The frequency distributions of 4 highly polymorphic Y-chromosome-specific microsatellites (DYS19, DYS390, DYS391, and DYS392) were determined in 79 unrelated Australian Aboriginal males from the Northern Territory. These results are compared with those observed in worldwide populations at both the locus and the haplotype level. Common alleles in Aboriginals are DYS19*15 (49%), DYS19*14 (28%), DYS390*19 (39%), DYS390*24 (20%), DYS391*10 (72%), DYS392*11 (63%), and DYS392*13 (28%). No evidence of reduced gene diversity was observed for these Y-chromosome alleles. DYS390 exhibits the most complex arrangement, displaying a bimodal distribution composed of common alleles (*22-*26), and rare short alleles (*18-*20), with an intermediate allele (*21) being absent. DYS390*20, previously reported only in Papuans and Samoans, is observed for the first time in Aboriginals. Compared with a recent study of Aboriginals, our sample exhibits considerable diversity in the haplotypes associated with the rare DYS390*19 allele, indicating that this allele is of considerable antiquity, if it arose as a single deletion event. Combining all 4 Y-chromosome-linked microsatellites produced 41 unique haplotypes, which were linked using a median-joining network. This network shows that most (78%) of our Aboriginal haplotypes fall into 2 distinct clusters, which likely represent 2 separate lineages. Seven haplotypes are shared with haplotypes found in a recent study of Aboriginals, and 7 are shared with a Spanish population. The cluster of Aboriginal haplotypes associated with the short DYS390 alleles does not share any haplotypes with the Spanish, indicating that this cluster of haplotypes is unique to Australian Aboriginals. Limited data from 4 worldwide populations used to construct haplotypes based on 3 loci (DYS19, DYS390, DYS392) show that only 4 of these haplotypes are seen in Australian Aboriginals. Shared haplotypes may be the result of admixture and/or recurrent mutation at these loci. Expanding the haplotype analysis to include biallelic markers on the Y chromosome will resolve this issue.