We introduce a novel compartmental low rank algorithm for high resolution MR spectroscopic imaging. We model the field inhomogeneity compensated MRSI dataset as the sum of a lipid dataset and a metabolite dataset using the spatial compartmental information obtained from water reference data. Both these datasets are modeled as low-rank subspaces, and are assumed to be orthogonal to each other. We formulate the recovery of the dataset from spiral measurements as a low-rank recovery problem. Experiments using numerical phantom and in-vivo data demonstrates the ability of the algorithm to provide improved spatial resolution and nuisance signal free spectra.
Keywords: Magnetic resonance spectroscopic imaging; constrained reconstruction; low rank modeling; nuisance removal.