The ability to find novel bioactive scaffolds in compound similarity-based virtual screening experiments has been studied comparing Tanimoto-based, ranking-based, voting, and consensus scoring protocols. Ligand sets for seven well-known drug targets (CDK2, COX2, estrogen receptor, neuraminidase, HIV-1 protease, p38 MAP kinase, thrombin) have been assembled such that each ligand represents its own unique chemotype, thus ensuring that each similarity recognition event between ligands constitutes a scaffold hopping event. In a series of virtual screening studies involving 9969 MDDR compounds as negative controls it has been found that atom pair descriptors and 3D pharmacophore fingerprints combined with ranking, voting, and consensus scoring strategies perform well in finding novel bioactive scaffolds. In addition, often superior performance has been observed for similarity-based virtual screening compared to structure-based methods. This finding suggests that information about a target obtained from known bioactive ligands is as valuable as knowledge of the target structures for identifying novel bioactive scaffolds through virtual screening.