%

 8%

 10%

Figure 4.6: Overhead of all protections on all benchmarks.

Figure 4.6 shows the overhead of all protections on each benchmarked program; and
Table 4.2 contains the raw results. First, we notice that all benchmarks apart from omnetpp
and povray experience less than 5% overhead, which is considered tolerable, for example, by
Microsoft [100]. The mean overheads range from 1.2% (stack canaries) over 1.5% (shadow
stacks) to 2.5% for return address encryption. The median overhead of any protection is at
most 0.6%, which we’ll detail later.

The worst case for all protections is povray: stack canaries have 7.9% overhead, shadow
stacks 9.1%, and return address encryption has an unbearable overhead of 31%. We
noticed that povray’s source code contains many small or empty functions where function
inlining optimizations are not applied. These functions are called very often, and their
instrumentation is executed very often, which explains the high overall performance impact.
However, we cannot explain the high overhead of return address encryption compared to
the overhead of a shadow stack.

When we compare the protections with each other, we quickly see that stack canaries
are the fastest protection, and return address encryption is often the slowest. The difference
between stack canary and shadow stack is often small, except for imagick (+1.7%) and mcf

(+2.4%). When we compare shadow stack performance to return address encryption, we
notice that shadow stacks are generally faster. In particular, perlbench shows this: return

46

4.8. PERFORMANCE EVALUATION

Table 4.2: Overhead of all protections on all benchmarks.

Benchmark Language
Stack Canary Shadow Stack RA Encryption

σ
(all) (strong) (basic) (all) (opt) (all) (opt)

blender_r C++ 1.6% 0.7% 1.4% 2.5% 1.7% 1.8% 1.7% 0.09%
bwaves_r Fortran -0.4% -0.2% -0.2% -0.1% -0.1% -0.0% -0.2% 0.13%
cactuBSSN_r Fortran -0.3% 0.9% -0.5% -0.2% -0.0% 0.1% 0.1% 0.20%
cam4_r Fortran 0.2% 0.1% -0.1% 0.1% 0.2% 0.0% 0.0% 0.17%
deepsjeng_r C++ 2.6% 0.1% 0.2% 3.3% 0.6% 2.6% 1.7% 0.04%
exchange2_r Fortran -1.5% -0.3% -0.1% 0.1% 0.0% -0.2% -0.2% 0.04%
fotonik3d_r Fortran 0.7% 0.0% -0.0% -0.0% -0.1% -0.0% -0.0% 0.05%
gcc_r C 3.2% 0.7% -0.2% 3.6% 3.6% 3.6% 4.1% 0.07%
imagick_r C -0.2% 0.3% 1.1% 1.5% 1.4% 0.5% 1.2% 0.02%
lbm_r C -0.0% -0.1% -0.1% -0.6% -0.9% -0.0% -0.8% 0.04%
leela_r C++ 1.1% 2.4% 0.7% 1.9% 1.8% 1.9% 2.1% 0.01%
mcf_r C 1.9% -0.0% -0.0% 4.3% -0.1% 4.6% -0.1% 0.08%
nab_r C 0.4% -0.0% -0.0% 0.3% 0.5% 0.2% 0.3% 0.01%
namd_r C++ -0.0% -0.2% -0.1% 0.2% 0.3% 0.2% 0.2% 0.03%
omnetpp_r C++ 5.5% 2.9% 0.9% 6.2% 4.2% 9.0% 5.6% 0.19%
parest_r C++ 0.2% -0.2% -0.2% 0.2% -0.4% 0.6% -0.1% 0.06%
perlbench_r C 2.0% -0.5% -0.2% 0.3% 2.2% 2.1% 2.3% 0.19%
povray_r C++ 7.9% 3.7% -0.1% 9.1% 7.5% 31.2% 29.5% 0.12%
roms_r Fortran 0.0% 0.1% -0.3% 0.0% 0.1% -0.1% -0.2% 0.27%
wrf_r Fortran 0.1% -0.0% -0.0% 0.2% 0.1% 0.2% 0.3% 0.11%
x264_r C 2.0% -1.5% -1.4% 0.4% 0.8% 1.5% 0.7% 0.04%
xalancbmk_r C++ 0.3% -1.2% -0.6% 1.4% -2.0% 0.9% -1.8% 0.35%
xz_r C -0.1% -0.1% 0.4% 0.5% 0.5% 0.8% 0.9% 0.07%
(mean) 1.2% 0.3% 0.0% 1.5% 0.9% 2.5% 1.9% 0.07%
(median) 0.3% -0.0% -0.1% 0.3% 0.3% 0.6% 0.3% 0.07%
(max) 7.9% 3.7% 1.4% 9.1% 7.5% 31.2% 29.5% 0.35%

47

CHAPTER 4. SOK: EVALUATION OF RETURN ADDRESS PROTECTIONS

address encryption has 2.1% overhead compared to 0.3% for shadow stacks—a 7× increase.
On x264, the overhead of return address encryption is 3× the overhead of a shadow stack.
Return address encryption outperforms shadow stacks on three of our 23 benchmarks:
blender, deepsjeng, imagick.

 28%

 30%

 32% Stack Canary (strong)
Stack Canary (basic)
Shadow Stack (opt)
Return Address Encryption (opt)

blender
bwaves

cactuBSSN
cam4

deepsjeng
exchange2

fotonik3d
gcc

imagick
lbm

leela mcf nab
namd

omnetpp
parest

perlbench
povray

roms wrf x264
xalancbmk

xz

 -2%

 0%

 2%

 4%

 6%

 8%

 10%

Figure 4.7: Overhead of all relaxed and optimized protections on all benchmarks.

Optimized Protections. Figure 4.7 shows the overhead of the partial stack canary modes
(-fstack-protector-strong and the basic -fstack-protector) and our opti-
mized versions of shadow stack and return address encryption. Again, Table 4.2 contains
the raw numbers.

We directly see that the partial stack canary modes do a great job in reducing performance
penalties. The basic mode has no overhead on average, and even the strong mode has only
0.3% overhead. Even programs with higher stack canary overhead such as gcc, omnetpp,
or povray lose their overhead almost entirely in basic mode. The only cases where basic
mode produces a considerable overhead are blender (1.4%) and imagick (1.1%). In both
cases, the overhead likely comes from the stack and code layout changes only—because
the strong mode, which protects more functions, has less overhead (0.7% and 0.3%). The
strong mode reduces overheads considerably but not always completely.

Our optimized shadow stack and return address encryption modes reduce the overhead
of their base schemes by 0.6% mean, but not as well as the partial canary modes. This is as
expected because partial canary modes include 6%–27% of all functions, while the optimized
mode includes 85% of all functions (in turn, without sacrificing any security). The optimized
mode cannot fix the performance of return address encryption on povray, but removes the
4% overhead on mcf almost entirely. The optimization affects both shadow stack and return
address encryption equally on most programs. The only significant difference is deepsjeng,
where the optimization removes most of the shadow stack overhead but only partially
increases the performance of return address encryption. There are two exceptional cases
where the optimization leads to a significantly worse performance: optimized shadow stack
on perlbench gives an additional 1.9% overhead, and optimized return address encryption

48

4.8. PERFORMANCE EVALUATION

on gcc adds 0.5% overhead. We assume that the non-optimized protection hit a favorable
code layout by chance, which is realigned when the optimization drops some instructions.
We also notice that the optimized shadow stack has less mean overhead than full stack
canaries while offering a higher level of security. Finally, we notice that imagick receives a
significant performance penalty for all optimizations—including the partial canary modes.
Negative Overhead. Some protections seem to have a negative overhead on some bench-
marks. This is counter-intuitive because each protection only adds more instructions to
functions but never removes work. In particular, stack canaries in their strong or basic modes
improve many programs by a tiny percentage. Changes in the stack layout introduced by
the additional canary can have such an effect: the alignment of function frames on the stack
changes, so data that was split between two cache lines before can be on the same cache
line after layout changes (and vice versa). Related literature [121] shows that changing the
stack offset is already enough to provoke this effect (1–4% derivation). Changing the offset
of each function can have the even bigger effects we see here. But this effect also applies
in the real world; any attempt to exclude it from our measurements would render them
less practical. Some benchmarks also show a minimal negative overhead (up to −0.2%)
with shadow stack or return address encryption. Still, this slight negative overhead is within
the standard deviation and can be seen as an artifact of measuring real systems. An outlier
is lbm: It has a non-negative overhead for all protections while the benchmark itself is
exceptionally stable; the worst standard deviation we saw was 0.05%. In particular, the
optimized shadow stack and return address encryption get considerably faster (up to −0.9%,
2 seconds). We suspect that the additional instructions change the code layout and trigger
a similar effect to the stack layout changes: frequently called functions might be placed
in better cache positions. In line with related work [121], we used the average of all 23
benchmarks so that the impact of code or memory layout changes can make up for each
other. xalancbmk shows a special case: apparently, the unprotected reference binary has
an unfortunate code layout. Almost all protections that change the code layout as a side
effect hit a more fortunate layout and therefore experience a speedup. This speedup is more
significant than the slowdown of the protection itself for the partial canary modes and the
optimized protections.

4.8.4 Overhead per programming language

We found interesting insights when we grouped benchmarks by their primary programming
language. From Figure 4.8 and Table 4.3, we can see the influence of the programming
language of a benchmark.

Fortran-based benchmarks experience little to zero overhead on all protections. In
particular, the protections without stack layout changes (shadow stack and return address
encryption) change the performance of a Fortran program by at most ±0.2%. For stack
canaries, the result is similar with two outliers due to stack layout changes: exchange2

receives a 1.5% speedup, and fotonik3d receives a 0.7% slowdown. The reason is that
Fortran programs typically execute much fewer function calls. Even benchmarks that
combine Fortran with C or C++ code show this behavior, as long as the program’s main
computation is written in Fortran.

When comparing C and C++ programs, we see that all protections have more mean

49

CHAPTER 4. SOK: EVALUATION OF RETURN ADDRESS PROTECTIONS

 28%

 30%

 32%

C
Stack

Canary

C
Shadow
Stack

C
RA

Encryption

C++
Stack

Canary

C++
Shadow
Stack

C++
RA

Encryption

Fortran
Stack

Canary

Fortran
Shadow
Stack

Fortran
RA

Encryption

 -2%
 0%
 2%
 4%
 6%
 8%
 10%
 12%

Figure 4.8: Overhead per programming language.

overhead on C++ programs. C++ idioms like inheritance and virtual functions (see Sec-
tion 5.4.1) produce many smaller functions that cannot be inlined by compiler optimizations
because they are not directly called but referenced in a table. Many small functions mean
many function prologues and epilogues that need protection. Therefore, all protections have
at least double mean overhead on C++ benchmarks than on C benchmarks. The difference
is big enough to make a difference in adoption. All protections have an overhead lower
than the stated 5% [100] on C benchmarks; down to 3.6% if optimization is enabled. But
each protection has at least two C++ benchmarks where its overhead is above 5%, which is
too much for general real-world adoption.

We conclude that the programming language of a benchmark is highly relevant for a
protection’s overhead. For the evaluation of any protection, the results will differ depending
on the programming languages used in the evaluation. Related work often omits Fortran
programs from evaluations, thus losing generality.

4.8.5 Overhead Comparison With Literature

Finally, we compare our results to the performance overhead of the same mechanisms
reported in the literature. Some factors can make our results different than older work:
First, we use 64bit x86 machines for our benchmarks, while related work might use 32bit
x86 machines. For example, in the most recent evaluation, Dang et al. [29] tested both
but reported 32bit only, claiming that the overhead between 32bit and 64bit is comparable,
but 32bit provides “a lower bound.” Second, many related work use older benchmarks
like SPEC CPU 2006 and exclude Fortran programs. We have shown earlier that Fortran
programs have a different overhead than C/C++ by design. In Table 4.3, we also report
our measured overheads on C/C++ only to be more comparable. Third, related work often
uses much older compilers and hardware, which can deal better or worse with the added
protection code. We intended to capture these differences with this work.

50

4.8. PERFORMANCE EVALUATION

Table 4.3: Mean overhead of all protections per language and summary of overheads.

Protection
Overhead per language Overhead Overhead

C C++ Fortran (C/C++) (total)

Stack Canaries 1.1% 2.4% -0.2% 1.7% 1.2%
(strong) -0.2% 1.0% 0.1% 0.4% 0.3%
(basic) -0.1% 0.3% -0.2% 0.1% 0.0%

Shadow Stack 1.3% 3.0% 0.0% 2.1% 1.5%
(optimized) 1.0% 1.7% 0.0% 1.3% 0.9%

RA Encryption 1.6% 5.6% 0.0% 3.6% 2.5%
(optimized) 1.1% 4.5% 0.0% 2.8% 1.9%

Our measured stack canary has a mean overhead of 1.1% on C and 2.4% on C++.
Combined C and C++ overhead is 1.7%. Thus stack canaries are faster than the results from
Dang et al. [29], who reported a 2.54% average overhead on C/C++. In particular, Dang et
al. reported that their fastest shadow stack was slower than stack canaries. This is no longer
true; our optimized shadow stack has less mean overhead than full stack canaries on C and
C++. In contrast, Szekeres et al. [164] report that the stack canaries’ overhead “is negligible
(less than 1%)” without further justification, showing a discrepancy. We can confirm these
statements for the partial modes strong/basic only, which are more likely used in practice.

Our parallel shadow stack implementation has a mean overhead of 1.3% on C to 3%
on C++, combined 2.1%. These results are lower than the original parallel shadow stack
evaluation [29], which measures 3.5% average overhead on C/C++ programs, but did
not further split the overhead by programming languages. In turn, [29] has summarized
more related work using shadow stacks. If evaluated on any SPEC benchmark, all these
implementations had overheads higher than 5%. Szekeres et al. [164] reported 5% average
overhead on their shadow stack implementation. We cannot be sure if our implementation
compares to their design without a description of how they implemented the shadow stack
in their paper.

The third protection mechanism, return address encryption, was never evaluated in
isolation by related work. Thus we can hardly compare our results with the literature. It
was proposed as part of a bigger system, G-Free [133], which has 3.1% overhead in total
on some non-standardized real-world C programs. Our results of 1.6% overhead on C
benchmarks do not contradict these findings, at least.

Finally, we can say that the return address protections have less overhead than stated
earlier on modern software using modern compilers and modern hardware. This discovery
could lead programmers to re-evaluate and potentially deploy stronger defenses with their
applications.

51

CHAPTER 4. SOK: EVALUATION OF RETURN ADDRESS PROTECTIONS

Table 4.4: Mean binary size overhead of all protections per language and summary of
additional binary size.

Protection
Binary size per language Size Overhead Size Overhead

C C++ Fortran (C/C++) (total)

Stack Canaries 3.6% 6.5% 1.9% 5.0% 4.1%
(strong) 0.9% 1.3% 1.2% 1.1% 1.1%
(basic) 0.6% 0.1% 0.0% 0.4% 0.3%

Shadow Stack 3.4% 6.5% 1.4% 4.9% 3.8%
(optimized) 2.5% 4.3% 1.3% 3.4% 2.7%

RA Encryption 2.9% 7.4% 1.4% 5.2% 4.0%
(optimized) 2.4% 5.8% 1.3% 4.1% 3.2%

4.8.6 Binary Size Overhead

In Table 4.4, we show a summary of the protection’s size overhead. All protections add
instructions to the programs, which make them larger. We state the relative number of
additional sizes each protection introduces. This additional size includes a small runtime
library for shadow stacks and the patched libunwind for return address protection.

When applied to all functions, all protections have a similar overhead of 3.8% up to
4.1%. The number of still protected functions mainly determines the size overhead of partial
or optimized modes. The strong canary mode protects only 6%–20% of all functions, which
is proportional to the saved size. The optimized modes protect 85% of all functions; they
do not save much binary size.

When analyzed per programming language, the size overhead shows the same char-
acteristics as the performance overhead. C++ programs increase most, up to 7.4% for
return address encryption. C programs increase less, but still by some reasonable amount
(2.9%–3.6%). Fortran programs seem less affected by additional binary size than other
languages. In contrast to performance, the binary size of Fortran programs still sees an
impact up to 1.9%.

Today, storage on x86 systems is rather cheap, so is sufficient transmission capacity. A
few percent increase in binary size will likely not be noticed by most users. In particular,
more and more software comes with statically linked dependencies, increasing application
size a lot more. We conclude that the increased size of protected applications does not
prevent adoption.

4.9 Compatibility Evaluation

Szekerez et al. [164] state that performance and cost overhead is not the only criterion
relevant for adoption; one must also consider a protection’s compatibility with existing
programs and systems. They divide this requirement further into three categories:
Source Compatibility. The protection must not require changes to the source code of an

52

4.9. COMPATIBILITY EVALUATION

application. This requirement is satisfied by all protections; they are applied entirely in the
build pipeline. Developers only have to configure the compiler properly.

Binary Compatibility. Protections must be able to use unmodified, legacy libraries or system
libraries. All protections satisfy this requirement. In particular, a protected application can
mix protected and unprotected libraries. Developers and maintainers can incrementally
deploy each protection.

Modularity Support. Individual modules at compile- or link-time should be independent
of each other’s protection status. For all protections, this is implementation-dependent.
In general, all protections are applied on a per-function level. Protected and unprotected
functions can call each other without changes to the calling convention and, in particular,
without knowing at compile time if the called function is protected or not. We can freely
combine compilation units, static libraries, and dynamically loaded modules—as long as
the protection is properly initialized.

Initialization. The initialization is the only potential compatibility problem for all protec-
tions. Stack canaries require a secret canary value in the thread-local storage of each thread.
The current Linux implementation initializes this value in the system’s dynamic loader. This
loader loads every application; therefore, canaries are properly initialized in any process.

Return Address Encryption also needs an initialized secret value in the thread-local
storage. It can be initialized by the program or the dynamic loader but not by a dynamic
library. The TLS value must be initialized before the program starts any additional threads.
However, the program can load dynamic libraries anytime, so a protected library loaded by
an unprotected application might find itself in an uninitialized thread. There are multiple
possible solutions for this compatibility problem: First, the secret value could be per library
instead of per thread. Then each protected library can initialize a custom, local secret when
the library is loaded. Second, the system’s dynamic loader could generate the secret—all
applications would start with a properly initialized secret. Third, return address encryption
might use the stack canary value as a secret, whose initialization is already widely deployed.
However, the canary is not entirely random; 24 out of 64 bits are always fixed. The attacker’s
probability of guessing the correct key is higher than necessary. Depending on the concrete
use case, any of these solutions can make return address encryption fully compatible with
unprotected modules.

Shadow Stacks require the program to initialize a second stack for each thread. The
limits are thus similar to return address encryption: either the dynamic loader or the
application can create shadow stacks, but not dynamic libraries. The only clean solution is
a modification to the system’s dynamic loader or the C standard library. Other solutions fail
if a protected dynamic library is loaded after the application has started, additional threads
have already been created at this point, and the library’s protected functions are used in
different threads. A less clean compatibility fix could rewrite the program to add shadow
stack initialization to the main program or use LD_PRELOAD to add load time initialization.

To summarize, stack canaries are highly compatible, mainly because they have seen
widespread support in existing systems. Return address encryption achieves a similar level
of compatibility with a proper implementation. Shadow stacks still have minor compatibility
problems whose possible fixes depend on the concrete situation.

53

CHAPTER 4. SOK: EVALUATION OF RETURN ADDRESS PROTECTIONS

4.10 Excursion: Return Address Protections on ARM

Besides 64-bit x86, the 64-bit ARM architecture also plays an important role today. ARM is
mainly used in mobile devices such as smartphones and in recent Apple PCs. On ARM, the
situation for return address protection is different because return addresses are not stored
on the stack by default. A call on ARM with instructions bl or blr stores the return address
in the register x30, not on the stack. In turn, the return instruction ret uses the address in
register x30 (or any other register, if necessary). So a call or return does not necessarily
need protection.

Return address protection can only be applicable when the return address in register x30
is temporarily spilled on the stack, for example, because the function calls other functions or
register pressure becomes too high. Register spilling often happens in the function prologue
and epilogue, but this is not required. A compiler may decide to spill the register only on the
stack for specific control flow paths. Furthermore, the compiler may use a different register
than x30 for the return address. All this information is required to build a performant
return address protection. They are only available in the compiler; therefore, protections
for ARM should be implemented in the various compilers, not as an assembly rewriter.

On the other hand, return address protections on ARM likely have lower performance
overhead and higher security. All functions that do not call other functions and do not need
too many registers do not need protection and do not have performance overhead. When
implementing a protection like a shadow stack or return address encryption, we do not have
to read the return address from the stack initially and have it already in a register after the
final check. For a shadow stack, we could even omit the spilled register on the real stack
and use the shadow stack only. Finally, a properly implemented return address protection
for ARM would not have any TOCTTOU issues—there is no trade-off between performance
and TOCTTOU protection.

Clang already contains a production-ready shadow stack implementation for 64-bit ARM,
called ShadowCallStack [176]. The necessary runtime is included in Android’s C standard
library; other platforms must provide a custom shadow stack runtime. From version 8.3 on,
a hardware-assisted return address protection based on Pointer Authentication [142] can be
implemented. Return addresses are signed in the function prologue and the signature is
checked before returning. The signature key is managed by the CPU and thus unaccessible
to attackers.

4.11 Conclusion

In this chapter, we have analyzed three different return address protections. We have used
modern compilers, benchmarks, and hardware to get results applicable in this decade.
We showed that all protections have acceptable performance and size overheads on most
programs, and we revealed an exceptional case: C++ code with many small methods like
povray. In particular, we showed that optimized shadow stacks beat full stack canaries
not only in terms of security, but also performance. The overhead of our shadow stack
implementation on modern software is lower than expected by related work. Thus, we
suggest the integration of fast, optimized software-only shadow stacks in compilers and the
development of a commonly accepted shadow stack runtime library. We further suggest that

54

4.11. CONCLUSION

maintainers of high-risk applications evaluate software-only shadow stacks on their systems
as an alternative to stack canaries. With the emerging availability of hardware-based shadow
stacks as part of Intel CET, software-only shadow stacks can be a valuable fallback to provide
equal protection on both new and legacy hardware.

We advise against the real-world adoption of return address encryption. It is slower than
shadow stacks but has no security advantage. Return address protection might be viable
only in rare cases where shadow stacks face compatibility problems or memory shortage.

We have further provided some insights into the impact of the chosen programming
language on the performance overhead: Fortran programs face almost no overhead, and
C++ programs see more overhead than plain C programs. In particular, we must consider
this result when looking at other benchmarks. Often, people evaluate C or C++ only for
language-agnostic designs. From these results, we cannot conclude the overhead of a system
on other languages because we showed that language is an important factor in performance
overhead.

In future work, we suggest an additional analysis that compares the overhead of software-
only shadow stacks with hardware-assisted shadow stacks like Intel CET. Further evaluation
of the different performance characteristics of ARM-based return address protections, in-
cluding hardware-assisted protections, can also be of interest. Finally, we are certain that
more clever optimizations could be invented that reduce the performance penalty of shadow
stacks or return address encryption even further.

Availability

We released the implementations as Open-Source Software, they are avaliable on Github:
https://github.com/MarkusBauer/return-address-protections

55

https://github.com/MarkusBauer/return-address-protections

5
NoVT: Eliminating C++ Virtual Calls

to Mitigate Vtable Hijacking

57

5.1. MOTIVATION

5.1 Motivation

Nowadays, the vast majority of remote code execution attacks target virtual function tables
(vtables). Attackers hijack vtable pointers to change the control flow of a vulnerable program
to their will, resulting in full control over the underlying system. We describe NOVT, a
compiler-based defense against vtable hijacking. Instead of protecting vtables for virtual
dispatch, our solution replaces them with switch-case constructs that are inherently
control-flow safe, thus preserving control flow integrity of C++ virtual dispatch. NOVT
extends Clang to perform a class hierarchy analysis on C++ source code. Instead of a vtable,
each class gets unique identifier numbers which are used to dispatch the correct method
implementation. Thereby, NOVT inherently protects all usages of a vtable, not just virtual
dispatch. We evaluate NOVT on common benchmark applications and real-world programs,
including Chromium. Despite its strong security guarantees, NOVT improves the runtime
performance of most programs (mean overhead −0.5%, −3.7% min, 2% max). In addition,
protected binaries are slightly smaller than unprotected ones. NOVT works on different CPU
architectures and protects complex C++ programs against strong attacks like COOP and
ShrinkWrap.

5.2 Problem Description

For decades, attackers have exploited heap errors in C++ programs to mount code-reuse

attacks. Browsers are a particularly rewarding and valuable target for heap-based code-reuse
attacks because browsers contain a massive amount of C++ code and browsers include a
scripting engine that allows adaptive attacks. For example, 70% of all vulnerabilities in
Google Chrome are memory safety problems [167]. The problem is not specific to browsers,
though. In fact, code-reuse attacks are fairly common also in other popular working
environments. For instance, use-after-free bugs are the main source of vulnerabilities in
Windows [103].

A fundamentally important attack step in exploiting these vulnerabilities is vtable hi-

jacking. Attackers commonly use heap corruption vulnerabilities (like use-after-free bugs)
to corrupt a C++ object. C++ objects contain the address of a vtable, which is a read-only
list of function pointers pointing to all methods of the given object. Using the memory
corruption, an attacker can overwrite the address to an object’s vtable with the address of
an attacker-controlled memory structure. This memory structure is filled with a faked vtable
containing arbitrary function pointers. As soon as the program uses the vtable to retrieve a
method pointer, the attacker has full control over the instruction pointer.

Unfortunately, C++ programs contain numerous vtables as compilers use them to
implement core language features of C++: class inheritance and virtual methods. The
attack surface is significant. Each call of a virtual method relies on a vtable pointer, and
some programs use millions of virtual method calls per second. Even worse, researchers
showed that vtable hijacking attacks are Turing-complete, even if only existing vtables can
be reused (the COOP attack [151]).

Consequently, researchers aimed to defeat vtable hijacking attacks, either with compiler-
based program modifications or binary rewriting tools. Previous work [13, 69, 106, 184,
209, 39, 44, 64, 208, 36] protects vtable-based virtual dispatch with security checks added

59

CHAPTER 5. NOVT: ELIMINATING VIRTUAL CALLS TO MITIGATE VTABLE HIJACKING

to the program: before a virtual method is called, either the vtable or the method pointer
in the referenced vtable are checked for validity. The set of valid vtables or methods is
determined by the C++ class hierarchy and type system. However, these additional checks
come with a performance penalty that is potentially non-negligible [69, 172, 44, 64, 208,
36]. Furthermore, recent work [151, 55] introduced new ways to bypass many existing
defenses, including [106, 209, 69, 44, 64, 36, 172]. Most proposed solutions only protect
vtable-based virtual dispatch, but not other usages of the vtable (e.g., virtual offsets and
runtime type information) [13, 39, 175, 106, 184]. Finally, and quite surprisingly, no prior
work has attempted to solve the root cause of vtable hijacking: the mere existence of vtables.

5.3 Contributions

In this chapter, we radically change the way how C++ member functions are dispatched.
Like prior work, we also observe that all possible class types can be determined at compile
time [31, 13, 69, 172, 184, 139] if no dynamic linking is required. However, instead of
following the well-explored idea of protecting vtables accordingly, we show that vtables can
be eliminated, which tackles the root cause of vtable hijacking. Given the source code of a
C++ program, we leverage the class hierarchy to eradicate vtables and to restrict virtual
dispatches to the minimal valid set of methods per call site. Technically, we replace vtables
with class-unique identifiers (IDs). Instead of vtable pointers, class instances contain an ID
that determines their class (dynamic type). Whenever a virtual method is dispatched on an
object instance, we load the ID from the instance and build a switch(ID) case construct
that calls the respective method for a given ID. For each virtual call, we only handle IDs of
classes that are possible by the call’s static type, effectively preventing function-wise code
reuse attacks [151]. While this sounds inefficient at first, we actually improve the runtime
performance of most tested programs. As a side effect, unlike most related works, we
protect all constructs that relied on vtables before: virtual offsets, runtime type information,
and dynamic casts. Our approach is generic, agnostic to the operating system and system
architecture, and is applicable to other compilers and ABIs.

We present a prototype of our protection—NOVT (No VTables). NOVT is implemented
in Clang/LLVM 10, based on the Itanium ABI. While still a prototype, NOVT can handle
complex programs up to million lines of code. We evaluate NOVT on the SPEC CPU 2006
benchmark, Chromium, MariaDB, Clang, CMake, and Tesseract OCR, with a mean runtime
overhead of −0.5%, 2% worst case (i.e., speeds up programs on average). Binaries protected
by NOVT are slightly smaller than unprotected ones. NOVT’s protection level is optimal (as
defined in ShrinkWrap [55]), protects against code-reuse attacks like COOP [151], and is
applicable to any valid C++ program without code changes (given all linked C++ source
code). Our prototype has been released as open-source software1.

To summarize, our contributions are:

• We show that all C++ semantics can be implemented without relying on vtables.

• We introduce NOVT, an LLVM-based prototype that protects C++ programs by re-
moving vtables. NOVT safeguards even complex programs against vtable hijacking,

1https://github.com/novt-vtable-less-compiler/novt-llvm

60

https://github.com/novt-vtable-less-compiler/novt-llvm

5.4. BACKGROUND

including Chromium (29.7 MLoC), LLVM / Clang (3 MLoC), and the C++ standard
library (437 KLoC).

• The level of protection offered by NOVT is optimal and complete. NOVT also protects
every use of vtables beyond dynamic calls, including virtual inheritance offsets that
are vital for field access and object casts.

• NOVT shows negative performance overhead for most tested programs and is thus the
first vtable “protection” scheme that does not slow down the majority of programs. At
the same time, NOVT also reduces binary size.

5.4 Background

Inheritance in C++ can become quite complex, as C++ supports features like multiple inher-
itance and virtual bases. We, therefore, start by providing relevant background information
on these C++ details. The code in Figure 5.1 will serve as a running example to illustrate
how C++ handles classes with inheritance.

5.4.1 C++ Inheritance and Vtables

C++ classes can have virtual methods which child classes can overwrite. Calling a virtual
method on a class instance invokes the method defined by the actual dynamic type at
runtime, regardless of the type in source code (the static type). That means when we call
g() on a pointer of type B*, either B::g() or D::g() can be executed, depending on
the dynamic type of the instance. To dispatch virtual functions, all major C++ compilers
use virtual function tables (vtables). A vtable is an array of function pointers of all methods
of a class and possibly additional information. Each class instance (with virtual methods)
contains a pointer to the vtable of its class. When a virtual method is dispatched, the
compiler emits code that loads the vtable pointer, fetches the function pointer from the table,
and finally, calls this pointer.

5.4.2 C++ Multiple Inheritance

In C++, a class can have multiple base classes (multiple inheritance). Figure 5.2 shows the
inheritance in our example, where classes B and D inherit from multiple classes. A and NV
are base classes, and C inherits only from A. A is always inherited virtual, so that D includes
one copy of A, B, and C each. Consequently, the four classes A–D form an “inheritance
diamond,” a common problem in languages with multiple inheritance.

The compiler computes the memory layout of a class according to the Itanium ABI [24].
Derived classes always include their base (parent) classes in memory. That is, the memory
representation of a class instance always starts with its primary vtable pointer, followed by
all direct base classes in order of inheritance, and last, all fields defined by this class are
appended. Figure 5.3 shows the memory layout of our example classes. If an instance of
type D* is cast to B* and method g() is dispatched, the generated code would look up that
method in D’s vtable and call D::g with the correct this pointer (pointing to the D object).
However, if an instance of type D* is cast to C* and method h2() is dispatched, we would

61

CHAPTER 5. NOVT: ELIMINATING VIRTUAL CALLS TO MITIGATE VTABLE HIJACKING

1 class NV {

2 // 8 bytes, no virtual methods

3 uint64_t nv1;

4 };

5 class A { // 24 bytes

6 uint64_t a1, a2;

7 virtual void f();

8 };

9 class B : public NV, public virtual A {

10 // 72 bytes (40 + 8(NV) + 24(A))

11 uint64_t b1, b2, b3, b4;

12 virtual void g();

13 virtual void g2();

14 };

15 class C : public virtual A {

16 // 56 bytes (32 + 24(A))

17 uint64_t c1, c2, c3;

18 virtual void h();

19 virtual void h2();

20 };

21 class D : public B, public C {

22 // 120 bytes (24 +48(B) +32(C) +24(A))

23 uint64_t d1, d2;

24 void f() override;

25 void g() override;

26 void h() override;

27 };

Figure 5.1: C++ code as running example with multiple (classes B and D) and virtual
inheritance (classes B and C)

class NV class A

class B class C

class D

+8
+48, virtual

+32, virtual

+0 +48

+96, virtual

Figure 5.2: Class hierarchy graph for our running example (Figure 5.1). The given offsets
relate to the memory layout in Figure 5.3 (e.g., NV starts at offset +8 in B). The dashed
line represents indirect virtual inheritance.

62

5.4. BACKGROUND

cl
as

s
B

vt
B

0

vt
B

1

class B

class ANV

0 48 72
higher memory offset

nv1 b1 b2 b3 b4 a1 a2
cl

as
s
C

vt
C

0

vt
C

1

class C

class A

0 32 56

c1 c2 c3 a1 a2 cl
as

s
A

vt
A

0

class A

0 24

a1 a2

cl
as

s
D

vt
D

0

vt
D

1

vt
D

2

class D

class B class C

NV

class A

0 48 80 96 120

nv1 b1 b2 b3 b4 c1 c2 c3 d1 d2 a1 a2

Figure 5.3: Memory layout of our example classes according to the Itanium ABI. Vta-
bles B0 and D0 have a B-compatible layout. Vtables A0, B1, C1, and D2 have an
A-compatible layout. Vtables C0 and D1 have a C-compatible layout.

face two problems: First, the vtable layout of B and C is incompatible because g2 is stored
at index 1 in B’s vtable, while index 1 in C is h2(). That means we cannot dispatch both g2
and h2 with the same vtable. Second, this would not point to an instance compatible with
type C—it points to an instance of type D, which starts with fields b1-b4, not with c1-c3
as expected by C::g2. To mitigate this problem, Itanium requires secondary vtables. The
instance of D contains a second vtable pointer at offset 48 (the beginning of the C structure
in D). When we cast D to C, we correct the pointer by this offset so that it now points to the
secondary vtable, which gets a C-compatible layout, and methods inherited from C can be
dispatched without additional effort. Methods overwritten by D get a special vtable entry
that moves this back to the beginning of D before calling D’s implementation.

5.4.3 C++ Virtual Inheritance

With the sketched inheritance model, multiple copies of a C++ base class can be included in
a derived one. This is counter-intuitive and not always desired. To solve this, C++ provides
virtual inheritance. A virtual base class is always included only once, no matter how many
base classes inherit from it. In our example, A is a base of both B and C, which in turn are

63

CHAPTER 5. NOVT: ELIMINATING VIRTUAL CALLS TO MITIGATE VTABLE HIJACKING

both bases from D, but D includes A only once. To this end, the memory layout of a class
with virtual bases is different: Instances of virtual bases are included at the end of the final
class and deduplicated.

This change has some implications. The computed memory layout (Figure 5.3) shows
that the memory offsets between a class and its base are no longer constant. When method
B::g2 accesses the field A::a1 on an instance of B, it knows that this field is at offset 56
(this+56) because A is at offset 48 and a1 is at offset 8 in A. But if the same method is
inherited to D, A::a1 is at offset 104 (A starts at offset 96 in D). The same problem occurs
when casting between these types. Again, C++ solves this issue with vtables. In addition
to function pointers, a vtable contains the memory offset to all its virtual bases and virtual
children (including indirect ones). When a field in a virtual base is accessed or a cast occurs,
the compiler first loads the pointer to the object’s vtable, then loads the virtual offset from
the (known) index of the vtable, and finally computes the address of the base or children
as this+virtual offset. To this end, vtables can also contain a pointer to meta-information
about the class, so-called runtime type information (RTTI), which is used for exceptions and
dynamic casts.

To build (and destroy) class instances, compilers may need to use so-called construction

vtables. These transient tables contain the virtual offsets of a child class but the inherited
methods of a parent class. When constructing the child class, they ensure that no method on
the child is called before the parent classes are fully initialized. Furthermore, construction
vtables guide the objects to use the correct virtual offsets.

5.4.4 Vtable Hijacking

As vtables contain function pointers, they are a valuable target for memory corruption. To
hijack control flow, an attacker can modify the vtable pointer stored in the first bytes of
an instance, e.g., by exploiting a heap overflow or use-after-free vulnerability. Usually, the
attacker overwrites the vtable pointer with an address of an attacker-controlled memory
region. Then, the attacker fills this memory region with a pointer to the code they want to
execute, creating a fake vtable. When a virtual method is dispatched on the tampered class
instance, the program loads a function pointer from attacker-controlled memory and calls it.
By tampering with a single vtable pointer, the attacker can thus leverage a potentially small
memory corruption to execute attacker-controlled code.

Researchers showed that attacks do not necessarily need fake vtables: “Counterfeit
Object-Oriented Programming” (COOP) [151] attacks lead to turing-complete code execution
by chaining pointers to existing, valid vtables from a sufficiently large program. Similar to
ROP, several gadgets in the form of faked objects with pointers to actual vtables are stored in
an attacker-controlled buffer. Later a loop with a virtual dispatch inside is used to dispatch
these gadgets one by one. Again, if this loop is in a virtual function, regular vtable hacking
(with any vtable containing this virtual function) is used to start the attack. COOP breaks
naïve protections that just check if vtable pointers actually point to a vtable because all
vtable pointers point to original vtables from other classes.

However, virtual dispatch is not the only security-critical operation on vtables—a fact
that several related works dismiss. An attacker can overwrite the vtable pointer with a
pointer to attacker-controlled memory and change the virtual offset there. Whenever a

64

5.5. ATTACKER MODEL

method or field inherited from the base class is used from the manipulated object, the
attacker has full control over the this pointer of that method or the address of that field, even
if the invocation is non-virtual. With this power, common methods like attribute getters and
setters can be turned into arbitrary memory read and arbitrary memory write primitives
while the control flow of the program stays unaltered. Therefore, we argue that a strong
vtable protection must also protect virtual offsets in addition to virtual dispatch.

5.5 Attacker Model

We want to mitigate memory corruption attacks against C++ class instances in which an
attacker aims to divert control to an arbitrary function outside of the instance’s scope.
Hereby, we explicitly include COOP-style attacks [151], i.e., we also aim to prevent the reuse
of existing yet arbitrary virtual methods. Furthermore, we aim to protect virtual offsets from
arbitrary modifications, as outlined in Section 5.4.4. This attacker model is based on the
general model from Section 2.3: we assume that the attacker has arbitrary read and write
access to the heap and other memory locations that contain object instances, and they know
about the program’s memory layout.

We assume that all executable pages are non-writable (W⊕X) and that return addresses
are protected by other means (e.g., the schemes from Chapter 4). In line with all related
works in this context, we ignore C-style function pointers that might even occur in C++
programs; we will consider them separately in Chapter 6.

Summarizing, our threat model reflects common remote code execution attacks such as
against Javascript engines in off-the-shelf browsers.

5.6 Design and Implementation

Our protection scheme NOVT removes vtables from a C++ program and replaces them with
constant identifiers that are used for dispatching virtual calls. Whenever a vtable was used
before, we generate a switch-case struct that dispatches the minimal set of possible
identifiers, as determined by static types, and aborts execution otherwise. This section
outlines our overall methodology. In Sections 5.6.1 and 5.6.2, we explain how we use class

hierarchy analysis and a class identifier graph to determine the set of valid methods for each
virtual call. In Sections 5.6.3 and 5.6.4, we show how we create dispatch functions and
class identifiers to replace vtables. In Section 5.6.5, we show how we optimize the resulting
structure to improve performance. In Sections 5.6.6, 5.6.7 and 5.6.8 we show how we build
our prototype NOVT as a fork of Clang 10.

5.6.1 Class Hierarchy Analysis

To replace vtable-based virtual dispatch, we first need to learn the class hierarchies [31]
of the program we want to protect. To this end, we add metadata to each class that has at
least one virtual method, a virtual base, or inherits a class with virtual methods or virtual
bases. Classes without any virtual methods or inheritance cannot be used in virtual dispatch
or virtual inheritance and would not contain a vtable pointer anyways (class NV in our

65

CHAPTER 5. NOVT: ELIMINATING VIRTUAL CALLS TO MITIGATE VTABLE HIJACKING

example). We ignore them in the remainder of this chapter, as they thus never undermine
security according to our threat model. For each other class, we record its virtual and
non-virtual base, including the memory offset between the derived class and its base and
the defined virtual or overridden methods. We also store a reference to their vtables (which
will be removed in a later step) and to all generated construction vtables (including layout
class and memory offset from base class to layout class). To avoid name clashes and to
support C++ templates, we mangle all class names according to the Itanium ABI [24].

We can construct a class hierarchy graph from the stored inheritance information at
link time (see Figure 5.2). Each node in this graph represents a class, each edge represents
an inheritance path. Each edge is marked with the memory offset between both classes,
i.e., the memory location of the base class inside the derived memory layout. When casting
between these classes or dispatching inherited methods, we must correct the pointer (e.g.,
this) for this offset.

5.6.2 Class Identifiers

From the class hierarchy graph, we then determine the necessary class identifiers we need to
create. Each class identifier will later replace a primary or secondary vtable, i.e., a class can
have multiple class identifiers. Each class identifier is a pair I D = (cls, o) where cls is a class
and o is a memory offset. The memory offset denotes that identifier I D will later be written
at offset o bytes from the start of the instance. If we read an identifier from an instance
pointer and know its offset, we can compute the beginning of the instance (to adjust this).
Class identifiers with offset 0 signal the beginning of an instance (like a primary vtable),
offsets ̸= 0 have the same purpose as secondary vtables.

For objects in construction, we use combinations of two class identifiers. The first
identifier denotes the class under construction and is later used to dispatch virtual methods.
The second identifier denotes the class whose memory layout is applied and is later used to
resolve virtual offsets. In our example, we need a construction identifier ((C, 0) , (D, 48))
(“C-in-D”) while constructing the C instance in D. It denotes that the virtual methods from C

should be used, but if fields from virtual base A are accessed, we have to respect D’s memory
layout (e.g., A starts at +48 bytes, not at +32 as in C). Construction identifiers avoid that
overridden methods of an object are called while the object is not fully constructed; they
are similar to construction vtables in Itanium.

To this end, we construct a class identifier graph (see Figure 5.4 for an example). Each
node in this graph is a class identifier, and edges between identifiers show the inheritance
between their classes: Two nodes (c1, o1) and (c2, o2) are connected with an edge (c1, o1) −→

(c2, o2) iff i) c1 is a base class of c2, ii) casting from a c2-pointer to a c1-pointer modifies
the pointer by (o2 − o1) bytes. In practice, that means: If offset o2 in a class of type c2

refers to a field inherited from c1 at offset o1, then these identifiers are connected. In our
example, (A, 0) and (B,+48) both refer to the beginning of an A instance, therefore they
are connected. (A, 0) and (D,+48) are not connected because A starts in D at offset +96.

We generate these class identifiers by traversing the class hierarchy graph top-down, e.g.,
bases (parents) before derived classes. Created identifiers are marked virtual if they have
been generated using virtual inheritance, non-virtual otherwise. This marking is vanished
after all identifiers have been created. For each class c, we create identifiers in these steps:

66

5.6. DESIGN AND IMPLEMENTATION

1. We create one default identifier representing the class at offset 0: (c, 0). We mark this
identifier as non-virtual.

2. We traverse all identifiers id ′ =
�

c′, o′
�

of all base classes c′ (given the memory offset
o between c and c′):

• If the identifier is marked non-virtual (i.e., it has not been created using any
virtual bases), we create an identifier

�

c, o+ o′
�

and connect it with an edge
from id ′. This new identifier is marked virtual iff c′ is a virtual base of c.

• If the identifier is marked virtual, we determine its root
�

c′′, 0
�

in the graph (a
unique node generated by rule 1). Next, we determine the virtual offset o′′ of
c′′ in c. Finally, we create a new identifier

�

c, o′′
�

and connect it with an edge
from id ′. The new identifier is always marked virtual.

3. For each construction vtable c-in-c′ of the class c, we traverse all identifiers id ′ = (c, o)

of this class. For each identifier, we compute the memory offsets o1 (between c + o

and c + 0) and o2 (between c + o and c′ + 0). We create a construction identifier
�

(c, o1) ,
�

c′, o2

��

and connect it with an edge from id ′.

There is a strong relation between vtables and class identifiers. Every class identifier
corresponds to exactly one vtable; connections between identifiers imply that these vtables
can be expected in the same location for a given (static) type. We can clearly see this
connection when we compare the class identifier graph from Figure 5.4 with the vtables in
Figure 5.3: Class B has two vtables: one primary vtable and one that has the layout of class
A’s vtable (e.g., B cast to A). These two tables correspond to the class identifiers B.0 and
B.1. Given a pointer with a static type of A, it points to an instance starting with a pointer
to the primary vtable of A or the secondary vtable of B. Therefore, class identifiers A.0 and
B.1 are connected. Similar for D: class D has three vtables that correspond to the class
identifiers D.0, D.1 (D casted to C), and D.2 (D casted to A). Similarly, all construction
identifiers correspond to a construction vtable. We will use this connection later and replace
vtable pointers with a unique number per class identifier. The edges between class identifiers
help us to enumerate all possible class identifiers that can occur for a given static type.

5.6.3 Dispatch Function Generation

While a vtable-based dynamic dispatch can be compiled independently of other compile
units, this is no longer possible for our protection (and, in general, for any protection that
relies on class hierarchy analysis). To dispatch a function, any approach based on a class
hierarchy analysis needs to know all possible functions that can be called, which might not
even be declared in the current unit. To counter this and allow incremental compilation, we
compile dynamic dispatch in two steps. When compilation requires a dynamic dispatch, we
declare a dispatch function instead and replace the dynamic dispatch with a (static) call to
this dispatch function. The generated dispatch function has exactly the same type as the
virtual function we want to call. It is annotated with the static type of the object we dispatch
on and the method name we need to dispatch. To account for templates and overloaded
functions, we mangle this method name according to the Itanium ABI [24].

67

CHAPTER 5. NOVT: ELIMINATING VIRTUAL CALLS TO MITIGATE VTABLE HIJACKING

A.0

+0 to A

B.0

+0 to B

B.1

+48 to B

B.0-in-D

+0 to B/D

B.1-in-D

+96 to B/D

C.0

+0 to C

C.1

+32 to C

C.0-in-D

+0 to C, +48 to D

C.1-in-D

+48 to C, +96 to D

D.0

+0 to D

D.1

+48 to D

D.2

+96 to D

Figure 5.4: The class identifier graph of our example, including all possible construction
identifiers (rounded rectangles).

We define these methods later in the linking phase. For each method, we identify the
this argument and start with loading the class identifier using that pointer. We then create
a switch-case structure (with LLVM’s SwitchInst). A case in that switch instruction
handles each possible class identifier. We can get all possible class identifiers by traversing
the class identifier graph, starting with the static type’s primary class identifier. For example,
when dispatching on class C we would start with identifier C.0 and traverse D.1 and
C.0-in-D. For each case, we can determine the method to be called by the class identifier’s
(dynamic) type using standard inheritance rules. We emit a (static) call to this method and
return its result. To catch potential memory corruptions, we emit an LLVM Trap intrinsic
(x86’s ud2) in the default case of the switch. The program crashes to avoid control flow
hijacks if an invalid class identifier occurs at runtime. The order of the traversal here is not
important. LLVM will reorder all emitted cases during assembly generation depending on the
assigned identifier number. Also, in the rare cases where LLVM does not reorder checks, the
order has a negligible effect on performance. We use the same method to implement other
constructs that used to rely on vtables: Whenever the compiler needs to know the virtual

68

5.6. DESIGN AND IMPLEMENTATION

offset of a virtual base, we emit a call to an offset function (typed pointer → word-sized
int). This function is later defined by a SwitchInst that simply returns the correct offset
for all possible class identifiers. Dynamic casts that cannot be resolved at compile-time are
replaced with a cast function (typed pointer→ pointer). For each possible class identifier,
this function returns either the pointer (potentially with an offset) or nullptr if the class
cannot be cast. Last, we replace every access to runtime type information with a call to a
rtti function that returns a pointer to the correct RTTI structure when called.

5.6.4 Storing Class IDs and Removing Vtables

The mechanisms described until now already replace all C++ concepts that normally rely
on vtables. We finally can delete the vtables themselves and replace the instance’s pointers
to them with the class identifier that corresponds to a given vtable. To this end, we assign
a unique number to every class identifier in the class identifier tree. Next, we find direct
usages of the vtable, which happens only in class constructors (when the vtable’s pointer
is written to the instance). We replace that vtable pointer with the corresponding class
identifier’s number and write it into the memory slot that used to store the vtable pointer.
This modification does not change the memory layout of classes, i.e., we do not introduce
memory overhead with this step. All dispatcher functions (and friends) load this identifier
number later from the vtable pointer slot and use it as described. Finally, having removed
all references to the vtables, they will be removed by a following Dead Globals Elimination

pass.

5.6.5 Optimizations

We extend this basic methodology with optimizations that boost the runtime efficiency of
our protection.

5.6.5.1 Dead Class Identifiers

Class identifiers that are never used in a generated function or class identifiers whose
identifier number is never written in a constructor can be safely removed. Removing them
saves some branches in the generated functions as well as it allows for a more dense
numbering. We evaluate optimizations on the C++ programs from SPEC CPU 2006 and
Chromium. Applied after all other optimizations from this section, we can, on average,
remove 29% of all class identifiers because they are never used in a constructor and additional
22% because they are never used in a generated function.

5.6.5.2 Merge Cases

In the generated functions, many cases can be merged, for example, when multiple classes
inherit the same method without overriding it. Whenever cases execute the same action
(the same method dispatched, return same virtual offset, etc.), we merge them into one
case. This reduces code size and improves later optimization results. In our experiments,
we could remove 24% of all case handlers on average.

69

CHAPTER 5. NOVT: ELIMINATING VIRTUAL CALLS TO MITIGATE VTABLE HIJACKING

5.6.5.3 Devirtualization

Whenever a generated function has only one possible case (possibly after combining cases,
excluding the error case), we can statically determine the only legal path and remove the
switch-case around it. Only a single static call or single constant offset remains; the virtual
operation has been statically resolved (devirtualized). We mark the generated function for
inlining to eliminate any performance impact. On average, 57% of all generated functions
in our experiments can be devirtualized.

5.6.5.4 Merge Identifiers

We look for pairs of class identifiers that trigger the same behavior in all generated functions
and merge them into a single identifier, thus reducing the total number of identifiers. These
“equal” identifiers occur, for example, when a subclass does not overwrite any methods or
when a construction identifier is rarely used. We search these equal identifiers by iterating
all generated functions: whenever a pair of two identifiers are handled in the same function
(i.e., occurs in the same SwitchInst) and the two identifiers trigger the same behavior,
we mark them as “potentially equal.” We mark them as “not equal” if they trigger different
behavior and must not be merged. In a second step, we check all pairs: If two identifiers
are marked “potentially equal” but no “not equal” marking has been set, they can be safely
merged without changing program semantics. This holds because the only (legal) usage of
class identifiers are the generated functions, and there is no case where switching between
the two would change the behavior of a generated function. The “potentially equal” and “not
equal” relations are propagated to the merged identifiers; hence more than two identifiers
will be merged if possible. With this optimization, we can merge 10% of all identifiers on
average in our experiments.

5.6.5.5 Optimizing Identifier Numbers

The performance of our protection is dominated by the efficiency of the compiled switch
instruction. The efficiency of the generated code depends mainly on the number of cases,
the density of the numbers, and the maximal size of the numbers. Dense packs of numbers
can be handled by more efficient constructions (e.g., jumptables) than sparse sets. We
thus set out to assign consecutive numbers to identifiers that are used in the same dispatch
function(s).

To this end, we first group identifiers that are used in the same generated dispatch
function and trigger different behaviors there. We then assign numbers to each group inde-
pendently. All identifiers in a group need a different identifier number to be distinguishable.
This is not the case for identifiers in different groups. Such “colliding” identifiers are never
used together and therefore do not have to be distinguishable. Consequently, each disjoint
group will have its own independent numbering starting with 0. Hence, unrelated identifiers
from different groups can have the same number. Assigning a number multiple times does
neither harm correctness nor security. Whenever such a duplicate number occurs in the
program, it is absolutely clear from the context to which of the identifiers it belongs.

We use a non-optimal recursive algorithm (shown in Algorithm 1) to assign numbers to
a group of identifiers. For each set of identifiers larger than some threshold, the algorithm

70

5.6. DESIGN AND IMPLEMENTATION

splits it into two subsets that will receive consecutive numbers recursively. One of the subsets
is the maximal subset used in a generation function. We assume a hierarchical structure
of used identifier sets in our generated functions, and this algorithm tries to follow that
hierarchy. Our experiments show that this non-optimal algorithm significantly (50% on
average) compresses the identifier space.

function CreateIdentifierNumbers:
input : identifiers // identifier subgraph set

input : next_number // initial 0

output : next_number // next free number

if ∥identifiers∥> 5 then // small sets need no advanced ordering

biggest_subset := ;;
/* find the biggest subset from all generated functions, ignoring small functions */

foreach func in generated_functions do
if func.used_ids ⊊ identifiers and 4≤ ∥func.used_ids∥ and

∥func.used_ids∥> ∥biggest_subset∥ then

biggest_subset := func.used_ids;
end

end

if biggest_subset ̸= ; then
/* identifiers used together should get connected numbers */

next_number := CreateIdentifierNumbers (biggest_subset,
next_number);

next_number := CreateIdentifierNumbers (identifiers −
biggest_subset, next_number);

return next_number
end

end

/* Order small sets and sets that cannot be split. The order of identifiers is close to prefix

traversal of the identifier tree. */

foreach id in identifiers do

id.number := next_number++;
end

return next_number
end

Algorithm 1: The algorithm used to assign numbers to class identifiers.

5.6.6 Implementation

We have implemented the NOVT prototype on top of Clang 10 and LLD 10. NOVT mod-
ifies C++ programs during compilation and linking. In the following, we will detail our
implementation choices for both phases.

In the compilation phase, our modified compiler adds information about classes, in-
heritance, and virtual methods as metadata to its output. We replace virtual dispatches

71

CHAPTER 5. NOVT: ELIMINATING VIRTUAL CALLS TO MITIGATE VTABLE HIJACKING

with a call to a dispatch function. Similarly, we replace virtual offset loads with a call to an
offset function. The same holds for dynamic_cast (cast functions) and RTTI loads (rtti

functions). We enforce link-time optimization (LTO) in our compiler, so the output is always
LLVM bitcode ready for further analysis. Vtables are still emitted; they will be removed later.

In the linking phase, we generate the newly introduced functions in a compiler pass intro-
duced to lld or LLVM’s gold plugin. First, we combine the metadata from all compilation
units and reconstruct the full class hierarchy of the program. From this class hierarchy, we
build an identifier graph, a structure that is similar to vtables and their inheritance relations.
Using this graph, we assign IDs to all classes and change their constructors to write that ID to
each class instance, replacing the vtable pointer. For each dispatch function, we determine
the set of possible call targets from the identifier graph and insert a switch statement that
can call exactly these candidates. Similarly, we generate all necessary offset, cast, and rtti
functions. We optimize our identifier graph and the generated functions to counter possible
performance overhead caused by the protection. Finally, the compiler’s code generation
applies off-the-shelf compiler optimizations.

5.6.7 Compiler-Assisted Optimizations

LLVM runs its optimizations that interact with our generated code and further improve the
performance. First of all, LLVM’s Dead Global Elimination pass eliminates all (now unused)
vtables. Additionally, it identifies now unused methods and RTTI structures and eliminates
them, which was not possible before our transformation. We evaluate the positive effect of
this program size reduction in Section 5.7.4.

Next, LLVM can decide to inline some or all of our generated functions, especially if they
are short or only called from a few locations. On the other side, short methods might be
inlined into our generated function. Both inlining operations save us a call instruction. In
the best case, our virtual dispatch is compiled without a single assembly call. Inlining gets
especially performant if LLVM can infer the result of the identifier number Load instruction
using constant propagation (for example, if a constructor has been inlined before). LLVM has
a pass that allows even interprocedural constant propagation, on our transformed program
this optimization is able to devirtualize some further callsides. Finally, LLVM uses tail calls:
when we call a regular method from a dispatcher function, LLVM emits a jmp instead of a
call. As the dispatcher function and method have the same signature, the method can
return instead of our dispatcher function later. Tail call optimization saves us a second
call, a second ret and the space of a return address on the stack.

Last but not least, LLVM has several tweaks to efficiently implement a SwitchInst in
assembly. The most well-known trick is a jumptable: Given numbers close to each other,
LLVM uses that number to load the address of the next instruction and jump to it. Jumptables
are similarly efficient than vtables (a cmp instruction more), but they are memory-safe
because the jumptable index is bounds-checked before usage. Jumptables are scalable, and
their performance does not depend on the number of possible cases. Alternatively, LLVM can
translate functions with only a few cases to a chain-like or tree-like structure of compares
and jumps. These structures do not have the overhead of an additional memory access.
Given a small number of possible cases, they are usually faster than jumptables (or regular
vtable-based dispatch). Another trick is to use bitstring tests to check for many cases at once.

72

5.7. EVALUATION

Given many numbers that fall to a single case (e.g., many classes inheriting a non-overridden
method), LLVM uses the bittest instruction (bt) to select a bit from a pre-computed 64-bit
word. If the selected bit is 1 the case is correct.

5.6.8 Usability

For convenience, we modified Clang to use LTO by default, to use our modified lld linker by
default, and to include an additional library search path containing a pre-compiled protected
libstdc++. With these small changes, our modified Clang is a drop-in replacement for
typical compilers (real Clang, mainly compatible with g++). For most build systems, we
only need to set an environment variable to get protected binaries (CXX=novt-clang++).

5.7 Evaluation

We now evaluate NOVT to see its impact on the programs to protect. Most importantly, we
aim to assess the provided security level and the performance overhead. Next, we also want
to know the impact on the binary size and the limitations of this protection.

For our evaluation, we use all C++ programs from the standardized SPEC CPU 2006
benchmark [58, 161], namely astar, dealII, namd, omnetpp, povray, soplex, and xalancbmk.
Using that benchmark allows us to compare our results against other solutions (using the
same benchmark). namd is unique because it does not use virtual inheritance nor virtual
dispatch. We still include it in our evaluation to show the absence of any impact of our
approach if no protection is necessary. To demonstrate scalability and practicability, we also
evaluate NOVT on Chromium 83 [166] (Google Chrome), which consists of 29.7 million
lines of C/C++ code, many dependencies, and is highly relevant in practice. Additionally,
Chromium does not tolerate any slight error in the C++ language semantics and therefore
is a good test case to show that our approach does not break programs. To show a broad
compatibility with a variety of popular C++ projects, we evaluate NOVT on MariaDB (a
SQL database server with 2.4 MLoC), CMake (340 kLoC), Clang/LLVM 9 (2.9 MLoC) and
Tesseract OCR (300 kLoC).

All programs have been compiled with full protection to get comparable results, including
a protected C++ standard library and full link-time optimization enabled. Reference is
always the same program compiled with unmodified Clang 10, full LTO, and a statically
linked LTO-ready version of the C++ standard library. For SPEC CPU 2006 we use all
available optimizations (-O3); for Chromium we enable all provided optimization options
in its build system. Other programs use their respective defaults for a release build.

5.7.1 Security Evaluation

NOVT protects any vtable-related operation against a memory-modifying attacker. This
includes virtual memory offsets, dynamic casts, and rtti access. We also protect member
function pointers. Manual inspection of the generated dispatchers shows that even con-
current memory modifications cannot give an attacker more control about the instruction
pointer, no intermediate values are stored on the stack. Our protection restricts the callable
methods at each virtual dispatch location to the minimal set that would still be allowed by

73

CHAPTER 5. NOVT: ELIMINATING VIRTUAL CALLS TO MITIGATE VTABLE HIJACKING

astar Chrome Clang CMake dealII Maria
DB

omnet
pp

povray soplex Tesser
act

xalan
cbmk

0%

20%

40%

60%

80%

100%

devirtualized

≤2 targets

≤3 targets

≤5 targets

≤10 targets

≤100 targets

≤500 targets

≤2600 targets

Figure 5.5: Virtual dispatchers broken down by their number of possible call targets.

the type system, depending on optimizations even less. Haller et al. [55] showed that this
restriction is optimal without (potentially expensive) context analysis.

This implies of course that an attacker can trigger other, possibly unintended methods
by overwriting the type ID in memory, as long as these methods are still allowed by the type
system. However, modifying the stored identifier number does not give full control over
the instruction pointer, and the number of callable functions is considered low enough to
prevent code-reuse attacks (including COOP attacks) [151]. In the worst case, this very
limited set of methods might contain security-critical functionality: For example, assume
classes AdminUser and RegularUser which both inherit from User. For a regular user
object typed User* in source code, an attacker could overwrite the stored ID with the
ID of AdminUser. This attack gives access to methods overridden by AdminUser that
were unreachable before, but does not give access to any additional methods added by
AdminUser, nor can the attacker trigger different methods with potentially incompatible
signature or methods unrelated to User, as he could with regular vtables. The impact is
quite program-specific, as an attack requires specific call patterns in code. This restriction
applies for all solutions that restrict virtual dispatch based on a class hierarchy analysis,
including [13, 69, 106, 184, 28, 172, 209]. Our level of protection is equal to or better than
these solutions.

In order to assess our intuition that NOVT prevents COOP-style attacks, we have to inspect
how many valid targets each dispatcher allows to use. Successful COOP attacks [151] require
a large set of “vfgadgets”—virtual functions that can be called by manipulating the object.
Schuster et al. identified ten different types of vfgadgets that must be available for turing
completeness (e.g., virtual functions reading memory, performing arithmetic operations,
etc.), some of them more than once (e.g., reading memory to different registers). In
unprotected programs, any virtual function (referenced in a vtable) is a possible target of
any virtual dispatch in a COOP attack. With NOVT applied, all vfgadgets must be different
implementations of the same method inherited from a single base class, with the exception

74

5.7. EVALUATION

of the “main loop” vfgadget, which in turn must dispatch that method on that base class.
From Figure 5.5, we see that in a protected program, most virtual dispatches have less than
10 possible targets, particularly for SPEC programs. The majority of these target functions
likely do not qualify as vfgadgets because of their size and complexity. Even if, they are likely
vfgadgets of the same type, because all target functions share the (high-level) semantics of
the parent method.

Chromium represents a good worst-case example for vtable protection: its large codebase
contain 39,100 virtual class definitions, with more than 54,700 vtables containing over
210,000 distinct virtual functions. NOVT restricts virtual dispatches to 2.9 possible targets
on average. Excluding devirtualized calls, 5.7 possible targets per virtual dispatcher remain.
This low number of valid targets does not allow to spawn successful COOP attack, i.e., the
vast majority of virtual dispatches is COOP-safe. When looking at the maximum number
of targets, we see that a small fraction of virtual dispatches have a higher number of
targets (up to 2600). These dispatchers are required by some very generic interfaces
in Chromium’s source code that are implemented by many classes: mojo::Message-

Receiver, blink::ScriptWrappable, blink::GarbageCollectedMixin and
google::protobuf::MessageLite. However, we believe that these generic interfaces
do not pose an additional risk for COOP-style attacks, because they all share similar function
types and purposes. It is unlikely that all required types of vfgadgets are present in a set of
almost-identical functions. For example, for any protobuf-inheriting object, the function
Clear will always write memory but never be usable as a memory-reading vfgadget.
Restricting these dispatches further is not possible without breaking the legitimate use of
these interfaces. This assessment is further supported by the COOP authors who state that a
C++ class-hierarchy-aware restriction of virtual call targets reliably prevent COOP attacks
even for large C++ target applications (“COOP’s control flow can be reliably prevented
when precise C++ semantics are considered from source code” [151], Section VII B).

NOVT applies the same level of protection to virtual offsets. Whenever a virtual offset is
retrieved from an object, we restrict the possible results to the minimal set possible in the
type system. Without this protection, an attacker could hijack vtables to arbitrarily change
the this pointer of some inherited methods. Attackers can leverage the this pointer to get
arbitrary memory read/write primitives from a single corrupted vtable pointer. Only few
related work protects virtual offsets [69, 209], and none of them restricts virtual offset to
the minimal possible set.

NOVT actually found an invalid virtual dispatch in one of the SPEC CPU benchmarks
(xalancbmk, in SchemaValidator::preContentValidation). This benchmark does
an invalid sidecast of an object instance, then calls a virtual method on it and finally checks
if the cast was valid at all. This error would remain undetected with traditional vtables,
because both intended and actual vtables have the same layout, but NOVT detects that this
dispatch violates the type system and halts the program. We are not the first to report this
issue [13, 172] and provide a patch file in our source release.

The protection strength could be improved further by randomization: In contrast to
vtables, type IDs are not addresses and could be randomized independently of ASLR. A
simple randomization could use a constant, random offset added to all type IDs, preserving
the structure of the dispatchers including their speed. To break this randomization, an
attacker has to leak one type ID from memory. A stronger randomization could assign all

75

CHAPTER 5. NOVT: ELIMINATING VIRTUAL CALLS TO MITIGATE VTABLE HIJACKING

type IDs completely random. This approach will be less efficient, because dispatchers with
jumptables are not possible anymore, but an attacker would have to leak each type ID from
an existing class instance before overwriting any stored ID.

5.7.2 Runtime Evaluation

The performance overhead of any protection may hinder its real-world adoption. In this
section, we therefore provide thorough experiments that confirm that NOVT has a negligible
(actually, negative) run time slowdown.

5.7.2.1 Benchmark Selection

We evaluate the performance overhead of NOVT using the SPEC CPU 2006 benchmark suite,
parts of Chromium’s benchmark suite, six well-known browser benchmarks, and standard
benchmarks of MariaDB, Clang, and Tesseract OCR.

For SPEC, we run the full benchmark suite, excluding programs without C++. SPEC
runs every program three times and takes the median runtime as a result. We run each
experiment 20 times to get a meaningful result without outliers.

For Chromium, we use all standardized benchmarks contained in Chromium’s benchmark
set [169], which are octane 2 [132], kraken 1.1 [115], jetstream2 [197], Dromaeo DOM [114]
(not to be confused with the Dromaeo Javascript benchmark) and speedometer2 [198], which
is a real-world benchmark comparing the performance of the most popular web frameworks.
We add sunspider 1.0.2 [199] because it has been used to evaluate many related work [209,
208, 44, 69, 13, 184, 210, 39]. Other relevant literature used additional benchmarks to
assess performance impact on HTML/rendering performance, but these historical samples
are not included anymore in modern Chromium (which switched from Webkit to blink).
Instead, we benchmark the blink HTML engine’s performance with the quite extensive blink
benchmark set (326 samples in total). To avoid any bias, we selected all benchmark sets
that i) contained more than just a few samples, ii) worked flawlessly on an unmodified
reference Chromium, and iii) whose results had a reasonably low standard deviation (below
1%). These were the blink benchmark suites css, display_locking, dom, events, layout, paint

and parser. We take the geometric mean of all these results as Chromium’s performance
overhead. Again we repeated all experiments 20 times. For MariaDB, we use the DBT3
benchmark provided by the developers with the InnoDB database engine. For Clang, we
measure the time it takes to compile and optimize SQLite. For Tesseract OCR, we use
the benchmark from the Phoronix test suite [80]. We do not conduct runtime analysis on
CMake, because its runtime is mainly determined by the speed of the programs it invokes
(e.g. compilers), and there exists no benchmark targeting CMake.

5.7.2.2 Benchmark Environment

We ran all SPEC benchmarks on an Intel Core i5-4690 CPU (4×3.5 GHz, no hyperthreading)
with 32 GB of RAM. The operating system was Debian 10 “Buster” with kernel 4.19. We used
the “performance” CPU governor, disabled CPU boost, and applied cpuset to minimize
the impact of the environment and operating system on the measurements. The standard
deviation of all benchmarks was at most 0.7%, and 0.32% on average. We ran all Chromium

76

5.7. EVALUATION

benchmarks on an Intel Core i7-6700k CPU (4×4.0 GHz with hyperthreading) with 16 GB
of RAM and an AMD Radeon RX480 graphics card. Operating system was Ubuntu 18.04
with kernel 5.3. The standard deviation of all Chromium benchmarks was always below
0.92%, and 0.37% on average.

5.7.2.3 Performance Overhead

astar
(-3.7%)

Chrome
(1.1%)

Clang
(0.1%)

dealII
(-1.2%)

MariaDB
(2.0%)

namd
(-0.2%)

omnetpp
(-0.1%)

povray
(1.4%)

soplex
(-0.7%)

Tesseract
(0.1%)

xalanc
(-3.7%)

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

5%

Figure 5.6: Performance overhead of NoVT on all programs.

Figure 5.6 and Figure 5.7 show the performance overhead on the different programs
and benchmarks. We can see that many programs actually get faster after protection (astar,
deadII, soplex, xalancbmk), while few get slightly slower (Chromium, povray, MariaDB).
The average overhead is −0.5% and thus negative. The average overhead on the set of
programs commonly used in related literature (SPEC CPU and Chromium) is −0.9%. That
is, our benchmarks get faster on average, with a worst-case overhead of 1.98% on MariaDB.
The best result is astar. This program has been completely devirtualized by NOVT and
improves its performance by 3.7%. The highest overhead in a SPEC benchmark occurs on
povray. Manual investigation shows that povray has only 28 classes, excluding the standard
library, and 1500 virtual calls per second—xalancbmk has 63 million virtual calls per second.
Disabling the protection on parts of the class hierarchy reveals that its overhead only loosely
correlates to the number and structure of the generated dispatch functions. We believe that
this overhead instead comes from subtle changes in the program’s code layout. Evaluating
hardware performance counters on synthetic microbenchmarks did unfortunately not give
conclusive insights: NOVT’s overhead does not correlate with the cache miss rate. However,
protected programs seem to have a lower branch misprediction rate.

We summarize the size and call frequency of the generated functions in Figure 5.8 and
the number of virtual calls, virtual offset accesses and dynamic casts in Table 5.1. We can see
that NOVT can handle billions of dispatches while still having a negative overhead in some
cases. The same holds for virtual offsets. NOVT does not necessarily impose an overhead

77

CHAPTER 5. NOVT: ELIMINATING VIRTUAL CALLS TO MITIGATE VTABLE HIJACKING

blink
css

(3.9%)

blink
display
(2.1%)

blink
dom
(2.2%)

blink
events
(-0.0%)

blink
layout
(4.7%)

blink
paint
(4.7%)

blink
parser
(0.1%)

dromaeo
dom
(0.3%)

jet-
stream2
(0.3%)

kraken

(0.1%)

octane

(0.4%)

speedo-
meter2
(0.8%)

sun-
spider
(-4.8%)

-5%

-4%

-3%

-2%

-1%

0%

1%

2%

3%

4%

5%

Figure 5.7: Performance overhead of NoVT on Chromium.

namd povray soplexChrome
0

25 K

50 K

75 K

100 K

125 K

150 K

175 K

dealII Clang Tesser
act

0

1 M

2 M

3 M

4 M

5 M

6 M

7 M

omnet
pp

astar Maria
DB

xalan
cbmk

0

10 M

20 M

30 M

40 M

50 M

60 M devirtualized

≤2 cases

≤3 cases

≤5 cases

≤10 cases

≤100 cases

≤500 cases

≤2600 cases

Figure 5.8: Virtual actions (calls, vbase offset, etc) per second, broken down by the
number of switch cases in the NoVT dispatcher functions.

when virtual inheritance is used extensively. However, the actual performance overhead is
not only subject to the class structure. Again, we rather speculate that performance is due
to the code layout, which is out of our control.

For Chromium (Figure 5.7), we can easily see that real-world benchmarks tend to have
a much lower performance overhead than synthetic HTML engine benchmarks. The worst
case overhead is 4.7%, while the mean overhead is only 1.1%. We expect the real-world

78

5.7. EVALUATION

Table 5.1: Number of protected operations per benchmark.

Benchmark # virtual call # virtual offset # dynamic_cast # rtti access runtime

Chromium: blink css 1,123,380,274 364,138 0 0 251 sec
Chromium: blink display_locking 24,693,016 168,377 0 0 49 sec
Chromium: blink dom 1,542,188,247 630,578 0 0 80 sec
Chromium: blink events 8,315,599 70,093 0 0 94 sec
Chromium: blink layout 35,869,225,028 1,755,609 0 0 1150 sec
Chromium: blink paint 5,607,395,213 859,399 0 0 385 sec
Chromium: blink parser 4,331,060,409 523,289 0 0 453 sec
Chromium: dromaeo 1,947,841,146 30,748 0 1 149 sec
Chromium: jetstream2 804,807,604 316,224 2 5 180 sec
Chromium: kraken 59,387,742 59,417 0 1 34 sec
Chromium: octane 118,479,849 24,373 0 1 50 sec
Chromium: speedometer2 541,254,241 194,405 0 0 74 sec
Chromium: sunspider 5,766,321 18,361 0 1 18 sec
Clang 97,010,210 961,927 493,848 0 31 sec
MariaDB 15,547,629,306 59,940 43,740 0 263 sec
Tesseract 292,155,762 192,129 16,793 0 38 sec
astar 4,996,986,681 0 0 0 286 sec
dealII 201,873,776 98,486,795 225,926,036 0 188 sec
namd 0 0 0 0 292 sec
omnetpp 3,361,136,271 14 47,429,169 330 279 sec
povray 153,212 0 0 0 98 sec
soplex 3,259,515 32,123,619 161 0 202 sec
xalancbmk 9,867,616,106 612,327 48 0 160 sec

overhead to be close to the latter—in particular, speedometer2 (+0.8%) is a good candidate
to measure this because it tests the performance of widely used web frameworks. sunspider

(−4.8%) shows that even some parts of Chromium actually got faster. While this result
looked suspicious at first glance, we repeated this experiment twice to exclude any error on
our side, but we can reproduce this behavior with a reasonably low standard deviation (0.5%
max). Further investigation revealed that sunspider is not the only case where the protected
Chromium is faster than the reference (like the “blink image_decoder” benchmark, roughly
−2%). However, all other cases did not comply with our rules as described in Section 5.7.2.1,
and we hence did not include them because they were not sufficiently representative.

Chromium seems to use less virtual dispatch than some of the SPEC benchmarks. We
observed the most intensive use in the benchmark “blink display_locking” with 510,000
virtual calls per second. On the other hand, Dromaeo DOM used only 20,000 virtual calls
per second. The size of the generated functions was roughly proportional in all benchmarks;
it is summarized in Figure 5.8. A direct connection between size and number of the called
virtual functions could not be observed.

Summarizing, we can say that NOVT protects most programs without any performance
penalties, and only some programs experience a slight yet negligible slowdown from the
protection. Even complex programs like Chromium with large generated functions do not
necessarily suffer from performance drain. Finally, with a focus on Chromium, we can say

79

CHAPTER 5. NOVT: ELIMINATING VIRTUAL CALLS TO MITIGATE VTABLE HIJACKING

Table 5.2: Summary of assembly constructs used to build virtual function dispatchers.

Binary Compare chains Trees Jumptable Partial Jumptable Other/ukn Total

Chromium 39077 (82.71%) 3289 (6.96%) 4331 (9.17%) 114 (0.24%) 435 (0.92%) 47246
Clang 2307 (49.63%) 1094 (23.54%) 489 (10.52%) 528 (11.36%) 230 (4.95%) 4648
MariaDB 1107 (45.86%) 537 (22.25%) 382 (15.82%) 281 (11.64%) 107 (4.43%) 2414
CMake 259 (53.96%) 99 (20.62%) 55 (11.46%) 39 (8.12%) 28 (5.83%) 480
Tesseract 215 (78.75%) 10 (3.66%) 14 (5.13%) 1 (0.37%) 33 (12.09%) 273
astar 1 (100.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 1
dealII 72 (79.12%) 2 (2.20%) 11 (12.09%) 0 (0.00%) 6 (6.59%) 91
omnetpp 95 (59.38%) 12 (7.50%) 43 (26.88%) 0 (0.00%) 10 (6.25%) 160
povray 33 (100.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 33
soplex 98 (73.68%) 0 (0.00%) 33 (24.81%) 0 (0.00%) 2 (1.50%) 133
xalancbmk 1320 (81.89%) 136 (8.44%) 103 (6.39%) 37 (2.30%) 16 (0.99%) 1612

that the performance bias we introduced with our protection was more than compensated
by the performance gain of enabling full link time optimization.

5.7.2.4 Compilation Time

The compilation time of our solution itself is unobtrusive. Our passes take a few milliseconds
up to a few seconds to run on a SPEC program, and less than 40 seconds on Chromium.
This compilation time is negligible in a build process of multiple minutes (SPEC) or multiple
hours (Chromium), so we did not optimize the compile time in our prototype. Admittedly,
building with Clang’s link time optimization is slower than a regular build.

5.7.3 Generated Code Evaluation

NOVT replaces vtables with switch-case constructs in dispatcher functions, which the com-
piler then further optimizes during assembly generation. Table 5.2 shows that dispatchers
generally follow one of four low-level code structures. Most dispatchers consist of a linear
chain of cmp or bt checks on the type ID, followed by a conditional jump to the target
function. These dispatchers usually check for only a small number (at most 4) of type
IDs. They are considered the fastest because they do not access any memory. Dispatchers
handling a large number of type IDs often utilize a jumptable, guarded by an initial range
check. Jumptables require a memory read access but scale well in the presence of many
type IDs. If a jumptable is unsuitable, LLVM generates a tree-like comparison structure that
includes cmp-based range checks and bitset tests. In particular, trees are used if the number
of type IDs is low, if the type IDs are sparsely distributed, or if many type IDs default to
the same inherited method. While trees are slower than short compare chains, they also
operate without memory access and are better suited if the type IDs are not distributed
dense enough for a jumptable. The maximum tree depth we saw was five. Finally, multiple
jumptables can be combined by a tree (partial jumptable). Our distribution algorithm tries
to distribute type IDs as densely as possible, to avoid these nested structures.

80

5.7. EVALUATION

Table 5.3: Size of binaries before and after protection.

Unprotected
binary size

Protected
binary size

Binary size
overhead

Chromium 211,025 KB 197,959 KB −6.19%
Clang 125,914 KB 125,779 KB −0.11%
CMake 11,149 KB 10,629 KB −4.66%
MariaDB 21,643 KB 24,779 KB 14.49%
Tesseract 3,647 KB 3,162 KB −13.30%
astar 149 KB 143 KB −3.96%
dealII 1,322 KB 817 KB −38.13%
namd 379 KB 371 KB −2.08%
omnetpp 1,447 KB 847 KB −41.45%
povray 1,532 KB 1,520 KB −0.79%
soplex 1,034 KB 551 KB −46.69%
xalan 4,624 KB 3,983 KB −13.87%

From a security perspective, all generated code structures are equal—memory is only
read, and all memory indices are bounds-checked. The type ID is read only once and all
intermediate computation happens in registers, no TOCTOU attack (time-of-check-time-of-
use) is possible.

5.7.4 Binary Size and Memory Overhead

We evaluate the size impact of NOVT by compiling each program with and without protection,
stripping the resulting binaries, and compare their size. Both protected and unprotected
versions include a statically linked C++ standard library, and both versions run link-time
optimizations over that standard library. Table 5.3 shows the size of the resulting binaries.
It turns out that binaries usually get smaller after protection, with the exception of MariaDB.
This might be counter-intuitive because each generated function should be larger than the
vtable entries they replace, and many vtable entries are covered by more than one generated
function. We identified two reasons for this observation: First, the virtual dispatch itself is
smaller: in the protected version, a single call instruction to a generated function suffices
to do a virtual dispatch; in vtable-based programs we would need a memory load and
an offset calculation first. If the same dispatcher function is called from many locations
we can save some bytes there. Second, our structure allows for more efficient dead code
elimination: Our approach already identifies dead classes in its internal optimization steps
and can remove them. From the final structure, a simple dead global elimination pass can
identify virtual methods that are never called and rtti entries that will never be accessed. In
particular, the C++ standard library contains much code that is not used in every program.

The memory overhead of our solution is negligible, memory usage reduced slightly
for all tested programs. As we only change code and do not alter the memory layout of

81

CHAPTER 5. NOVT: ELIMINATING VIRTUAL CALLS TO MITIGATE VTABLE HIJACKING

objects, the used heap memory (including data segment) does not change. Given that LLVM
compiles all our calls inside generated functions as tail calls, our solution does not use any
additional memory on the stack. So the only difference in memory consumption comes from
the different size of the binary (which is usually smaller).

5.8 Compatibility and Limitations

NOVT is compatible to both small and extremely large (e.g., Chromium) programs. We
tested the correctness of all benchmarked programs with different inputs (usually from
their benchmark suites). To this end, we compiled LLVM 9 and Clang 9 with NOVT and
ran their quite extensive unit test suite (around 3800 tests) to confirm that no error was
introduced by NOVT—excluding a single test that required dynamic linking, which NOVT
does not support. CMake and MariaDB also have extensive test suites; we confirmed that
NOVT does not alter the outcome of any test.

While all benchmarks were evaluated on the 64-bit x86 architecture, NOVT works for
any architecture supported by LLVM. NOVT can, thus, for example, also protect mobile or
embedded applications. To demonstrate this, we compiled a set of 40 small test programs
for different architectures, including 32-bit x86, ARM, 64-bit ARM, MIPS, 64-bit MIPS, and
64-bit PowerPC. We verified that these protected programs work as expected by executing
and using them in a QEMU emulator.

Our current prototype assumes the program to be compiled with Clang. We chose Clang
due to its wide popularity and acceptance. Clang can build even the Linux kernel [180] and
has interfaces compatible to GCC or Microsoft’s C++ compiler. Having said this, porting
our approach to other compilers is just a matter of engineering. Finally, we do not lose
compatibility by using full LTO. While it increases compilation time, using full LTO improves
runtime performance. Alternatively, NOVT could be implemented based on the faster “thin
LTO”.

Our approach has one main limitation: It is not compatible with dynamic linking or
dynamic loading of C++-based libraries. This is an inherent drawback of all protection
schemes that require full knowledge of the class hierarchy during build time. After the
program is compiled, it is not per se possible to add more allowed classes to a specific virtual
dispatch function. If a class from a runtime-loaded C++ library is now inheriting from a
class already known, the new loaded class cannot be respected in the protection, calls to
this class are not permitted. To the best of our knowledge, most vtable protections have
this disadvantage [13, 69, 28, 172, 39], and those that support dynamic linking face either
performance overheads [184] or weaker security guaranties [209, 106].

In fact, the lack of support for dynamic linking is not as crucial as it may look at first sight.
First, programs compiled with NOVT can still dynamically link and load classical C libraries
or C++ libraries that expose a C-style interface. Other C++ libraries can be compiled with
NOVT and then be linked statically into the final binary—like we did for libstdc++ in our
experiments. Second, modern application deployment systems like Flatpak, Docker or Snap
already bundle and ship an application together with all its dependencies. Applications
packaged by such a system do not have any advantage of dynamic linking a library. Even
without such a deployment system, some applications statically link the majority of their
dependencies. For example, release builds of Google Chrome contain statically linked

82

5.9. RELATED WORK

libraries, including the C++ standard library. Third, many programming languages apart
from C/C++ already use static linking as their default (or only) way of linking, including
Go, Rust, Haskell and OCaml.

As a major endeavor, in principle one could extend NOVT to support dynamic libraries
and dynamic loading of C++ code with an arbitrary interface. The method could be similar to
TYPRO’s approach (see Section 6.7): a runtime library could collect class layout information
from all libraries, analyze it, and generate new dispatchers using just-in-time compilation.
While this significant improvement would increase the compatibility of our protection, we
expect a negative impact on performance.

5.9 Related Work

5.9.1 Attacks on Vtables

Code-reuse attacks are still the most prevalent attack method on C(++) programs nowadays.
C++ programs are particularly prone to call-oriented programming (COP) [19], as they
usually contain many indirect calls (necessary for virtual dispatch). Schuster et al. [151]
present Counterfeit Object-oriented Programming (COOP)—a new attack targeting C++
programs by using only valid vtables. COOP attacks chain virtual functions together in a
way that resembles the original calling structure of a C++ program, breaking most vtable
protection schemes available at that time. Haller et al. [55] revealed common errors in
vtable protections and improved upon the precision of GCC’s VTV protection scheme. They
prove that their correction to VTV is optimal, given context insensitivity.

5.9.2 Vtable Protections

Seeing the popularity of vtable hijacking attacks, it is not surprising to see the wealth of
literature on C++ vtable protection schemes. Table 5.4 summarizes related works, all of
which enforce a C++-specific CFI policy. We group these into approaches that rely on
compilers or binary rewriting.

Protecting binaries is naturally harder as vtables and virtual calls must be extracted
from a (possibly stripped) binary. A first such approach was T-VIP [44], which enforced that
vtable pointers point to read-only memory, preventing arbitrary control over the instruction
pointer. Later vfGuard [64] and VTint [208] enforced a stronger policy—only detected
vtables are allowed as targets of vtable pointers. The recent VCI [36] scheme can extract a
class hierarchy from binaries and restrict the set of possible vtables further while still not
achieving the precision of a compiler-based approach.

In contrast, compiler-based protections can get all necessary information from source
code and hence have higher precision. SafeDispatch [69] was one of the first vtable-specific
approach that protects virtual calls with little overhead. However, this little overhead
could only be achieved by dynamic profiling of the application. SafeDispatch did protect
not only virtual calls, but also included virtual offsets stored in vtables (with a weaker
protection level, as outlined by ShrinkWrap [55]). It uses a class hierarchy analysis [31] to
infer valid call targets. Redactor++ [28] is another solution based on randomization and
information hiding. While not enforcing CFI, it hides necessary vtable information such that

83

C
H
A
P
TE
R
5
.
N
O
V
T:

E
LI
M
IN
A
TI
N
G

V
IR
TU

A
L
C
A
LL
S
TO

M
IT
IG

A
TE

V
TA

B
LE

H
IJ
A
C
K
IN
G

Table 5.4: Related work in comparison to NoVT, grouped by binary- and source-based solutions. While state-of-the-art binary
defenses are still struggling with COOP attacks, source-based defenses have solved this issue for some time. However, surprisingly
many solutions are not optimal as outlined by ShrinkWrap. Similarly, only few solutions protect other vtable usages than calls.

Ty
pe Related Work

Protection:
calls / offsets /

rtti & casts

Handles
method
pointers

Defeats
COOP

Optimal
(1)

Runtime Overhead Remarks
B

in
ar

y

T-VIP [44] ✓×× × × × ∼25% (SPEC) requires profiling

vfGuard [64] ✓×× × × × 18.3% (Internet Explorer)

VTint [208] ✓×× × × × 0.4% (SPEC), 1.4% (Chromium*)
instruments less calls
than other solutions

VCI [36] ✓×× × partial × 7.79% (SPEC + Chromium*)

So
ur

ce
-c

od
e

ba
se

d

VT-Guard [106] ✓×× ✓ × × unclear
patent does not detail its
performance penalties

SafeDispatch [69] ✓✓×(2) ✓ ✓ ✓ 2.1% (Chromium) requires profiling for performance

VTV [184] ✓×× ✓ ✓ ×(3) 1% - 8.7% (SPEC) requires profiling for performance

Redactor++ [28] ✓×× ✓ ✓ ✓ 8.4% (SPEC), 7.9% (Chromium)
probabilistic defense,
requires execute-only memory

LLVM-VCFI [172] ✓×× × ✓ × 1.97% (SPEC), 2.9% (Chromium) [13]

VTrust [209] ✓✓✓(4) × ✓ × 2.2% (partial SPEC)

OVT/IVT [13] ✓×× × ✓ ✓(5) 1.17% (SPEC), 1.7% (Chromium)
ShrinkWrap-safe configuration
doubles overhead on SPEC

VIP [39] ✓×× × ✓ ✓ 0.7% (SPEC) compilation can take hours

CFIXX [17] ✓×× ✓ ✓ n.a. 4.96% (SPEC)
Object Type Integrity, not CFI.
Requires MPX CPU instructions

NOVT ✓✓✓ ✓ ✓ ✓ −0.9% (SPEC), 1.1% (Chromium)

(1) The solution restricts possible calls to the minimal possible set, as shown in ShrinkWrap [55]
(2) Virtual offset checks are not optimal and have additional runtime overhead
(3) ShrinkWrap [55] proposed a fix (without additional runtime overhead)
(4) For virtual offsets, RTTI access and dynamic casts, their check is weaker (no check if the valid vtable matches the static type)
(5) optional, with higher runtime overhead
(*) Only a few benchmarks have been used (octane etc.), but no HTML or rendering workloads (which typically have more overhead)

8
4

5.9. RELATED WORK

COOP attacks require hardly feasible guesswork. Its defense is probabilistic and could be
circumvented in some settings [97], and it requires a system offering execute-only memory.
VTrust [209] improves over these solutions in terms of compatibility, and protects vtables
without knowledge of a full class hierarchy. VTrust protects not only virtual dispatch but
also virtual offsets and type information, but at a much weaker level: when resolving virtual
offsets or loading rtti, any vtable can be used, the check is type-agnostic.

Despite these academic progresses, major C++ compilers use their own vtable protec-
tions: Microsoft included a canary-based solution named VT-Guard [106] in their Visual C++
compiler. This solution is not strong enough to prevent COOP attacks. Recently Microsoft
announced xFG [158] with improved, but not optimal security. GCC included a method
called VTV [184] which has been improved by ShrinkWrap [55]. VTV focuses on compat-
ibility, but has a non-negligible runtime overhead (and again requires dynamic profiling
to achieve its performance). LLVM has its own forward-CFI approach [172] that includes
a vtable-specific protection. While this solution is more performant than VTV, it is neither
optimal nor complete. Again, all of these solutions focus on virtual dispatch exclusively.

Recent work has brought different improvements. Bounov et al. introduced OVT and
IVT [13], two protections striving to improve performance by ordering and interleaving
vtables. They achieve an overhead as low as 1.17% with a non-optimal protection (and
the possibility to turn it into an optimal one). VIP [39] improves the security guarantees of
vtable protections, introducing a pointer analysis technique that is used to reduce the set
of possible vtables in a way that is not possible without context. However, their analysis
takes up to an hour on SPEC and 6 hours on Chromium. As an alternative to vtable-based
CFI schemes, Object Type Integrity protects vtables pointers (instead of protecting virtual
calls) [17]. Their prototype CFIXX has a reasonable overhead, but requires Intel’s deprecated
MPX CPU extensions.

NOVT improved over all previous solutions in terms of performance and protection.
We protect all usages of a vtable, including virtual offsets, type information and dynamic
casts, while most previous solutions only protected virtual calls. Our protection is optimal
in a context-free setting (as shown in [55]), for all protected usages. To the best of our
knowledge, we are the first vtable protection that actually speeds up most of the programs
it is applied to. At the same time, our solution lives with the same limitation (no dynamic
linking) than most previous source-based solutions [69, 28, 172, 13, 39]. Solutions that
(partially) support dynamic linking have a higher overhead [184, 17, 209] or lower security
level [106, 209].

5.9.3 Alternatives to Vtables

Decades ago, similar to our general idea, the compiler community explored alternatives to
vtables. Although these approaches did not have a security focus and hence also did not
discuss security-critical considerations in this respect, we will briefly describe them.

Porat et al. [139] used static type checks and direct calls to speed up hot paths in virtual
dispatch—virtual method implementations for frequently used classes are called directly,
while less frequent classes fall back to classical vtables. Vtables are not changed, and no
type IDs are introduced. However, this approach only offers small speed improvements but
no security gain.

85

CHAPTER 5. NOVT: ELIMINATING VIRTUAL CALLS TO MITIGATE VTABLE HIJACKING

SmallEiffel [206]was an experimental compiler for the Eiffel programming language that
does not use vtables. Instead, it uses type IDs for classes and a binary search tree for virtual
dispatch. While the basic idea of type IDs is similar to NOVT, SmallEiffel’s design can’t be
easily ported to C++, because Eiffel lacks many features like mulitple or virtual inheritance
that C++ has. Furthermore, SmallEiffel has an unclear security contribution because
unexpected type IDs trigger undefined behavior. In contrast, NOVT’s type identification
system is more advanced, can deal with all object-oriented features of a modern language
like C++, has a very strong focus on security and the generated dispatchers can deliver
better performance than binary search trees.

5.9.4 Replacing Pointers with Identifiers

HyperSafe [195] shares some design ideas with NOVT: To protect C-style indirect function
calls and returns in hypervisors, HyperSafe replaces function pointers and return addresses
with function IDs. At each indirect control transfer, the ID is checked and resolved through
a per-callside lookup table. In contrast, NOVT targets C++, is usable in general, and uses
flexible switch instructions instead of lookup tables.

µRAI [6] protects return targets on microcontrollers. Partial paths in the control-flow
graph get a “function ID” assigned, one register is reserved to maintain the current ID at
runtime. Instead of common return instructions and return addresses stored on the stack,
µRAI can determine the unique correct return address from the current ID. A jumptable
over all possible IDs replaces the return, removing return addresses on the stack altogether.

TYPRO [P2], which we present in Chapter 6, assigns IDs to functions and builds similar
switch statements to replace C-style indirect calls.

5.10 Conclusion

Vtable hijacking attacks are a real threat to many applications written in C++, including
high-value targets like browsers. NOVT uses a modified compiler to protect programs
given complete source code (including libraries). We thereby radically change the way of
protecting vtables and, instead, eliminate them. NOVT replaces traditional, vtable-based
virtual dispatch with direct calls—based on a class identifier in each C++ class instance, it
calls an object’s method non-virtual. Using a class hierarchy analysis at link-time, NOVT
determines which method implementations are possible for each virtual call; at runtime,
only these methods are callable. After protection with NOVT, no traditional vtables or vtable
pointers remain in the program.

NOVT is compatible with all C++ programs, except dynamic linking and loading—as
with most previous solutions, NOVT relies on knowledge of the complete class hierarchy.
Legacy software can easily be protected without any source code modifications or additional
dependencies. According to [55], NOVT’s offered protection level is optimal for a type-based
solution. NOVT can defend against strong vtable-based attacks like COOP, even for large
programs. NOVT has been evaluated on SPEC CPU 2006, Chromium, MariaDB, Clang,
CMake, and Tesseract OCR. The introduced performance overhead is often negative, −0.5%
on average and 2% in the worst case. The generated binaries get usually smaller; no memory
overhead is introduced, and the impact on compilation time is minimal.

86

5.10. CONCLUSION

Availability

Our prototype has been released as Open-Source Software; it is available on Github:
https://github.com/novt-vtable-less-compiler/novt-llvm

87

https://github.com/novt-vtable-less-compiler/novt-llvm

6
TyPro: Forward CFI

for C-Style Indirect Function Calls
Using Type Propagation

89

6.1. MOTIVATION

6.1 Motivation

Maliciously-overwritten function pointers in C programs often lead to arbitrary code execu-
tion. In principle, forward CFI schemes mitigate this problem by restricting indirect function
calls to valid call targets only. However, existing forward CFI schemes either depend on
specific hardware capabilities, or are too permissive (weakening security guarantees) or too
strict (breaking compatibility).

We describe TYPRO, a Clang-based forward CFI scheme based on type propagation.
TYPRO uses static analysis to follow function pointer types through C programs, and can
determine the possible target functions for indirect calls at compile time with high precision.
TYPRO does not underestimate possible targets and does not break real-world programs,
including those relying on dynamically-loaded code. TYPRO has no runtime overhead on
average and does not depend on architecture or special hardware features.

6.2 Problem Description

Code-reuse attacks exploit memory corruption vulnerabilities by overwriting code addresses
with references to malicious code, ultimately gaining arbitrary code execution. Control Flow
Integrity (CFI) aims to mitigate code-reuse attacks by enforcing that return and indirect
call targets are valid [1]. We have already covered methods that protect return addresses
in Chapter 4 and C++ virtual calls in Chapter 5. The remaining part are indirect calls to
function pointers in C, which still lack protection so far. In this chapter, we thus focus on
forward CFI in C programs.

In the C language, an indirect call invokes a function pointer. Forward CFI schemes check
this pointer before the call, ensuring it points to a “valid” target. To this end, industry-grade
and widely deployed forward CFI schemes (Microsoft’s Control Flow Guard [101], or Intel
CET’s indirect branch tracking [155, 136]) merely test if any valid function is called. This
crude over-approximation enables attackers to call functions that are not reachable from
the given call site. Therefore, more precise forward CFI schemes compute a tailored target

set for each indirect call, containing all function pointers that are allowed for this call.
On the one hand, the target set must be large enough to allow every intended function
pointer. Otherwise, the protected program may crash. On the other hand, the target sets
must be minimal, as every unnecessary target represents a gadget that attackers might
use in code-reuse attacks. The most promising example of such a more precise scheme
is Clang’s CFI [170]. It checks the C type of the called function and compares it to the
expected indirect call type. Such compiler-integrated analyses allow for easy integration in
off-the-shelf software—significantly easing wide CFI deployment.

Unfortunately, as we will show in Section 6.9.1, Clang CFI and its strict type checks
regularly miss valid call targets. Ultimately, this impreciseness may lead to unforeseen
program crashes during runtime, which cannot be detected beforehand. That is, whether or
not a CFI-protected program crashes is only known (at some point) during runtime. Due
to these deficiencies, even hardened OSes cannot deploy Clang CFI to all applications. To
quote the HardenedBSD maintainers: “We may need to disable cfi-icall [Clang’s forward CFI

for C-style function pointers] for more applications, and we’ll need to rely on our user base to

identify edge cases.” [56]

91

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

Clearly, this is an unsatisfying state. As a non-solution, one could revert to more
permissive CFI schemes. For example, IFCC [184] just compares the number of arguments,
but not their types. But this policy allows many unnecessary targets, bloating the surface of
code-reuse gadgets (cf. Section 6.9.2). Seeing that such weaker CFI designs unnecessarily
undermine security, we seek to understand the root causes of Clang CFI’s failures. We
identify three conceptual reasons why Clang CFI is incompatible with popular software
projects such as lighttpd, nginx, or redis. First, Clang CFI lacks type propagation. Therefore,
it does not allow casts to/from undefined types (void *) that programmers often use to
build inheritance-like constructs. Second, Clang CFI does not support variadic functions.
Third, Clang CFI does not support dynamic linking.

As a workaround, developers could try to rewrite programs that cause CFI incompatibili-
ties. However, this is a non-trivial task, requires significant code revisions, and comes at the
price of losing flexibility. For example, plugin interfaces (e.g., in nginx and lighttpd) heavily
rely on variadic functions or generic APIs that operate on void * pointers. Furthermore,
the lack of support for dynamic linking impedes CFI adoption and cannot be “fixed” by
refactoring.

Alternatively, and this being the idea of this work, we can design a CFI system for Clang
that supports the above compatibility features. However, the C standard foresees concepts
that impose challenges, such as (i) function pointer casts, (ii) function pointers that are
part of compound data types such as struct and union, or (iii) function pointers that
are propagated through other indirect calls. Supporting these features is vital to not break
programs. Moreover, any function pointer analysis must be context-sensitive to refine the
set of valid call targets. That is, not only do we have to match function types, but we also

have to verify that a given pointer can ever be used as an indirect call target in a benign
execution path. Finally, the target sets may change when new program parts are loaded
during runtime. However, existing CFI schemes often assume a static setting and cannot
support shared libraries.

To tackle some of these challenges, existing forward CFI schemes (i) use dynamic or
runtime analysis [74, 63, 34], (ii) require kernel-level modifications [34, 63, 186, 45]
or orthogonal defenses such as shadow stacks to be in place [73, 74], or (iii) rely on
architecture-specific features to recognize valid call targets in real-time [73, 34, 63, 186,
45, 118, 98, 74]. Therefore, these solutions sacrifice generality and are not agnostic to the
underlying OS and hardware. Thus, we still lack a generic and software-only forward CFI
solution that is neither too permissive nor too restrictive.

6.3 Contributions

In this chapter, we propose TYPRO, a drop-in replacement for Clang’s forward CFI scheme.
TYPRO uses static analysis to propagate function types (1) to gain a compatible CFI scheme
for Clang, and (2) to tackle the open challenges in existing forward CFI systems. To this
end, we extract types and casts from a program’s Abstract Syntax Tree (AST), and follow
how they propagate to other functions (i.e., contexts). We derive rules from the C standard
that capture all permitted type propagations. We then leverage a solver that uses the type
information and propagation rules to extract accurate target sets, i.e., functions that are
valid for a given call target. We enforce these target sets by rewriting indirect function calls

92

6.4. OVERVIEW

with switch/case constructs that can no longer be abused for function pointers other than
those in the target set.

We developed TYPRO as an LLVM-based open-source prototype1. TYPRO is a software-
only solution, fully compatible with dynamic linking and loading of shared libraries. Our
systematic conformity to the C standard pays off, especially for large real-world programs:
Our protection does not break legacy code and computes target sets more precisely than
industry standards (CFGuard, CET) or IFCC. Furthermore, TYPRO is efficient and does not
cause measurable runtime performance overhead in protected applications.

6.4 Overview

6.4.1 Attacker Model

TYPRO aims to defend against function pointer corruptions in C programs, where an attacker
wants to divert control flow to execute arbitrary code. Our attacker model bases on Sec-
tion 2.3: We consider attackers that know the program’s memory layout and can read from
and write to all memory locations within the boundaries of page permissions. We assume
W⊕X, i.e., that no pages exist that are both writable and executable. TYPRO protects forward
edges (function pointers), so we assume that return addresses are covered by any other
orthogonal scheme from Chapter 4. Furthermore, while we consider dynamically-loaded

code, we exclude dynamically-generated code such as just-in-time compilation, and suggest
additional protections [130, 207, 159] if necessary.

6.4.2 Challenges

To build a secure forward CFI, one has to solve the challenge of finding a precise set of
allowed target functions for each indirect call in C. Not every function that is ever referenced
by a function pointer—we refer to those as address-taken functions—is a valid call target for
any indirect call site. There are two validity conditions to be checked, whereas existing CFI
schemes only consider the first. (1) The type of the address-taken function “matches” the
type of the function pointer used in the indirect call. For example, an indirect call that passes
just a single argument is clearly incompatible with functions that expect multiple arguments.
Types do not necessarily have to be identical but should be “compatible”. (2) There is a
program execution in which the function’s pointer will be passed to the respective indirect
call site. That is, assume the function signatures of two functions A and B are identical,
but B’s pointer is kept local in a function unrelated to the call. Then, B is never a valid call
target.

Related software-only CFI schemes only perform function type checking and ignore the
function’s context. For example, Clang CFI [170] and MCFI [129] perform a rigid function
type checking. While this strict type checking is intuitive and straightforward, it is too
restrictive and regularly corrupts programs. Indeed, called functions may have different
types than the function pointers. In the code example shown in Figure 6.1, we see a trivial
example where this happens in lines 8–12: The indirect call in line 12 targets the function
f1 (expecting an argument of type long), which has a different signature than the function

1https://github.com/typro-type-propagation/TyPro-CFI

93

https://github.com/typro-type-propagation/TyPro-CFI

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

1 typedef void (*fptr_long)(long);

2 typedef void (*fptr_int)(int);

3 typedef void (*fptr_ptr)(fptr_long);

4 void f1(long a) {}

5 void f2(long a) {}

6 void f3(long a) {}

7

8 void scene1_a() {

9 fptr_int f = (fptr_int) &f1;

10 scene1_b(f);

11 }

12 void scene1_b(fptr_int f) { f(0) ; } // call1

13

14 struct S { fptr_long one; fptr_int two; };

15 void scene2_a() {

16 struct S s = { &f2, 0 };

17 scene2_b(&s);

18 }

19 void scene2_b(struct S *s) { s->one(0) ; } // call2

20

21 fptr_long callback;

22 void set_callback(fptr_long f) { callback = f; }

23 void scene3_a() {

24 fptr_ptr some_cb_target = &set_callback;

25 some_cb_target(&f3) ; // call3

26 }

27 void scene3_b() { callback(0) ; } // call4

Figure 6.1: Code example showing different ways to transfer function pointers.

pointer in argument f (expecting an argument of type int). Consequently, a strict type
check will not allow this function call and will mistakenly terminate the program.

As we will also experimentally show, this strict function type checking is impractical for
many programs. On the other extreme, we may thus consider forward CFI schemes with
less restrictive type checks. For instance, one could simply count the number of arguments
instead of validating their type, like IFCC [184]. However, such generous “type matching”
allows significantly more valid call targets than required for correctness, increasing the attack
surface. Regarding our code example, for the indirect call in line 12, IFCC considers not only
f1 as a target, but also any other function with only one argument present in the codebase.
However, in principle, the indirect call in scene1_b, with callee of type fptr_int can
only target f1, but not any other function. Such over-permissive CFI systems unnecessarily
bloat the attack surface for code-reuse attacks.

6.4.3 Methodology at a Glance

We aim for a sweet spot between the “too permissive” and “too restrictive” forward CFI
schemes. In particular, our goal is to correctly track function types even in (typical) situations,
that are not covered by existing strict CFI schemes, such as the following three: (i) A function

pointer is cast to another type. For example, regarding Figure 6.1, the invocation of f (line

94

6.4. OVERVIEW

 Lib(s)

Facts RulesExtractor

Unit Summaries

call1 fun1

call1 fun2

call2 fun2

Indirect Call Targets

Enforcer

Analysis

Runtime
Enforcer

Program

TyPro

TyPro

TyPro

Figure 6.2: TyPro’s workflow.

12) requires such tracking, as discussed before. (ii) A function type is hidden in compound

data structures such as struct, union, pointer, or array. In Figure 6.1, lines 14–19 provide
such an example, where the function pointer f2 is part of struct S that is passed as pointer
to the caller function scene2_b. And (iii), a function pointer is propagated through other

indirect calls, such as the example in lines 21–27, where the call target for call4 depends
on the arguments and target of the indirect call3. None of the current strict CFI schemes
correctly cover all these three situations, which causes them to regularly fail many real-world
programs (as demonstrated in Section 6.9.1).

While our methodology seems similar to common data-flow analysis, it has a major
difference: we track types only, not actual data. There are much less types in a program than
values, and tracking them is much simpler, therefore our analysis is much more lightweight
than data-based approaches.

We propose a static analysis method that propagates function types to tackle the challenge
of collecting restricted yet correct sets of call targets. Our workflow is presented in Figure 6.2.
TYPRO operates on source code in the form of an abstract syntax tree (AST). We track types
per function, including casts between them, and we track which types are exchanged between
functions, even in nested data types. If there is a propagation path from an address-taken
function’s type to an indirect call’s type, we know that this function can be a valid target.

Our type propagation is roughly split into three phases. First, we extract “initial” type
information from the AST. Consider the indirect call in lines 8–12 in Section 6.4.2. Here, our
analysis collects f1’s and fptr_int type declarations, a cast from f1’s type fptr_long
to fptr_int, and also that fptr_int is used as scene1_b argument type. We store
this information as facts—logical formulas that are assumed to be true before the analysis
starts. Facts represent one of the Horn clause types [60]. This encoding has been employed

95

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

by a plethora of analyses for various properties [12, 41] as it allows for leveraging advanced
solvers [113, 71] to compute the actual result.

Second, we use the facts to find a set of valid targets for every indirect call in the code
at link-time. To this end, we first specify a set of rules—another Horn clause type. They are
logical implications that describe how to derive new information (rule’s body) starting from
the initial facts or the information derived being true by the previous rules’ applications
(rule’s head). If the preconditions encoded in the body are satisfied, we call the rule
applicable. In particular, our rules describe how to compute all possible type propagations
permitted by the C standard. They thus form the basis for computing the final set of allowed
functions (i.e., the target set) for each indirect call.

Third, we supply the facts and the rules to a solver that derives the minimal target sets
while applying the rules mentioned above. This process continues to the point when rule
applications do not derive any new target for any indirect call. In our example, the solver
concludes that f1’s type is the only type that propagates to call1, and consequently, f1 is
the only valid function in call1’s target set.

Finally, after the type propagation analysis stage, when generating the program binary,
we enforce the resulting target sets. We assign an ID to each address-taken function and
replace the function’s address with that ID. We transform every indirect call into a switch
over different direct calls that only target functions in the valid target set. This method is
similar to the C++ vtable protection NOVT from Chapter 5. To support dynamic linking
and loading, a runtime library updates the target sets whenever new modules appear at
runtime via just-in-time compilation. The final result is a protected program binary, which
runs everywhere the original binary can run. This program has no additional dependencies
except the runtime library shipped together with the program, which can optionally be
statically linked.

6.4.4 Type Propagation vs. Data Flow

In contrast to the existing techniques based on data flow [73, 63, 186, 34, 74, 202], our
approach does not compute the type evolution during program execution. Data flow tracking
is precise but an expensive computation, as it requires several non-trivial components
(e.g., control flow). Instead, our type propagation performs light-weight processing of
the information extracted only from the points in the program’s source code where types
are created, manipulated (e.g., through casts), and used. Although employing data flow-
based approaches may help to obtain even more precise approximations while computing
indirect call targets, our experimental evaluation (presented in Section 6.9) demonstrates
the effectiveness of our system in reducing the target sets for indirect calls. In other words,
we do not see any drastic effects from the approximations we use, while the absence of flow
information helps to make the compilation time tractable, as discussed in Section 6.10.

6.5 Target Set Computation

Our analysis technique starts by extracting facts about the program’s code. Then we use the
facts in the program-independent rules computing the type propagation. We use the sample
code shown in Figure 6.1 to highlight the propagation rules necessary for our analysis’s

96

6.5. TARGET SET COMPUTATION

#0
fptr_long
scene1_a

FunctionPointer(0, f1, 1,f)

#1
fptr_int
scene1_a

Cast(0,1)

#2
fptr_int
scene1_b

ICall(2, call1, 1)

Cast(0,2)

Cast(1,2)

Legend

#n
type

context
[FunctionPointer(n, ...)]

[ICall(n, ...)]

TypeContextPair

#n
type
icall

TypeCallPair

Cast

PointsTo

StructMember

Cast
(rule-computed)

Figure 6.3: Graphical representation of the collected and derived facts for “scene1_a”
and “scene1_b”.

#3
struct S

scene2_a

#4
fptr_long
scene2_a

StructMember
(3,4,0)

#5
fptr_int

scene2_a

StructMember
(3,5,8)

#9
struct S

scene2_b

Cast(3,9)
Cast(9,3)

#10
fptr_long
scene2_b

ICall(10, call2, 1)

#6
fptr_long
scene2_a

FunctionPointer(6, f2, 1,f)

Cast(6,4)

#7
struct S *
scene2_a

PointsTo(7,3)

#8
struct S *
scene2_b

Cast(7,8)

PointsTo(8,9)

StructMember
(9,10,0)

#11
fptr_int

scene2_b

StructMember
(9,11,8)

Cast(4,10) Cast(10,4)

Figure 6.4: Graphical representation of the collected and derived facts for “scene2_a”
and “scene2_b”.

97

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

#13
void (void (*)(long))

scene3_a
FunctionPointer(13, set_callback, 1,f)

#14
fptr_ptr

scene3_a
ICall(14, call3, 1)

Cast(13,14)

#15
fptr_long
scene3_a

FunctionPointer(15, f3, 1,f)

#16
fptr_long

call3

Cast(15,16)

#18
fptr_long

set_callback

Cast(15,18)

#17
fptr_long
callback

Cast(17,18)

#19
fptr_long
scene3_b

ICall(19, call4, 1)

Cast(17,19)Cast(18,17)

Figure 6.5: Graphical representation of the collected and derived facts for “scene3_a”
and “scene3_b”.

TypeContextPair : N× S× S (available types and their contexts)

TypeCall : N× S× S (types of indirect call parameters)

PointsTo : N×N (pointer to pointee mapping)

StructMember : N×N×N (struct fields with memory offset)

UnionMember : N×N× S (union fields with field type)

Cast : N×N (type propagations)

ICall : N× S×N (indirect calls for callee type)

FunctionPointer : N× S×N×B (address-taken functions)

TargetSet : S× S (possible indirect call targets)

Figure 6.6: Predicate signatures for the facts used by analysis.

correctness. As the result of our analysis, we obtain the possible target functions set for
every indirect call in a single module of the program. Later, in Section 6.7, we will extend
this technique from a single module to multiple modules linked at runtime.

6.5.1 Analysis Input Generation

Our pipeline starts after Clang’s parser produces an AST representation of the C program,
which intuitively constitutes a collection of expressions [173]. From this tree, we extract
only the information relevant to types, their propagation and usage. We then create the
corresponding Horn clause facts, as introduced in Section 6.4.3. Our facts use several
boolean relations, as shown in Figure 6.6. Each relation has a corresponding predicate
signature which determines its domain. For instance, predicate signature N × S × S for
relation TypeContextPair expresses that facts in this relation take three arguments, the first
one is a natural number N (a unique identifier), the second and the third are strings S (in
this case: a type name and a function’s name). Facts are specific to each program. We collect
the facts for each compilation unit (source file) and merge on linking. Overall, we split facts
into four groups depending on the information they contain: initial types and context, type
constructs, functions & calls, and casts & transfers:
Initial Types and Context Collection. Before we can follow a type’s propagation, we first
need to know all types in the program’s code. In addition, we require a context annotation

98

6.5. TARGET SET COMPUTATION

for each type. The context is a function or a global variable where C expressions occur. Using
pairs of types and context instead of pure types improves the precision of the analysis—type
propagations can be kept local to a group of functions. With contexts considered, type
propagations from unrelated parts of the source code will not influence the computation.
We leverage the AST to extract unique pairs of C types and their context to get the required
information. In particular,

• For every expression e with type t in function f , we collect the pairs (t, f). For
example: (fptr_int,scene1_a).

• For every function declaration f with return or parameter types t0, . . . , tm, we collect
the pairs (t i , f), i ∈ {0, . . . , m}. For example: (fptr_int,scene1_b).

• For every global variable g of type t, we collect the pair (t, g). For example: the pair
(fptr_long,callback). If g is initialized, we also collect the pairs (t ′, g) for every
expression e with type t ′ inside the initialization code.

We assign each unique pair an identifier n ∈ N. This allows us to refer to each pair by
number, simplifying the rules, saving storage, and improving computation time as outlined
in Section 6.8. To this end, we define a function N : S×S→ N that returns the identifier n for
each collected type-context pair. For convenience, we define its second version N : S→ N that
returns the identifier n for each AST expression, based on its C type and the corresponding
context object. We store each type/context pair (t, c) together with their corresponding
identifier n= N(t, c) as fact TypeContextPair(n, t, c).

In our example (Figure 6.1), line 9 corresponds to several AST expressions encoded as
fact TypeContextPair(0,fptr_long,scene1_a) as we use function pointer &f1 of type
fptr_long in the context of function scene1_a, and TypeContextPair(1,fptr_int,
scene1_a) as we cast &f1 to type fptr_int. Similarly, line 19 produces the fact
TypeContextPair(8,struct S *,scene2_b), as we declare parameter of type struct
S * for function scene2_b. Recall that also global variables can be used as a context. For
example, we define a global variable callback in line 21, which adds the TypeContextPair

(17,fptr_long,callback) fact.
Type Constructs. To correctly track type propagation in complex data structures, we must
collect the construction information of all derived types in a program. In particular, for
every fact TypeContextPair(n, t, c), we do the following depending on t:

• If t is a pointer or array type (t := t ′∗ or t := t ′[. . .]), we compute the identifier
n′ = N(t ′, c), add another fact TypeContextPair(n′, t ′, c), and also store the pointer
or array type structure as PointsTo(n, n′) fact.

• If t is a structure type (t := struct{t0, . . . , tm}), we compute the identifiers
ni = T (t i , c) with i ∈ {0, . . . , m} where each type t i corresponds to a struct field.
Furthermore, we add fact TypeContextPair(ni , t i , c) for each field, and record the
type structure as StructMember(n, ni , x i) facts, where x i is the byte offset of field i

in the struct’s layout.

• If t is a union type (t := union{t0, . . . , tm}), similar to the structure type, we add
facts TypeContextPair(ni , t i , c) for each member, but record the type structure as
UnionMember(n, ni , t i) facts.

99

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

Figure 6.4 visualizes the facts that we derive for our example code, they represent a type’s con-
struction in a tree-like form. The type constructs analysis starts with fact TypeContextPair(8,
struct S *,scene2_b)—as obtained during the initial types and context collection—
that implies that struct S* is a pointer type. Hence, we introduce another fact for
the pointee TypeContextPair(9,struct S,scene2_b) and store the points-to informa-
tion as the fact PointsTo(8,9). Consequently, we check the new fact TypeContextPair(9,
struct S,scene2_b) and as it is a structure type fact (as shown on the line 14) we
also add facts TypeContextPair(10,fptr_long,scene2_b) and TypeContextPair(11,
fptr_int,scene2_b), plus the facts capturing type structure: StructMember(9,10,0)
and StructMember(9,11, 8).
Functions & Calls. To determine the target sets for indirect calls, we need to identify all
function pointer types that propagate to each indirect call. To this end, we need to know all
functions taken as function pointers (address-taken functions) and all types of the functions
that get indirectly called—the start and destination of our propagation path, respectively.
To this end, we collect fact TypeContextPair(n, t, c) plus the additional information from
expression e if one of the cases applies:

• Address-taken functions: If e represents the address of a function f outside of a direct
call, we store the function with its type, its number of arguments m, and whether it
accepts a variable number of arguments varar g in FunctionPointer(n, f , m, varar g)

fact. In our example, we produce facts FunctionPointer(0,f1, 1, false) for &f1 in
line 9, and FunctionPointer(13,set_callback, 1, false) for the AST expression
“&set_callback” in line 24.

• Indirect calls: For indirect calls, i.e., e := e′(a1, . . . , am), we record the callee’s
expression identifier, a reference to the call expression, and the number of arguments
in fact ICall(N(e′), e, m). In our example, line 12 produces fact ICall(10, call2, 1), and
line 25 creates fact ICall(14, call3, 1).

Casts & Transfers. After having collected types, start and destination of type propagation
paths, we need to know the actual propagation steps: We look for the specific AST expressions
that transfer the type or context of another expression. This information populates Cast

facts. In other words, we do not differentiate between type casts or context transfers in our
analysis because it operates on type/context pairs. In particular, for an AST expression e,
for which we also collect the fact TypeContextPair(n, t, c), we check for these cases:

• Type casts: For a cast e := (t) e′ and sub-expression e′ with TypeContextPair(n′, t ′, c),
we produce a fact representing a cast from t ′ to t: Cast(n′, n). This kind of fact covers
all casts that C supports, including implicit casts and qualifier casts. In our example,
we have a cast in line 9, casting an expression of type fptr_long to fptr_int in
the context of function scene1_a. Using the corresponding type/context identifiers
(obtained during the initial type and context collection) that the analysis stores in the
TypeContextPair facts, we record this as Cast(0,1), see Figure 6.3.

• Global variable uses: If expression e := g accesses a global variable g, having
a corresponding TypeContextPair(n′, t, g) fact, we record this as an implicit cast:
Cast(n′, n). Intuitively, this cast allows us to derive type t propagation from the

100

6.5. TARGET SET COMPUTATION

global’s context to the context of expression e. If this access could be a write, we
need to account not only for context transfer from the global context but to the global
context itself. In other words, type t should become accessible at the global context.
We capture this bidirectional context transfer by adding fact Cast(n, n′). Note that
the type of the global variable t equals the type of the expression accessing it, only
the context changes.

In our example, there is a global variable callback which is written in function
set_callback and accessed in function scene3_b, see Figure 6.5. For the write
access, we record facts Cast(17, 18) and Cast(18, 17). For the read access, we record
Cast(17, 19).

• Direct calls: Similar to global variables, direct calls also manipulate the context. In
a call e := f ′(a1, . . . , am) to a function with declaration f ′(p1, . . . , pm), we produce
for every argument ai a separate cast fact: Cast

�

N (ai) , N
�

pi , f ′
��

. For the return
value of type r t, we also produce a cast fact: Cast(N(r t, f ′), n). In our example,
scene1_b is called in line 10, with an argument represented as TypeContextPair(1,
fptr_int,scene1_a). We capture this by recording Cast(1,2), see Figure 6.3.
Similarly, for the call from scene2_a to scene2_b in line 17, we record Cast(7, 8)
for its first argument.

• Indirect calls: For indirect calls e := e′(a1, . . . , am), the type of e′ is a function
pointer te′ = r t(∗)(p1, . . . , pm) with parameter types pi and return type r t. We want
to store the casts as we do for a direct call. To this end, we use a new relation
TypeCall, which uses indexing similar to TypeContextPair, but records a reference
to indirect call e (also discussed in Functions and Calls) instead of a context. We add
the facts TypeCall(ni , pi , e) and TypeCall(nr t , r t, e), also we define ni = N(pi , e) and
nr t = N(r t, e) for i ∈ {1, . . . , m} accordingly. With these new facts, we can then add
the casts similar to a direct call: Cast (N (ai) , ni) and Cast(nr t , n).

Note that a TypeCall fact does not contain the context information in which the type
of the argument (in the indirect call) is defined. Ultimately, this approximation allows
our analysis to extract all possible contexts for each of the types used in an indirect
call, which is crucial for the correctness of the target set computation that we discuss
in Section 6.5.2. In our example, we have indirect call call3 in line 25. In addition to
indirect call fact ICall discussed earlier, in this case, we produce a cast fact for its first
argument Cast(15, 16) and a TypeCall(16,fptr_long, call3) fact (see Figure 6.5).
In Section 6.5.2 we show how these facts are used to relate this indirect call parameter
type to the type its argument FunctionPointer(15,f3, 1, false).

6.5.2 Type Analysis

Having obtained facts from the AST, we now describe how we use these facts for type
propagation reasoning. Our type analysis is based on a collection of rules. We define these
generic rules as constrained Horn clauses [60] once, i.e., they are program-independent.
The rules thus specify the logic behind our analysis type reasoning. They follow type
propagations across functions, through nested compound types and indirect calls. Finally,
they specify how to obtain from these type propagations a set of possible targets for each

101

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

indirect call as a result of TargetSet relation computation: For every function f , which is a
valid target for indirect call c, the rules show how to derive TargetSet(c, f).

Figure 6.7 depicts the rules we use to compute TargetSet relation containing the final
result, i.e., targets for each indirect call. We obtain this result when the analysis cannot
extend TargetSet relation via rule application; in other words, no more information can
enter the relation. Note that all variables used in the rules have the types corresponding to
the predicate signature presented in Figure 6.6. Moreover, these variables are universally
quantified—each rule can be used multiple times for each variable assignment that makes it
applicable. Ultimately, TargetSet contains a mapping from indirect calls to their possible
targets.

The first group of rules, which consists of the rules (T), (P), (S), and (U), allows our
analysis to extend the Cast relation. Computation of this relation allows our analysis to
account for transitivity of multiple propagations (rule (T)), pointer aliasing (rule (P)), and
structures & unions (rules (S) and (U)). Intuitively, the Cast relation captures all possible
propagation paths of the types and contexts in the code.

The second group of rules—(F1) for fixed and (F2) for variable number of arguments—
use the Cast relation to compute our final result, the TargetSet relation. In particular, we
access the computed propagation paths between function pointers and indirect calls.

However, with the first two groups of rules, we can compute only a partial result for
the TargetSet relation. The last group of rules (IC1, IC2) uses this partial result to enrich
TargetSet, accounting for context casts from the arguments of an indirect call to its actual
target, as it happens in call3.

In the rest of this subsection, we detail the reasoning behind the rules in each group.
Type/Context Manipulations. Rule (T) computes the relation Cast, e.g., type and context
propagation paths over multiple casts. In our example code, this happens in lines 8–12 (see
Figure 6.3) for which we already extracted the facts Cast(0, 1) and Cast(1, 2). Using these
facts, rule (T) derives the fact Cast(0, 2) (grey arrow in the figure), revealing the relation
between call1 and f1. Later, we will use this new fact to derive one of the target set results,
namely TargetSet(call1,f1).

Rule (P) handles pointer casts and pointer aliasing. Whenever a pointer is cast to another
pointer type, the two pointers alias, they point to the same value in memory. For us, this
implicates that something can be referenced by two potentially distinct pointee types, so
an implicit type or context propagation can happen. This propagation is possible in both
directions, depending on which pointer is accessed afterward. In our example, this is in
lines 14–19 (Figure 6.4). From this code, we extracted two PointsTo facts, one for the type
struct S * in scene2_a, and one in scene2_b, plus a fact for context propagation
Cast(7, 8) between these two. Then we use rule (P) to derive Cast(3, 9) and Cast(9,3).

Rules (S) and (U) handle struct and union types. When one struct is transferred into
another, this implicitly transfers all its fields. By referencing the fields by their memory offset,
we map fields to each other and collect newly-introduced Cast facts. We handle unions
similarly. However, values from a union can only be read as the same type as they were
written. We use the field type instead of the field byte offset for unions. In our example, this
happens in lines 14–19 (Figure 6.4). Having derived Cast(3, 9)with the rule (P) before, now
we derive Cast(4, 10) (and Cast(5, 11)) using rule (S). These new casts connect the function
pointer “&f2” from line 16 with call2, as the result of computation of Cast relation.

102

6
.5
.
TA

R
G
E
T
S
E
T
C
O
M
P
U
TA

TIO
N

Cast(t1, t2)∧Cast(t2, t3) =⇒ Cast(t1, t3) (T)

Cast(t1, t2)∧ PointsTo(t1, t ′1)∧ PointsTo(t2, t ′2) =⇒ Cast(t ′1, t ′2)∧Cast(t ′2, t ′1) (P)

Cast(t1, t2)∧ StructMember(t1, t ′1, x)∧ StructMember(t2, t ′2, x) =⇒ Cast(t ′1, t ′2) (S)

Cast(t1, t2)∧UnionMember(t1, t ′1, x)∧UnionMember(t2, t ′2, x) =⇒ Cast(t ′1, t ′2) (U)

ICall(t1, cal l , ar gscal l)∧ FunctionPointer(t2, f ,

fixed args
︷ ︸︸ ︷

ar gs f , false)∧

param count
matches
︷ ︸︸ ︷
ar gscal l = ar gs f ∧(t2 = t1 ∨Cast(t2 , t1)

︸ ︷︷ ︸

t2 = t1 or
t2 propagates to t1

) =⇒ TargetSet(cal l , f) (F1)

ICall(t1, cal l , ar gscal l)∧ FunctionPointer(t2, f , ar gs f , true
︸ ︷︷ ︸

f is vararg

) ∧ ar gscal l ≥ ar gs f
︸ ︷︷ ︸

enough params
for req. args

∧(

︷ ︸︸ ︷

t2 = t1 ∨Cast(t2 , t1)) =⇒ TargetSet(cal l , f)
(F2)

TargetSet(cal l, f)∧ TypeCall(t2 , t ype , cal l)∧ TypeContextPair(t3 , t ype , f)∧Cast(t1 , t2) =⇒ Cast(t1 , t3) (IC1)

TargetSet(cal l, f)∧ TypeCall(t2 , t ype , cal l)∧ TypeContextPair(t1 , t ype , f)∧Cast(t2 , t3) =⇒ Cast(t1 , t3) (IC2)

Indirect cal l to a function of type t1 Address-taken function f of type t2

Indirect cal l targets f t ype declared in context of cal l or f Any t1 (t3) propagating to (from) t2

Figure 6.7: Rules for computing the final result with all possible function types for each call.

ICall(t1, cal l , ar gscal l)∧ FunctionPointer(t2, f , ar gs f , _)∧ ar gscal l = ar gs f ∧ t2 = t1 =⇒ TargetSet(cal l , f) (ClangCFI)

ICall(_, cal l , ar gscal l)∧ FunctionPointer(_, f , ar gs f , _) ∧ ar gscal l = ar gs f =⇒ TargetSet(cal l , f) (IFCC)

Figure 6.8: Rules demonstrating the core of Clang CFI and IFCC computation of the final function types for each call.1
0
3

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

Target Set Computation. Using the possible type propagation paths obtained from the
Cast relation, the rules (F1) and (F2) compute the actual target set TargetSet. If a function
pointer propagates to the callee argument of an indirect call, rules (F1) and (F2) add this
function as a possible target. In addition, these rules check that the number of parameters
is valid. Rule (F1) handles functions with a fixed number of parameters, which must match
the number of arguments in the indirect call. Instead, while otherwise similar, rule (F2)
handles functions with a variable number of parameters.

In our example, using the previously established facts and parts of derived Cast relation
computation result, rule (F1) derives target sets for indirect calls call1, call2, and
call3: using Cast(0,2) – TargetSet(call1,f1), using Cast(6,10) – TargetSet(call2,f2),
and using Cast(13,14) – TargetSet(call3,set_callback).
Indirect Call Context Transfer. Function calls propagate types by changing their contexts:
the argument types propagate from caller to callee context, and the return type propagates
from callee to caller context. Section 6.5.1 shows how to collect these propagations as Cast

facts for direct calls, but for indirect calls, we only collected Cast facts from argument types
to a TypeCall(n, ta, cal l) fact. Now that we have partial possible targets in TargetSet from
the previous rules’ application, we complete type propagation computation for indirect calls:
We derive a type context propagation for every argument type from caller context to every
possible target function’s context and vice versa for return types.

Rules (IC1) and (IC2) calculate these context transfers from indirect call arguments
to indirect call target parameters. This computation is based on a partial TargetSet result,
and assumes that an indirect call actually calls all functions in its target set, which might
be over-approximating. Rule (IC1) computes context transfers for indirect call arguments,
while (IC2) does the same for return types. These rules derive each Cast as if an indirect
call would be a direct call to each function from its target set. When generating facts for
an indirect call e, we added Cast(N(t, c), N(t, e)) for each argument, where N(t, e) is also
used in a TypeCall fact. From this fact, rule (IC1) derives Cast (N (t, c) , N (t, f)) for any
function f the indirect call c can target, which is exactly what we would get for a direct call
to f . Rule (IC2) does the same for return types.

These rules are necessary to handle higher-order functions (indirect calls with func-
tion pointer arguments), like call4 in line 27, see Figure 6.5. As previously discussed,
facts and derived Cast information allow us to obtain TargetSet(call3,set_callback)
with rule (F1), yet we cannot derive a target set for call4 yet. Still, we establish the fact
Cast(15, 16) about the call argument of call3. Now applying (IC1) with these two facts, we
get Cast(15, 18), connecting the call argument f3 with the actual target set_callback.
From Cast(15,18), we use the other rules again (namely rule (T) for Cast and rule (F1))
to derive Cast(15, 17), Cast(15, 19), and a target set for call4: TargetSet(call4,f3). The
final shape of the TargetSet relation is as follows: call1 has f1, call2 has f2, call4 has f3,
and call3 has set_callback as their targets, respectively.
Multi-module Support. So far, we have focused on generating facts for and applying
rules to a single module. To combine several modules when linking, we alpha-rename
type/context pair identifiers in TypeContextPair and propagate these changes across all the
other facts describing the module. Renaming preserves the identifier uniqueness required
for the correct rules evaluation.
Dynamic Linking. We generate a module summary to support dynamic linking and loading

104

6.6. CALL TARGET ENFORCEMENT

of code. It contains all facts from a program that might influence other modules. These
facts are loaded with the code at runtime, combined, and the target sets are re-computed.
Section 6.7 describes this process in more detail.
Supporting Other Forward CFI Approaches and Updates. The rule-based target set
computation approach that we use for TYPRO, is also general enough to support the encod-
ing of other CFI schemes, facilitating their development and comparison. Moreover, the
expressiveness of rule-based CFI encoding allowed us, for instance, to capture the core of
the target set computation performed by Clang CFI [170] and IFCC [184] with only one rule
for each of the approaches. In Figure 6.8, the rule (ClangCFI) compactly encodes that the
scheme allows only the targets with the exact same types and number of arguments, while
the rule (IFCC) relaxes the requirement of type matching. Obviously, for the example in
Figure 6.1, the rule (ClangCFI) obtains empty results for all the calls, which is too restrictive
and breaks the legitimate code. Rule (IFCC) is too permissive, resolving every call to all
the functions as they all have only one argument. Section 6.9 details how the limitations of
these approaches affect the security and stability of the programs.

Furthermore, TYPRO’s rule system supports updates, either as new rules or refinements,
without changing other parts of the compiler.

6.6 Call Target Enforcement

After having computed the target sets of all indirect calls, we enforce the CFI policy at link
time within a binary: indirect calls must transfer control only to the reduced set of targets.

To enforce that only functions from the computed targets in TargetSet can be called,
we replace function pointers with function identifiers in the whole program. A function
identifier is a unique number for each address-taken function. It has the same bit size as a
pointer so that it can replace the function pointer in memory. This way, we must only alter its
initialization and usage. We replace each use of an address-taken function that is not a direct
call with this identifier. Next, we replace all indirect calls with a switch-case structure
over the function identifiers. For each possible function in the target set, we generate a
case matching the function ID and a direct call to the respective function in the body. In
the default case, i.e., when the ID does not match any allowed function ID, we terminate
the program to stop a detected attack. Figure 6.9 shows a simple program before and after
transformation, in C language for simplicity.

To stay correct and precise, we must only allow functions that are actually valid call
targets according to the C specification. First, the number of arguments must match, which is
enforced by the argument number checks in rule (F1)—rule (F2) similarly handles functions
with a variable number of arguments. Second, it must be possible to cast all arguments to
the required type in the target function; otherwise, the call would be undefined behavior.
Typecasts are usually possible if both types are an integer, pointer, or float, or have the same
bit width. Last, if the call’s return value is not discarded, it must be possible to cast the
function’s return value to the return value of the call expression. We check all these conditions
before generating cases and confirm their validity experimentally in Section 6.9.1. Still,
functions with incompatible types might occur due to overapproximation in our analysis.

Generating assembly code from switch-case statements is left to LLVM, which lowers
them into different assembly constructs, from simple comparisons over binary trees to

105

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

1 typedef void (*fptr_t)(long);

2 void f1(long a) {} // ID assignment: &f1=>3

3 void f2(long a) {} // ID assignment: &f2=>4

4

5 void code_before_typro(bool use_alternative, long param) {

6 // take addresses of functions

7 fptr_t fp = use_alternative ? &f1 : &f2;

8 // call function addresses

9 (*fp)(param);

10 }

11

12 void code_after_typro(bool use_alternative, long param) {

13 // take IDs instead of function addresses

14 fptr_t fp = use_alternative ? (fptr_t) 3 : (fptr_t) 4;

15 // direct call based on IDs

16 switch ((long) fp) {

17 case 3:

18 f1(param);

19 break;

20 case 4:

21 f2(param);

22 break;

23 default:

24 abort();

25 }

26 }

Figure 6.9: Example showing a simple indirect call before and after transformation.

jumptables. Also, LLVM can run additional optimizations over the new statements, that
might not be possible before our changes, e.g., direct calls can be inlined if the callee is only
short or rarely used.

To improve performance, TYPRO tries to assign ascending identifiers to functions that
occur together in the same target set. Ascending numbers lead to dense identifier sets, which
can be converted to efficient jumptables, facilitating the subsequent LLVM optimization
passes. Furthermore, TYPRO reserves the lower numbers (up to 3) for program-specific
non-function constants (like SIG_IGN in libc).

For dynamic modules, as detailed in Section 6.7.3, a linked library generates function
IDs and new switches at runtime, based on the updated analysis results.

6.7 Dynamic Modules

In contrast to many prior CFI schemes [170, 63, 74, 73, 118], TYPRO can handle code loaded
at runtime: dynamically-linked libraries or runtime loading of shared libraries. To this end,
we require that the loaded modules are also protected by TYPRO. Furthermore, a generic
runtime library must be present (see Section 6.4.3). It combines type information from
different modules at runtime, computing new target sets for indirect calls and updating
the necessary checks. Thus, we have to export type information with every program and

106

6.7. DYNAMIC MODULES

ExternalSymbol : S (exported definitions)

InterfaceType : S×N (types per declaration)

External : N (pairs in module summary)

ExternalSymbol(f)∧ InterfaceType(f , t1) =⇒ External(t1) (ES)

External(t1)∧ PointsTo(t1, t2) =⇒ External(t2) (E1)

External(t1)∧ StructMember(t1, t2, _) =⇒ External(t2) (E2)

External(t1)∧UnionMember(t1, t2, _) =⇒ External(t2) (E3)

External(t1)∧Cast(t1, t2)∧ ICall(t2, _, _) =⇒ External(t2) (EC)

External(t1)∧ ICall(t1, cal l, _)∧ TypeCall(t2, _, cal l) =⇒ External(t2) (ECA)

FunctionPointer(t1, _, _, _)∧Cast(t1, t2)∧ External(t2) =⇒ External(t1) (EFP)

FunctionPointer(t1, f , _, _)∧ External(t1)∧ InterfaceType(f , t2) =⇒ External(t2) (EFI)

Figure 6.10: Additional predicate definitions for dynamicmodule support, and additional
rules for module summaries.

shared object. Therefore, we extend the target set analysis in Section 6.5 by a module

summary which contains only the type/context propagation information that can influence
the computation of other modules.

To compute a module summary, we add to our analysis the new relations and rules
presented in Figure 6.10. The final result is established after computing the External relation,
which intuitively contains all types that can be propagated to or from outside of the module.
This relation is the index set of type/context and type/call pairs that must be exported in the
module summary, if another module could contain the same pairs. For example, the summary
includes the parameters of an exported function that generate the same type/context pair in
every module it is imported to. The summary is the subset of all relations except TargetSet,
containing only facts that refer to indices in the External relation.

6.7.1 Additional Input Generation

To determine which type/context pairs enter the module summary, we need additional facts
collected from the source code, filling the relations ExternalSymbol and InterfaceType.
They describe the C interface that a module exposes to other modules, containing similar
information like header files in C. We iterate all declared symbols of a module, including
both imported and exported symbols, and record their interface types. If the symbol
is a global g of type t, we record a fact InterfaceType(g, N(t, g)). If the symbol is a
function f with signature r t f (a1, . . . , am), we record facts InterfaceType(f , N(ai , f)) and
InterfaceType(f , N(r t, f)). If the symbol is visible after linking, we add it to the relation,
as ExternalSymbol(f) or ExternalSymbol(g).

6.7.2 Additional Type Analysis

Using additional input facts described in Section 6.7.1, we compute the set of pair indices
that must be visible to other modules. This information is expressed with External relation.

107

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

It is computed using the rules shown in Figure 6.10 including the rule for External symbols
(ES), a group of rules for type visibility ((E1), (E2), and (E3)), a group of rules for indirect
calls’ treatment (they are (EC) and (ECA)), and, finally, a group of rules for function pointers
that should be referenced in the summary (namely, (EFP) and (EFI)). In the following, we
explain these rules in more detail.

6.7.2.1 Initialization

The interface of imported or exported symbols must be external because other modules can
have the same symbols and, therefore, facts about the same pairs in their relations. We
capture this property of the imported and exported symbols with the help of (ES) rule.

6.7.2.2 Type Visibility

When a type is visible externally, its structure is also visible. If an external type is a pointer
type, rule (E1) marks its pointee type as external. For struct and union types, rules (E2)
and (E3) respectively mark their fields as external.

6.7.2.3 Indirect Calls

If there is a type transfer between an external entry and an indirect call, this indirect call
could receive function pointers from other modules. Rule (EC) marks this call as external,
so we include its type/context pair in the module summary. In addition, rule (ECA) marks
the corresponding TypeCall pair as external, including them in the module summary.

6.7.2.4 Function Pointers

Facts referencing a function pointer are considered external if there is a type transfer to any
external fact (as captured by rule (EFP)) because the function pointer could be transferred
to another module at runtime. The pointed function could become accessible at runtime,
even if its symbol is not exported; therefore, we have to include its interface in the module
summary: Rule (EFI) marks all arguments’ types and the return value types as external.

After running the computation, External references the type/context pairs necessary for
runtime TargetSet computations. For the module summary, we filter the entire fact set to
contain only those pairs. Exporting only filtered facts greatly reduces the file size of the
summary and the runtime of target set computations during dynamic loading.

6.7.3 Dynamic Call Target Enforcement

Our approach and its enforcer also support dynamic linking, which requires additional
processing. Using the information obtained by the analysis described in Section 6.7.1, we
can see at link time which target sets might need expansion later. If an indirect call has an
associated index in External, there might be valid targets from other modules at runtime.
When building the switch for such a call at link time, we do not add an error handler to its
default case but add a new direct call, which we call the trampoline. While the trampoline
target defaults to the error handler, the runtime library can overwrite it if necessary. If

108

6.8. IMPLEMENTATION

the target sets are amended at runtime, the trampoline target will point to a new switch,
handling the additional targets.

At runtime, the third component of TYPRO, the runtime library, updates the target sets of
all external indirect calls if necessary. The runtime library is a small C++ library that contains
the presented algorithms and a custom just-in-time compiler. When modules are loaded
during startup or at runtime, the runtime library loads their module summary (provided by
the analysis discussed in Section 6.7.1) from a read-only section. The module summaries
from all loaded modules are combined into a single set of facts. If necessary, the runtime
library will re-run the target set computation from Section 6.5.2 on the collected module
summary and will eventually add new targets to the existing target sets. If new targets
appear in the target set of an indirect call, the runtime library will generate a new switch-case
statement. It just-in-time compiles a new function with a switch over the function identifier
and one case for each new target. Finally, the trampoline of the indirect calls is assigned to
this newly generated function. If a module now calls a function with an identifier assigned
by another module, the newly generated switch will dispatch the desired function, without
allowing attackers to execute the arbitrary functions.

We designed the runtime library with security against memory corruption in mind. An
attacker might try interfering with the module summaries or the target set computation to
weaken TyPro’s protection. To prevent these attacks, the runtime library exclusively uses
memory from a custom, protected heap. This heap is isolated from the remaining program;
no memory or pointers are shared with the main program. The heap is read-only by default
and is only writeable during analysis and JIT compilation. An attacker can only interfere at
the exact point when a library is loaded in a different thread and only if they leak a pointer
to the heap.

An attacker might also try to tamper with the just-in-time compilation to inject custom
code into the JITing area. The runtime library avoids this risk by compiling twice: A fresh
part of the JIT area is made writeable, but not executable for the first compilation. Afterward,
the generated code is made readonly. In a second pass, the JIT checks that the memory
contains the expected instructions only, detecting any attempted attack on the JIT area.
The generated code finally gets executable if the checks succeed. The runtime overhead of
the second compilation pass is negligible compared to the analysis time. With these two
defenses, we are confident that the runtime library does not introduce new security risks.

6.8 Implementation

We build the TYPRO prototype as an extension of the Clang/LLVM 10 compiler toolchain. It
targets 64-bit x86, ARM, and MIPS, generating binaries without additional dependencies on
hardware features or operating system. TYPRO can produce fully protected binaries with a
protected musl libc [120], or protected binaries linking against an unprotected GNU libc
(see Section 6.8.1 for details).

In our prototype, we instrument the code generation of Clang to collect facts (as discussed
in Section 6.5.1 and Section 6.7.1) along with the compilation of the program. The collected
facts are stored together with the original LLVM IR code in an object file. The generated IR
itself is not altered.

After applying several optimization steps outlined in Section 6.8.2, we extract the facts

109

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

from all IR files seen in our modified version of LLVM’s linker lld. Finally, we encode the
optimized set of facts and the rules (from Section 6.5.2 and Section 6.7.2) in datalog for
the Soufflé Logic Solver [71, 149] which we leverage to compute the TargetSet relation
containing the targets for each indirect call.

We implemented a runtime library that enforces dynamically-loaded targets as a stand-
alone C++ library without dependencies on LLVM or other non-standard libraries. It loads
the serialized facts from multiple modules, runs the target set computation, and generates
switches with a built-in just-in-time compiler. We perform all operations lazily, i.e., only
after the first indirect cross-module call, preventing unnecessary computation. The library
is 1.3 MB large and can either be shared or included in a protected musl libc.

6.8.1 C Standard Libraries

As mentioned previously, our approach requires all dynamically linked libraries to go through
the same processing as the program using it, i.e., the analyses discussed in Section 6.5
and Section 6.7. However, many related works [170, 63, 74, 73, 118, 184] exclude the C
standard library, for the following reasons: The standard GNU libc is not compilable by the
Clang compiler, contains plenty of (typeless) inline assembly, and communicates with the
Linux kernel over a syscall interface that cannot be altered.

Instead of excluding the standard library, TYPRO uses and protects musl libc [120], which
is compatible with Clang. Only when functions are sent to the kernel (signal handlers),
TYPRO resolves the identifiers back to function pointers before transferring them. A protected
musl libc can be statically linked or used as a regular shared library.

Alternatively, programs relying on the GNU standard library can optionally link against
an unprotected libc. In this case, TYPRO resolves identifiers back to function pointers before
transferring them to the libc, avoiding compatibility issues. To resolve a function identifier, a
switch-case construct is emitted (similar to the one described in Section 6.6), returning actual
function addresses instead of direct calls. With this method, TYPRO-protected programs can
use the system’s unmodified standard library without breaking compatibility. This method
could also be used to link with other unprotected libraries, assuming it is known a priori

which library will be unprotected.

6.8.2 Optimizations

After the facts’ extraction, we perform some minor but crucial optimizations by omitting
unnecessary facts for the final target computations. These optimizations do not change the
result of the computation but are essential for reasonable performance. First, we only collect
a TypeContextPair fact if its identifier is used in at least one another relation. If we omit a
type, we also do not generate additional facts relevant to this type definition, e.g., PointsTo
or StructMember facts. TypeContextPair facts unused in other relations cannot be used in
any rule and are therefore irrelevant for target set computation. Second, we omit primitive
C types that are smaller (in bits) than a pointer, e.g., char or void. It is impossible to
convert a function pointer to or from these types, nor can they participate in pointer aliasing
or other rule-covered C structs; they are therefore irrelevant for target set computation.
The most prominent example is the type void, which will never appear in our fact set, in
contrast to void*, which has the same size as a function pointer and will appear in facts.

110

6.9. EVALUATION

Third, we collapse chains of direct casts, e.g., the expression “(fptr_int) ((void*)

&f1)” will be seen as one cast from fptr_long to fptr_int.
Running the computation on fact sets of larger programs is very time-consuming, in

particular when the facts of all input files are merged. Therefore, we use an optimization
based on equivalences to reduce the input size for the datalog solver drastically. If two
TypeContextPair facts are equivalent, these type/context pairs can be merged without
changing the result of the target set computation, making the input fact set smaller and the
computation faster. In our implementation, two simple patterns indicate equivalence:

• If we extracted facts Cast(n1, n2) and Cast(n2, n1), then type/context pairs n1 and
n2 can be merged.

• If we extracted Cast(n1, n2) facts and both type/context pairs n1 and n2 are pointer
type (i.e., we extracted also PointsTo(n1, n′1) and PointsTo(n2, n′2) facts), then type/-
context pairs n′1 and n′2 can be merged.

Merging propagates along with the structure of its types: if two facts of pointer type merge,
their referenced type’s facts also merge. And if two facts of struct or union type merge, their
field facts also merge. We found this optimization to improve the computation runtime
considerably while not changing the result of the target set computation.

6.9 Evaluation

We evaluate TYPRO using three criteria. In Section 6.9.1, we measure correctness. Programs
must not break, i.e., target sets must always include (at least) the correct targets. In
Section 6.9.2, we evaluate security. Security is largely determined by the extent to which
attack surface is reduced, i.e., how many unused targets are still included in the target set.
Finally, in Section 6.9.3, we measure TYPRO’s performance in terms of runtime slowdown
and size overhead.
Evaluation datasets. We evaluate each criterion on two datasets. First, we use the well-
known SPEC CPU 2006 benchmark suite [58, 161]. In particular, we consider all nine SPEC
programs written in pure C and use indirect calls, namely, bzip2, gcc, gobmk, h264ref, hmmer,
milc, perlbench, sjeng, and sphinx3. These SPEC programs are also used in most related
work [34, 211, 184, 51, 73, 98, 85, 63, 74, 129, 186, 45, 131], which allows for an easy
comparison with TYPRO. In contrast, the newer SPEC CPU 2017 [160] hasn’t been used in
any related work so far.

Our second dataset consists of 7 larger real-world programs, commonly used in related
work [45, 51, 63, 73, 74, 85, 98, 186]. It includes the web servers Apache, lighttpd and
nginx, the FTP servers pureftpd and vsftpd, a cache server memcached, and the database redis.
These programs use libraries like libpcre, zlib, libevent, lua and more, that we also compiled
with our protection.
Compilation setup. We compile all programs and their respective libraries with TYPRO

enabled, using full optimization (-O3) and having link-time optimization enabled. If
possible, we preferred static linking, so, when compared, no disadvantage for related work
without dynamic linking support (like Clang CFI) was introduced.

111

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

For comparison, we compile all programs using the same optimization settings with
an unmodified Clang 10 compiler, default libraries, and Clang CFI [170] in normal mode
(-fsanitize=cfi-icall) and generalized mode (-fsanitize=cfi-icall and
-fsanitize-cfi-icall-generalize-pointers). Moreover, we also compared
TYPRO to IFCC [184] and simulate CFGuard’s [101] policy.

6.9.1 Correctness

A CFI scheme must not break existing code to foster adoption in practice. While manual
code changes could resolve incompatibilities, this is not feasible in many cases.
SPEC. We run the SPEC CPU benchmarks with all input sets and verify the output. TYPRO

handles all nine programs without any failure, as shown in Table 6.1. In contrast, Clang
CFI causes crashes in gcc and hmmer computing too narrow target sets, which we verified
manually. These two benchmarks failed even in Clang CFI’s generalized mode with relaxed
type checking. These failures were observed only post-mortem as crashes, and it might be
hardly feasible to alter the source of such big projects as gcc to respect the typing judgments.
From the related work [85], we also know that MCFI [129] crashes on perlbench and gcc,
while IFCC [184] passes all benches. The lack of dynamic linking does not impact related
work here, as SPEC does not use it.
Real-world. TYPRO successfully compiled all seven programs without introducing errors,
as shown in Table 6.2 (i.e., no false negatives). Also, IFCC [184] passed all tests but with
much larger target sets, which we address in Section 6.9.2. But Clang CFI failed on four
programs (lighttpd, nginx, pureftpd, and redis). Its generalized mode resolved the errors in
nginx, but not the remaining three. We checked all introduced problems by hand—dynamic
linking caused none, and all were due to functions that do not precisely match call types.
Clearly, Clang CFI is too restrictive; and any extension to support vararg would break Clang
CFI’s equivalence class model. This in turn would break Clang CFI’s target set enforcement,
which relies on equivalence classes.
Unit Testing. To further test TYPRO, we created a set of over 220 hand-crafted unit tests,
checking the correctness of TYPRO’s support for different aspects of the C language, triggering
corner cases, and checking correct interaction with the C standard library. We verified using
QEMU that these tests also succeed on ARM and MIPS. With these tests and the various
applications, we are confident that TYPRO can handle any standard-conformant C program
(within limits discussed in Section 6.10).

6.9.2 Security

As detailed in Section 6.6, TYPRO takes all indirect calls in a C program and converts them to
a set of well-typed direct calls. Therefore, no indirect call instructions remain in the compiled
program, making arbitrary jumps impossible. However, attackers with memory corruption
capabilities can tamper with the function identifiers that replaced function pointers in
memory. Even in this case, they cannot invoke arbitrary code—only the execution of
a minimal and limited set of functions is possible. Furthermore, the generated code is
inherently safe against concurrent modifications and potential time-of-check/time-of-use
(TOCTOU) vulnerabilities for two reasons: First, during computation, no intermediate
values are spilled onto the stack. The branching happens in registers that are inaccessible to

112

6.9. EVALUATION

Table 6.1: Average number of call targets per indirect call on SPEC. TyPro compared to
Clang CFI, IFCC, CFGuard and MCFI. ✗: benchmark fails (CFI too restrictive). ◦: best
security per benchmark. : best security among compatibility-preserving schemes.

Clang CFI
[170]

Clang CFI
(generalized)

TYPRO
IFCC
[184]

CFGuard
[101]

Clang CFI
(data: [85])

MCFI [129]
(data: [85])

400.perlbench 17.71 ◦ 51.99 22.32 180.79 821.00 22.03 23.27 ✗

401.bzip2 1.00 ◦ 1.00 ◦ 1.00 1.00 2.00 1.00 ◦ 1.00 ◦

403.gcc 9.19 ✗ 34.44 ✗ 24.98 365.12 1192.00 8.91 ✗ 32.63 ✗

433.milc 2.00 ◦ 2.00 ◦ 2.00 2.00 2.00 2.00 ◦ 2.00 ◦

445.gobmk 631.50 631.50 631.50 749.12 1786.00 600.84 ◦ 605.51
456.hmmer 9.00 ✗ 18.00 ✗ 2.78 19.00 19.00 10.00 10.00
458.sjeng 7.00 ◦ 7.00 ◦ 7.00 7.00 7.00 7.00 ◦ 7.00 ◦

464.h264ref 2.24 2.34 2.24 10.95 42.00 2.06 ◦ 2.06 ◦

482.sphinx3 5.00 ◦ 5.00 ◦ 5.00 5.00 5.00 5.00 ◦ 5.00 ◦

avg. % (base) +41.7% +0.6% +157.5% +379.8% +1.8% +18.4%

Table 6.2: Average number of call targets per indirect call on various real-world server
applications.

Clang CFI
Clang CFI

(gen.)
TYPRO IFCC CFGuard

httpd 14.69 ◦ 41.78 36.19 462.59 2267.00
lighttpd 5.99 ✗ 10.93 ✗ 11.26 50.32 257.00
memcached 1.99 ◦ 2.36 2.01 14.88 85.00
nginx 16.53 ✗ 56.08 ◦ 102.28 240.72 758.00
pureftpd 1.00 ✗ 1.00 ✗ 1.00 3.00 15.00
redis 10.03 ✗ 44.19 ✗ 48.06 247.50 1136.00
vsftpd 3.33 ◦ 3.33 ◦ 3.33 6.00 35.00
avg. % (base) +90.8% +102.3% +772.3% +4102.6%

attackers. Second, even if manipulation would be possible, there is no arbitrary call that an
attacker could try to reach, only direct calls for each function in the target set. The only
indirect jumps in the program come from the compiler itself, as introduced for jumptables.
However, the compiler properly bound-checks these jumps, making them irrelevant for
control flow security. Thus, our switch-based target enforcement indeed limits the surface
for code-reuse attacks.

The same arguments hold for the target checks between dynamic modules. Both statically-
compiled and JIT-compiled switch statements are safe on their own. They are connected
by a pointer in read-only memory, which attackers cannot tamper with. Only when new
switches are built during load time the pointer is temporarily made writeable. However,
dynamic modules are often loaded at startup before any input is processed to minimize the
risk further.

Finally, we aim to understand the security benefits of finding minimal call target sets.
Smaller target sets leave the attacker with fewer choices and fewer gadgets. As suggested in
related literature [18, 85], we report absolute numbers of possible targets for indirect calls.
We rely on CSCAN [85]’s metric of computing the average number of targets per indirect call,

113

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

considering only indirect calls that are reached during the execution of the program. Because
CSCAN’s measurement approach is incompatible with our function identifier and direct call
approach, and because CSCAN showed problems with different compiler optimizations, we
implemented an equivalent computation for this metric, collecting target sets at compile-
time and indirect calls at runtime. We evaluate TYPRO and compare it to Clang CFI [170] in
both normal and generalized mode, IFCC [184] and CFGuard’s [101] policy, all with the
same compiler version and optimization settings. We do not compare to Intel CET’s indirect
branch tracking [136], whose precision is likely worse than CFGuard for programs without
JIT compilers. Because Clang CFI and IFCC do not support musl libc, we link all programs
against an unprotected GNU libc for this comparison, in line with related work. Results with
musl libc are similar.
SPEC. Table 6.1 reports the average number of targets for SPEC programs. Clang CFI builds
the smallest target sets but breaks programs. In contrast, TYPRO has slightly more targets
(0.6% on geometric mean) but keeps all programs intact without modifications. Moreover,
TYPRO builds smaller target sets than Clang CFI’s generalized mode, which still breaks
programs at a worse precision. IFCC and CFGuard do not break anything but build larger
target sets than TYPRO, on average 2.5× / 4.8× the size. We also compare our results to
MCFI [129], analyzed by CSCAN [85]. TYPRO has a slightly better precision than MCFI, and
its policy works even on unmodified programs. Note that CSCAN used a different compiler
version and likely different, unknown optimization settings for their results. Furthermore,
it is unclear if it uses patches to SPEC. For transparency, we also show CSCAN’s results
for Clang CFI, which vary from us by 1.8%. If linked with musl libc, the programs use
1–15 additional indirect calls from musl, with 2–17 average targets. On average, over all
programs, calls inside musl have 7 targets.
Real-world. Table 6.2 reports the average number of targets on several real-world programs
frequently used in related literature. Again, Clang CFI builds the smallest but often incorrect
target sets. Clang’s generalized mode builds 91% larger but still too narrow target sets.
TYPRO has more allowed targets on these larger programs than Clang (+102%, +6% more
than generalized mode), but the target sets do not cause crashes. Compared to other correct
solutions like IFCC or CFGuard, the number of possible targets has greatly reduced—TYPRO

has less than one-quarter of IFCC’s targets and 4.8% of CFGuard’s targets while still keeping
programs intact.

Having said this, TYPRO’s target set computation is still an approximation working exclu-
sively on the extracted type information. The algorithm can overapproximate the possible
targets to prefer correctness and speed over precision but never under-approximates targets.
In specific cases, sophisticated attacks on really large programs like Control Jujutsu [38]
or Control-Flow Bending [18] might still be possible, even in the presence of a perfect
CFI policy. But from the experiments, we conclude that TYPRO hits a sweet spot between
correctness and security.

6.9.3 Performance

To facilitate wide deployment, we now demonstrate that TYPRO does not impose significant
overheads on protected programs.
Performance Overhead. We used the SPEC CPU 2006 benchmark and our real-world

114

6.9. EVALUATION

bzip2 gcc gobmk h264ref hmmer milc perlbench sjeng sphinx3
-3%

-2%

-1%

0%

1%

x86_64 [i5] (-0.2%)
ARM64 [M1] (-0.4%)

(-1.3%) (0.6%) (1.6%) (-2.9%) (0.0%) (0.1%) (0.1%) (-0.2%) (0.7%)
(-0.4%) (0.0%) (0.2%) (-1.8%) (-0.1%) (-0.6%) (0.2%) (-0.6%) (-0.4%)

Figure 6.11: Runtime overhead of TyPro on SPEC 2006 benchmarks. Average overhead
is −0.3% (i.e. programs get faster).

apache
(0.1%)
(1.2%)

lighttpd
(-0.3%)
(-0.0%)

memcached
(0.1%)
(-0.2%)

nginx
(0.6%)
(0.8%)

pureftpd
(-0.5%)
—*

redis
(-0.1%)
(0.1%)

vsftpd
(-0.0%)
—*

-0.5%

-0.2%

0.0%

0.3%

0.5%

0.8%

1.0%

1.2%
x86_64 [i5] (-0.02%)
arm64 [M1] (0.37%)*

Figure 6.12: Runtime overhead on real-world applications. Average overhead is zero.
(*) Unreliable FTP benchmarks were excluded on ARM.

servers to evaluate the performance impact. We measured the server’s performance with
ab [165] (webservers), memaslap [212] (memcached), redis-benchmark [145] (redis) and
ftpbench from pureftpdlib [146] (FTP servers). Experiments ran on a Dell workstation with
Intel Core i5-4690 CPU (4×3.5 GHz, no hyperthreading) and 32 GB of RAM. The operating
system was Debian 10 “Buster” with kernel 4.19. To measure SPEC’s performance on 64-bit
ARM, we used an Apple M1 chip, 16 GB Ram, and asahi Linux with kernel 5.17. We used the
“performance” CPU governor, disabled CPU boost, and applied cpuset to minimize the impact
of environment and operating system on the measurements. We repeated experiments
at least 10×. The standard deviation on SPEC was at most 0.76%, and 0.2% on average.
Unfortunately, we had to exclude two inconsistent benchmarks (FTP servers on ARM):

115

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

bzip2
gcc

gobmk
h264ref

hmmer
httpd

lighttpd
memcached

milc
nginx

perlbench
pure-ftpd

redis
sjeng

sphinx
vsftpd

0 KB

200

400

600

800

1000

(+0KB) (+641KB)(+1.4MB) (+14KB) (-1KB) (+650KB) (+78KB) (+8KB) (+0KB) (+214KB) (+33KB) (+1KB) (+602KB) (+0KB) (+1KB) (-6KB)

Figure 6.13: Additional size of SPEC and other example programs on x86 (in KB).

bzip2 gcc gobmk h264ref hmmer milc perlbench sjeng sphinx
0.0s

0.1s

0.2s

0.3s

0.4s

0.5s

0.6s

(0.18s) (0.31s) (0.19s) (0.24s) (0.22s) (0.19s) (0.57s) (0.19s) (0.20s)

Figure 6.14: Runtime computation time for dynamic linking against musl libc.

averaged results varied between ±0.5% with a standard derivation of up to 3%. Lacking
hardware, we did not evaluate performance on MIPS.

We present our findings in Figure 6.11 and Figure 6.12. Protected programs get between
1.6% slower and 2.9% faster. The mean overhead is −0.3% on SPEC, i.e., programs get
slightly faster, and zero on real-world applications. TYPRO has a higher overhead in programs
with large target sets (like gobmk with >600 valid targets, or nginx) and shows negative
overhead in programs with small target sets (like bzip and h264ref). For many programs, the
measured changes are within the standard deviation, and no real overhead is measurable.
Space Overhead. When comparing program size, we observed that the compiled binaries
sometimes get larger. The generated switches and direct calls need more instructions than a
single indirect call. Most programs are a few kilobytes larger after protection. In the worst
case, gobmk gets 1.4 MB larger (40%). Figure 6.13 shows the additional binary size of all
tested programs. On average, programs get 9.1% larger. We expect that this space demand
does not prevent a CFI scheme from broader adoption, except if resources are scarce, such
as for embedded systems.

6.9.4 Dynamic Loading

Dynamic loading support is an important feature for any CFI system such as TYPRO. All SPEC
programs can dynamically link against a protected standard library (musl libc). At runtime,

116

6.10. LIMITATIONS & DISCUSSION

computation and just-in-time compilation take between 0.18s (bzip2) and 0.57s (perlbench),
with 0.25s on average. Target set computation and JIT compilation happens lazily—only
when compile-time dispatchers can’t handle a function ID, the runtime computation is
triggered. Therefore most SPEC benchmarks can avoid runtime computation completely
because they do not exchange function pointers with the C standard library. Figure 6.14
shows the maximal runtime computation, with lazy evaluation disabled.

In particular, redis nicely demonstrates TYPRO’s dynamic loading capabilities: it has a
MODULE LOAD command that can load arbitrary shared objects at runtime. We tested this
command on a protected redis instance with various protected modules and verified that
they load and are usable. Even though redis had one of the largest fact sets in our tests,
recomputing the target sets after a module load was a matter of seconds. Given that target
sets can be cached and the JIT compiler’s runtime is negligible, we consider this support
and its performance practical.

6.10 Limitations & Discussion

We now discuss the limitations of the current TYPRO prototype.

First, the target set computation slows down compilation. Our non-parallelized current
prototype finishes the analyses in a few seconds for small programs, in a few minutes for
medium programs, and less than an hour for exceptionally complex programs like nginx.
While we believe that this build time is not necessarily a deal-breaker in times when software
is built by CI/CD servers, our prototype can still be improved for speed. Likewise, dynamic
loading and re-computing target sets at runtime can take up to a few seconds. Assuming
that the dynamically-loaded modules do not change frequently, TYPRO could cache the
computed target sets to speed up this process massively.

Second, like other CFI systems, our approach has limited compatibility with unprotected
libraries. As soon as function pointers are exchanged with other libraries, these libraries
have to be also protected. Usually, one could recompile these libraries with protection,
but there might be cases where recompilation is impossible. In fact, TYPRO already has
semi-automated support for function pointers exchanged with unprotected libraries. But
developers would have to mark functions imported from unprotected modules so that the
compiler can instrument calls accordingly.

Third, TYPRO does not yet support inline assembly or C++, which is frequently combined
with C code. We believe relevant use of inline assembly is rare, apart from standard libraries.
Most occurrences do not need analysis, e.g., the assembly in musl libc. While some parts
of C++ are already supported (like lambda functions), we would need extensions for full
support: First, we would have to collect class layout and inheritance information during
type and context collection. Second, we would need additional rules for type propagation
over inheritance. Third, we would compute target sets for C++ virtual dispatch. Fourth, we
would rewrite virtual dispatch similar to NOVT [P1].

117

CHAPTER 6. TYPRO: FORWARD CFI FOR C USING TYPE PROPAGATION

6.11 Related Work

TYPRO positions itself in a wide range of existing CFI systems. Our evaluation has demon-
strated that TYPRO stands out as the most precise software-only forward CFI system that
retains compatibility even with large programs. TYPRO is fully open source and can protect
any C software that LLVM can compile without requiring code modifications or special
hardware support. Furthermore, we believe the proposed function type propagation is novel
at the conceptual level. In the following, we will survey related work and briefly mention
how TYPRO differs from these proposals.
Software-Only Forward CFI. So far, Clang is the only compiler that has a strong forward
CFI solution built-in. Clang CFI [170] checks a target function’s type at indirect calls, pre-
venting type-mismatched functions from being called. MCFI [129] is a similar protection
with support for dynamic loading and linking. πCFI [131] extends MCFI with runtime
information; functions are not allowed to be targeted before they are referenced once at run-
time. IFCC [184] checks not function types but argument numbers, providing compatibility
with legacy programs at the price of much larger target sets. We have demonstrated that
these schemes are either too restrictive and break programs or are too permissive. Finally,
Microsoft Control Flow Guard [101] is an even weaker protection: an indirect call can target
the start of any function. All these systems are context-insensitive, i.e., they consider only
the indirect call and function pointer at runtime, similar to TYPRO.
Hardware-Assisted CFI. To accelerate CFI, researchers recently proposed hardware-assisted
CFI schemes. In particular, Intel PT [66] was used in PT-CFI [51], PITTYPAT [34], CFI-
MON [202], µCFI [63], PathArmor [186] and GRIFFIN [45]. Furthermore, researchers
proposed TSX-based CFI [118] and CFI-LB [73] based on Intel’s transactional memory
extensions, while OS-CFI [74] combines Intel MPX and TSX. CCFI [98] uses Intel’s AES-NI
instructions to perform cryptographic CFI checks. Finally, Intel CET [155, 136] contains
a hardware-based, fast, but very imprecise forward CFI scheme. In contrast to TYPRO,
these systems require special hardware and potentially changes to the OS kernel, hindering
the deployment of protected applications in many settings. Some of these systems are
context-sensitive, i.e., they consider additional runtime information to determine correct
call targets at the cost of increasing complexity and performance penalties.
Binary-Only CFI. Protecting pre-compiled executables resolves the dependency on source
code. In particular, Opaque CFI [112], CCFIR [210], binCFI [211], Lockdown [138],
TypeArmor [187] and CFIMon [202] enforce a CFI scheme without available source code.
In contrast to source-based schemes, these CFI solutions lack precise typing and flow
information. They rely on approximative reconstructions, making them less precise.
CFI for JITed Code. There are special-purpose CFI schemes targeting dynamically generated
code. RockJIT [130], JITScope [207] and DCG [159] protect the execution of JIT-compiled
code against control flow attacks. These schemes nicely extend TYPRO because our current
prototype only covers C code at compile time.
CFI Evaluations. Next to CFI schemes, researchers proposed frameworks that evaluate and
compare CFI schemes. CSCAN [85] analyses CFI-protected binaries, counts the number
of possible targets for each indirect call, and checks the added runtime checks for weak-
nesses. When we evaluated TYPRO, we compared it with CSCAN-provided results. Similarly,
the LLVM-CFI framework [119] is a toolkit to evaluate different policies inside LLVM. A

118

6.12. CONCLUSION

survey [16] by Burow et al. compares CFI schemes without requiring a specific compiler.
Type Analysis. Recently, Multi-Layer Type Analysis [95] (MLTA) has been proposed—a type
analysis system designed to improve the precision of a simple base analysis (like the one
used in Clang CFI). In contrast to TYPRO, MLTA relies on a base analysis and can only reduce
the computed target sets of this base analysis. Fixing errors coming from the inaccurate
base analysis, our main contribution, is out of scope for MLTA. Older work [104] uses an
inexpensive and imprecise analysis to build a call graph for code browsing tools. Recent
tools [105, 78] use local type information and casts near memory allocations to determine
types of heap objects, countering memory reuse and information leakage vulnerabilities.

6.12 Conclusion

We presented TYPRO, a forward CFI scheme for C programs. TYPRO protects indirect calls in
legacy, real-world programs without requiring manual effort. Even multi-module programs,
dynamically loaded at runtime, can be protected. TYPRO’s type-based approach has a
precision comparable to state-of-the-art solutions used in production-grade compilers but
does not underapproximate indirect call targets, leaving all protected programs intact.
TYPRO successfully targets the sweet spot between security and compatibility. On average,
TYPRO does not impose any performance overhead and only moderate binary size increase.
Consequently, TYPRO enables CFI deployment for legacy and modern real-world applications.

6.12.1 Future Work—Switchpoline

Together with NOVT from Chapter 5, TYPRO served as the basis of Switchpoline [S1].
Switchpoline is the first automated, software-based Spectre-BTB mitigation for ARMv8 CPUs,
where the typical x86-based defenses like retpoline do not suffice.

On ARM, every indirect forward control flow transfer is potentially vulnerable to Spectre-
BTB. Switchpoline is a compiler that builds applications without any indirect jump instruction.
With their precondition invalidated, Spectre-BTB attacks can no longer occur. To this end,
Switchpoline builds on TYPRO’s enforcement and NOVT, which can rewrite any language-
level indirect jump into a series of direct jumps. Switchpoline further extends this approach
and rewrites all possible indirect jumps into direct ones, either at compile-time or runtime.
Switchpoline supports both static and dynamic linking.

Switchpoline successfully prevents Spectre-BTB in user-space applications with a negli-
gible mean performance overhead of 0.46% measured in the SPEC CPU 2006 benchmark.
Moreover, unlike many x86-specific mitigations, Switchpoline is compatible with existing
orthogonal defenses, such as (hardware) CFI or Spectre-PHT mitigations. Given the growing
market share of ARMv8 devices, Switchpoline is an important short-term mitigation to
prevent widespread exploitation of Spectre-BTB.

Availability

Our prototype has been released as Open-Source Software; it is available on Github:
https://github.com/typro-type-propagation/TyPro-CFI

119

https://github.com/typro-type-propagation/TyPro-CFI

7
Cali:

Compiler-Assisted Library Isolation

121

7.1. MOTIVATION

7.1 Motivation

Software libraries can freely access the program’s entire address space, and also inherit its
system-level privileges. This lack of separation regularly leads to security-critical incidents
once libraries contain vulnerabilities or turn rogue. We present CALI, a compiler-assisted
library isolation system that fully automatically shields a program from a given library. CALI

is fully compatible with mainline Linux and does not require supervisor privileges to execute.
We compartmentalize libraries into their own process and kernel namespace context with
well-defined security policies. To preserve the functionality of the interactions between
program and library, CALI uses a Program Dependence Graph to track data flow between the
program and the library during link time. We evaluate our open-source prototype against
three popular libraries: Ghostscript, OpenSSL, and SQLite. CALI successfully reduced the
amount of memory that is shared between the program and library to 0.08% (ImageMagick)
– 0.4% (Socat), while retaining an acceptable program performance.

7.2 Problem Description

Programs extend their own logic with external libraries, which ease developers’ life by
offering APIs that abstract from common tasks. Whereas convenient and common practice,
linking third-party libraries imposes a significant security risk. Libraries execute in the
context of the main program and thereby can freely access the program’s entire address
space and inherit the program’s system-level privileges. At the same time, libraries often
contain risky functionality, such as parsers, that do not really need to use the entire program’s
privileges and address space. This lack of privilege separation and memory isolation has led
to numerous critical security incidents.

We can significantly reduce this threat surface by isolating the library from the main
program. In most cases, a library (i) neither requires access to the entire program’s address
space, (ii) nor needs the entire program’s privileges to function correctly. In fact, even
complex libraries such as parsers require only limited interaction with the program or system.
Conceptually, there is thus little need to grant an untrusted library access to the program
or critical system privileges. Basic compartmentalization principles thus help to secure
a program from misuse by untrusted code. First, memory isolation shields the program’s
sensitive memory from untrusted code parts (e.g., libraries). Second, privilege separation

reduces the set of privileges of untrusted code parts.
Two recent attempts have proven that library isolation fosters memory isolation and

privilege separation. Sandboxed API [49] assists developers in isolating the library into
its own process (memory isolation) by providing isolation primitives that can be adapted
to program-to-library interfaces. To enforce privilege separation, Sandboxed API allows
the developer to configure seccomp-BPF [181] filter rules. Similarly, RLBox [124] lets
developers split Firefox’s libraries into different processes and again uses seccomp-BPF for
confinement. Both systems provide primitives to ease library isolation for developers but
still require significant manual code changes (“Migrating a library into RLBox typically takes

a few days [...]” [124]). Given the plenitude of programs and libraries, even such reduced
manual effort will severely hinder the wide deployment of library isolation.

The core challenge of automated library isolation is the inherent historic assumption that

123

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

programs and libraries share the same address space. Any attempt to split this address space
(e.g., into different processes) breaks the underlying semantics if not dealt with accord-
ingly. Passing data across contexts is trivial with primitive data types but quickly becomes
challenging for complex objects. PtrSplit [89] is the first general attempt to tackle this
issue by marshalling complex data types whenever they cross boundaries. Methodologically,
PtrSplit tracks the bounds of complex objects to learn the necessary size information that
is required to copy complex objects. While such an analysis allows for automation, (i)
deep copies create significant memory and performance overhead (essentially duplicating
objects passing to/from libraries), (ii) parallel computation on copies will lead to data
inconsistencies, and (iii) PtrSplit’s analysis cannot handle type casts. Especially the latter
restriction is problematic in practice, as libraries commonly make use of type casts which
undermine PtrSplit’s analyses. For example, LLVM’s memcpy cannot be tackled because
operands are cast to void*, the same holds for generic callback arguments found in various
common libraries.

7.3 Contributions

In this chapter, we present CALI, a compiler-assisted library isolation system that uses shared

memory to allow a secure and efficient interaction between a program and its libraries. While
placing a library in its own context immediately creates clear security boundaries, without
further precautions, it breaks the program functionality. That is, programs and libraries
were designed with the idea in mind that they share the same address space—an assumption
that is broken by isolating the library. Consequently, using shared memory makes the use of
pointer marshaling obsolete, dropping all its associated disadvantages. CALI’s core challenge
is preserving the library invocations’ full functionality while minimizing the program parts
that are exposed to the library. A naïve solution could place the entire program memory in
shared memory that is accessible to the program and the library, which gained little security
as the library had full write access to the main program’s data (including pointers). Instead,
CALI leverages a Program Dependence Graph (PDG) [40] to infer which memory allocations
will (potentially) be passed from the program to the library. To this end, during link time,
the PDG observes and propagates data flows crossing the security contexts. CALI then places
the according memory regions in shared memory and isolates the remaining memory in the
application and library processes, respectively.

CALI is the first system that fully automatically shields a program from libraries. CALI is
compatible with mainline Linux, does not require supervisor privileges, and has an acceptable
space and performance overhead. CALI compartmentalizes untrusted libraries into their
own contexts with well-defined security policies. We provide both privilege and memory
isolation by placing libraries in their own process that operates in per-compartment kernel
namespaces. We apply seccomp filters to minimize the system interface of the library.

We implemented CALI based on LLVM and published its source code.1 We evaluate
the functionality, space, and performance overhead of our prototype against three popular
libraries: Ghostscript (tested with ImageMagick), OpenSSL (tested with Socat), and SQLite

(tested with Filezilla). CALI reduced the amount of memory that is shared between the

1https://github.com/cali-library-isolation/Cali-library-isolation

124

https://github.com/cali-library-isolation/Cali-library-isolation

7.4. BACKGROUND AND RELATED WORK

program and library to 0.08% (ImageMagick) – 0.4% (Socat). Not a single function pointer
is shared, such that the threat surface is greatly reduced. CALI’s compartmentalization has
an acceptable performance overhead when limiting libraries to their least privilege in both
memory and system access.

To summarize, our contributions are as follows:

• We present a fully-automated compiler-based separation between trusted and un-
trusted program logic using compartmentalization and data flow tracking.

• CALI transforms any program to a protected version that can be deployed on mainline
Linux without additional requirements about the hypervisor, operating system, or
hardware.

• The strict security boundaries of the resulting programs significantly reduce the threat
surface, while our three examples show that the performance overhead is acceptable.

7.4 Background and Related Work

Program compartmentalization is the foundation of two related research directions with
orthogonal goals. Memory isolation hides certain secrets (e.g., keys) in program memory
from other parts/compartments. Typically built on top of memory isolation, privilege

separation [140] also limits system access of certain code parts (compartments) to the least
privilege. Either way, compartmentalizing an application is a two-step process: First, an
application needs to be separated into two or more distinct code parts (cf. Section 7.4.1,
“Compartmentalization”). These code parts must be able to communicate with each other
and keep the original application’s functionality. Second, the now distinct code parts need to
be isolated from each other and executed in different contexts (cf. Section 7.4.2, “Isolation
Primitives”). Isolation must guarantee the integrity of the trusted context even if the
untrusted context acts maliciously.

We will provide background information and discuss related work in the following. To
assist in this discussion, Figure 7.1 provides an overview of key related works, categorized
into the two dimensions of the degree of automation (y-axis) and their provided security
guarantees (x-axis). CALI aims to fill a gap by providing strong security guarantees (both
memory isolation and privilege separation) and, at the same time, offering an unprecedented
level of automation.

7.4.1 Compartmentalization

The few past manual efforts to split programs into compartments (e.g., Google Chrome [168],
OpenSSH [43]) have shown that splitting a program into isolated parts is a tedious and
error-prone task. This motivated research on several compartmentalization libraries that
aid developers in this process. For example, Privman [76] can be used to split applications
in a privileged server and an unprivileged client, requiring changes to the source code:
Any library interaction needs to be rewritten manually, and any memory transfer needs
to be performed by hand. Privman is merely a library providing the isolation primitives.
In addition, Google recently published their framework “Sandboxed API” [49], which

125

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

can be used in C++ programs to isolate C libraries in a compartment process with only
limited capabilities. To apply Sandboxed API, each and every usage of the library needs
to be rewritten manually, which is neither trivial nor convenient. A similar framework is
RLBox [124], with a much stronger type system enforcing additional security properties.
Thus, summarizing, while all these libraries aid developers significantly, they still do not
entirely eliminate the manual analyses and efforts.

In order to lower the manual effort of compartmentalization, researchers proposed
various assistance tools that give additional information on where and how to separate
the application. These tools are based on annotation-guided program analysis [53, 201,
90, 14] or dynamic analysis [11, 91]. Unfortunately, the strict dependence on source code
changes (or annotations) implies that only experienced developers with deep knowledge
of the source code and library interactions can compartmentalize software. This lack of
automation does not scale for the wide variety of open-source off-the-shelf software.

Researchers have already identified this urgent need for automation. For example,
Codejail [200] can separate program privileges without forcing developers to rewrite or
know the program code in the program. However, to separate a program, Codejail requires
that every library function needs to be “described” by a developer. To this end, wrapper
functions must be written by hand and must specify every single memory transfer between
program and library. Furthermore, Codejail’s memory isolation is much weaker than related
systems. In particular, the untrusted library can read arbitrary memory from the trusted
program (hence bugs like Heartbleed cannot be contained). A solution requiring similar
developer effort is known for Android apps (CompARTist [65]). While these wrappers can
be written once for a library and then be used in many different projects without hassle,
Codejail still leaves open the hard work for developers.

Two existing approaches come close to the degree of automation we envision, Ptr-
Split [89] and SOAAP [53]. Yet there is one fundamentally hard challenge for automating
compartments: data flows of non-primitive objects (e.g., pointers, structs) between the
compartments. “PtrSplit” [89] uses static analysis to separate annotated variables and
related code. In contrast to prior work, PtrSplit can—assuming code annotations by a skilled
developer—infer a separation boundary automatically. Furthermore, as PtrSplit tracks data
flows, it marshals complex objects for IPC communication between the compartments. While
this significantly boosts automation, it still requires code annotations, which in turn require
program knowledge. Moreover, while PtrSplit provides memory isolation, it cannot limit
the privileges of compartments. Facing these challenges, SOAAP even completely left open
isolation (and the required automation) open for future work.

CALI automates compartmentalization to the highest degree possible. Given a program
and its libraries, CALI fully automatically splits the program from (a developer-specified
subset) of libraries. Developers do not have to care about library interfaces, nor have to know
at which parts of their program a library has been integrated. The resulting compartments
provide memory isolation and privilege separation. CALI only assumes a policy that guides
the privileges of each program part, which could be derived automatically [47, 32, 46, 190].

126

7.4. BACKGROUND AND RELATED WORK

isolation

none pure
memory

partial memory
simple privilege

full memory
and privilege

automation

fully automated
given a policy

code
annotations

lib. wrapper
(once per lib)

code changes
(once per prog.)

tedious source
code changes

CALI

SOAAP

PtrSplit

Sandboxed API

RLBoxERIM Donky

CodeJail

Figure 7.1: Overview of recent program isolation schemes.

7.4.2 Isolation Primitives

Once a program has been compartmentalized, we have to use certain isolation primitives to
protect the program parts from each other. That is, assuming well-defined compartment
boundaries and interfaces, how can we efficiently enforce isolation between the compart-
ments? To this end, multiple isolation principles can be used, most of which focus only
on memory isolation. The conceptually simplest approach is Software Fault Isolation (SFI)
methods like NaCl [203] (“upro” [128]) or WebAssembly [54] (RLBox [124]), which compile
untrusted program parts into sandboxes. SFI requires the source code of the program and
all libraries, and it comes with significant restrictions in functionality—not all programs can
be compiled to SFI schemes (e.g., JIT compilers). To solve this problem, other systems used
existing OS functionality like executing compartments using different Unix users [76]. To
further enhance capabilities, the OS kernel can be modified [11, 61, 88, 163, 191], however
sacrificing compatibility with unmodified kernels. In the same spirit, researchers leveraged
virtualization extensions of modern CPUs and introduce hypervisors for memory isolation
(e.g., “SeCage” [91], “TrustVisor” [99], and “Libsec” [141]) Recently, researchers further
boosted isolation primitives with hardware-specific features (e.g., CPU extensions) [185, 23,
83, 52, 150], which again reduces broader applicability. All these works demonstrate that
special OS or hardware features can be elegantly used to boost additional memory isolation,
which is important when aiming to protect certain regions of sensitive data. However, very
few of these approaches are compatible with (e.g., process-based) privilege separation.
Additionally, they require certain features or adoptions, which hinders a wider isolation
deployment in the wide world of resource-constrained devices (think of IoT).

127

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

7.5 General Overview

7.5.1 Compiler-Assisted Library Isolation

We now describe CALI, a compiler-assisted compartmentalization privilege separation so-
lution. Our primary use cases are developers or package maintainers who link common
libraries into a (Linux-based) application written in a native language like C or C++. The
library is given in binary form only, source code is only available from the main program—a
pretty common scenario if a third-party library is proprietary or closed-source.

We envision that one of these libraries contains a severe vulnerability, giving attackers full
control over the entire program. The developer wants to limit the damage that can occur from
such a vulnerability. In particular, we want to protect private information (from application
memory or files, like stored passwords) and system integrity (no system modifications like
backdoors). We do not want to protect from Denial-of-Service (DoS) attacks that crash the
application—fault recovery is out of scope. We aim, however, to mitigate resource exhaustion
attacks that block the whole system (e.g., memory exhaustion, fork bombs) by limiting the
compartment’s computation and memory resources.

The application should not lose portability; it must continue working on any system
where it worked before modification. No system modification is desired, and super-user
permissions are neither available at installation time nor runtime.
Threat model. We envision that a library contains a severe vulnerability that gives attackers
full control over the entire process that runs library code, including arbitrary code execution.
We do not consider attacks against the kernel, the hardware, or micro-architectural attacks.
We also assume a sound permission configuration ([47, 32, 46, 190]). We will discuss our
assumptions on and mitigation of cross-compartment vulnerabilities in Section 7.8.4.

Compared to our basic attacker model from Section 2.3, we assume that code execution
is possible, but the vulnerability is located in a library.

7.5.2 Overview

CALI performs privilege separation by isolating less-privileged code parts into their own
context. While this concept is generic, in the following, we will stick to our main use case of
library isolation. CALI automatically handles the interaction between the application and
library, which, unlike before, now requires inter-context communication. CALI then reduces
the permissions of the library context to the minimally required privileges and memory.

Our protection is applied at application build-time. We build the application using
the LLVM toolchain with link-time optimization (LTO). When linking the application, all
source code files are available as LLVM bitcode. In the first step, we perform a static, inter-
procedural analysis over the whole application. We determine where and how the library is
used and what resources, like memory regions, it needs from the main application. In the
second step, we rewrite the main application. We replace all library calls with calls to stub
functions that take care of the transition between application and library context. To this
end, we make the minimal necessary program memory regions accessible for the library
context. Finally, we add a small static library that initializes this context.

After linking, the result is a normal Linux binary that runs on any Linux system without
additional dependencies. The required interaction of the developer is minimal: Switch the

128

7.6. SHIELDING COMPARTMENTS

compiler toolchain to Clang/LLVM with LTO, add a compiler flag to enable our system, and
specify the permissions applied to the library context in a simple format (see Figure 7.8
for a concrete example of a permission configuration). Furthermore, our design guaran-
tees compatibility. Our context implementation uses primitives (processes, namespacing,
seccomp, and semaphores) that are readily available in mainline Linux.

7.6 Shielding Compartments

CALI creates a compartment for all libraries that should be isolated. A compartment must
fulfill three criteria: First, it must provide privilege isolation to prevent attackers from
inflicting damage on the computer system. To this end, we must be able to constrain access
to files, networks, and other resources (including e.g., computation power and memory)
to contain vulnerable libraries successfully. Second, a compartment must provide memory

isolation to protect the privileged main application (e.g., its pointers) from an attacker in the
library compartment. Third, a compartment must preserve the functionality of a program
without requiring modifications to the library. Calls to the library must continue working,
and memory chunks that are passed from the program to the library must be accessible
from the compartment and vice versa.

7.6.1 Basic Compartment Structure

For compatibility reasons, we create compartments based on processes. For each library
compartment, we fork a new library process from the main process just before the libraries
are initialized. This process is restricted in its permissions and only shares selected memory
regions with the main program. Communication between compartments happens over
shared memory, semaphores, and an anonymous socket. The library compartment processes
sleep until a library function is invoked. Once woken up, they execute the called library
function on behalf of the main process and return the result. They terminate when the main
process terminates.

Such library compartments do not undermine memory deduplication; the isolated library
is still a shared library mapped copy-on-write. Multiple processes sharing the library will
require one copy in physical memory only. Also, nested libraries are not negatively affected
by this scheme. If a library loads other libraries, these will be executed in the context of the
loading library, inheriting its reduced privileges.

In principle, we can create compartments for any library. Having said this, we do not
isolate standard libraries (e.g., libc). They are the usual interface to access the underlying
system. Therefore, standard libraries would need all privileges the main program needs. Any
restrictions on the standard library’s permissions would also restrict the main application.
In our design, each context has its own standard library. It does not matter if a library uses
raw syscalls or libc—both execute from the library context with identical privileges.

7.6.2 Shared Memory

We create a segment of shared memory for each compartment and map it in both the
main and library process. This memory is mainly used to allocate memory chunks that

129

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

are accessed by both processes. To organize this memory, we build drop-in replacement
versions for mmap, mremap, and munmap handling memory from this shared memory pool
page-wise. These functions, called shm_mmap, etc., also synchronize memory mapping
between both processes.

We support dynamic memory allocation (e.g., malloc) by using a modified version
of glibc’s heap implementation working with shared memory. In this modified version,
we remove the main arena (which cannot be shared) and replace all calls to the mmap

family with calls to the shm_mmap family. Next, we utilize glibc’s per-thread heaps to build
per-process heaps, preventing concurrency issues between the main and the library process.
Following this principle, we have drop-in replacements for all essential memory-allocating
functions. If a chunk of memory needs to be shared with the library, we only need to replace
its allocation with the appropriate shared allocation. This way, no memory needs to be
copied between processes, improving the efficiency of memory transfers. Any memory
outside of this shared memory pool is not accessible by the library.

7.6.3 Library Calls

For each library function called by the main program, we create a replacement function in
the main program and a handler in the library compartment. All calls to library functions
are passed to the library process using a custom IPC-based protocol. We rewrite all calls
to the library with calls to this replacement function. This function stores all call-by-value
arguments (numbers, pointer values, but not the memory pointed to) in shared memory and
signals the library process using a semaphore. The library process invokes the handler, which
loads arguments from shared memory and invokes the original function. Once the function
returns, the result is stored back in shared memory, and the main process receives a signal
using a second semaphore. Finally, the replacement function in the main process loads the
return value from memory and returns. This design is entirely transparent to program and
library, as long as all pointer arguments point to shared memory (which we will ensure
in Section 7.7). In rare cases where libraries call the program (e.g., when the program
overrides exported symbols from other libraries), we handle these calls analogously.

7.6.4 Callbacks, Signals, and File Descriptors

Sometimes libraries expect a callback that they will execute once an event occurs, or
programs receive function pointers from a library that they will call later. In our context,
this is dangerous. Callbacks allow one process (e.g., the library) to trigger the execution of
code in another process (e.g., the main program), inheriting the program’s privileges. To
keep up the isolation between processes, we employ a strict policy: Callbacks are executed
in the process they come from (where they have been defined).

Whenever a library call transfers a function pointer, we create a replacement function
on the fly and store the original pointer in a lookup table. When invoked, the replacement
function invokes the call in the other process.

This design complies with the usual structure of code containing callbacks. Functions
passed from the program to the library were typically written in the program’s code base
and require access to the program’s internal data. Executing them in the program context
thus preserves compatibility. Functions returned and defined by the library might depend

130

7.6. SHIELDING COMPARTMENTS

on library-internal data and should stay in the library compartment for compatibility and
security reasons. The library cannot invoke arbitrary code; the function pointers it passes
execute in the library process.

Signals are handled using this callback mechanism: When a signal handler is registered
in one compartment, the handler is synchronized with all other compartments. When a
signal is caught, the handler executes in the compartment that registered it. If an uncaught
signal terminates one process, the others also terminate.

File descriptors are handled differently. We detect them using static analysis (Sec-
tion 7.7.7), not by type. When a descriptor is passed as a function call argument or return
value, the other side gets full access to the descriptor. A duplicate is handed over on a
shared socket, and FD numbers are adjusted between the processes. When the descriptor
gets closed in one process, the descriptor is also closed in the other one. In Linux, most
system resources are represented by file descriptors, and correct synchronization ensures a
synchronized view of the system.

7.6.5 Isolation

Isolation between processes is provided by OS primitives present on any up-to-date Linux
system. The exact isolation can be specified by an isolation policy and might depend on
runtime data (e.g., environment or program arguments). The policy is given by the developer
at compile-time, Figure 7.8 shows an example policy. In the following, we describe several
isolation mechanisms that we deploy using a modified version of nsjail [50].

We put each compartment process in a new mount namespace, mount all accessible
directories to an empty folder, and finally use chroot to jail the compartment into this
directory. We utilize a user namespace to execute chroot without requiring higher privileges
or capabilities. As a result, the library compartment process sees a file structure similar to
the real system, but it contains only folders if access has been allowed by the policy. If only
read access is desired, we mount the folder with the read-only attribute.

We use a network namespace to prevent a library compartment from communicating
with other machines if not allowed by the isolation policy. Next, we use a PID namespace to
protect other processes running on the system. Additionally, subprocesses spawned by the
library will not continue running after the library compartment has been shut down. After
forking the compartment process, we drop Linux capabilities or super-user rights the main
program might have, according to the isolation policy.

The isolation policy can specify constraints on the computing resources used by the
library compartment, enforced using rlimit. These constraints prevent DoS attacks on the
system, like consuming all available memory, blocking all CPU cores, or “fork-bombs.” They
are not meant to prevent application DoS (e.g., program crashes).

Finally, we apply a seccomp policy to restrict the set of system calls the library compart-
ment can call.

7.6.6 Threading, Forks, and Concurrency

Our prototype has limited support for concurrency: While it does not break the semantics
of threading and forking processes and, in fact, also works for multi-threaded or multi-
processing programs, our locking mechanism serializes all threads at the library interface.

131

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

Therefore, concurrency is not an issue, as only one thread can call a library at a time. To
get the full performance of concurrent execution, the library compartment process must
be enabled to spawn its own threads, mirroring the threads in the main program process.
For new threads, the communication structure must be cloned as well. The same structure
can handle forking programs. In contrast to other work (that uses thread-like primitives for
isolation), this extension does not impact security. However, we refrained from extending
our prototype to multiple threads because this is not required to show the general feasibility
of our approach.

Concurrently running code from multiple compartments opens up another problem: An
attacker in one compartment could modify shared memory while another compartment
uses this memory, possibly leading to memory corruption in other compartments, effectively
weakening the introduced isolation. These issues are called double-fetch bugs [152, 192].
Other systems like PtrSplit or Sandboxed API avoid this problem; they copy memory instead
of sharing it. However, this approach breaks existing software with legitimate use cases of
shared memory: for example, most implementations of synchronized collections or spinlocks
rely on shared memory; they cannot be used in multiple compartments with traditional
methods.

CALI solves this issue by providing three modes of operation: In the default mode,
concurrent access is allowed (to not break existing software). We consider the security
impact of concurrent access rather low; manual inspection of the shared memory usage in
our three example programs did not show vulnerable memory usage. Related work [152]
can be used to counter potential double-fetch bugs.

If the program is clearly not concurrently accessing memory, CALI can be used in mprotect

mode. After a library function has finished executing, the shared memory is set read-only in
the library process. Before the next library function call, the shared memory is set writable
again. A custom seccomp filter is installed to prevent attackers from changing the protection
of shared memory manually. With this extension, an attacker in the library process can only
modify shared memory while a library function is being executed. Even if the attacker has
started additional threads, the security level is equal to memory-copying solutions. The
downside of this mode is that only one thread can execute a library function at a time.

If the library is not concurrent itself (e.g., does not spawn threads or processes), CALI can
be used in non-concurrent mode. The library process uses a seccomp filter to prevent forks,
clones, or thread-spawning syscalls. Without these privileges, an attacker cannot run code
outside of library calls: After a library call returns and the main compartment continues
execution, the single library thread is blocked until the next library call is requested. This
mode does not have additional overhead but prevents libraries from using concurrency.

7.7 Compiler-Assisted Separation

To automatically split an application into two parts, we have to know which memory chunk
is used both by the program and the library, and which memory is used exclusively by the
main program. We call chunks common memory if both compartments use them. Ideally, all
other program memory should not be taken from the shared memory pool, as it otherwise
might leak data to the library compartment. Having said this, sharing “too much” memory
only weakens security guarantees and does not break functionality.

132

7.7. COMPILER-ASSISTED SEPARATION

One core challenge is that we need to know at allocation time if a memory chunk is
common memory. After memory has been allocated, moving the chunk might interfere
with legacy code, e.g., pointers to the chunk scattered over the program would need to
be updated. Similarly, we also have to identify all (potentially indirect) calls to library
functions. They determine which memory is going to be accessible by the library.

To gather all this information, CALI uses inter-procedural static analysis on the compiled
LLVM bytecode of the main program. In the first step, we use a program dependence graph

(PDG) with similarities to the one proposed by Liu et al. [89], tracking the data flow of
memory chunks. We detect all calls to library functions and tag all memory allocations that
might reach library functions. In a second step, we rewrite all these memory allocations to
use shared memory, generate replacement functions for used library functions, and finally,
rewrite all calls to library functions with calls to these replacements.

7.7.1 Background: Call Graphs and SCCs

To schedule our analysis operations on the program, we use the strongly connected components

(SCC’s) of the call graph. A strongly connected component of a graph G = (V, E) is a maximal
subset of vertices V ′ where a path between all vertices exists (∀v1, v2 ∈ V ′. v1→

∗ v2). The
graph formed by all strongly connected components in a call graph has nice properties:
First, functions that can call each other in a recursive way (nested recursion) are contained
in the same SCC. Every other function is in its own SCC of size 1. Second, because all
recursive functions are contained in joined SCCs (one per recursive function group), the call
graph of all SCCs is acyclic (circles in a call graph indicate recursion, which only happens
inside SCCs). Third, traversing the SCC callgraph bottom up traverses all functions in a
callee-before-caller order. Traversing the SCC callgraph top-down traverses all functions in
a caller-before-callee order. To reduce the average SCC size, we only consider calls that can
transfer memory by reference (not only by value). We ignore calls if all parameters and the
return value are constant or of primitive type (e.g., int, char), because they are irrelevant
for our following analysis.

Our analysis traverses a SCC callgraph of the whole program in a bottom-up fashion
and analyzes all functions in a SCC at once. If we encounter a function call, it either targets
a function we already analyzed or a recursive function in the same SCC that we are just
analyzing. At a later stage, we will traverse the SCC callgraph top-down to propagate
information from calls to called functions.

7.7.2 Analysis Phase: Overview

In the analysis phase, we mainly need to determine which memory allocations generate
common memory (that later needs to be shared). The analysis consists of three phases:

1. Creation Phase: We construct a PDG containing information about intra-procedural
data flow. We mark memory allocations and locations of common memory.

2. Reachability Phase: For each function group (callgraph SCC), we determine the reach-
ability between memory allocations, common memory expectations, the function’s
arguments, and return value. We store the result in a function summary in the PDG,
which is used when calls to this function are analyzed (inter-procedural data flow).

133

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

1 struct X { long one; long two; };

2

3 // Library function we need to compart

4 void libfunc(int *err, char *input, long *output);

5

6 // Main program

7 void main() {

8 struct X *x1 = new_struct(13L);

9 struct X *x2 = new_struct(37L);

10 struct X *x3 = update(x2);

11 char *buffer = malloc(1024);

12 lib_wrapper(buffer, x3);

13 }

14

15 struct X *new_struct(long init) {

16 struct X *s = malloc(sizeof(struct X));

17 s->one = init;

18 return s;

19 }

20

21 struct X *update(struct X *x) {

22 x.one = 18;

23 return x;

24 }

25

26 int lib_wrapper(char *buffer, struct X *x) {

27 int err;

28 libfunc(&err, buffer, &x->two);

29 return err != 0;

30 }

Figure 7.2: Example program passing memory to a library.

3. Specialization Phase: We check for functions that should return pointers to common
memory depending on their usage. For example, wrappers around malloc like
calloc or new should only generate common memory if their result is later passed
to the library. However, these functions are called from many other functions. To keep
a precise result, we thus clone these functions (including their containing SCC). The
cloned functions will return common memory, while the original functions will not.
Call sites are adjusted, and reachability analysis is repeated.

Figure 7.2 shows an example program we will use to illustrate the analysis. It consists
of two struct instances, where one of these structs is used in a library, and the other is not.
The reference to that struct passes multiple functions before being used as a library function
argument. Figure 7.3 shows the LLVM translation of the program. The full PDG with all
analysis results is given in Figure 7.7, and an excerpt illustrating the most important aspects
is shown in Figure 7.4.

134

7.7. COMPILER-ASSISTED SEPARATION

1 %struct.X = type { i64, i64 }

2

3 define void @main() {

4 %1 = call %struct.X* @new_struct(i64 13) ; x1

5 %2 = call %struct.X* @new_struct(i64 37) ; x2

6 %3 = call %struct.X* @update(%struct.X* %2) ; x3

7 %4 = call i8* @malloc(i64 1024) ; buffer

8 %5 = call i32 @lib_wrapper(i8* %4, %struct.X* %3)

9 ret void

10 }

11

12 define %struct.X* @new_struct(i64) {

13 %2 = call i8* @malloc(i64 16)

14 %3 = bitcast i8* %2 to %struct.X* ; s

15 %4 = getelementptr %struct.X* %3, i64 0, i32 0

16 store i64 %0, i64* %4, align 8

17 ret %struct.X* %3

18 }

19

20 define %struct.X* @update(%struct.X*) {

21 %2 = getelementptr %struct.X* %0, i64 0, i32 0

22 store i64 18, i64* %2, align 8 ; one=18

23 ret %struct.X* %0

24 }

25

26 define i32 @lib_wrapper(i8*, %struct.X*) {

27 %3 = alloca i32, align 4 ; err

28 %5 = getelementptr %struct.X* %1, i64 0, i32 1

29 call void @libfunc(i32* %3, i8* %0, i64* %5)

30 %6 = load i32, i32* %3, align 4

31 %7 = icmp ne i32 %6, 0 ; err!=0

32 %8 = zext i1 %7 to i32

33 ret i32 %8

34 }

Figure 7.3: Simplified LLVM code of the example in Figure 7.2.

7.7.3 PDG Construction

In contrast to other PDGs [89, 40], our graph does not need control dependence. The
construction of our graph is based on the LLVM bytecode of the program. This bytecode is
in static single assignment (SSA) form, meaning that every LLVM value gets assigned only
once (at definition time, typically as the result of an instruction) [92]. Our PDG is based
on LLVM values, and every value is represented by a PDG node. Nodes are additionally
tagged with the type of the value and the function where it is contained, so every node is
a three-tuple: (value, t ype, f unct ion). We add similar nodes for all global variables and
function arguments.

To trace actual memory chunks, we inspect the values further. We disassemble every
complex data type (e.g., pointers, structs) into its basic data types. These so-called “subnodes”
represent single members of structs or memory referenced by a pointer type in the graph. The
rules to create subnodes are given in Figure 7.5: For every pointer type, we create a subnode

135

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

representing the memory pointed to, and connect it with a “pointer Deref
−−−−→ memory” edge.

For every field in a struct or union type, we create a subnode and connect it with a “struct
Parti−−−→ field” edge (where i is the index of the field). We repeat this algorithm on all new

subnodes up to a configurable recursion depth of 5. Limiting the depth prevents the analysis
from being trapped in endless recursion induced by recursive structs. In theory, this limitation
might lead to a loss of precision (when data flow is hidden deep in the subnodes). However,
in all our example programs, a recursion depth of 3 was sufficient to cover all necessary
information. This configurable limit should hold for most programs and can be adapted
if required. We also limit the number of struct members to 32 for performance reasons.
In our examples, we did not see any impact on the analysis precision by this restriction.
Figure 7.4 shows an example subgraph for the second argument of lib_wrapper (the
struct pointer x: struct X*). The subnodes represent the dereferenced struct of that
pointer (:struct X), further dissected into its fields (X.one, X.two).

PDG Subgraph of lib_wrapper Legend

function @lib_wrapper

x: struct X*

arg 2

: struct X ★

deref

X.one: long

part 1

X.two: long ★

part 2

&x->two: long*

deref

call @libfunc

arg 3

★ Shared Memory

Subnode : <type>

Instruction : <type>

Function

Figure 7.4: Excerpt of the PDG from the example program. The full graph is given in
Figure 7.7.

subnodes (n, t) 7→

; for primitive t like int etc.

{node (t ′)} ∪ subnodes (node (t ′) , t ′) ; n
Deref
−−→ node (t ′) for t = t ′*

⋃

k≤n

({node (tk)} ∪ subnodes (node (tk) , tk)) ; n
Partk
−−→ node (tk)

for t = struct{t1, t2, ..., tn}

subnodes(n, t ′) for t = t ′[k], k ∈ N

Figure 7.5: Recursive algorithm to generate subnodes of a value node n with type t.
node(t) creates a new subnode with type t.

136

7.7. COMPILER-ASSISTED SEPARATION

7.7.4 Data Flow in PDGs

1. x = Load y: The memory referenced by y is loaded into x .

∀y ′ : y
Deref
−−→ y ′ =⇒ y ′

data
−−→ x .

2. Store x , y: The value x is stored to memory location *y .

∀y ′ : y
Deref
−−→ y ′ =⇒ x

data
−−→ y ′.

3. x = GetElementPtr yc1c2...: Compute address &y[c1].c2

• If instruction computes the pointer to a valid field of *y:

∀z, x ′ : y
Deref
−−→ y ′

Partc2
−−−→ z , x

Deref
−−→ x ′ =⇒ x ′ = z

(z is the struct field in memory, x ′ is the memory pointed to by the output pointer).

• Otherwise: x = y (output pointer is equal to the input pointer, handles dynamic array
access etc.).

4. x = BitCast y and other casts: x = y .

5. Call is ignored, inter-procedural analysis will happen later.

6. All other instructions which output a value are handled similar:
All operands data-flow to the output value of the instruction.

Figure 7.6: Rules to determine data flow for LLVM instructions.

We next extend the PDG with edges representing intra-procedural data flow. If the LLVM
value of a node or subnode n might carry over to another node n′ in any possible execution
of the program, we assume a data flow from n to n′ and add an edge n data

−−−→n′. A typical
example is a load from memory: Reading err for the return statement in lib_wrapper is
%6 = load i32* %3 in LLVM, we summarize the load as a data edge from the subnode
err of %3 (representing the referenced memory) to the output value %6.

As a major difference from previous PDGs [89], we use data equality to capture pointer
aliases. If two (sub)nodes represent the same value storage (i.e., the same memory location
is referenced by two pointers), we consider them to be data-equal. If one node’s associated
value gets updated, the other node’s value will also change. We could handle this situation
with bi-directional data

−−−→ edges, but merging significantly reduces the size of the graph
and improves the runtime of all further operations. Merging nodes might introduce cycles
into the subnode graph if subnodes connected to each other are merged (e.g., linked list
structure). The subnodes of a value no longer form a tree, which is vital for handling
recursive data structures. Merging nodes also eliminates nodes introduced by type casts.

We use six rules for LLVM instructions that describe the data flow between inputs and
output of an instruction (Figure 7.6). To be on the safe side regarding functionality, our
rules might over-approximate data flow but should not under-approximate it.

Data flow between nodes x and y (x data
−−−→y) is propagated recursively to its subnodes

by two simple rules:

1. If there is data flow between two structs x and y , then there is also data flow between
their members:

137

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

x
data
−−→ y ∧ x

Parti
−−→ x ′ ∧ y

Parti
−−→ y ′ =⇒ x ′

data
−−→ y ′

2. If there is data flow between two pointers x and y (pointers might alias), then we
consider the referenced memory data-equal:

x
data
−−→ y ∧ x

Deref
−−−→ x ′ ∧ y

Deref
−−−→ y ′ =⇒ x ′ = y ′

Rule 1 expresses that copying a struct from one location to another implies that all
struct members are copied, too. Rule 2 can best be explained with the running example. In
function main, data flows from %2 to %3. Therefore, the referenced memory is the same
(node ‘: struct X’ representing the struct’s memory), as %3 is an alias of %2.

7.7.5 Reachability Analysis

After these inferences, the PDG contains all values in a program and their intra-procedural
relations. Equipped with this PDG, we can determine if a memory allocation must produce
common memory for a library call in the same function. If there is a data flow path from
the memory allocation output (source) to a library call’s arguments (sink), then the memory
must be shared. Such data flow problems can be modeled as reachability over data

−−−→ edges
in the PDG.

First, we use data flow to determine which indirect calls might call a library function
(find sinks). Then, we determine which nodes are common memory (reach a sink) within a
function. Finally, we extend this to an inter-procedural analysis. We describe these three
steps more detailed in the following.

7.7.5.1 Determine indirect library calls

To decide if a call needs common memory, we need to decide if it could potentially call a
library function. While this is trivial for direct calls, it is not obvious for indirect calls. Some
programs, for example, build a struct of library function pointers as an exchangeable
“interface” against a library. We search for paths backward in the PDG from the called
function address (sink) to a library function (source). The backward path from sink to
source must only consist of data

←−−−, Parti←−−− and Deref
−−−−→ edges. From the indirect call address

(sink), we follow data
←−−− edges backward that lead us towards the origin of the address

value. We also follow Deref
−−−−→ edges in the forward direction (pointer to memory) to get

from function addresses to actual functions (sources). Parti←−−− is used to cope with compiler
optimizations.

This analysis might over-approximate which call might invoke a library function to pre-
serve program functionality. Having said this, we did not observe such an over-approximation
in the three real-world programs in our evaluation.

7.7.5.2 Intra-procedural Reachability Analysis

At this level, we know which function calls invoke library functions. All their call arguments
must point to shared memory later, so we first mark everything referenced by an argument
of these calls as common memory. More formally, we mark everything that can be reached
from a call argument using only (and at least one) Deref

−−−−→ edge. We will use this mark

138

7.7. COMPILER-ASSISTED SEPARATION

function @lib_wrapper

buffer: char*

arg 1

x: struct X*

arg 2

%8: int

return: char ★

deref

: struct X ★

deref

X.one: long

part 1

X.two: long ★

part 2

%3: int*

err: int ★

deref

%6: int

data

%5: long*

deref

call @libfunc

arg 2arg 1 arg 3

%7: bool

data

data

function @update

x: struct X*

arg 1return

summary

: struct X

deref

X.one: long

part 1

X.two: long

part 2

%2

deref

function @main%1 = call @new_struct: struct X*

: struct X

deref

X.one: long

part 1

X.two: long

part 2

%2 = call @new_struct: struct X*

: struct X ★

deref%3 = call @update: struct X*

data
(summary)

X.one: long

part 1

X.two: long ★

part 2

arg 1

deref

%4 = call @malloc: char*

: char ★

deref

call @lib_wrapper

arg 2arg 1

function @new_struct

init: long

arg 1

%3: struct X*

return

X.one: long

data

%2 = call @malloc: char*

==

: struct X

deref

deref

part 1

X.two: long

part 2

%4: long*

deref

function @specialized__new_struct

init: long

arg 1

%3: struct X*

return

X.one: long

data

%2 = call @malloc: char*

==

: struct X ★

deref

deref

part 1

X.two: long ★

part 2

%4: long*

deref

Legend

★ Shared Memory Subnode : <type>Instruction : <type>Function

Structural Edge Function Edge Data Flow

Figure 7.7: The full Program Dependence Graph from the example program, after all
analyses have been applied.

139

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

as taint and propagate it backward, marking all nodes that might reach a library call. If
that mark reaches the memory produced by a memory allocation, this allocation needs
to be rewritten. Formally, an allocation instruction x needs to return shared memory iff
∃x ′ : x Deref

−−−−→x ′ ∧marked(x ′).
In our example in Figure 7.2 (and Figure 7.3), we first mark the dereferenced arguments

of the call to libfunc in lib_wrapper with a star, which includes err: int, the
memory referenced by parameter buffer and x->two. The struct behind pointer x must
be shared, but detecting this requires further analysis:

To propagate the common memory mark, we follow all data
←−−− and Parti←−−− backward edges

and mark every node we can reach. Formally, if x data
−−−→y and y is marked, then x needs to

be marked because there is a path from x to a library call. Marks are also propagated to
and from global variable nodes. We do not need to follow Deref

−−−−→ edges here, as all possible
dereferences have already been marked by the initial marking step. In our example, we
need to mark the struct X node, given that struct member two needs to be shared and
the struct members reside together in memory (Figure 7.4).

7.7.5.3 Inter-procedural Reachability Analysis

The analysis so far handles all cases where allocation and library call are in the same function.
We extend the analysis first to a group of functions, then to the whole program. To cover
recursion, we analyze all functions in a SCC (see Section 7.7.1) together at once. We resolve
all Call instructions targeting functions within the same SCC. We connect the function’s
argument nodes with the parameter values from all actual calls (with a data

−−−→ edge), and
we connect the value of the Ret instruction in the callee with the result value of all Call
instructions in the callers. Once we re-run the data flow analysis, it covers data flow between
all functions in this SCC, possibly over-approximating (because no call context sensitivity is
given in our algorithm).

Analyzing functions SCC-wise is a good trade-off between whole program analysis and
function-wise analysis. Analyzing all functions at once is usually not feasible in acceptable
time, and we cannot afford to lose context sensitivity on all functions. Function-wise analysis
is much faster but cannot handle nested recursive functions. The SCC-wise analysis of our
algorithm picks the best of both worlds: For non-recursive functions, it boils down to
function-wise analysis; only in the case of nested recursive functions is SCC-wise analysis
slower (but much more precise).

To extend SCC-wise analysis to full inter-procedural analysis, we traverse the SCC call
graph bottom-up and run the SCC-wise analysis on each SCC. Due to the properties of a
SCC call graph, we visit callees before callers, and recursion only occurs within a SCC. That
is, if we encounter a Call instruction, it points either to a function within the same SCC or
it points to a function in an already analyzed SCC.

When analyzing a SCC, we create a summary for each contained function, similar to
parameter trees from [89]. A summary captures all possible data flow and indirect function
invocations between arguments, return value, and global variables used in a function,
including shared memory markers. When we later see a call to that function, we insert the
precomputed summary, ignoring the full graph for the function itself.

In our example graph (Figure 7.7), we have built a summary edge for update. In

140

7.7. COMPILER-ASSISTED SEPARATION

main’s call to update, we copy the summary edge between x2/%2 and x3/%3 (and unify
the dereferenced structs). We also copy the three memory markers from the lib_wrapper
to the arguments of its call. With this information, we can reason that the malloc call in
main must be shared because its memory will be passed to a compartment (buffer).

7.7.6 Function Specialization

At this point, our analysis cannot handle functions allocating (potentially shared) memory
and returning its reference. Examples are calloc and the new operator from C++. Both
internally use malloc to allocate memory and return a reference to initialized memory. In
our example, new_struct allocated memory that must (x2) or shouldn’t (x1) be shared.
The naïve solution (propagating the marks in both directions) would mean that all calls to
new_struct would return shared memory. If that happens to calloc, the majority of
memory used in the program might be affected—a prohibitive over-approximation.

We tackle this problem using function specialization, which is executed after the reacha-
bility analysis. We first determine if a function could potentially create and output memory
chunks. Next, we check if any calls to this function require these chunks to be common
memory (i.e., if the function must return shared memory for some calls). If so, we clone the
function. The original function is unmodified, and the clone (the specialized function) will
create shared memory. To this end, we traverse the SCC call graph top-down: For each SCC,
we identify the memory output nodes. A memory output node is a subnode of the return
value that is reachable over at least one Deref

−−−−→ (function returns a pointer) or a subnode
of an argument node reachable over multiple Deref

−−−−→ edges (function stores a pointer in
a reference-passed variable). For each call to a function in this SCC, we relate the actual
call argument subnodes with the function argument subnodes and relate the call result
subnodes with the function return subnodes based on the subnode graph structure. If any
of the related nodes are marked as common memory, we specialize (clone) the whole SCC.
We copy all marks from all calls to the argument nodes of the specialized version and re-run
the reachability analysis, forcing the function to output common memory. All calls that
contributed markers are pointed to the respective specialized function.

In our example, the function new_struct is called once with tagged memory output
(x2 from the second call in main). We create a copy specialized__new_struct

and copy two markers to the specialized function. We see that malloc in the specialized
version must return shared memory. We thus update the second call in main to call
specialized__new_struct. As the end result, just one struct in main is in shared
memory (x2 / %2), while the other one (x1 / %1) is not.

Updating calls inside a specialized function might require further callees to be specialized.
To this end, we iterate the SCC call graph in caller before callee order, including both original
and cloned SCCs.

Function specialization potentially increases the program size. To reduce the space
overhead, we schedule two LLVM passes after specialization: “Dead Global Elimination”
removes the old function if all calls get specialized, and “Merge Functions” unifies cloned
functions that have not been changed.

After running the function specialization pass, we finally have a PDG that knows for
each memory allocation if it should produce shared memory or not.

141

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

7.7.7 Tracing File Descriptors

We trace file descriptors along with memory chunks but with much simpler rules. We use
a list of known functions that return new file descriptors (e.g., open, socket). Calls to
these functions are the sources of our data flow analysis and are tagged with FD. FD tags
propagate forward along data

−−−→ edges only. During the reachability analysis phase, they
are copied from callees to callers. During the specialization phase, they are copied from
callers to callees. Function arguments of library functions are the sinks of this analysis; if a
library function argument is marked with FD, it denotes a file descriptor that needs to be
handled separately. This algorithm detects all file descriptors passed from the program to
the library. A similar algorithm can be used to detect file descriptors that are passed from a
library function to the program.

7.7.8 Rewriting Memory Allocations

In LLVM programs, we have three types of memory allocation: global variables, stack
variables (Alloca instruction), and calls to memory-allocating functions. For each of
these allocations, we can easily check if it must be shared: If the return value node of the
instruction (a pointer) has a Deref

−−−−→ edge to a subnode marked as common memory, then
the allocation must be shared. We share calls to memory-allocating functions by replacing
them with their shared counterpart (shm_malloc, see Section 7.6.2). We provide these
replacements for all primitive memory-allocating functions. Higher ones will be resolved
using function specialization. We share global variables by moving them to a special page-
aligned section in the ELF binary, which will be mapped shared at runtime. We move shared
stack variables to our shared heap. They are initialized and freed in the function prologue
and epilogue, respectively.

After rewriting memory allocations, we have a program that can run in compartments
without breaking functionality.

7.7.9 Data-Transferring Call Graph Analysis

To reduce the runtime of our analysis, we attempt to minimize the size of the SCCs. The
more SCCs we have (and as smaller they get), the more calls can be analyzed with call
context sensitivity. All our cross-function analyses attempt to track memory chunks using
data flow analysis. Function calls that do not take or return memory references cannot
move any memory chunks and, therefore, cannot compute interesting data flow. Thus,
instead of a normal SCC call graph, we use a data-transferring call graph as the basis for the
SCC computation. In this graph, we only consider calls that are able to transfer memory
by reference (not only by value). We ignore calls if all parameters and the return value
are constant or of primitive type (e.g., int, char, float, double). For ImageMagick,
this relaxed notion reduced the maximal SCC size from around 500 to 23. With our data-
transferring call graph, many of these calls are not considered, and the big nested recursive
SCC is broken down into many small, easy analyzable SCCs.

142

7.8. EVALUATION

7.8 Evaluation

We implemented our CALI prototype in C++ and evaluated it on three sample applications.
We chose these applications to cover many different aspects: Different languages (C and
C++), user interfaces or console, local and networking applications, and different code
sizes. Furthermore, these programs link all libraries during the compilation phase (i.e., no
dynamic loading) and thus perfectly suit the link-time passes of CALI. All applications use
different, widely used libraries that contained severe vulnerabilities in the past:
ImageMagick is a large (453,000 LoC) image processing tool suite written in C. ImageMagick
uses Ghostscript to read/write postscript and PDF files, which had some serious bugs in
the past [20, 108]. We protect ImageMagick’s convert utility, which is used to convert
between file formats by isolating Ghostscript.
socat is an all-round utility for networking. Socat can create connections between almost any
kind of endpoints. Its C code base is rather small (29,000 LoC). Socat can establish encrypted
TLS connections using the OpenSSL library, which had several severe vulnerabilities in the
past [110].
Filezilla is a popular FTP client with a wxWidgets GUI. Its large codebase (190,500 LoC)
is written in C++ and scattered over different projects. Filezilla uses SQLite (with critical
vulnerabilities in the past [109, 111]) to manage download queues and store known servers.
SQLite is a popular library [183] (even incorporated in major operating systems) due to its
permissive licensing. In 2019, a critical vulnerability appeared, which required patches in
countless applications [109, 111].

We have chosen these example programs because they are widely known, use libraries
with vulnerabilities in the past and cover different areas (computation, networking, and
user interfaces). We evaluate the functionality of CALI on more programs taken from the
most popular Debian packages [5].

7.8.1 Correctness Evaluation

We apply CALI on each of these applications and check if the resulting binary is still fully
functional. We additionally instrumented each library interface to catch more subtle bugs.

ImageMagick’s functionality can be verified using the provided integration tests (that call
the protected convert binary). After the protection with CALI, we repeated all provided
tests 50 times and found no difference in behavior. Next, we added additional tests: We
chose eight popular image formats (including all formats handled by Ghostscript), prepared
sample files for each format, and converted each format into each other one. All converted
images were identical to the ones produced by an unmodified convert program.

socat does not provide integration tests. Therefore, we combined several socat instances
using different types of connections, transferred large amounts of data between them (1000
connections, up to 1 GB per connection), and verified the transfer was working, and no
data got changed. In detail, the socat “client” configuration reads data from a file, sends
it over a TLS connection to a “server.” This server is another socat configuration listening
for TLS connections and using echo to send incoming data back. A third socat, our “proxy”
configuration, was sitting in the middle, using a TLS server to read connections from the
client and using a TLS connection to proxy incoming data to the real server. No socat

143

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

configuration showed a different behavior after being protected by CALI.
Testing Filezilla is tricky because no official tests are provided, and its GUI is hard to

automate. We resorted to manual testing, using a protected Filezilla to connect to various
servers and testing all the functions. We especially focused on the parts that used SQLite:
the download queue and the server configurations. Again, we could not see any behavioral
differences.

From our tests, we can conclude that CALI does not break the functionality of protected
programs, given a sound security policy configuration.

To evaluate CALI on an unbiased selection of binaries, we analyzed the most popular
binaries taken from Debian Popularity Contest [5] (top 300 packages). We select every
binary that (1) links dynamic libraries besides the standard libraries that can run with
reduced privileges, (2) can be compiled with Clang/LLVM 7, (3) comes with a working set
of integration tests. We rebuild these binaries with CALI enabled and used their integration
tests to verify that CALI did not break anything. We additionally instrumented the library
interface to detect errors in memory sharing reliably, no errors occurred. We confirm
that CALI works on all tested binaries, which are: dpkg-deb, dbus-daemon, man, mandb,
accessdb, whatis, gpg, gpgv, gpgsm, scdaemon, xz, xzdec, fc-cache, fc-list. We isolated the
most important libraries, namely libbz2, liblzma, libz, libexpat, libgdbm, libksba, libsqlite3,
and libfontconfig. Each binary used up to 4 of these libraries. Depending on the quality
of the provided integration tests, 35%–80% of all library call locations have been covered
during these tests. Manual inspection revealed that the uncovered library callsides were
mostly error handling or dead code. Additionally, some binaries had tests that did not
require any library calls: sudo, gpg-agent, dirmngr, file, shared-mime-info, and pstree. CALI

did not break any binary.

7.8.2 Usability Evaluation

CALI is designed to be easily deployable in real-world systems. To apply CALI, we just need
to enable link-time optimization (-flto) and add our linker. In most build systems, it is suf-
ficient to add CALI using a common environment variable: LDFLAGS="-fuse-ld=cali
-Wl,--cali-config=permissions.yaml". Next, we specify which libraries should
be separated and which privileges they should have in a simple text-based config file (see
Figure 7.8). For most applications, integration worked as simple as that.

Only in exceptional cases CALI needs additional information to handle corner cases. In
our examples, ImageMagick uses a custom memory allocator instead of malloc. Here
we need to configure which function allocates and deallocates the memory (2 lines in the
configuration file, no source code changes required). Socat and Filezilla did not require any
annotation. Overall, integrators thus do not need to know application internals, With this
one exception, no deep knowledge of the application internals was necessary, CALI inferred
all other information automatically.

For example, we show the full configuration file of ImageMagick convert in Figure 7.8.
The contained Ghostscript library is limited to access only the folder where the input and
output files reside, /tmp (where ImageMagick might put additional files), and its installation
directory (where for example color profiles are located). The network is not available in
this compartment. User and PID namespacing is enabled by default. The selectors describe

144

7.8. EVALUATION

which code belongs in which context: At link time, ImageMagick consists of all .o files
(and some static libraries). Not in a specific context (not named in any selector) is the
standard library (libc); it can be called from both contexts and always executes in the calling
context. Lines 7–9 mark the custom heap implementation as required in exceptional cases.
Our prototype is able to auto-generate most parts of the necessary configuration file, for
example, the selectors. Users must only specify permissions (the green highlighted lines)
and possible custom heaps (the red lines).

1 ---

2 contexts:

3 main:

4 selectors:

5 - "*.o"

6 - "libMagick*.a"

7 function_behavior:

8 AcquireMagickMemory: malloc

9 RelinquishMagickMemory: free

10 library:

11 selectors: # a list of libraries

12 - "libgs.so"

13 permissions:

14 readonly:

15 - "/var/lib/ghostscript"

16 - "/dev/urandom"

17 readwrite:

18 # folder containing input/output files in argv

19 - "$ARGV_FOLDERS"

20 - "/tmp"

21 network: none

Figure 7.8: Configuration file for ImageMagick convert. The permissions given by the
user are highlighted in green. The red lines specify a custom heap implementation.

This high degree of automation is a major benefit of CALI, which addresses important
aspects left open by others. To evaluate if this promised automation also holds in practice,
we gave our prototype and documentation to two students: an undergraduate and a grad
student in Computer Science. They were tasked to isolate four programs (dpkg, xz, socat,
Filezilla) without further assistance. We made sure that the students did not know the
program internals (e.g., source code) before handing out the tasks. They correctly isolated
previously unknown programs in ≤ 45 min per program and in about 32 min on average.
That is, after obtaining the source code, they obtained a well-isolated compiled program
in about half an hour. The vast majority of this time was spent on developing and testing
a sound permission set, which can be completely automated [47, 32, 46, 190]. This is a
great improvement compared to RLBox (“a bit over two days” by developers with program
knowledge). Most other related work did not evaluate the necessary human effort.

145

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

socat convert Filezilla
0 s

200 s

400 s

600 s
Compile Time (ref)

Compile Time (Cali)

(+ 12.9%) (+ 23.2%) (+ 35.7%)

Figure 7.9: Compile time without and with Cali.

Table 7.1: Remaining shared memory allocations and the number of specialized func-
tions in the main program.

Program
Shared
Mem.

Mem. Chunks
(shared/all)

Specialized
functions

Increased
code size

ImageMagick 0.078% 28 / 36101 67 / 5395 225 KB (+ 4.7%)
Socat 0.396% 15 / 3787 3 / 748 187 KB (+ 56.2%)
Filezilla 0.255% 48 / 18798 15 / 12348 186 KB (+ 2.8%)

7.8.3 Compilation and Size Overhead

Next, we evaluate the compilation overhead induced by the graph analyses of CALI, as
shown in Figure 7.9 for our three sample applications. We compiled every application ten
times from a clean source directory and measured the median compilation time of a pure
LLVM-based build and a CALI-protected build. CALI adds 12–36% compilation time, usually
just a few seconds, up to a few minutes, even for large projects such as Filezilla. In times
where build servers are common, this overhead does not impede wide deployment.

The size of the protected binaries increases compared to the original version. After
stripping, the protected binaries are around 186 KB to 225 KB larger (see Table 7.1), which
is mainly because of our statically linked IPC library (up to 212 KB). For typical x86 archi-
tectures, a few hundred KB are no issue; in theory, we could also use a shared library.

We conclude that CALI is easily applicable to protect applications, even without detailed
source code knowledge. Binaries produced by CALI do not change behavior and run in every
context the unprotected binary would also run.

7.8.4 Security Evaluation

To assess the degree of security CALI provides, we have to answer two questions: (1) Is
the compartmentalization and its compartment privilege system strong enough? (2) Under
which circumstances can an attacker escape from a compartment?

The compartment privilege system is strong enough to prevent any influences of an
attacker beyond the runtime of the program. The PID namespace ensures that all processes

146

7.8. EVALUATION

spawned by the library compartment are killed on program termination. Containment
policies can usually either revoke file system access of libraries or confine access to subparts
only. Hence, neither sensitive data can be accessed nor persistent backdoors can be installed.
Furthermore, attackers can only leak data if network operations are allowed. We enforce
strict security policies on the isolated libraries:

Ghostscript inside ImageMagick gets write access only to the folder with the input/output
files (as named in the command line parameters) and the temporary directory /tmp (see
Section 7.8.2). Additional read-only access is granted on its installation directory and
/dev/urandom. No network communication is permitted. This isolation is quite close
to the minimal required privileges: an attacker exploiting a library vulnerability can only
tamper with files in the same folder as the output file. Our permission configuration file is
shown in Figure 7.8.

OpenSSL inside socat can only read files given in command line parameters (e.g., cer-
tificate and private key) and the randomness devices. Nothing is writeable: an attacker
exploiting OpenSSL cannot trigger any permanent changes on the system. We can even
block general network access for this library because the program passes the file descriptor
of an open socket to the library. The provided socket is the only network communication
possibility of OpenSSL. Attackers can still access the certificate’s private key (which the
library must know in order to work) but have only very limited possibilities to leak it.

SQLite inside Filezilla can only access files in Filezilla’s configuration folder. Network
access can even be fully forbidden. An attacker can only mess with Filezilla’s config but
cannot do any further harm. The threat surface is thus minimal.

Attackers are further tightly bounded when they aim to leak information from shared
memory or modify critical data structures in shared memory. Table 7.1 shows that CALI

greatly reduces the number of memory allocations in the program that actually produce
memory shared between the program and the library. Only a tiny fraction (< 0.4%) of all
memory allocations produce chunks that are accessible to the library. Most of these memory
allocations are essential to keep the program’s functionality; thus, the information would
have been passed to the library anyway.

A limitation of our fully-automatic approach is the remaining risk of cross-compartment
exploits: The exposed interface between privileged and unprivileged contexts might be vul-
nerable, e.g., if an attacker could store invalid values in shared memory or trigger callbacks
with unexpected parameters or in an unexpected order. RLBox [124] approached this risk
by proposing a restrictive C++ type system and requiring the developer to rewrite his source
code to adjust to this type system. While protecting from cross-compartment exploits, this
tedious work (multiple days) impedes usability, especially if users (e.g., repository maintain-
ers) are largely unfamiliar with the source code. In contrast, CALI provides fewer security
guarantees against cross-compartment exploits. Having said this, CALI already handles code
pointers like callbacks as function arguments or return values (see Section 7.6.4), such that
they cannot be abused to invoke arbitrary code execution in the privileged process. Fur-
thermore, CALI detects and warns about function pointers in shared memory. All evaluated
programs (including programs from popularity contest) either have no function pointers
in shared memory, or these pointers are only called from within the unprivileged context—
which is uncritical. In general, CFI can be used to harden against cross-compartment exploits,
including a viable protection for C++ objects [193, 194]. CALI also provides two optional

147

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

PNG
from JPG to

PS
|

PDF | JPG
from PNG to

PS
|

PDF | JPG
from PS to

PNG
|

PDF | JPG
from PDF to

PNG PS

0 s

1 s

2 s

3 s

4 s

5 s

6 s ImageMagick (ref)

ImageMagick (Cali)

-0.48% 2.07% -0.34% 0.12% 0.82% -0.24% 1.83% 2.20% 1.19% 0.08% 0.42% 0.19%

(a) Runtime of ImageMagick convert. The isolated libraries are called to
read or write PS/PDF files, conversions between JPG and PNG are affected
only by startup overhead.

1 MB 5 MB 10 50 100 500 1000
0

20

40

60

80

100

120

B
a
n
d
w
id
th

in
M
B
/s

Socat (ref)

Socat (Cali)

(-6.5%) (-2.7%) (-1.9%) (0.0%) (0.2%) (0.1%) (0.1%)

(b) socat file transfer bandwidth over TLS
(note: higher is better in this case)

0 entries 1 10 100 1000
0.0 s

0.2 s

0.4 s

0.6 s

0.8 s

1.0 s Filezilla (ref)

Filezilla (Cali)

(+ 2.5%) (+ 2.1%) (+ 2.7%) (+ 5.5%) (+ 29.6%)

(c) Filezilla startup time, depending on
transfer queue size. Dotted lines are no-
ticeable delay (100ms) and interrupting
delay (1000ms).

Figure 7.10: Performance impact of Cali.

protections against double-fetch bugs (see Section 7.6.6). Other work [62, 152, 192, 194]
already suggests protections against different other similar bugs, which are compatible on
our approach. We thus see CALI in the sweet spot between usability/automation and security
guarantees. CALI already minimizes the risked interface (< 0.4% of memory is shared) and
detects critical function pointers in the shared area—other improvements are left open to
future work.

148

7.8. EVALUATION

7.8.5 Performance Evaluation

Wider adoptions of a protection can only happen when its runtime overhead is negligi-
ble (typically below 5%–10% [164, 100]). We evaluate if CALI is fast enough for wider
deployment.

All experiments were performed on an Intel Core i7-9700K CPU (8×3.6 GHz, no hyper-
threading) with 64 GB of RAM. We use Ubuntu version 18.04 LTS with an unmodified Linux
5.4 kernel. Our compiler toolchain is clang/LLVM version 7. To avoid any influences on
the benchmark, we set the CPU governor to “performance” and disable “turbo” CPU power
states as well as ASLR. We force each program to use only one CPU core to prevent any
unfair advantage our protected version might get; we use cpuset to ensure this CPU core is
reserved exclusively for the program. If not stated, the standard deviation of the results was
below 1% of the median.

Microbenchmarks: We attribute the runtime overhead that CALI introduces mainly
to two factors. First, at startup, the protected program needs to set up additional data
structures and start the library compartment process. Second, every call to the library forces
the kernel to switch between the two processes twice (call and return). We measured these
two overheads in a minimal program as a microbenchmark. Initialization at startup takes
2.2 ms on average. In these micro benchmarks, our compartment handles around 323,000
calls/second (3.1 µs overhead per library call). With the mprotect-based concurrency
protection enabled, our overhead is 8 µs per library call.

Application benchmarks: We now evaluate the runtime overhead of CALI on our real-
world applications. We measure the runtime of ImageMagick convert while converting
four different image formats into each other. We chose JPG, PNG, PDF, and PostScript. As
input files, we picked a camera picture (JPG), a website background (PNG), a test pattern
(PostScript), and a sample PDF from W3C. When converting to pixel-based formats, we
use a density of 300 dpi, a default value for printing. We run each conversion 100 times.
Figure 7.10a shows the median conversion time. The runtime overhead is between 0% and
2.2% (geometric mean: 0.65%).

Next, we measure the network throughput of an encrypted TLS connection using socat,
where OpenSSL is put in a compartment. Every packet is encrypted or decrypted in the
isolated library, while the data is processed by the main program (resulting in ∼42,000
library calls per second). We transmit files with varying sizes over a common 1 Gbps local
network. The TLS server answers with the content it receives (echo), so we test with
symmetric up- and downstream. We run each experiment 100 times and take the median
throughput, i.e., file size divided by transmission time. Our network throughput showed a
higher standard deviation (around 3%) for short connections (files up to 10 MB). To avoid
imprecise values, we repeated the affected experiments 1000 times. Figure 7.10b shows
the achieved throughput. For files up to 10 MB, the connection cannot be fully saturated,
neither with protected nor unprotected socat. The reasons are the TLS handshake, the
TCP slow start algorithm, and application startup time. CALI adds ∼2 ms to the application
startup, resulting in a throughput degradation of 1.9% to 6.5%. For large files or long-
lived connections that face the initialization overhead just once, CALI’s impact on network
throughput is almost negligible (less than 0.1%).

Finally, we benchmark the impact of CALI on Filezilla, the only GUI program in our
test setting. Filezilla uses SQLite to manage the download queue and server settings. The

149

CHAPTER 7. CALI: COMPILER-ASSISTED LIBRARY ISOLATION

runtime performance overhead at startup is highest since every single entry in the database is
read. This leads to many library invocations, as SQLite induces one library call per table row
and, for each row, one call per cell. We enqueue 0–1000 downloads in Filezilla and measure
the startup time until the main window is fully displayed (CMainFrame::OnActivate).
We repeat each experiment 500 times, as Filezilla’s startup time shows a higher standard
deviation (up to 20 ms). Figure 7.10c shows the median start times. Filezilla takes around
256 ms to start, and CALI adds 5 ms–80 ms depending on the queue size. With typical queue
sizes up to 100 entries, the overhead is ≈3.2%. For an empty queue, the overhead is slightly
higher, mainly due to the fact that there is less file I/O, and thus the initialization overhead
becomes more prominent.

The user experience does not change, as the Filezilla startup response delay is already
above 100 ms (lower dotted horizontal line) and thus noticeable, and even the protected
case is way below the time that interrupts workflows (1000 ms, upper dotted horizontal
line) according to the literature [107, 127].

While it is common to choose a standardized benchmark like SPEC CPU [161, 160] to
allow for comparative evaluations, we cannot do so in our case. No program in the CPU
benchmark uses third-party libraries.

7.9 Conclusion

CALI protects applications from vulnerabilities and backdoors in third-party libraries. CALI

does not assume a priori expert knowledge of the program’s source code and does not require
source code changes. Its compartmentalization can be easily integrated into common build
processes. Programs compiled with CALI are fully portable and do not require additional
CPU features, OS modifications or superuser privileges. Isolated libraries can only access
small, non-sensitive portions of the main program’s memory (up to 0.4% in our examples),
and only selective system access permissions remain.

Next to its primary use case, CALI can also separate different components within a
program. Developers can use this feature to split their application into least-privileged
components—fully transparently by recompiling their program with CALI. In fact, we
support more source code languages than just C and C++. The underlying LLVM bytecode
is independent of the source code language, and programs in other languages with LLVM
frontend (Delphi, Rust, Go, Swift, and many more) could be separated by CALI with minimal
adaptations.

150

7.9. CONCLUSION

Availability

Our prototype has been released as Open-Source Software; it is available on Github:
https://github.com/cali-library-isolation/Cali-library-isolation

151

https://github.com/cali-library-isolation/Cali-library-isolation

8
Conclusion

153

Memory corruption attacks on C/C++ programs have been an unsolved problem for a
long time. Although researchers proposed many countermeasures, attackers can still divert
the control flow of applications and execute arbitrary code. With arbitrary code execution,
attackers can compromise the vulnerable application’s whole system with the permissions
of the user that ran the application.

This thesis proposes practicable countermeasures against this problem that protect
applications and systems against these threats. In particular, we answered two research
questions:

(RQ1) How can we prevent the escalation from memory corruption to attacks on

an application’s control flow? Section 3.6 detailed control flow protections further. To
preserve the integrity of an application’s control flow, we must protect backward control
flow and forward control flow, which is different for C and C++ applications. We analyzed
existing backward CFI schemes in Chapter 4. After reviewing stack canaries, shadow stacks,
and return address encryption on modern systems, we found that existing protections are
applicable for real-world deployment. In particular, we can suggest further adoption of
shadow stacks, which have a mean overhead of only 2.7%—much lower than expected. We
also proposed two new forward CFI schemes. NOVT from Chapter 5 protects C++ virtual
dispatch with negligible to negative overhead. TYPRO from Chapter 6 protects C indirect
calls with negligible overhead, even supporting dynamic linking. If combined, these two
solutions cover forward CFI in C/C++ programs completely. If we combine both solutions
with shadow stacks and the already existing RELRO mode (see Section 3.4), we can produce
applications that cover the integrity of each control flow. The only remaining exception is
inline assembly, which is so rare that it can be protected manually. In Chapter 6 and related
work [S1], we already did this for musl libc.

All presented schemes are compatible with existing source code. Developers can apply
the protecting compilers without any change to their C/C++ application, as long as it is
already compatible with Clang. While implemented for Linux only, the methodologies are
not dependent on a specific operating system or CPU architecture. The performance impact
of our protections is also negligible—with the proposed protections, developers can get
more secure software without drawbacks or manual effort. We expect this attractive offer
will get more developers to use modern CFI systems and deliver more secure applications.

However, there might be situations where applying all tools is not possible, mainly when
third-party libraries are involved. The tools mentioned above cannot recompile a protected
version if no source code is available, just-in-time compilers can introduce unprotected code,
and malicious code in supply-chain attacks might be designed to circumvent CFI’s protection.
Therefore, we asked the second research question:

(RQ2) How can we isolate application memory and underlying system from attack-

ers that exploit a code execution vulnerability in a library? Program compartmentaliza-
tion (see Section 3.7) is a known defense that prevents system corruption in case of attacks.
However, this concept has been hard to apply because it has required manual effort and
more profound knowledge of both application and isolation mechanisms. We solve this and
other problems with CALI in Chapter 7. We provide automatic library isolation that requires
minimal developer effort. Developers only specify the permissions that a library should
have; CALI infers everything else. In particular, no source code knowledge or modification is
necessary. While not as automated as our other solutions, we showed in our experiments

155

CHAPTER 8. CONCLUSION

from Section 7.8.2 that even unfamiliar developers can quickly isolate libraries with a sound
permission configuration. While CALI’s performance overhead depends on the frequency of
library interaction, we have shown that it is acceptable in many situations in the real world.

There is a remaining threat surface that compartmentalization cannot solve in general.
Some libraries might require access to parts of the system. These parts might contain
sensitive data. In rare cases, corruption of these parts is enough to compromise the user
account, for example, the .bashrc file. Compartmentalization, in general, cannot differ if
the library accesses such files on its behalf or because an attacker exploited it. Thus, we
cannot prevent the misuse of existing library privileges. This issue is not CALI-specific—all
library compartmentalization solutions face this problem. Further research in this direction
is required: for example, solutions could drop some privileges after startup when they are
not needed anymore.

To summarize, we have presented three tools (NOVT, TYPRO, and CALI) that protect
C/C++ programs against different threats originating from memory corruption vulnera-
bilities. All tools are compatible with existing software, easy to apply for developers, and
have a little to negligible performance impact. If extended with the existing, re-evaluated
protections, they offer a strong level of protection for legacy applications. We released all
tools as free and open-source software ready to use.

Further Research Directions

More engineering effort can improve the quality and the experience for developers that use
our solutions in practice. First, NOVT and TYPRO could be combined into a single tool with
a shared analysis. Switchpoline [S1] solves parts of this issue already. Next, one could add
compatibility with unprotected code, making step-by-step adoption possible. While both
NOVT and TYPRO already have some level of compatibility, if the developer configures it,
this could be automated and extended. Finally, continuous maintenance is necessary to
keep the tools up to date with compiler development.

Future compilers could combine CFI schemes with memory safety schemes. For example,
a sound static analysis can check if a piece of C/C++ code is memory-safe or potentially
vulnerable. In the next step, additional protection, such as CFI or isolation, could only be
applied to potentially unsafe parts. Furthermore, compilers could use analysis techniques
such as symbolic execution to determine conditions for a program’s memory safety. At run-
time, one could determine if an input meets these conditions: if it is safe, a fast, unprotected
version of the program executes, otherwise, a hardened but slower version executes.

Further research on library isolation could help automate CALI’s configuration step. For
example, new tools could automatically infer the minimal necessary permissions of a piece of
code, which in turn could be used to determine optimal isolation bounds and compartment
configurations. More research on cross-compartment exploits is necessary to increase the
security level of library isolation. For example, an automated version of RLBox’s [124]
interface sanitation could be invented.

Library isolation could be improved using artificial intelligence. AI systems could monitor
the system access patterns of isolated code and detect and block unusual or suspicious
accesses. Isolation could improve AI precision by ensuring that system accesses of different
modules are distinguishable. While one can hardly guarantee stability in such a context, AI

156

could solve the issue of misused library privileges.
The presented solutions protect C and C++ applications only. Other memory-unsafe

languages like Pascal and Fortran have similar problems that might be addressed. Even if
a C/C++ application is built of protected code only, it can contain just-in-time compilers
that produce unsafe and unprotected code at runtime. Many languages and ecosystems
use just-in-time compilers, e.g., PHP, JavaScript, WebAssembly, and the JVM. While some
protections already exist [130, 207], future research is necessary to provide a similar level
of protection for just-in-time compiled code. Nevertheless, the interface between native
and runtime-generated code needs protection because it is based on potentially dangerous
indirect branches. More research on these topics will close the gap further toward fully
protected legacy applications.

Finally, memory-safe languages like Rust can solve the underlying issue of all attacks
presented in this thesis: memory corruption vulnerabilities. Further research could provide
automated tools that help developers to adopt memory-safe languages in their projects. For
example, researchers could propose methods that support developers when rewriting or
extending existing applications, lowering the cost of memory-safe programming. In particu-
lar the interaction between Rust and legacy C/C++ code might need additional protection:
researchers could find methods to ensure that this interaction does not break Rust’s security
guarantees. Also, researchers could isolate unverified C code in Rust applications similar to
CALI. These methods can support incremental deployment of Rust in legacy applications,
slowly replacing memory-unsafe code.

Finally, when memory-safe languages have taken the place that C and C++ have today,
then memory corruption vulnerabilities and code execution attacks might finally vanish.
Until then, this thesis provides viable mitigations.

157

Bibliography

Author’s Papers for this Thesis

[P1] M. Bauer and C. Rossow. NoVT: Eliminating C++ Virtual Calls to Mitigate Vtable Hijacking.
In: 2021 IEEE European Symposium on Security and Privacy. EuroS&P ’21. Sept. 2021. DOI:
10.1109/EuroSP51992.2021.00049.

[P2] M. Bauer, I. Grishchenko, and C. Rossow. TyPro: Forward CFI for C-Style Indirect Func-
tion Calls Using Type Propagation. In: Proceedings of the 38th Annual Computer Security

Applications Conference. ACSAC ’22. Dec. 2022. DOI: 10.1145/3564625.3564627.

[P3] M. Bauer and C. Rossow. Cali: Compiler Assisted Library Isolation. In: Proceedings of the

2021 ACM Asia Conference on Computer and Communications Security. ASIA CCS ’21. May
2021. DOI: 10.1145/3433210.3453111.

Other Papers of the Author

[S1] M. Bauer, L. Hetterich, C. Rossow, and M. Schwarz. Switchpoline: A Software Mitigation for
Spectre-BTB and Spectre-BHB on ARMv8. In: Proceedings of the 2024 ACM Asia Conference

on Computer and Communications Security. ASIA CCS ’24. 2024.

Other references

[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-Flow Integrity. In: Proceedings of

the 12th ACM Conference on Computer and Communications Security. CCS ’05. 2005. DOI:
10.1145/1102120.1102165.

[2] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro. Preventing Memory Error Exploits
with WIT. In: 2008 IEEE Symposium on Security and Privacy. SP ’08. 2008. DOI: 10.1109/
SP.2008.30.

[3] P. Akritidis, M. Costa, M. Castro, and S. Hand. Baggy Bounds Checking: An Efficient and
Backwards-Compatible Defense against out-of-Bounds Errors. In: 18th USENIX Security

Symposium. SEC ’09. 2009.

[4] P. Akritidis, Niometrics, Singapore, and U. of Cambridge. Cling: A Memory Allocator to
Mitigate Dangling Pointers. In: 19th USENIX Security Symposium. SEC ’10. Aug. 2010.

[5] B. Allombert. Debian Popularity Contest. 2020. URL: https://popcon.debian.org/
stable/by_vote.

[6] N. Almakhdhub, A. Clements, S. Bagchi, and M. Payer. µRAI: Securing Embedded Systems
with Return Address Integrity. In: 27th Annual Network and Distributed System Security

Symposium. NDSS ’20. Jan. 2020. DOI: 10.14722/ndss.2020.24016.

159

https://doi.org/10.1109/EuroSP51992.2021.00049
https://doi.org/10.1145/3564625.3564627
https://doi.org/10.1145/3433210.3453111
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1109/SP.2008.30
https://doi.org/10.1109/SP.2008.30
https://popcon.debian.org/stable/by_vote
https://popcon.debian.org/stable/by_vote
https://doi.org/10.14722/ndss.2020.24016

BIBLIOGRAPHY

[7] arm. Armv8.5-A—Memory Tagging Extension. 2019. URL: https://developer.arm.
com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_

Extension_Whitepaper.pdf.

[8] M. Backes and S. Nürnberger. Oxymoron: Making Fine-Grained Memory Randomization
Practical by Allowing Code Sharing. In: 23rd USENIX Security Symposium. SEC ’14. Aug.
2014.

[9] S. Bhatkar and R. Sekar. Data Space Randomization. In: Proceedings of the 5th International

Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Ed. by
D. Zamboni. DIMVA ’08. 2008. DOI: 10.1007/978-3-540-70542-0_1.

[10] D. Bigelow, T. Hobson, R. Rudd, W. Streilein, and H. Okhravi. Timely Rerandomization
for Mitigating Memory Disclosures. In: Proceedings of the 22nd ACM SIGSAC Conference

on Computer and Communications Security. CCS ’15. 2015. DOI: 10.1145/2810103.
2813691.

[11] A. Bittau, P. Marchenko, M. Handley, and B. Karp. Wedge: Splitting Applications into
Reduced-privilege Compartments. In: 5th USENIX Symposium on Networked Systems Design

and Implementation. NSDI ’08. 2008.

[12] N. Bjørner, A. Gurfinkel, K. McMillan, and A. Rybalchenko. Horn clause solvers for program
verification. In: Fields of Logic and Computation II. Springer, 2015. DOI: 10.1007/978-3-
319-23534-9.

[13] D. Bounov, R. G. Kici, and S. Lerner. Protecting C++ Dynamic Dispatch Through VTable
Interleaving. In: 23rd Annual Network and Distributed System Security Symposium. NDSS
’16. 2016. DOI: 10.14722/ndss.2016.23421.

[14] D. Brumley and D. Song. Privtrans: Automatically Partitioning Programs for Privilege
Separation. In: 13th USENIX Security Symposium. SEC ’04. 2004.

[15] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When Good Instructions Go Bad:
Generalizing Return-Oriented Programming to RISC. In: Proceedings of the 15th ACM Confer-

ence on Computer and Communications Security. CCS ’08. 2008. DOI: 10.1145/1455770.
1455776.

[16] N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and M. Payer. Control-Flow
Integrity: Precision, Security, and Performance. ACM Computing Surveys (Apr. 2017). DOI:
10.1145/3054924.

[17] N. Burow, D. McKee, S. A. Carr, and M. Payer. CFIXX: Object Type Integrity for C++. In:
25th Annual Network and Distributed System Security Symposium. NDSS ’18. 2018. DOI:
10.14722/ndss.2018.23279.

[18] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-Flow Bending: On the
Effectiveness of Control-Flow Integrity. In: 24th USENIX Security Symposium. SEC ’15. Aug.
2015.

[19] N. Carlini and D. Wagner. ROP is Still Dangerous: Breaking Modern Defenses. In: 23rd

USENIX Security Symposium. SEC ’14. 2014.

[20] Carnegie Mellon University. Ghostscript contains multiple -dSAFER sandbox bypass vulnera-

bilities. 2018. URL: https://www.kb.cert.org/vuls/id/332928/.

[21] M. Castro, M. Costa, and T. Harris. Securing Software by Enforcing Data-Flow Integrity. In:
7th Symposium on Operating Systems Design and Implementation. OSDI ’06. 2006.

[22] J. Chen and J. Revels. Robust benchmarking in noisy environments (2016). arXiv: 1608.
04295.

160

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://doi.org/10.1007/978-3-540-70542-0_1
https://doi.org/10.1145/2810103.2813691
https://doi.org/10.1145/2810103.2813691
https://doi.org/10.1007/978-3-319-23534-9
https://doi.org/10.1007/978-3-319-23534-9
https://doi.org/10.14722/ndss.2016.23421
https://doi.org/10.1145/1455770.1455776
https://doi.org/10.1145/1455770.1455776
https://doi.org/10.1145/3054924
https://doi.org/10.14722/ndss.2018.23279
https://www.kb.cert.org/vuls/id/332928/
https://arxiv.org/abs/1608.04295
https://arxiv.org/abs/1608.04295

OTHER REFERENCES

[23] Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu. Shreds: Fine-Grained Execution Units with
Private Memory. In: 2016 IEEE Symposium on Security and Privacy. SP ’16. May 2016. DOI:
10.1109/SP.2016.12.

[24] CodeSourcery, Compaq, EDG, HP, IBM, Intel, Red Hat, and SGI. Itanium C++ ABI. 2021.
URL: https://itanium-cxx-abi.github.io/cxx-abi/abi.html.

[25] J. Corbet. Using Rust for kernel development. Sept. 2021. URL: https://lwn.net/
Articles/870555/.

[26] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. PointGuard: Protecting Pointers from Buffer
Overflow Vulnerabilities. In: 12th USENIX Security Symposium. SEC ’03. Aug. 2003.

[27] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
and Q. Zhang. StackGuard: Automatic Adaptive Detection and Prevention of Buffer-overflow
Attacks. In: 7th USENIX Security Symposium. SEC ’98. 1998.

[28] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi, A.-R. Sadeghi, T.
Holz, B. De Sutter, and M. Franz. It’s a TRaP: Table Randomization and Protection against
Function-Reuse Attacks. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security. CCS ’15. 2015. DOI: 10.1145/2810103.2813682.

[29] T. H. Dang, P. Maniatis, and D. Wagner. The Performance Cost of Shadow Stacks and
Stack Canaries. In: Proceedings of the 10th ACM Symposium on Information, Computer and

Communications Security. ASIA CCS ’15. 2015. DOI: 10.1145/2714576.2714635.

[30] L. V. Davi, A. Dmitrienko, S. Nürnberger, and A.-R. Sadeghi. Gadge Me If You Can: Secure
and Efficient Ad-Hoc Instruction-Level Randomization for X86 and ARM. In: Proceedings of

the 8th ACM SIGSAC Symposium on Information, Computer and Communications Security.
ASIA CCS ’13. 2013. DOI: 10.1145/2484313.2484351.

[31] J. Dean, D. Grove, and C. Chambers. Optimization of Object-Oriented Programs using Static
Class Hierarchy Analysis. In: 9th European Conference on Object-Oriented Programming.
ECOOP ’95. Aug. 1995.

[32] N. DeMarinis, K. Williams-King, D. Jin, R. Fonseca, and V. P. Kemerlis. sysfilter: Automated
System Call Filtering for Commodity Software. In: 23rd International Symposium on Research

in Attacks, Intrusions and Defenses. RAID ’20. Oct. 2020.

[33] D. Dhurjati and V. Adve. Backwards-Compatible Array Bounds Checking for C with Very
Low Overhead. In: Proceedings of the 28th International Conference on Software Engineering.
ICSE ’06. 2006. DOI: 10.1145/1134285.1134309.

[34] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and W. Lee. Efficient Protection of Path-Sensitive
Control Security. In: 26th USENIX Security Symposium. SEC ’17. Aug. 2017.

[35] J. Edge. "Strong" stack protection for GCC [LWN.net]. 2014. URL: https://lwn.net/
Articles/584225/.

[36] M. Elsabagh, D. Fleck, and A. Stavrou. Strict Virtual Call Integrity Checking for C++ Binaries.
In: Proceedings of the 2017 ACM Asia Conference on Computer and Communications Security.
ASIA CCS ’17. 2017. DOI: 10.1145/3052973.3052976.

[37] H. Etoh and K. Yoda. Protecting from stack smashing attacks (Jan. 2000).

[38] I. Evans, F. Long, U. Otgonbaatar, H. Shrobe, M. Rinard, H. Okhravi, and S. Sidiroglou-
Douskos. Control Jujutsu: On the Weaknesses of Fine-Grained Control Flow Integrity. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
CCS ’15. 2015. DOI: 10.1145/2810103.2813646.

161

https://doi.org/10.1109/SP.2016.12
https://itanium-cxx-abi.github.io/cxx-abi/abi.html
https://lwn.net/Articles/870555/
https://lwn.net/Articles/870555/
https://doi.org/10.1145/2810103.2813682
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.1145/2484313.2484351
https://doi.org/10.1145/1134285.1134309
https://lwn.net/Articles/584225/
https://lwn.net/Articles/584225/
https://doi.org/10.1145/3052973.3052976
https://doi.org/10.1145/2810103.2813646

BIBLIOGRAPHY

[39] X. Fan, Y. Sui, X. Liao, and J. Xue. Boosting the Precision of Virtual Call Integrity Protection
with Partial Pointer Analysis for C++. In: Proceedings of the 26th ACM SIGSOFT International

Symposium on Software Testing and Analysis. ISSTA ’17. 2017. DOI: 10.1145/3092703.
3092729.

[40] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program Dependence Graph and Its Use
in Optimization. ACM Transactions on Programming Languages and Systems 9, 3 (July 1987).
DOI: 10.1145/24039.24041.

[41] A. Flores-Montoya and E. Schulte. Datalog Disassembly. In: 29th USENIX Security Symposium.
SEC ’20. Aug. 2020.

[42] Free Software Foundation. GNU Lesser General Public License (LGPL). Aug. 2002. URL:
http://www.gnu.org/licenses/lgpl.html.

[43] M. Friedl, N. Provos, T. de Raadt, K. Steves, D. Miller, D. Tucker, J. McIntyre, T. Rice, and
B. Lindstrom. OpenSSH Release 5.9. Sept. 2011. URL: https://www.openssh.com/
txt/release-5.9.

[44] R. Gawlik and T. Holz. Towards Automated Integrity Protection of C++ Virtual Function
Tables in Binary Programs. In: Proceedings of the 30th Annual Computer Security Applications

Conference. ACSAC ’14. 2014. DOI: 10.1145/2664243.2664249.

[45] X. Ge, W. Cui, and T. Jaeger. GRIFFIN: Guarding Control Flows Using Intel Processor Trace.
In: ACM SIGPLAN Notices. ASPLOS ’17. 2017. DOI: 10.1145/3037697.3037716.

[46] S. Ghavamnia, T. Palit, A. Benameur, and M. Polychronakis. Confine: Automated System Call
Policy Generation for Container Attack Surface Reduction. In: 23rd International Symposium

on Research in Attacks, Intrusions and Defenses. RAID ’20. Oct. 2020.

[47] S. Ghavamnia, T. Palit, S. Mishra, and M. Polychronakis. Temporal System Call Specialization
for Attack Surface Reduction. In: 29th USENIX Security Symposium. SEC ’20. Aug. 2020.

[48] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum. Enhanced Operating System Security
Through Efficient and Fine-grained Address Space Randomization. In: 21st USENIX Security

Symposium. SEC ’12. Aug. 2012.

[49] Google. google/sandboxed-api. Aug. 2019. URL: https://github.com/google/sand
boxed-api.

[50] Google. nsjail. 2021. URL: https://nsjail.dev/.

[51] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin. PT-CFI: Transparent Backward-Edge Control Flow
Violation Detection Using Intel Processor Trace. In: Proceedings of the 7th ACM on Conference

on Data and Application Security and Privacy. CODASPY ’17. 2017. DOI: 10.1145/3029806.
3029830.

[52] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang. Protecting Private Keys Against Memory
Disclosure Attacks Using Hardware Transactional Memory. In: 2015 IEEE Symposium on

Security and Privacy. SP ’15. 2015. DOI: 10.1109/SP.2015.8.

[53] K. Gudka, R. N. Watson, J. Anderson, D. Chisnall, B. Davis, B. Laurie, I. Marinos, P. G.
Neumann, and A. Richardson. Clean Application Compartmentalization with SOAAP. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
CCS ’15. 2015. DOI: 10.1145/2810103.2813611.

[54] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman, D. Gohman, L. Wagner, A. Zakai,
and J. Bastien. Bringing the Web up to Speed with WebAssembly. In: Proceedings of the 38th

ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI ’17.
2017. DOI: 10.1145/3062341.3062363.

162

https://doi.org/10.1145/3092703.3092729
https://doi.org/10.1145/3092703.3092729
https://doi.org/10.1145/24039.24041
http://www.gnu.org/licenses/lgpl.html
https://www.openssh.com/txt/release-5.9
https://www.openssh.com/txt/release-5.9
https://doi.org/10.1145/2664243.2664249
https://doi.org/10.1145/3037697.3037716
https://github.com/google/sandboxed-api
https://github.com/google/sandboxed-api
https://nsjail.dev/
https://doi.org/10.1145/3029806.3029830
https://doi.org/10.1145/3029806.3029830
https://doi.org/10.1109/SP.2015.8
https://doi.org/10.1145/2810103.2813611
https://doi.org/10.1145/3062341.3062363

OTHER REFERENCES

[55] I. Haller, E. Göktaş, E. Athanasopoulos, G. Portokalidis, and H. Bos. ShrinkWrap: VTable Pro-
tection without Loose Ends. In: Proceedings of the 31st Annual Computer Security Applications

Conference. ACSAC ’15. 2015. DOI: 10.1145/2818000.2818025.

[56] HardenedBSD. HardenedBSD - Introducing CFI. 2022. URL: https://hardenedbsd.
org/article/shawn-webb/2017-03-02/introducing-cfi.

[57] G. Heiser. Gernot’s List of Systems Benchmarking Crimes. 2010. URL: https://www.cse.
unsw.edu.au/~gernot/benchmarking-crimes.html.

[58] J. L. Henning. SPEC CPU2006 Benchmark Descriptions. SIGARCH Computer Architecture

News 34, 4 (Sept. 2006). DOI: 10.1145/1186736.1186737.

[59] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. ILR: Where’d My Gadgets
Go? In: 2012 IEEE Symposium on Security and Privacy. SP ’12. 2012. DOI: 10.1109/SP.
2012.39.

[60] A. Horn. On sentences which are true of direct unions of algebras. The Journal of Symbolic

Logic 16, 1 (1951). DOI: 10.2307/2266412.

[61] T. C.-H. Hsu, K. Hoffman, P. Eugster, and M. Payer. Enforcing Least Privilege Memory
Views for Multithreaded Applications. In: Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security. CCS ’16. 2016. DOI: 10.1145/2976749.
2978327.

[62] H. Hu, Z. L. Chua, Z. Liang, and P. Saxena. Identifying Arbitrary Memory Access Vulnerabil-
ities in Privilege-Separated Software. In: Computer Security – ESORICS 2015. 2015. DOI:
10.1007/978-3-319-24177-7_16.

[63] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim, and W. Lee. Enforcing
Unique Code Target Property for Control-Flow Integrity. In: Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security. CCS ’18. 2018. DOI: 10.
1145/3243734.3243797.

[64] X. Hu and H. Yin. vfGuard: Strict Protection for Virtual Function Calls in COTS C++ Binaries.
In: 22nd Annual Network and Distributed System Security Symposium. NDSS ’15. Jan. 2015.
DOI: 10.14722/ndss.2015.23297.

[65] J. Huang, O. Schranz, S. Bugiel, and M. Backes. The ART of App Compartmentalization:
Compiler-based Library Privilege Separation on Stock Android. In: Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security. CCS ’17. 2017. DOI:
10.1145/3133956.3134064.

[66] Intel. Intel® Architecture Instruction Set Extensions and Future Features. May 2021. URL:
https://www.intel.com/content/www/us/en/develop/download/intel-

architecture-instruction-set-extensions-programming-reference.h

tml.

[67] ISO. ISO/IEC 9899:2011 Information technology — Programming languages — C. Interna-
tional Organization for Standardization, Geneva, Switzerland, Dec. 2011. URL: https:
//www.iso.org/standard/57853.html.

[68] ISO. ISO/IEC 14882:2020: Programming languages — C++. International Organization
for Standardization, Geneva, Switzerland, Dec. 2020. URL: https://www.iso.org/
standard/79358.html.

[69] D. Jang, Z. Tatlock, and S. Lerner. SafeDispatch: Securing C++ Virtual Calls from Memory
Corruption Attacks. In: 21st Annual Network and Distributed System Security Symposium.
NDSS ’14. 2014. DOI: 10.14722/ndss.2014.23287.

163

https://doi.org/10.1145/2818000.2818025
https://hardenedbsd.org/article/shawn-webb/2017-03-02/introducing-cfi
https://hardenedbsd.org/article/shawn-webb/2017-03-02/introducing-cfi
https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html
https://www.cse.unsw.edu.au/~gernot/benchmarking-crimes.html
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1109/SP.2012.39
https://doi.org/10.1109/SP.2012.39
https://doi.org/10.2307/2266412
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1145/2976749.2978327
https://doi.org/10.1007/978-3-319-24177-7_16
https://doi.org/10.1145/3243734.3243797
https://doi.org/10.1145/3243734.3243797
https://doi.org/10.14722/ndss.2015.23297
https://doi.org/10.1145/3133956.3134064
https://www.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-extensions-programming-reference.html
https://www.iso.org/standard/57853.html
https://www.iso.org/standard/57853.html
https://www.iso.org/standard/79358.html
https://www.iso.org/standard/79358.html
https://doi.org/10.14722/ndss.2014.23287

BIBLIOGRAPHY

[70] T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang. Cyclone: A Safe Dialect
of C. In: 2002 USENIX Annual Technical Conference. ATC ’02. June 2002.

[71] H. Jordan, B. Scholz, and P. Subotić. Soufflé: On Synthesis of Program Analyzers. In:
Computer Aided Verification. Ed. by S. Chaudhuri and A. Farzan. CAV ’16. 2016.

[72] P. Kehrer. Memory Unsafety in Apple’s Operating Systems. July 2019. URL: https://langui.
sh/2019/07/23/apple-memory-safety/.

[73] M. Khandaker, A. Naser, W. Liu, Z. Wang, Y. Zhou, and Y. Cheng. Adaptive Call-Site Sensitive
Control Flow Integrity. In: 2019 IEEE European Symposium on Security and Privacy. EuroS&P
’19. 2019. DOI: 10.1109/EuroSP.2019.00017.

[74] M. R. Khandaker, W. Liu, A. Naser, Z. Wang, and J. Yang. Origin-sensitive Control Flow
Integrity. In: 28th USENIX Security Symposium. SEC ’19. Aug. 2019.

[75] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning. Address Space Layout Permutation (ASLP):
Towards Fine-Grained Randomization of Commodity Software. In: Proceedings of the 22nd

Annual Computer Security Applications Conference. ACSAC ’06. 2006. DOI: 10.1109/ACSAC.
2006.9.

[76] D. Kilpatrick. Privman: A Library for Partitioning Applications. In: 2003 USENIX Annual

Technical Conference. ATC ’03. June 2003.

[77] E. van der Kouwe, G. Heiser, D. Andriesse, H. Bos, and C. Giuffrida. SoK: Benchmarking
Flaws in Systems Security. In: 2019 IEEE European Symposium on Security and Privacy.
EuroS&P ’19. 2019. DOI: 10.1109/EuroSP.2019.00031.

[78] E. van der Kouwe, T. Kroes, C. Ouwehand, H. Bos, and C. Giuffrida. Type-After-Type: Practical
and Complete Type-Safe Memory Reuse. In: Proceedings of the 34th Annual Computer Security

Applications Conference. ACSAC ’18. 2018. DOI: 10.1145/3274694.3274705.

[79] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song. Code-Pointer Integrity.
In: 11th USENIX Conference on Operating Systems Design and Implementation. OSDI ’14.
2014.

[80] M. Larabel. Tesseract OCR Benchmark - OpenBenchmarking.org. 2022. URL: https://
openbenchmarking.org/test/system/tesseract-ocr.

[81] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. SoK: Automated Software Diversity. In:
2014 IEEE Symposium on Security and Privacy. SP ’14. 2014. DOI: 10.1109/SP.2014.25.

[82] C. Lattner and V. Adve. Automatic Pool Allocation: Improving Performance by Controlling
Data Structure Layout in the Heap. In: Proceedings of the 2005 ACM SIGPLAN Conference

on Programming Language Design and Implementation. PLDI ’05. 2005. DOI: 10.1145/
1065010.1065027.

[83] H. Lee, C. Song, and B. B. Kang. Lord of the x86 Rings: A Portable User Mode Privilege Sepa-
ration Architecture on x86. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security. CCS ’18. 2018. DOI: 10.1145/3243734.3243748.

[84] V. Lextrait. The Programming Languages Beacon. Sept. 2022. URL: https://www.mentof
acturing.com/Vincent/implementations.html.

[85] Y. Li, M. Wang, C. Zhang, X. Chen, S. Yang, and Y. Liu. Finding Cracks in Shields: On the
Security of Control Flow Integrity Mechanisms. In: Proceedings of the 2020 ACM SIGSAC

Conference on Computer and Communications Security. Ed. by J. Ligatti, X. Ou, J. Katz, and
G. Vigna. CCS ’20. 2020. DOI: 10.1145/3372297.3417867.

[86] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and N. Asokan. PAC it up:
Towards Pointer Integrity using ARM Pointer Authentication. In: 28th USENIX Security

Symposium. SEC ’19. Aug. 2019.

164

https://langui.sh/2019/07/23/apple-memory-safety/
https://langui.sh/2019/07/23/apple-memory-safety/
https://doi.org/10.1109/EuroSP.2019.00017
https://doi.org/10.1109/ACSAC.2006.9
https://doi.org/10.1109/ACSAC.2006.9
https://doi.org/10.1109/EuroSP.2019.00031
https://doi.org/10.1145/3274694.3274705
https://openbenchmarking.org/test/system/tesseract-ocr
https://openbenchmarking.org/test/system/tesseract-ocr
https://doi.org/10.1109/SP.2014.25
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1145/1065010.1065027
https://doi.org/10.1145/3243734.3243748
https://www.mentofacturing.com/Vincent/implementations.html
https://www.mentofacturing.com/Vincent/implementations.html
https://doi.org/10.1145/3372297.3417867

OTHER REFERENCES

[87] Linux Authors. cpuset(7) - Linux manual page. 2020. URL: https://man7.org/linux/
man-pages/man7/cpuset.7.html.

[88] J. Litton, A. Vahldiek-Oberwagner, E. Elnikety, D. Garg, B. Bhattacharjee, and P. Druschel.
Light-weight Contexts: An OS Abstraction for Safety and Performance. In: 12th USENIX

Conference on Operating Systems Design and Implementation. OSDI ’16. 2016.

[89] S. Liu, G. Tan, and T. Jaeger. PtrSplit: Supporting General Pointers in Automatic Program
Partitioning. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-

nications Security. CCS ’17. 2017. DOI: 10.1145/3133956.3134066.

[90] S. Liu, D. Zeng, Y. Huang, F. Capobianco, S. McCamant, T. Jaeger, and G. Tan. Program-
Mandering: Quantitative Privilege Separation. In: Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security. CCS ’19. 2019. DOI: 10.1145/
3319535.3354218.

[91] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia. Thwarting Memory Disclosure with Efficient
Hypervisor-enforced Intra-domain Isolation. In: Proceedings of the 22nd ACM SIGSAC Confer-

ence on Computer and Communications Security. CCS ’15. 2015. DOI: 10.1145/2810103.
2813690.

[92] LLVM Project. LLVM Language Reference Manual - LLVM 10 documentation. 2019. URL:
https://llvm.org/docs/LangRef.html.

[93] LLVM Project. Benchmarking tips - LLVM 15.0.0git documentation. 2022. URL: https:
//llvm.org/docs/Benchmarking.html.

[94] K. Lu, M. Backes, S. Nürnberger, and W. Lee. How to Make ASLR Win the Clone Wars: Run-
time Re-Randomization. In: 23rd Annual Network and Distributed System Security Symposium.
NDSS ’16. Feb. 2016. DOI: 10.14722/ndss.2016.23173.

[95] K. Lu and H. Hu. Where Does It Go? Refining Indirect-Call Targets with Multi-Layer Type
Analysis. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-

tions Security. CCS ’19. 2019. DOI: 10.1145/3319535.3354244.

[96] J. Magee. [cfe-dev] What do the different stack-protector levels protect in Clang? 2017. URL:
https://lists.llvm.org/pipermail/cfe-dev/2017-April/053662.html.

[97] G. Maisuradze, M. Backes, and C. Rossow. What Cannot be Read, Cannot be Leveraged?
Revisiting Assumptions of JIT-ROP Defenses. In: 25th USENIX Security Symposium. SEC ’16.
Aug. 2016.

[98] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières. CCFI: Cryptographically Enforced
Control Flow Integrity. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer

and Communications Security. CCS ’15. 2015. DOI: 10.1145/2810103.2813676.

[99] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. TrustVisor: Efficient
TCB Reduction and Attestation. In: 2010 IEEE Symposium on Security and Privacy. SP ’10.
2010. DOI: 10.1109/SP.2010.17.

[100] Microsoft. The BlueHat prize contest official rules. 2012. URL: https://web.archive.
org/web/20141111145816/http://www.microsoft.com/security/bluehat

prize/rules.aspx.

[101] Microsoft. Control Flow Guard - Win32 apps. 2022. URL: https://docs.microsoft.
com/en-us/windows/win32/secbp/control-flow-guard.

[102] Microsoft. Data Execution Prevention. Feb. 2022. URL: https://docs.microsoft.com/
en-us/windows/win32/memory/data-execution-prevention.

165

https://man7.org/linux/man-pages/man7/cpuset.7.html
https://man7.org/linux/man-pages/man7/cpuset.7.html
https://doi.org/10.1145/3133956.3134066
https://doi.org/10.1145/3319535.3354218
https://doi.org/10.1145/3319535.3354218
https://doi.org/10.1145/2810103.2813690
https://doi.org/10.1145/2810103.2813690
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/Benchmarking.html
https://llvm.org/docs/Benchmarking.html
https://doi.org/10.14722/ndss.2016.23173
https://doi.org/10.1145/3319535.3354244
https://lists.llvm.org/pipermail/cfe-dev/2017-April/053662.html
https://doi.org/10.1145/2810103.2813676
https://doi.org/10.1109/SP.2010.17
https://web.archive.org/web/20141111145816/http://www.microsoft.com/security/bluehatprize/rules.aspx
https://web.archive.org/web/20141111145816/http://www.microsoft.com/security/bluehatprize/rules.aspx
https://web.archive.org/web/20141111145816/http://www.microsoft.com/security/bluehatprize/rules.aspx
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/win32/memory/data-execution-prevention

BIBLIOGRAPHY

[103] Microsoft Corporation. Microsoft Security Intelligence Report vol.16. 2013. URL: http://
download.microsoft.com/download/7/2/b/72b5de91-04f4-42f4-a587-

9d08c55e0734/microsoft_security_intelligence_report_volume_16_

english.pdf.

[104] A. Milanova, A. Rountev, and B. G. Ryder. Precise Call Graphs for C Programs with Func-
tion Pointers. Automated Software Engineering 11 (2004). DOI: 10.1023/B:AUSE.
0000008666.56394.a1.

[105] A. Milburn, E. van der Kouwe, and C. Giuffrida. Mitigating Information Leakage Vulnerabili-
ties with Type-based Data Isolation. In: 2022 IEEE Symposium on Security and Privacy. SP
’22. May 2022. DOI: 10.1109/SP46214.2022.00016.

[106] M. R. Miller and K. D. Johnson. Using virtual table protections to prevent the exploitation
of object corruption vulnerabilities. US 2012/0144480 A1. Microsoft Corporation. Patent
number US 2012/0144480 A1. June 7, 2012.

[107] R. B. Miller. Response Time in Man-computer Conversational Transactions. In: Proceedings

of the December 9-11, 1968, Fall Joint Computer Conference, Part I. AFIPS ’68. 1968. DOI:
10.1145/1476589.1476628.

[108] MITRE Corporation. Artifex Ghostscript : Security Vulnerabilities. 2019. URL: https://www.
cvedetails.com/vulnerability-list/vendor_id-10846/product_id-

36469/Artifex-Ghostscript.html.

[109] MITRE Corporation. CVE-2019-5018. 2019. URL: https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2019-5018.

[110] MITRE Corporation. Openssl : Security Vulnerabilities. 2019. URL: https://www.cvedeta
ils.com/vulnerability-list/vendor_id-217/product_id-383/Openssl-

Openssl.html.

[111] MITRE Corporation. Sqlite : Security Vulnerabilities. 2019. URL: https://www.cvedeta
ils.com/vulnerability-list/vendor_id-9237/Sqlite.html.

[112] V. Mohan, P. Larsen, S. Brunthaler, K. Hamlen, and M. Franz. Opaque Control-Flow Integrity.
In: 22nd Annual Network and Distributed System Security Symposium. NDSS ’15. Feb. 2015.
DOI: 10.14722/ndss.2015.23271.

[113] L. M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In: Tools and Algorithms for

the Construction and Analysis of Systems, 14th International Conference, TACAS 2008, Held

as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008.
Ed. by C. R. Ramakrishnan and J. Rehof. TACAS ’08. 2008. DOI: 10.1007/978-3-540-
78800-3_24.

[114] Mozilla. Dromaeo: Javascript Performance Testing. 2020. URL: https://wiki.mozilla.
org/Dromaeo.

[115] Mozilla. Kraken JavaScript Benchmark (version 1.1). 2020. URL: https://wiki.mozilla.
org/Kraken.

[116] MozillaWiki Team. Oxidation. Nov. 2020. URL: https://wiki.mozilla.org/Oxidat
ion.

[117] MozillaWiki Team. Security/Sandbox. Aug. 2020. URL: https://wiki.mozilla.org/
Security/Sandbox.

[118] M. Muench, F. Pagani, Y. Shoshitaishvili, C. Kruegel, G. Vigna, and D. Balzarotti. Taming
Transactions: Towards Hardware-Assisted Control Flow Integrity Using Transactional Mem-
ory. In: 19th International Symposium on Research in Attacks, Intrusions, and Defenses. RAID
’16. Springer. Sept. 2016. DOI: 10.1007/978-3-319-45719-2_2.

166

http://download.microsoft.com/download/7/2/b/72b5de91-04f4-42f4-a587-9d08c55e0734/microsoft_security_intelligence_report_volume_16_english.pdf
http://download.microsoft.com/download/7/2/b/72b5de91-04f4-42f4-a587-9d08c55e0734/microsoft_security_intelligence_report_volume_16_english.pdf
http://download.microsoft.com/download/7/2/b/72b5de91-04f4-42f4-a587-9d08c55e0734/microsoft_security_intelligence_report_volume_16_english.pdf
http://download.microsoft.com/download/7/2/b/72b5de91-04f4-42f4-a587-9d08c55e0734/microsoft_security_intelligence_report_volume_16_english.pdf
https://doi.org/10.1023/B:AUSE.0000008666.56394.a1
https://doi.org/10.1023/B:AUSE.0000008666.56394.a1
https://doi.org/10.1109/SP46214.2022.00016
https://doi.org/10.1145/1476589.1476628
https://www.cvedetails.com/vulnerability-list/vendor_id-10846/product_id-36469/Artifex-Ghostscript.html
https://www.cvedetails.com/vulnerability-list/vendor_id-10846/product_id-36469/Artifex-Ghostscript.html
https://www.cvedetails.com/vulnerability-list/vendor_id-10846/product_id-36469/Artifex-Ghostscript.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5018
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-5018
https://www.cvedetails.com/vulnerability-list/vendor_id-217/product_id-383/Openssl-Openssl.html
https://www.cvedetails.com/vulnerability-list/vendor_id-217/product_id-383/Openssl-Openssl.html
https://www.cvedetails.com/vulnerability-list/vendor_id-217/product_id-383/Openssl-Openssl.html
https://www.cvedetails.com/vulnerability-list/vendor_id-9237/Sqlite.html
https://www.cvedetails.com/vulnerability-list/vendor_id-9237/Sqlite.html
https://doi.org/10.14722/ndss.2015.23271
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://wiki.mozilla.org/Dromaeo
https://wiki.mozilla.org/Dromaeo
https://wiki.mozilla.org/Kraken
https://wiki.mozilla.org/Kraken
https://wiki.mozilla.org/Oxidation
https://wiki.mozilla.org/Oxidation
https://wiki.mozilla.org/Security/Sandbox
https://wiki.mozilla.org/Security/Sandbox
https://doi.org/10.1007/978-3-319-45719-2_2

OTHER REFERENCES

[119] P. Muntean, M. Neumayer, Z. Lin, G. Tan, J. Grossklags, and C. Eckert. Analyzing Control Flow
Integrity with LLVM-CFI. In: Proceedings of the 35th Annual Computer Security Applications

Conference. ACSAC ’19. 2019. DOI: 10.1145/3359789.3359806.

[120] musl authors. musl libc. 2022. URL: https://musl.libc.org/.

[121] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing Wrong Data Without
Doing Anything Obviously Wrong! SIGPLAN Notices 44, 3 (Mar. 2009). DOI: 10.1145/
1508284.1508275.

[122] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. SoftBound: Highly Compatible
and Complete Spatial Memory Safety for C. SIGPLAN Notices 44, 6 (June 2009). DOI:
10.1145/1543135.1542504.

[123] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. CETS: Compiler Enforced Temporal
Safety for C. In: Proceedings of the 2010 International Symposium on Memory Management.
ISMM ’10. 2010. DOI: 10.1145/1806651.1806657.

[124] S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner, H. Shacham, and
D. Stefan. Retrofitting Fine Grain Isolation in the Firefox Renderer. In: 29th USENIX Security

Symposium. SEC ’20. Aug. 2020.

[125] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer. CCured: Type-Safe Retrofitting
of Legacy Software. ACM Transactions on Programming Languages and Systems 27, 3 (May
2005). DOI: 10.1145/1065887.1065892.

[126] N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dynamic Binary
Instrumentation. In: Proceedings of the 28th ACM SIGPLAN Conference on Programming

Language Design and Implementation. PLDI ’07. 2007. DOI: 10.1145/1250734.1250746.

[127] J. Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1993.

[128] B. Niu and G. Tan. Enforcing User-space Privilege Separation with Declarative Architectures.
In: Proceedings of the 7th ACM Workshop on Scalable Trusted Computing. STC ’12. 2012. DOI:
10.1145/2382536.2382541.

[129] B. Niu and G. Tan. Modular Control-Flow Integrity. In: Proceedings of the 35th ACM SIGPLAN

Conference on Programming Language Design and Implementation. PLDI ’14. 2014. DOI:
10.1145/2594291.2594295.

[130] B. Niu and G. Tan. RockJIT: Securing Just-In-Time Compilation Using Modular Control-Flow
Integrity. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communica-

tions Security. CCS ’14. 2014. DOI: 10.1145/2660267.2660281.

[131] B. Niu and G. Tan. Per-Input Control-Flow Integrity. In: Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security. CCS ’15. 2015. DOI: 10.1145/
2810103.2813644.

[132] Octane Team Google. Octane 2.0. 2020. URL: https://chromium.github.io/octan
e/.

[133] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda. G-Free: Defeating Return-
oriented Programming Through Gadget-less Binaries. In: Proceedings of the 26th Annual

Computer Security Applications Conference. ACSAC ’10. 2010. DOI: 10.1145/1920261.
1920269.

[134] A. One. Smashing the Stack for Fun and Profit. Phrack 7, 49 (Nov. 1996). http://www.
phrack.com/issues.html?issue=49&id=14.

167

https://doi.org/10.1145/3359789.3359806
https://musl.libc.org/
https://doi.org/10.1145/1508284.1508275
https://doi.org/10.1145/1508284.1508275
https://doi.org/10.1145/1543135.1542504
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1145/1065887.1065892
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/2382536.2382541
https://doi.org/10.1145/2594291.2594295
https://doi.org/10.1145/2660267.2660281
https://doi.org/10.1145/2810103.2813644
https://doi.org/10.1145/2810103.2813644
https://chromium.github.io/octane/
https://chromium.github.io/octane/
https://doi.org/10.1145/1920261.1920269
https://doi.org/10.1145/1920261.1920269
http://www.phrack.com/issues.html?issue=49&id=14
http://www.phrack.com/issues.html?issue=49&id=14

BIBLIOGRAPHY

[135] R. Panda, S. Song, J. Dean, and L. K. John. Wait of a Decade: Did SPEC CPU 2017 Broaden
the Performance Horizon? In: 2018 IEEE International Symposium on High Performance

Computer Architecture. HPCA ’18. 2018. DOI: 10.1109/HPCA.2018.00032.

[136] B. V. Patel. A Technical Look at Intel’s Control-flow Enforcement Technology. June 2020. URL:
https://www.intel.com/content/www/us/en/developer/articles/techn

ical/technical-look-control-flow-enforcement-technology.html.

[137] PaX. Address Space Layout Randomization. Sept. 2004. URL: https://pax.grsecurity.
net/docs/aslr.txt.

[138] M. Payer, A. Barresi, and T. R. Gross. Fine-Grained Control-Flow Integrity Through Binary
Hardening. In: Proceedings of the 12th International Conference on Detection of Intrusions

and Malware, and Vulnerability Assessment. DIMVA ’15. 2015. DOI: 10.1007/978-3-319-
20550-2_8.

[139] S. Porat, D. Bernstein, Y. Fedorov, J. Rodrigue, and E. Yahav. Compiler Optimization of C++
Virtual Function Calls. In: USENIX Conference on Object-Oriented Technologies. COOTS ’96’.
June 1996.

[140] N. Provos, M. Friedl, and P. Honeyman. Preventing Privilege Escalation. In: 12th USENIX

Security Symposium. SEC ’03. 2003.

[141] W. Qiang, Y. Cao, W. Dai, D. Zou, H. Jin, and B. Liu. Libsec: A Hardware Virtualization-Based
Isolation for Shared Library. In: 19th IEEE International Conference on High Performance

Computing and Communications; 15th IEEE International Conference on Smart City; 3rd IEEE

International Conference on Data Science and Systems. HPCC/SmartCity/DSS ’17. Dec. 2017.
DOI: 10.1109/HPCC-SmartCity-DSS.2017.5.

[142] Qualcomm Product Security. Pointer Authentication on ARMv8.3. 2017. URL: https://
www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/

pointer-auth-v7.pdf.

[143] P. Rajasekaran, S. Crane, D. Gens, Y. Na, S. Volckaert, and M. Franz. CoDaRR: Continuous
Data Space Randomization against Data-Only Attacks. In: Proceedings of the 15th ACM Asia

Conference on Computer and Communications Security. ASIA CCS ’20. 2020. DOI: 10.1145/
3320269.3384757.

[144] Red Hat. Position Independent Executables (PIE). Nov. 2012. URL: https://www.redhat.
com/en/blog/position-independent-executables-pie.

[145] Redis Authors. Redis benchmark. 2022. URL: https://redis.io/docs/reference/
optimization/benchmarks/.

[146] G. Rodola. pyftpdlib/ftpbench. 2016. URL: https://github.com/giampaolo/pyftp
dlib/blob/master/scripts/ftpbench.

[147] Rust Team. Rust Programming Language. 2022. URL: https://www.rust-lang.org/.

[148] O. Ruwase and M. S. Lam. A Practical Dynamic Buffer Overflow Detector. In: 11th Annual

Network and Distributed System Security Symposium. NDSS ’04. 2004.

[149] B. Scholz, H. Jordan, P. Subotić, and T. Westmann. On Fast Large-Scale Program Analysis in
Datalog. In: Proceedings of the 25th International Conference on Compiler Construction. CC
’16. 2016. DOI: 10.1145/2892208.2892226.

[150] D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl, M. Schwarz, S. Mangard, and D. Gruss.
Donky: Domain Keys – Efficient In-Process Isolation for RISC-V and x86. In: 29th USENIX

Security Symposium. SEC ’20. Aug. 2020.

168

https://doi.org/10.1109/HPCA.2018.00032
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://doi.org/10.1007/978-3-319-20550-2_8
https://doi.org/10.1007/978-3-319-20550-2_8
https://doi.org/10.1109/HPCC-SmartCity-DSS.2017.5
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://www.qualcomm.com/content/dam/qcomm-martech/dm-assets/documents/pointer-auth-v7.pdf
https://doi.org/10.1145/3320269.3384757
https://doi.org/10.1145/3320269.3384757
https://www.redhat.com/en/blog/position-independent-executables-pie
https://www.redhat.com/en/blog/position-independent-executables-pie
https://redis.io/docs/reference/optimization/benchmarks/
https://redis.io/docs/reference/optimization/benchmarks/
https://github.com/giampaolo/pyftpdlib/blob/master/scripts/ftpbench
https://github.com/giampaolo/pyftpdlib/blob/master/scripts/ftpbench
https://www.rust-lang.org/
https://doi.org/10.1145/2892208.2892226

OTHER REFERENCES

[151] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. Counterfeit Object-
Oriented Programming: On the Difficulty of Preventing Code Reuse Attacks in C++ Applica-
tions. In: 2015 IEEE Symposium on Security and Privacy. SP ’15. 2015. DOI: 10.1109/SP.
2015.51.

[152] M. Schwarz, D. Gruss, M. Lipp, C. Maurice, T. Schuster, A. Fogh, and S. Mangard. Automated
Detection, Exploitation, and Elimination of Double-Fetch Bugs Using Modern CPU Features.
In: Proceedings of the 2018 ACM Asia Conference on Computer and Communications Security.
ASIA CCS ’18. 2018. DOI: 10.1145/3196494.3196508.

[153] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. AddressSanitizer: A Fast Address
Sanity Checker. In: 2012 USENIX Annual Technical Conference. ATC ’12. 2012.

[154] J. Seward and N. Nethercote. Using Valgrind to Detect Undefined Value Errors with Bit-
Precision. In: 2005 USENIX Annual Technical Conference. ATC ’05. Apr. 2005.

[155] V. Shanbhogue, D. Gupta, and R. Sahita. Security Analysis of Processor Instruction Set
Architecture for Enforcing Control-Flow Integrity. In: Proceedings of the 8th International

Workshop on Hardware and Architectural Support for Security and Privacy. HASP ’19. 2019.
DOI: 10.1145/3337167.3337175.

[156] H. Sidhpurwala. Hardening ELF binaries using Relocation Read-Only (RELRO). Jan. 2019.
URL: https://www.redhat.com/en/blog/hardening-elf-binaries-using-
relocation-read-only-relro.

[157] A. Slowinska, T. Stancescu, and H. Bos. Body armor for binaries: Preventing buffer overflows
without recompilation. English. In: 2012 USENIX Annual Technical Conference. ATC ’12. June
2019. DOI: 10.5555/2342821.2342832.

[158] R. Smith. Extreme Flow Guard (xFG) and Kernel Data Protection (KDP) Coming to Windows 10.
July 2020. URL: https://petri.com/extreme-flow-guard-xfg-and-kernel-
data-protection-kdp-coming-to-windows-10.

[159] C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski. Exploiting and Protecting Dynamic Code
Generation. In: 22nd Annual Network and Distributed System Security Symposium. NDSS ’15.
2015. DOI: 10.14722/ndss.2015.23233.

[160] Standard Performance Evaluation Corporation. SPEC CPU® 2017. 2017. URL: https:
//www.spec.org/cpu2017/.

[161] Standard Performance Evaluation Corporation. SPEC CPU® 2006. June 2020. URL: https:
//www.spec.org/cpu2006/.

[162] J. V. Stoep and C. Zhang. Queue the Hardening Enhancements. May 2019. URL: https:
//security.googleblog.com/2019/05/queue-hardening-enhancements.

html.

[163] R. Strackx, P. Agten, N. Avonds, and F. Piessens. Salus: Kernel Support for Secure Process
Compartments. ICST Transactions on Security Safety 2 (2015).

[164] L. Szekeres, M. Payer, T. Wei, and D. Song. SoK: Eternal War in Memory. In: 2013 IEEE

Symposium on Security and Privacy. SP ’13. 2013. DOI: 10.1109/SP.2013.13.

[165] The apache software foundation. ab - Apache HTTP server benchmarking tool. 2022. URL:
https://httpd.apache.org/docs/2.4/programs/ab.html.

[166] The Chromium Projects. Chromium. 2022. URL: https://www.chromium.org/Home.

[167] The Chromium Projects. Memory safety. 2022. URL: https://www.chromium.org/
Home/chromium-security/memory-safety.

169

https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1109/SP.2015.51
https://doi.org/10.1145/3196494.3196508
https://doi.org/10.1145/3337167.3337175
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://www.redhat.com/en/blog/hardening-elf-binaries-using-relocation-read-only-relro
https://doi.org/10.5555/2342821.2342832
https://petri.com/extreme-flow-guard-xfg-and-kernel-data-protection-kdp-coming-to-windows-10
https://petri.com/extreme-flow-guard-xfg-and-kernel-data-protection-kdp-coming-to-windows-10
https://doi.org/10.14722/ndss.2015.23233
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2017/
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://doi.org/10.1109/SP.2013.13
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.chromium.org/Home
https://www.chromium.org/Home/chromium-security/memory-safety
https://www.chromium.org/Home/chromium-security/memory-safety

BIBLIOGRAPHY

[168] The Chromium Projects. Secure Architecture. 2022. URL: https://www.chromium.org/
Home/chromium-security/guts/.

[169] The Chromium Projects. Telemetry: Run Benchmarks Locally. 2022. URL: https://chrom
ium.googlesource.com/catapult/+/HEAD/telemetry/docs/run_benchmar

ks_locally.md.

[170] The Clang Team. Control Flow Integrity - Clang 13 documentation. 2021. URL: https:
//clang.llvm.org/docs/ControlFlowIntegrity.html.

[171] The Clang Team. AddressSanitizer. 2022. URL: https://clang.llvm.org/docs/
AddressSanitizer.html.

[172] The Clang Team. Control Flow Integrity Design Documentation. 2022. URL: https://clang.
llvm.org/docs/ControlFlowIntegrityDesign.html.

[173] The Clang Team. Introduction to the Clang AST - Clang 13 documentation. Jan. 2022. URL:
https://clang.llvm.org/docs/IntroductionToTheClangAST.html.

[174] The Clang Team. MemorySanitizer. 2022. URL: https://clang.llvm.org/docs/
MemorySanitizer.html.

[175] The Clang Team. SafeStack. 2022. URL: https://clang.llvm.org/docs/SafeStac
k.html.

[176] The Clang Team. ShadowCallStack - Clang 15.0.0git documentation. July 2022. URL: https:
//clang.llvm.org/docs/ShadowCallStack.html.

[177] The Clang Team. ThreadSanitizer. 2022. URL: https://clang.llvm.org/docs/
ThreadSanitizer.html.

[178] The Clang Team. UndefinedBehaviorSanitizer. 2022. URL: https://clang.llvm.org/
docs/UndefinedBehaviorSanitizer.html.

[179] The Flang Team. Flang 15.0.0 (In-Progress) Release Notes - The Flang Compiler. 2022. URL:
https://flang.llvm.org/docs/.

[180] The kernel development community. Building Linux with Clang/LLVM. 2021. URL: https:
//www.kernel.org/doc/html/latest/kbuild/llvm.html.

[181] The Linux Kernel documentation. Seccomp BPF (SECure COMPuting with filters). 2019.
URL: https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_
filter.html.

[182] The Santa Cruz Operation. Relocation. 2001. URL: https://refspecs.linuxbase.
org/elf/gabi4+/ch4.reloc.html.

[183] The SQLite Project. Most Widely Deployed SQL Database Engine. 2019. URL: https://www.
sqlite.org/mostdeployed.html.

[184] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and G. Pike.
Enforcing Forward-Edge Control-Flow Integrity in GCC & LLVM. In: 23rd USENIX Security

Symposium. SEC ’14. 2014.

[185] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler, P. Druschel, and D. Garg.
ERIM: Secure, Efficient In-process Isolation with Protection Keys (MPK). In: 28th USENIX

Security Symposium. SEC ’19. Aug. 2019.

[186] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc, A. Slowinska, H. Bos, and
C. Giuffrida. Practical Context-Sensitive CFI. In: Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security. CCS ’15. 2015. DOI: 10.1145/
2810103.2813673.

170

https://www.chromium.org/Home/chromium-security/guts/
https://www.chromium.org/Home/chromium-security/guts/
https://chromium.googlesource.com/catapult/+/HEAD/telemetry/docs/run_benchmarks_locally.md
https://chromium.googlesource.com/catapult/+/HEAD/telemetry/docs/run_benchmarks_locally.md
https://chromium.googlesource.com/catapult/+/HEAD/telemetry/docs/run_benchmarks_locally.md
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://clang.llvm.org/docs/IntroductionToTheClangAST.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/SafeStack.html
https://clang.llvm.org/docs/SafeStack.html
https://clang.llvm.org/docs/ShadowCallStack.html
https://clang.llvm.org/docs/ShadowCallStack.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://flang.llvm.org/docs/
https://www.kernel.org/doc/html/latest/kbuild/llvm.html
https://www.kernel.org/doc/html/latest/kbuild/llvm.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://refspecs.linuxbase.org/elf/gabi4+/ch4.reloc.html
https://refspecs.linuxbase.org/elf/gabi4+/ch4.reloc.html
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.1145/2810103.2813673

OTHER REFERENCES

[187] V. van der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen, S. Rawat, H. Bos, T. Holz,
E. Athanasopoulos, and C. Giuffrida. A Tough Call: Mitigating Advanced Code-Reuse Attacks
at the Binary Level. In: 2016 IEEE Symposium on Security and Privacy. SP ’16. 2016. DOI:
10.1109/SP.2016.60.

[188] A. van de Ven. Exec shield. Aug. 2004. URL: https://people.redhat.com/mingo/
exec-shield/docs/WHP0006US_Execshield.pdf.

[189] Vendicator. Stack Shield: A "stack smashing" technique protection tool for Linux. 2000. URL:
http://www.angelfire.com/sk/stackshield/.

[190] Z. Wan, D. Lo, X. Xia, L. Cai, and S. Li. Mining Sandboxes for Linux Containers. In: 2017

IEEE International Conference on Software Testing, Verification and Validation. ICST ’17. 2017.
DOI: 10.1109/ICST.2017.16.

[191] J. Wang, X. Xiong, and P. Liu. Between Mutual Trust and Mutual Distrust: Practical Fine-
grained Privilege Separation in Multithreaded Applications. In: 2015 USENIX Annual Tech-

nical Conference. ATC ’15. 2015.

[192] P. Wang, J. Krinke, K. Lu, G. Li, and S. Dodier-Lazaro. How Double-Fetch Situations turn
into Double-Fetch Vulnerabilities: A Study of Double Fetches in the Linux Kernel. In: 26th

USENIX Security Symposium. SEC ’17. Aug. 2017.

[193] Y.-P. Wang, X.-Q. Hu, Z.-X. Zou, W. Tan, and G. Tan. IVT: An Efficient Method for Sharing
Subtype Polymorphic Objects. Proceedings of the ACM on Programming Languages 3, OOPSLA
(Oct. 2019). DOI: 10.1145/3360556.

[194] W. Wang, X. Xu, and K. W. Hamlen. Object Flow Integrity. In: Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security. CCS ’17. 2017. DOI:
10.1145/3133956.3133986.

[195] Z. Wang and X. Jiang. HyperSafe: A Lightweight Approach to Provide Lifetime Hypervisor
Control-Flow Integrity. In: 2010 IEEE Symposium on Security and Privacy. SP ’10. May 2010.
DOI: 10.1109/SP.2010.30.

[196] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary Stirring: Self-Randomizing Instruction
Addresses of Legacy X86 Binary Code. In: Proceedings of the 2012 ACM Conference on Com-

puter and Communications Security. CCS ’12. 2012. DOI: 10.1145/2382196.2382216.

[197] Webkit. JetStream2. 2020. URL: https://browserbench.org/JetStream/.

[198] Webkit. Speedometer 2.0. 2020. URL: https://browserbench.org/Speedometer2.
0/.

[199] Webkit. SunSpider 1.0.2 JavaScript Benchmark. 2020. URL: https://webkit.org/
perf/sunspider/sunspider.html.

[200] Y. Wu, S. Sathyanarayan, R. H. C. Yap, and Z. Liang. Codejail: Application-Transparent
Isolation of Libraries with Tight Program Interactions. In: Computer Security – ESORICS

2012. 2012. DOI: 10.1007/978-3-642-33167-1_49.

[201] Y. Wu, J. Sun, Y. Liu, and J. S. Dong. Automatically Partition Software into Least Privilege
Components Using Dynamic Data Dependency Analysis. In: 28th IEEE/ACM International

Conference on Automated Software Engineering. ASE ’13. 2013. DOI: 10.1109/ASE.2013.
6693091.

[202] Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon: Detecting violation of control flow integrity
using performance counters. In: 2012 IEEE/IFIP International Conference on Dependable

Systems and Networks. DSN ’12. 2012. DOI: 10.1109/DSN.2012.6263958.

171

https://doi.org/10.1109/SP.2016.60
https://people.redhat.com/mingo/exec-shield/docs/WHP0006US_Execshield.pdf
https://people.redhat.com/mingo/exec-shield/docs/WHP0006US_Execshield.pdf
http://www.angelfire.com/sk/stackshield/
https://doi.org/10.1109/ICST.2017.16
https://doi.org/10.1145/3360556
https://doi.org/10.1145/3133956.3133986
https://doi.org/10.1109/SP.2010.30
https://doi.org/10.1145/2382196.2382216
https://browserbench.org/JetStream/
https://browserbench.org/Speedometer2.0/
https://browserbench.org/Speedometer2.0/
https://webkit.org/perf/sunspider/sunspider.html
https://webkit.org/perf/sunspider/sunspider.html
https://doi.org/10.1007/978-3-642-33167-1_49
https://doi.org/10.1109/ASE.2013.6693091
https://doi.org/10.1109/ASE.2013.6693091
https://doi.org/10.1109/DSN.2012.6263958

BIBLIOGRAPHY

[203] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, and
N. Fullagar. Native Client: A Sandbox for Portable, Untrusted x86 Native Code. In: 2009

IEEE Symposium on Security and Privacy. SP ’09. 2009. DOI: 10.1109/SP.2009.25.

[204] S. H. Yong and S. Horwitz. Protecting C Programs from Attacks via Invalid Pointer Deref-
erences. In: Proceedings of the 9th European Software Engineering Conference Held Jointly

with 11th ACM SIGSOFT International Symposium on Foundations of Software Engineering.
ESEC/FSE-11. 2003. DOI: 10.1145/940071.940113.

[205] Y. Younan, P. Philippaerts, L. Cavallaro, R. Sekar, F. Piessens, and W. Joosen. PAriCheck:
An Efficient Pointer Arithmetic Checker for C Programs. In: Proceedings of the 5th ACM

Symposium on Information, Computer and Communications Security. ASIA CCS ’10. 2010.
DOI: 10.1145/1755688.1755707.

[206] O. Zendra, D. Colnet, and S. Collin. Efficient Dynamic Dispatch without Virtual Function
Tables: The SmallEiffel Compiler. In: Proceedings of the 12th ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA ’97. 1997. DOI:
10.1145/263698.263728.

[207] C. Zhang, M. Niknami, K. Z. Chen, C. Song, Z. Chen, and D. Song. JITScope: Protect-
ing web users from control-flow hijacking attacks. In: 2015 IEEE Conference on Computer

Communications. INFOCOM ’15. 2015. DOI: 10.1109/INFOCOM.2015.7218424.

[208] C. Zhang, C. Song, K. Chen, Z. Chen, and D. Song. VTint: Protecting Virtual Function Tables’
Integrity. In: 22nd Annual Network and Distributed System Security Symposium. NDSS ’15.
Feb. 2015. DOI: 10.14722/ndss.2015.23099.

[209] C. Zhang, D. Song, S. A. Carr, M. Payer, T. Li, Y. Ding, and C. Song. VTrust: Regaining Trust
on Virtual Calls. In: 23rd Annual Network and Distributed System Security Symposium. NDSS
’16. 2016. DOI: 10.14722/ndss.2016.23164.

[210] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou. Practical
Control Flow Integrity and Randomization for Binary Executables. In: 2013 IEEE Symposium

on Security and Privacy. SP ’13. 2013. DOI: 10.1109/SP.2013.44.

[211] M. Zhang and R. Sekar. Control Flow Integrity for COTS Binaries. In: 22nd USENIX Security

Symposium. SEC ’13. 2013.

[212] M. Zhuang and B. Aker. memaslap - Load testing and benchmarking a server. 2022. URL:
http://docs.libmemcached.org/bin/memaslap.html.

172

https://doi.org/10.1109/SP.2009.25
https://doi.org/10.1145/940071.940113
https://doi.org/10.1145/1755688.1755707
https://doi.org/10.1145/263698.263728
https://doi.org/10.1109/INFOCOM.2015.7218424
https://doi.org/10.14722/ndss.2015.23099
https://doi.org/10.14722/ndss.2016.23164
https://doi.org/10.1109/SP.2013.44
http://docs.libmemcached.org/bin/memaslap.html

	Introduction
	Background
	C and C++ from a security perspective
	Memory Corruption Vulnerabilities and Attacks
	Attacker Model
	The LLVM Compiler Framework
	Clang
	Linkers and Link-Time-Optimization.
	Multi-Module Programs.

	Related Work
	Preconditions for Code Execution Attacks
	Separating Code from Data
	Preventing Memory Corruption
	Protecting Code Pointers (Code Pointer Integrity)
	Hiding Gadgets
	Control Flow Integrity
	Backward CFI
	Forward CFI

	Isolation and Compartmentalization

	SoK: Evaluation of Return Address Protections
	Motivation
	Problem Description
	Contributions
	Background: Attacks on Return Addresses
	Backward CFI schemes
	Stack Canaries
	Shadow Stacks
	Return Address Encryption

	The SPEC CPU Benchmark Suite
	Implementation
	Stack Canaries
	Shadow Stack
	Return address encryption
	Optimizations
	Evaluating Implementations
	Evaluating Security

	Performance Evaluation
	Methodology
	Measurement Soundness
	Performance Overhead on SPEC
	Overhead per programming language
	Overhead Comparison With Literature
	Binary Size Overhead

	Compatibility Evaluation
	Excursion: Return Address Protections on ARM
	Conclusion

	NoVT: Eliminating C++ Virtual Calls to Mitigate Vtable Hijacking
	Motivation
	Problem Description
	Contributions
	Background
	C++ Inheritance and Vtables
	C++ Multiple Inheritance
	C++ Virtual Inheritance
	Vtable Hijacking

	Attacker Model
	Design and Implementation
	Class Hierarchy Analysis
	Class Identifiers
	Dispatch Function Generation
	Storing Class IDs and Removing Vtables
	Optimizations
	Implementation
	Compiler-Assisted Optimizations
	Usability

	Evaluation
	Security Evaluation
	Runtime Evaluation
	Generated Code Evaluation
	Binary Size and Memory Overhead

	Compatibility and Limitations
	Related Work
	Attacks on Vtables
	Vtable Protections
	Alternatives to Vtables
	Replacing Pointers with Identifiers

	Conclusion

	TyPro: Forward CFI for C-Style Indirect Function Calls Using Type Propagation
	Motivation
	Problem Description
	Contributions
	Overview
	Attacker Model
	Challenges
	Methodology at a Glance
	Type Propagation vs. Data Flow

	Target Set Computation
	Analysis Input Generation
	Type Analysis

	Call Target Enforcement
	Dynamic Modules
	Additional Input Generation
	Additional Type Analysis
	Dynamic Call Target Enforcement

	Implementation
	C Standard Libraries
	Optimizations

	Evaluation
	Correctness
	Security
	Performance
	Dynamic Loading

	Limitations & Discussion
	Related Work
	Conclusion
	Future Work—Switchpoline

	Cali: Compiler-Assisted Library Isolation
	Motivation
	Problem Description
	Contributions
	Background and Related Work
	Compartmentalization
	Isolation Primitives

	General Overview
	Compiler-Assisted Library Isolation
	Overview

	Shielding Compartments
	Basic Compartment Structure
	Shared Memory
	Library Calls
	Callbacks, Signals, and File Descriptors
	Isolation
	Threading, Forks, and Concurrency

	Compiler-Assisted Separation
	Background: Call Graphs and SCCs
	Analysis Phase: Overview
	PDG Construction
	Data Flow in PDGs
	Reachability Analysis
	Function Specialization
	Tracing File Descriptors
	Rewriting Memory Allocations
	Data-Transferring Call Graph Analysis

	Evaluation
	Correctness Evaluation
	Usability Evaluation
	Compilation and Size Overhead
	Security Evaluation
	Performance Evaluation

	Conclusion

	Conclusion
	Bibliography

