An improved method is proposed to perform calibration-based fringe projected profilometry using a two-frequency fringe pattern for the 3D shape measurements of objects with large discontinuous height steps. A fabrication scheme for the two-frequency pattern is described as well. The proposed method offers following major advantages: (1) only one phase measurement needed for operation, (2) easiness for calibration, (3) robust performance, especially for automatic phase unwrapping, and (4) more flexible data acquisition for complex objects. This makes it possible for a single-shot measurement of dynamic objects with discontinuities. Both theoretical descriptions and experimental demonstrations are provided.