The potential adverse environmental and health-related impacts of antibiotics are becoming more and more concerning. China is globally the largest antibiotic producer and consumer, possibly resulting in the ubiquity and high detection levels of antibiotics in environmental compartments. Clear status on the concentration levels and spatial distribution of antibiotic contamination in China's environment is necessary to gain insight into the establishment of legal and regulatory frameworks. This study collects information from over 170 papers reporting the occurrence and distribution of antibiotics in China's environment. A total of 110 antibiotics were detected, and 28 priority antibiotics were ubiquitous in China in almost all compartments of the environment, excluding the atmosphere. Seven dominant antibiotics in all environment compartments were identified by cluster analysis, including tetracycline, oxytetracycline, chlortetracycline, ofloxacin, enrofloxacin, norfloxacin, and ciprofloxacin. Meanwhile, sulfamethoxazole, sulfadiazine, and sulfamethazine were also frequently found in aqueous phases. Among the main basins where antibiotics were detected, the Haihe River Basin had higher median antibiotic concentrations in surface water compared to other basins, while the Huaihe River Basin had higher median concentrations in sediment. The median values of antibiotic concentrations in the sources were as follows: animal manure, 39 μg/kg (microgram per kilogram); WWTP (wastewater treatment plant) sludge, 39 μg/kg; animal wastewater, 156 ng/L (nanogram per liter); WWTP effluent: 15 ng/L. These concentrations are 1 - 2 orders of magnitude higher than that of the receptors (soil, 2.1 μg/kg; sediment, 4.7 μg/kg; surface water, 8.1 ng/L; groundwater, 2.9 ng/L), whether in solid or aqueous phases. Based on the number of detected antibiotics in various environmental compartments, animal farms and WWTPs are the main sources of antibiotics, and surface water and sediment are the main receptors of antibiotics. Hierarchical clustering identified the two main pathways of antibiotic transfer in various environmental compartments, which are from animal wastewater/WWTP effluent to surface water/sediment and from animal manure/WWTP sludge to soil/groundwater.
Keywords: Animal farm; Antibiotics; Sediment; Soil; WWTP; Waters.
Copyright © 2020 Elsevier B.V. All rights reserved.