Background and purpose: Prolonged wakefulness impairs sustained vigilant attention, measured with the psychomotor vigilance task (PVT), and induces a compensatory increase in sleep intensity in recovery sleep, quantified by slow-wave activity (SWA) in the sleep electroencephalogram (EEG). These effects of sleep deprivation are counteracted by the adenosine receptor antagonist caffeine, implying involvement of the adenosine neuromodulator/receptor system. To examine a role for adenosine A(2A) receptors, we investigated whether variation of the A(2A) receptor gene (ADORA2A) modified effects of caffeine on PVT and SWA after sleep deprivation.
Experimental approach: A haplotype analysis of eight single-nucleotide polymorphisms of ADORA2A was performed in 82 volunteers. In 45 young men carrying five different allele combinations, we investigated the effects of prolonged waking and 2 × 200 mg caffeine or 2 × 100 mg modafinil on psychomotor vigilance, sleepiness, and the waking and sleep EEG.
Key results: Throughout extended wakefulness, the carriers of haplotype HT4 performed faster on the PVT than carriers of non-HT4 haplotype alleles. In haplotype HT4, caffeine failed to counteract the waking-induced impairment of PVT performance and the rebound of SWA in recovery sleep. However, caffeine was effective in non-HT4 allele carriers, and modafinil reduced the consequences of prolonged waking, independently of ADORA2A haplotype.
Conclusions and implications: Common genetic variation of ADORA2A is an important determinant of psychomotor vigilance in rested and sleep-deprived state. It also modulates individual responses to caffeine after sleep deprivation. These findings demonstrate a role for adenosine A(2A) receptors in the effects of prolonged wakefulness on vigilant attention and the sleep EEG.
© 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.