Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Hidden Markov models used for the offline classification of EEG data

Biomed Tech (Berl). 1999 Jun;44(6):158-62. doi: 10.1515/bmte.1999.44.6.158.

Abstract

Hidden Markov models (HMM) are introduced for the offline classification of single-trail EEG data in a brain-computer-interface (BCI). The HMMs are used to classify Hjorth parameters calculated from bipolar EEG data, recorded during the imagination of a left or right hand movement. The effects of different types of HMMs on the recognition rate are discussed. Furthermore a comparison of the results achieved with the linear discriminant (LD) and the HMM, is presented.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biofeedback, Psychology
  • Electroencephalography / classification*
  • Electroencephalography / methods*
  • Electroencephalography / statistics & numerical data
  • Humans
  • Imagination
  • Markov Chains*
  • Models, Statistical*