
Appendix E—Evaluation of Magnitude-Scaling 
Relationships and Depth of Rupture 

By Bruce E. Shaw1 

Statement of the Problem  
In the Uniform California Earthquake Rupture Forecast, version 2 (UCERF2) (Working 

Group on California Earthquake Probabilities, 2008), magnitude-area scaling relations were one 
of the main sources of uncertainty in the final hazard estimates. In this task, we seek ways of 
finding additional constraints or alternative methods of using scaling that will reduce these 
uncertainties. 

Summary of Recommendations  
A thorough study was made of the two main uses of magnitude-area relations: to 

calculate earthquake sizes, and to calculate earthquakes rates. A recently published paper (Shaw, 
2013) discusses the issues and results more comprehensively than this study. Here, we 
summarize the recommendations for the Uniform California Earthquake Rupture Forecast, 
version 3 (UCERF3). 

Earthquake Sizes 
Continued use of magnitude-area scaling to estimate earthquake sizes is recommended. 

Area based on along-strike length and downdip width remains a good measure. Although 
questions have been raised concerning the depth extent of ruptures during large earthquakes, the 
seismogenic area remains a useful proxy for the purposes of estimating earthquake sizes. 

Four relations are examined here in terms of their potential use. A fifth relation, the 
Somerville (2006) relation, was rejected based on its dependence on trimmed areas from inverse 
modeling, which introduces an intermediate step of highly nonunique, model, and smoothing-
dependent processing of the data. 

The four magnitude-area scaling relations examined for estimating earthquake sizes are 
(1) Ellsworth-B, (2) Hanks and Bakun (2002), (3) Shaw (2009), and (4) a Wells and 
Coppersmith-type linear relation between M and log10A. (1) The Ellsworth-B relation is: 

  (1) 

It is extremely simple, a one-parameter fit, and a good empirical fit to the large earthquake 
(magnitude greater than 6.5 [M>6.5]) data it was developed to fit. (2) Hanks and Bakun (2002) is 
a two-regime scaling: 

                                                           
1Lamont-Doherty Earth Observatory, Columbia University. 
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  (2) 

This scaling relation fits the data better at smaller magnitudes. (3) Shaw (2009) is a 
generalization of the Hanks and Bakun model; it extends the bilinear Hanks-Bakun two-regime 
scaling to a three-regime scaling that has a third asymptotic regime valid for very long ruptures 
(L>>W) whereby S approaches W scaling asymptotically. This is done at the expense of one 
additional scaling parameter (the length scale at which the transition to the third regime occurs). 
The Shaw (2009) scaling relation is parameterized as: 

  . (3) 

Here, W is the rupture width, and β is a fitting parameter that gives a crossover scale 
length to the asymptotic W scaling. To match the small earthquakes, the constant used is the 
same as in the Hanks-Bakun relation (const=3.98). In the limit of β→∞, the scaling relation 
reduces to the Hanks-Bakun scaling relation, and in this sense is a one-parameter extension of it, 
if W is treated as a parameter. In the limit as L→∞, it scales asymptotically as M∼ 2

3
 log10A, 

which gives S∼W, as the Starr (1928) and Knopoff (1958) solutions suggest. The means by 
which the parameters in this scaling relation are determined is discussed in Shaw (2013). For the 
UCERF3 fault model, β=7.4 is a suggested value, with W=A/L. 

(4) The fourth magnitude-area scaling relation is a Wells and Coppersmith-type linear 
relation between M and log10A 

  . (4) 

The Ellsworth-B relationship is a special case of these linear relationships, with C1=1. 
Here, the new parameter introduces a new scaling physics. Allowing for a nonspecific parameter 
on the area term, as the Wells-Coppersmith fitting does, adds substantial complexity to the 
model, given that it is an exponent on the area. Going from a discrete small set to a continuum is 
a leap in dimension; it must provide a much better fit to be worth generalizing in such a broad 
way. 

Many databases were used to compare the scaling laws. Because of concerns about the 
potential influence of downdip width, the WGCEP03 database containing magnitude, length, and 
width was used (Working Group on California Earthquake Probabilities, 2003) to calibrate 
width-sensitive fits, in particular the Shaw09 (S09), equation (3) relation. The WGCEP03 
database is mainly a subset of the Wells and Coppersmith (1994) data. The Hanks and Bakun 
(2008) magnitude-area database was used as another target, providing additional large 
earthquakes and alternative interpretations of areas, particularly at small magnitudes. Finally, 
supplemental data compiled by Biasi and others (appendix F, this report) as part of the UCERF3 
effort was used as a test of how well the scaling relations fit newer datasets that they were not 
optimized against. 

Figure E1 shows plots of the data and scaling relations fit to the data. Standard deviations 
of fits relative to the data are shown in table E1, with the models listed in rank order based on 
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Akaike information criterion (AIC) (Akaike, 1974). With AIC, minimizing of errors is rewarded 
and extra parameters are penalized; minimum AIC is best. AIC = −2 ln L + 2k, where L is the 
likelihood and k is the number of fitted parameters. Therefore, differences in AIC correspond to 
differences in log-likelihood, with the relative likelihood of two models represented as e−∆AIC/2 . 
This gives a scale of the differences in AIC that matter–at least a few to be significant. AIC is 
similar to the Fisher F-Test in that they both examine the importance in the fit relative to the cost 
of extra parameters. AIC has an advantage in that it does not require the lower-parameter model 
to be embedded in the higher-parameter model. Used together, standard deviation and AIC 
provide a helpful view of differences in fits. Differences in standard deviation give relative 
differences in how well the curves are fitting in an absolute sense, while differences in AIC give 
a sense of how statistically significant, in a log-likelihood sense, the differences are. 

 

Figure E1. Graphs showing magnitude area relations for large strike-slip earthquakes. A, WGCEP03 data. 
Red circles denote W<15 km events, cyan circle denote W>15 km events. B, Red circles denote 
magnitude and area of events from Hanks and Bakun (2008) database. Cyan circles are from Biasi and 
others (appendix F, this resport) database. Curves are fit to Hanks and Bakun (2008) database, with 
appendix F data shown for comparison. Black line is linear Ellsworth-B (Working Group on California 
Earthquake Probabilities, 2003) magnitude-area relation, equation 1. Green line is Hanks and Bakun 
(2002) bilinear relation, equation 2. Yellow line is Wells and Coppersmith (1994) scaling relation, 
equation 4. Blue line is Shaw (2009) scaling relation, equation (3). The S09' relation is shown using 
default W values; solid blue line is W=15 km, and dashed blue line is W=11 km. 

One issue concerning fits to the data is whether fits across the entire earthquake 
magnitude range, or only fits at the large earthquakes, should be considered, given that the small 
earthquakes may be especially uncertain but yet they are also used in hazard calculations. Both 
sets of error measures, therefore, are shown in table E1. 

Fits to the WGCEP03 data are shown in table E1a . Fits are restricted to M > 6.5 
earthquakes in table E1b. The Hanks-Bakun data are shown in table 1c, and fits to M > 6.5 
earthquakes for that data are shown in table E1d. Because only area values are given in the 
Hanks-Bakun database, the Shaw09 relation fixes W as a parameter in fitting that data. Fits to the 
earthquakes added by Biasi and others (appendix F, this report) are shown in table E1e. These 
data show the accuracy of model scalings with respect to earthquakes on which they were not 
regressed. 

 



Appendix E of Uniform California Earthquake Rupture Forecast, Version 3 (UCERF3)  

 4 

Table E1.  Magnitude-area scaling fits. 
[The standard deviation (“Std. dev.”) measures the difference in magnitudes of the data from the predicted curve. A 
least squares fit is done, which disregards errors in area relative to errors in magnitude. The number of free 
parameters is given by “No.,” with the best fitted parameter values following that. The parameter C0 is the constant 
in the magnitude-area scaling relations. Other parameters are defined at the individual equation numbers (“Eqn”). 
Ranking in this table, and those that follow, is by minimum AIC (Akaike, 1974), in which standard deviation is 
rewarded but additional parameters are penalized. AIC=−2 ln L + 2k, where L is the likelihood and k is the number 
of fitted parameters. Here AIC=n(ln(2πσ2) + 1) + 2k, where σ is the standard deviation, n is the number of data 
points, and k is the number of parameters. (a) Data from the WGCEP03 database (Working Group on California 
Earthquake Probabilities, 2003). The modified Wells-Coopersmith scaling is denoted with a dagger symbol: WC†. 
The S09 scaling with fixed values of W is denoted with a prime symbol: S09'. (b) Only large-magnitude earthquakes 
(magnitude greater than 6.5 [M>6.5]) are considered, reducing the number of data points from 77 to 49. Because the 
parameters are not refit to the reduced data set, we mark the AIC with a star, AIC*, to indicate that the parameter 
penalties perhaps are overly harsh, because the parameters are not refit. However, the AIC values help as to the 
statistical significance of the differences in the standard deviations, so they are still presented. This approach favors 
the Ellsworth-B scaling because it was designed to fit across this range, while the other scalings were fit across the 
entire range. (c) Data from the Hanks-Bakun database (Hanks and Bakun, 2008). Because width information is 
unavailable, only S09' fixed W solutions are shown. Two of those are shown: one optimized for the Hanks-Bakun 
data, and the other a default version based on the WGCEP03 data. (d) Only large magnitude earthquakes (M>6.5) 
are considered, reducing the number of data points from 87 to 36. This favors the Ellsworth-B scaling. (e) Misfits to 
new events in the Biasi and others (appendix F, this report) database. Formal uncertainties in the parameter fits are at 
the 10-percent level.] 

(a) Fits to complete WGCEP03 magnitude-area-width dataset. 
Scaling Best fits Parameters 

Name Eqn Std. dev. AIC No. Best fit values 
S09 (3) .202 -23.62 2 C0 = 3.98 β  = 7.4  
WC† (4) .203 -22.87 2 C0 = 3.89 C1 = 1.08  
S09' (3) .204 -20.65 3 C0 = 3.98 β  = 7.4 W = 15 km 
HB (2) .212 -16.13 2 C0 = 3.98 AC = 537 km2  
WC (4) .217 -12.50 2 C0 = 3.98 C1 = 1.02  
EB (1) .229 -6.15 1 C0 = 4.20   
 

(b) Misfits to magnitude greater than 6.5 subset of WGCEP03 data without refitting parameters. 
Scaling Misfits M > 6.5 Parameters 

Name Eqn Std. dev. AIC* No. Values 
EB (1) .173 -31.09 1 C0 = 4.20   
S09 (3) .177 -26.23 2 C0 = 3.98 β  = 7.4  
WC† (4) .178 -26.32 2 C0 = 3.89 C1 = 1.08  
S09' (3) .190 -17.60 3 C0 = 3.98 β  = 7.4 W = 15 km 
HB (2) .213 -8.72 2 C0 = 3.98 AC = 537 km2  
WC (4) .216 -7.17 2 C0 = 3.98 C1 = 1.02  
 

(c) Fits to complete Hanks-Bakun magnitude-area dataset. 
Scaling Best fits Parameters 

Name Eqn Std. dev. AIC No. Best fit values 
S09' (3) .208 -20.54 3 C0 = 3.98 β  = 5.0 W = 19 km 
HB (2) .213 -18.46 2 C0 = 3.98 AC = 537 km2  
WC† (4) .215 -16.43 2 C0 = 3.86 C1 = 1.08  
S09' (3) .213 -17.58 3 C0 = 3.98 β  = 7.4 W = 15 km 
WC (4) .220 -12.32 2 C0 = 3.98 C1 = 1.02  
EB (1) .275 24.23 1 C0 = 4.20   
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Table E1.—continued 
(d) Misfits to magnitude greater than 6.5 subset of Hanks-Bakun data without refitting parameters. 

Scaling Misfits M > 6.5 Parameters 
Name Eqn Std. dev. AIC* No. Values 

EB (1) .185 -17.26 1 C0 = 4.20   
WC† (4) .193 -12.21 2 C0 = 3.86 C1 = 1.08  
S09' (3) .200 -7.58 3 C0 = 3.98 β  = 5.0 W = 19 km 
S09' (3) .204 -6.32 3 C0 = 3.98 β  = 7.4 W = 15 km 
HB (2) .213 -5.27 2 C0 = 3.98 AC = 537 km2  
WC (4) .216 -4.05 2 C0 = 3.98 C1 = 1.02  
 

(e) Misfits to Biasi and others (appendix F, this report) magnitude-area-width data without refitting parameters. 
Scaling Best fits Parameters 

Name Eqn Std. dev. AIC* No. Best fit values 
EB (1) .145 -17.34 1 C0 = 4.20   
S09 (3) .165 -10.65 2 C0 = 3.98 β  = 7.4  
WC† (4) .175 -8.24 2 C0 = 3.86 C1 = 1.08  
WC (4) .210 -1.27 2 C0 = 3.98 C1 = 1.02  
HB (2) .234 2.69 2 C0 = 3.98 AC = 537 km2  

 

The Hanks-Bakun and S09 relations work best across the entire earthquake magnitude 
range, while Ellsworth-B and S09 relations work best for large earthquakes. The original Wells-
Coppersmith relation (WC in the table) underpredicts the Hanks-Bakun dataset at large 
earthquakes. Refitting the parameters, we find best fitting C1=1.08 and C0=3.86 (WC† in the 
table), which is more accurate than the original relation. However, the nonrobustness of the fits 
(in particular changing C1 for other different datasets) raises issues for this functional form. 
When information about width is available, the Shaw09 relation works better with fault-based W 
(shown as S09 in the tables) than fixed values of W (shown as S09' in the tables), so this is the 
preferred version of that relation. 

Comparing fits of the different scaling laws, in log-log magnitude-log area space, across 
the entire range of earthquake magnitudes (M>5), the Shaw09, Hanks-Bakun, and Modified 
Wells-Coppersmith type scalings fit better than the Ellsworth-B scaling. For only the large 
earthquakes (M>6.5), however, which the Ellsworth-B relation was developed to match, it does 
well. Using as an error metric the difference in magnitude, Fisher F-tests support what we see in 
AIC: from the lowest magnitudes (M>5), the S09 relation fits better than the Ellsworth-B 
relation, as does the Hanks-Bakun relation relative to the Ellsworth-B relation. For large-
magnitude earthquakes (M>6.5), the Ellsworth-B relation begins to fit better. At large 
earthquake magnitudes, the Ellsworth-B, S09, and Modified Wells-Coopersmith relations are 
comparable. In contrast, the Hanks-Bakun relation begins to do less well at large earthquake 
magnitudes. For the entire magnitude range, the S09 relation fits better than the Hanks-Bakun 
relation, significantly in the WGCEP03 data where width information is available, though only 
just above the level of statistical significance in the Hanks-Bakun data where width data is 
unavailable and default W values must be used. As the magnitude cutoff increases, the S09 
relation does even better compared to the Hanks-Bakun relation. Therefore, the extra regime in 
S09 relative to Hanks-Bakun appears justified in terms of a statistically better fit. In fitting the 
new Biasi and others (appendix F, this report) data, the Ellsworth-B relation does the best job. 
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Weighting Recommendation for Earthquake Sizes 
With respect to weighting, one possibility would be to weight equally all relations within 

an acceptable AIC difference. Other weightings can also be justified by data uncertainties or 
theoretical constraints (for example, a desire for more consistency between scalings used for 
sizes and rates). 

The original values for Wells-Coppersmith-type relations do not fit well enough at large 
earthquake magnitudes to justify their use. The modified values could be used as a fit to the data. 
However, nonrobustness of parameter fits and difficulty connecting to other data fits, are 
arguments against using modified values. 

Rate of Events 
In UCERF2, rates of earthquakes were calculated by moment balancing, with all of the 

moment from the magnitude-area scaling assumed to occur spread evenly with depth over the 
seismogenic rupture area. This leads to two major sources of uncertainty. One is the differences 
in the scaling laws, which have different estimated slips for a given area at very large 
earthquakes that dominate the sums in the moment balancing. A second source of uncertainty is 
the question of whether the slip might extend deeper below the seismogenic layer during large 
earthquakes, a question raised by efforts to reproduce scaling laws (Das, 1982; King and 
Wesnousky, 2007) by dynamic models (Shaw and Wesnousky, 2008) and by kinematic ground 
motion modeling efforts (Graves and others, 2011). We propose to address this issue by treating 
the balancing in terms of slip rate, and expanding the data considered to include geologically 
observable surface slip data. Slip rate would be targeted to balance at mid-seismogenic depths. 

An extensive study of surface slip data and slip-length scaling laws has been done and 
shown to be a viable pathway for inclusion in the slip rate balancing estimates (Shaw, 2013).  
Qualitative consistency with estimates from magnitude-area scaling was seen, but systematic 
quantitative differences of 30 percent were seen in slip estimated from surface-slip 
measurements, relative to slip estimated from magnitude assuming all the moment occurs over 
the seismogenic area. Two end-member cases are possible. One end member would have the 
surface-slip estimates biased low, with missing slip occurring below measurement detection, 
perhaps through plastic deformation in unconsolidated sediments. The second end member 
would have the magnitude-area estimates biased high, with deeper subseismogenic slip mapped 
onto seismogenic depths. Both end members remain possibilities, as does some compromise 
mixture of a value between the end members involving some of both these possible biasing 
effects. We therefore recommend representing both types of estimates in the logic tree. 

Implied Slip-Length from Magnitude-Area 
Magnitude-area scaling can be transformed into a corresponding implied slip-length 

scaling (Shaw, 2013). In the moment balancing or slip-rate balancing use of the magnitude-area 
scaling relations, the slip from each earthquake is summed to get an overall rate of earthquakes 
to match the long-term slip rate on the faults. Because this slip is summed linearly, it makes 
sense to see how the scaling laws look not in log-log space, which emphasizes the range of sizes, 
but in linear-linear space, which emphasizes the largest earthquakes that are dominating the sum. 
To convert the magnitude-area scaling laws to implied slip-length scaling laws, we use the same 
assumptions involved in moment balancing. We convert magnitude M to moment M and divide 
by area A and modulus µ to get slip S: S=M/Aµ. A standard value of the modulus is used (µ=30 
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gigapascals [GPa]). Here, we see the uncertainty in the downdip width: if our area estimates are 
biased, our slip estimates will be biased. For length and width, we can use the information in 
databases directly when it is available, as in the WGCEP03 data. This transformed data is shown 
in figure E2A. When it is unavailable, as in the Hanks-Bakun data, we can divide the area by 
downdip width W to get length L: L=A/W . This transformation is shown in figure E2A assuming 
W equals L for small earthquakes, but then saturates for large earthquakes at the downdip width 
W . That is, W=W* where 

  (5) 

with typical values of the seismogenic width W=15 kilometers (km) for vertical strike-slip faults, 
and downdip widths for dipping faults having correspondingly larger values. Assuming a default 
downdip width, as in equation 5, we can infer an L from A. Alternatively, individual values of L 
from compiled databases (for example, Wells and Coppersmith [1994]) can be used directly with 
the Hanks-Bakun data. We also have determined that when we use individual values of L 
associated with earthquakes; we get similar results whether we assume a default value for W and 
derive an implied L or use individual values of L. Although individual points move, the overall 
trend is similar. Because of the simplicity and clarity associated with using implied length in 
conjunction with implied slip, we focus our attention on that approach when using the Hanks-
Bakun data here. 

 

Figure E2. Graphs showing fits of implied slip-length scaling by magnitude-area scalings. (A) Data are 
derived from WGCEP03 database. Earthquake-specific Ws are used. (B) Data are derived from Hanks-
Bakun database. Default W=15 km. Magnitude is converted to moment, then divided by area and 
modulus to calculate slip. When length is available in database, it is used. Otherwise, area is converted 
to length by dividing area by width assuming seismogenic depth H=15 km. Data are shown with light 
blue circles. Different color lines represent different magnitude-area scaling laws rescaled the same 
way in which the data have been rescaled. Parameters are used directly from magnitude-area scaling 
laws, table E2a. The curves are the implied slip-length for Ellsworth-B (Working Group on California 
Earthquake Probabilities, 2003) (red), Hanks-Bakun (Hanks and Bakun, 2008) (green), and Shaw 
(2009) (black). The S09' relation is shown using default W values; solid black line is W=15 km, dashed 
black line is W=11 km. 
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Assuming again that W=W*, the magnitude-area scaling laws transform into slip-length 
scaling laws as follows. For Ellsworth-B, we get 

  (6) 

For generalized Wells-Coppersmith type scaling, we get 

  (7) 

For Hanks-Bakun, we get 

   (8) 

For Shaw09, we get 

  (9) 

Taking into account the crossover effects of the finite seismogenic width expressed in equation 
5, the magnitude-area scaling laws transformed into slip-length scaling laws are modified to have 
an additional scaling regime for the Ellsworth-B and Hanks-Bakun scaling, while the Shaw09 
scaling is reduced by one regime and one parameter, from three to two regimes, and from three 
to two parameters (C5 and Wβ in equation [9]). This reduction for the Shaw09 scaling is not 
coincidental because it was developed from a slip-length scaling law. 

Comparing the different scalings for large L, we note very different predicted behaviors. 
For L>>W: in Hanks-Bakun, S∼L; in Ellsworth-B, S∼L1/2; and in Shaw09, S∼W . In the 
generalized Wells-Coopersmith scaling, S∼L1.5C

1
–1, a nonspecific exponent. The scalings also 

differ in their W dependence at large L, with a linear dependence on W in Hanks-Bakun and 
Shaw09, and a W1/2 dependence in Ellsworth-B. In the generalized Wells-Coopersmith scaling, 
S∼W 1.5C

1
–1, again a nonspecific exponent . Unfortunately, the W values for the data are too 

uncertain to test the different predicted dependences. Fortunately, the data appear sufficient to 
test some features of the L dependence. 
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Table E2.  Implied slip-length from magnitude-area. 
The standard deviation (“Std. dev.”) in table E2 measures the difference in slip of the data from the predicted curve. 
The data are transformed from magnitude-area to slip. We do not refit the parameters, which were set based on fits 
in log space magnitude-log area, to the new linear space slip-length metric. When we do not refit the parameters, 
with denote this with AIC∗. (a) Transformed data from WGCEP03 data (Working Group on California Earthquake 
Probabilities, 2003). Lengths from database. (b) Transformed data from Hanks-Bakun database (Hanks and Bakun, 
2008). Lengths from dividing area by default width, with seismogenic width of 15 kilometers. (c) Surface slip-length 
scaling relations are fit to the implied slip-length Hanks-Bakun data. This is done for completeness, and for 
comparison with the surface slip-length data. Formal uncertainties in parameter fits are at the 10-percent level in 
tables E2a–c. 

 
(a) Misfits without rescaling for new metric; from WGCEP03 data. 

Scaling Unrescaled Misfit Parameters 
Name Eqn Std. dev. AIC* No. Values 

S09 (3) 1.212 252.1 2 C0 = 3.98 β  = 7.4  
S09' (3) 1.245 256.3 2 C0 = 3.98 Wβ  = 15 * 7.4 = 111 km 
EB (1) 1.275 258.0 1 C0 = 4.20   
WC† (4) 1.415 276.0 2 C0 = 3.86 C1 = 1.08  
HB (2) 1.687 303.0 2 C0 = 3.98 AC = 537 km2  
WC (4) 1.699 304.1 2 C0 = 3.98 C1 = 1.02  
 

(b) Misfits without rescaling for new metric; from Hanks and Bakun (2008) data. 
Scaling Unrescaled Misfit Parameters 

Name Eqn Std. dev. AIC* No. Values 
S09' (3) 1.180 279.6 2 C0 = 3.98 Wβ  = 15 * 7.4 = 111 km 
EB (1) 1.211 282.2 1 C0 = 4.20  
WC† (4) 1.282 294.1 2 C0 = 3.86 C1 = 1.08  
HB (2) 1.459 316.6 2 C0 = 3.98 AC = 537 km2  
WC (4) 1.549 327.0 2 C0 = 3.98 C1 = 1.02  
 

(c) Surface slip scaling relations fit to Hanks-Bakun implied slip-length data. 
Scaling Best fits Parameters 

Name Eqn Std. dev. AIC No. Best fit values 
Lη (12) 1.190 281.1 2 C8 = 0.026 η = .632 
L1/2    (10) 1.236 285.8 1 C6 = 7.46 · 10-5  
S12 (13) 1.249 287.6 1 ∆σ = 5.95 MPa  
L (11) 1.339 299.7 1 C7 = 1.19 · 10-6 / km  

 

Looking at the fits of the transformed scaling laws to the transformed data in table E2, the 
Shaw09 relation is the best, followed closely by Ellsworth-B, and then the Modified Wells-
Coopersmith and Hanks-Bakun. 

Surface Slip Data 
The use of surface slip data to constrain rates has a number of advantages. First, it avoids 

some of the uncertainty around the issue of the depth of rupture in large earthquakes. Second, it 
adds to the analysis a new, independent, geologically observable dataset, thereby adding testable 
and collectible information to the estimates. Third, by using slip (which is a linear measure) 
rather than magnitude (which is a logarithmic measure) as the independent variable, fits to the 
scaling laws are more naturally mapped onto the linearly summed integral constraints, so errors 
are better accounted for where they matter most. Finally, the use of surface slip data enables 
incorporation of pre-instrumental information, making possible much extended datasets. 
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A more thorough study has been done using this approach, and has been recently 
published (Shaw, 2013). Four candidate scalings emerged. The first scaling is a square root L1/2 
scaling consistent with the implied Ellsworth-B scaling: 

  (10) 

This kind of scaling has been proposed by Leonard (2010) for large lengths. The second scaling 
is a linear L scaling consistent with the implied Hanks-Bakun scaling for the largest earthquakes: 

  (11) 

The third scaling is a power law scaling, consistent with the generalized Wells-Coppersmith type 
scaling. This adds an extra free parameter, a nonspecific exponent η, in the scaling, so a much 
better fit will be needed to make the added model complexity and potential physics worthwhile: 

  (12) 

The fourth scaling is a constant stress drop scaling: 

  (13) 

with µ the shear modulus and ∆σ the stress drop. This relationship comes from a more careful 
treatment of how slip would be expected to transition from circular ruptures beginning to break 
the surface to long rectangular ruptures. A generalization of the constant stress drop model for 
dipping faults and oblique slip is detailed in section on “Dipping Faults” below. 

The scalings fit to the UCERF3 data compiled by Biasi and others (appendix F, this 
report) are shown in figure E3. Fits of the scalings to the data are shown in table E3. Fits to the 
data from appendix F are shown in table E3a. Fits to the California-only data from appendix F 
are shown in table E3b. Fits to an older data set compiled by Wesnousky (2008) are shown in 
table E3c. Comparing the fits, the amplitudes fitting scaling relations to California-only data are 
about 5–10 percent smaller than amplitudes found fitting the full new appendix F data. 
Comparing the old Wesnousky (2008) data to the new Biasi and others (appendix F, this report) 
data, the amplitudes from fitting increase about 15 percent, and the standard deviations increase 
about 40 percent, but the overall conclusions remain similar. In both cases, the forms trending 
towards sublinear scaling, where slip  increases less and less as earthquakes get longer, 
substantially outperform the linear scaling model. This is consistent with previous work noting 
the breakdown in the “L” model scaling for very large aspect ratio earthquake (Romanowicz, 
1992; Scholz, 1994). 
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Figure E3. Graph showing fits of surface slip-length scaling laws to surface slip observations of average 
slip versus length using Biasi and others (appendix F, this report) database. Color indicates focal 
mechanism: strike-slip shown in blue, dip-slip in magenta. Curves only fit to strike-slip data. In order of 
best fit to least-good fit: black line shows equation 13, constant stress drop scaling; red line shows 
equation 10, L1/2 scaling; and green line shows equation 11, L scaling. Note the change in vertical axis 
scale in figure E2 compared to figure E3, showing the overall systematic difference, and fundamental 
epistemic uncertainty, in average slip estimates from magnitude-area versus surface slip observations. 
Some of this difference represents different earthquakes in the two different databases, but some of it, 
a difference of about 30 percent, remains when we restrict our view to the same earthquakes. Note 
also the overall qualitative consistency in trends of the two types of data in both figures. 

Table E3.  Slip length from surface slip data. 
[The standard deviation (“Std. dev.”) measures the difference in slip of the data from the predicted curve. The table 
shows a comparison of the surface slip data with scaling relations proposed for surface slip-length scaling. (a) Fits to 
Biasi and others (appendix F, this report) data. There are 45 data points in the fit to the strike-slip data. The best 
overall fit to the data, in terms of AIC, is S12, the constant stress drop model, equation 13, followed closely by the 
L1/2 model, equation 10. (b) Fits to Biasi and others (appendix F, this report) California-only data. In this case, there 
are only 16 data points. Excluding the power law fit, the best fitting parameters change only slightly—about 5–10 
percent—less in amplitude than the full dataset. The top models remain close, but swap places slightly. The scatter is 
also reduced in this restricted dataset. (c) Fits to the older (Wesnousky, 2008) data. Excluding the power law fit, the 
main change for the new fits relative to the old fits are that the amplitude of the fits increases about 15 percent with 
the new data, and the scatter, reflected in the standard deviation, increases about 40 percent. With respect to the 
power law fits across the different datasets, note the parameter sensitivity of η to the datasets. This is an undesirable 
quality of a measure, and argues against the extension of dimension in this direction. In contrast, the covariance of 
the fits L1/2, S12, and L to the different datasets is substantial; they are varying stably together] 

 
(a) Fits to Biasi and others (appendix F, this report) data. 

Scaling Best fits Parameters 
Name Eqn Std. dev. AIC No. Best fit values 

S12 (13) 1.12 139.6 1 ∆σ = 4.54 MPa  
Lη (12) 1.11 141.4 2 C8 = 0.142 η = .387 
L1/2  (10) 1.14 141.5 1 C6 = 5.69 · 10-5  
L (11) 1.52 167.1 1 C7 = 8.10 · 10-7 / km  
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Table E3.—continued 
(b) Fits to Biasi and others (appendix F, this report) California-only data. 

Scaling Best fits Parameters 
Name Eqn Std. dev. AIC No. Best fit values 

S12 (13) .659 34.0 1 ∆σ = 4.14 MPa  
L1/2 (10) .666 34.4 1 C6 = 5.33 · 10-5  
Lη (12) .664 36.3 2 C8 = 0.066 η = .474 
L (11) 1.08 49.8 1 C7 = 8.02 · 10-7 / km  
 

(c) Surface slip scaling relations using adapted older (Wesnousky, 2008) data. 
Scaling Best fits Parameters 

Name Eqn Std. dev. AIC No. Best fit values 
S12 (13) .760 50.05 1 ∆σ = 3.91 MPa  
L1/2 (10) .804 52.43 1 C6 = 4.91 · 10-5  
Lη (12) .788 53.60 2 C8 = 0.093 η = .421 
L (11) 1.174 68.34 1 C7 = 7.10 · 10-7 / km  

 
Note in table E3 that the exponent on the power law scaling (equation 12) is not very 

stable with change of dataset, unlike amplitudes of other fits, which covary. The sensitivity of 
this parameter makes it much less useful as a fitting parameter. This also argues against 
generalizing to that continuum parameter. 

Sublinear Scaling 
Both the implied slip versus length and the surface slip versus length curves show 

sublinear scaling. The data very clearly support sublinear scaling—that is, increases in slip with 
length that increase at smaller rates as the lengths get larger. Sublinear scaling is shown in figure 
E4. Cumulative slip versus cumulative length, for the data points rank ordered in length, is 
shown in figure E4A. The downward curvature indicates the sublinear scaling. In contrast, linear 
scaling would imply a constant slope, while upward curvature would imply supralinear scaling. 
This cumulative curve gives a robust qualitative picture. However, the details of the form depend 
on the density of points along the length axis, so more quantitative measures need a different 
approach. Local average slopes in the data are shown in figure E4B. Average slope given by 
average slip divided by average length, versus length, are plotted there. The averages are 
calculated across neighboring data points, averaged across n = 3, 4, 5 data points, represented by 
different color symbols, in the plot. For the implied slip, in Figure E4B we see, at long length 
scales of 100 km and more, a systematic decrease in the slope with increasing length. In the plot, 
we also show with solid lines the implied slopes from magnitude-area curves. We see a good fit 
for Ellsworth-B and S09, a poor fit functionally for Hanks-Bakun, and an underfit for Wells-
Coopersmith to the implied slope from the Hanks and Bakun (2008) data. 

The sublinear trend is even more evident in the average slope of the surface slip-length 
data. The same type of plot as in Figure E4B is also shown in figure E4D, now using surface slip 
data (appendix F, this report). The plots also show in solid lines the slopes for the different 
scaling laws. The L1/2 and the constant stress drop models both work well. The constant-slope 
linear fit again is a very poor functional fit. We do not show the power-law fit owing to 
sensitivities in the exponents. 
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Figure E4. Graphs showing sublinear scaling of slip with length. Top plots use implied slip-length from 
magnitude-area data. Bottom plots use surface slip-length data. (A) Cumulative slip versus cumulative 
length, showing the sub-linear scaling inherent in the data. Linear scaling implies a straight line on the 
cumulative curve; downward curvature is sublinear scaling, increasing slower than linear; and upward 
curvature is supralinear scaling, increasing faster than linear scaling. (B) Average slope given by local 
average slip over average length, plotted as a function of length. The local slope is fit by an average 
over n points in the neighborhood; here n=3, 4, 5 in the different colors. The data are implied slip-length 
from the magnitude-are data of Hanks and Bakun (2008). The different color curves show the different 
scaling law fits. The curves are the implied slip-length derived from the magnitude area scaling 
relations: Ellsworth-B, equation 1 (red); Wells-Coppersmith, equation 4 (yellow); Hanks-Bakun, 
equation 2 (green); and S09, equation 3 (black). The S09' relation is shown with two default W values: 
15 km (solid black line), and 11 km (dashed black line). (C) Same as (A) but instead using surface slip 
data. (D) Same as (B) but instead using surface slip data. The different color curves show the different 
scaling laws fits for the surface slip relations. The data are surface slip-length Biasi and others 
(appendix F, this report). The curves are L1/2, equation 10 (red); L, equation 11 (green); and constant 
stress drop, equation 13 (black). 

Other Scaling Relations 
Some other scaling relations have been proposed that we did not explicitly examine here. 

Wesnousky (2008) proposed slip scaling with the log of length. He found the standard deviation 
for that fit to the data was equivalent to that for an L1/2 scaling; given the singularity at 0, the 
additional parameter required, and the lack of an extension to a corresponding magnitude-area 
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scaling, we did not consider this a worthwhile functional form to pursue. Various authors have 
proposed generalized Wells-Coppersmith scaling relations (for example, Yen and Ma, 2011). 
Leonard (2010) has proposed a set of self-consistent scaling laws based on W scaling with L. In 
the large L limit, it behaves as L1/2; at smaller lengths, it has a different scaling. However, given 
the scatter in the data and the additional parameters associated with changes at smaller scales, the 
added complexity and added parameters were considered not worth pursuing here. 

It has long been noted that stable continental regions appear to slip about 2–3 times more 
than plate boundary earthquakes (Kanamori and Anderson, 1975; Scholz, 1994; Leonard, 2010). 
Further refinement of catalogues to separate out this effect is one question, and some of the large 
slip earthquakes might be a result of mixing in these types of earthquakes. For the surface slip 
data, the fact that the California-only regressions were only about 5–10 percent less than the 
regressions on the global dataset suggest this is not a big effect in the catalogues we used. For the 
implied slip-length data derived from magnitude-area data, this is likely contributing to some of 
the differences relative to the surface slip data. 

Dipping Faults 
The constant-stress-drop model has been generalized for dipping faults and oblique slip 

(Shaw, 2013). For dip-slip faults, two characteristics affect the scaling. One characteristic is that 
the downdip width W generally is larger for dipping faults, as discussed later in equation 16. For 
dips θ of 90° (strike-slip), 60° (normal), and 30° (thrust), the increased width due to dip factor of 
1/sinθ is, respectively, 1, 1.15, and 2. Therefore, this is a significant factor only for shallow dips. 
A second factor is a change in the coefficient on W for the infinite rupture, with the factor of 2 
replaced by (λ + 2µ)/(λ + µ)=1/(1 − (vs /vp)2), where vs /vp is the ratio of the shear wave speed to 
the compressional wave speed. Using typical values of vs /vp of 1.75 gives typical values about 
1.5 for this factor or about three-fourths of the value for dip-slip relative to strike-slip. Therefore, 
for dip-slip cases, we have 

  (14) 

We can further generalize this to the oblique slip case for slip in the arbitrary direction ŝ 
composed of along-strike and dip-slip components: 

  (15) 

The combined effects for the three dip cases are shown in figure E5, with θ=90° using 
equation 13, and θ=60° and 30° using equation 14, assuming constant seismogenic depth and 
correspondingly varying downdip W, and with the later two dip-slip cases including the modulus 
effect in equation 14. 
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Figure E5. Graph showing dip effects on expected scaling. Data points are geological surface slip 
observations of average slip versus length from the Biasi and others (appendix F, this report) database. 
Color indicates focal mechanism: strike-slip  shown in blue, dip-slip in magenta. Solid lines show 
scaling expected for fixed seismogenic depth, but changing dip, and, thus, downdip width and changing 
modulus effects. All curves have the same stress drop, a value for best fit stress drop to strike-slip data 
of 4.54 MPa . Different curves use same seismogenic depth of 15 km and different dips 90° (black) 
strike-slip equation 13, and 60° (green) and 30° (red) dip-slip equation 14. Only relatively small 
differences are expected in scaling of earthquakes with different focal mechanisms, which appears 
consistent with data. 

We see the modulus effect prevailing over the increased W effect at 60°, so the expected 
slip is slightly less for the 60°-dip case. The crossover where the two effects are comparable 
occurs at about 45°. By 30°, the increased W effect dominates and slip increases, but not by a 
large amount. It is not until there are faults with very shallow dips that a whole new scale of slip 
appears, at dips and W’s relevant to subduction zones. Therefore, for subareal surface rupturing 
events, under constant-stress-drop scaling we expect similar slips for dip-slip versus strike-slip 
earthquakes. The data, sparse as it is, appears to support this. The conclusion that dip-slip and 
strike-slip earthquakes have similar stress drops also has been found in regressions using other 
types of scaling assumptions (Leonard, 2010). This lends additional support to the approach of 
treating dip-slip and strike-slip earthquakes similarly. 

Branch Recommendations 
Four slip-length scaling relations, the two leading implied scalings equations 1 and 3, and 

the two leading surface scalings equations 10 and 13, are shown in figure E4. The implied slip-
length scalings from the magnitude-area scalings are shown with dashed lines, and the slip-
length scaling fits to surface slip data are shown in solid lines. The data do not support the linear 
scaling of slip with length out to the largest lengths. Moreover, given the sensitivity of the 
exponents in the power-law scaling to the different datasets, and only marginal improvement in 
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the fitting, opening up to nonspecific exponents is not recommended. We recommend keeping 
the top two scalings in the two different approaches, which in both the inferred slip-length from 
magnitude-area and the surface slip-length data show sublinear scaling. 

One question regarding the surface slip estimates is whether it is better to use a default W, 
or to use fault specific values of W. Because the implied slip estimates from the magnitude-area 
data already use fault-specific values of W, we suggest that a default value of W be used in the 
surface slip estimates. This approach provides a complementary estimate in the rates that 
compensates for potential errors in fault-specific W estimates. It sacrifices some potential 
accuracy for more robustness and more behavior toward the mean. This approach results in 
errors in rates from surface slip with W that are less correlated with errors in the alternative 
magnitude-area approach. Given uncertainties in W estimates, and the desirability of spanning 
the range of estimates, using a default W is a useful complementary approach on this set of 
branches. Future study could show sufficient added skill in the W estimates to warrant further use 
of fault-specific W estimates for the rates; however, in the absence of sufficiently demonstrated 
skill, the uncorrelated approach appears preferable. 

Weighting Recommendation for Rates of Events 
Sublinear scaling in data disfavors linear η=1 scaling. We see no compelling reason to 

open up to the continuum, and argue against opening up power law continuum over specific 
discrete values. There are a number of reasons for this recommendation. We see little if any 
advantage to using the arbitrary exponent power law fit instead of the two discrete exponent fits; 
the exponents in the power law change in different datasets. Because exponents are associated 
with a particular physics, this last feature is especially problematic from a physics-based hazard 
perspective. 

Given the comparability of the fit within the datasets, an equal weighting of the two 
leading scalings for a given data set is recommended. Given the uncertainty between the 
branches based on magnitude-area estimates on the one hand, and the branches based on surface 
slip-length estimates on the other, an equal weighting between the two different types of 
estimates seems justified. Recommended parameter values are those in tables E2a and E3a. If we 
wanted to use the California-only dataset (table E3b) rather than the full dataset (table E3a), for 
consistency, some correction for magnitude-area scaling laws should also be made. Given the 
small change in best-fitting parameter values (about 5–10 percent), we recommend using the full 
dataset, table E3a, for the sake of simplicity. 

Weighting Recommendation for Sizes and Rates Combined 
Looking for consistency in assumptions underlying the scaling laws used for sizes and 

the scaling laws used for rates is one way to add constraints. This was done implicitly in 
UCERF2 by using the same scaling laws for the sizes and the earthquakes, and not mixing the 
two laws used. Using these criteria further discourages the use of the continuum power law 
solutions because matching power laws on the different datasets would add further nontrivial 
constraints on physics. It also appears to be sufficiently accounted for in the other sublinear 
scaling laws. That leaves four clear candidates, if we want compatibility in basic assumptions: 
(1) equations 1 and 6, (2) equations 1 and 10, (3) equations 3 and 9, and (4) equations 3 and 13. 
In the case of the Hanks-Bakun, and the associated η=1 linear solution, although it is unfavored 
by the sublinear scaling in the rate estimate fits, and in fits at large earthquakes, continuity with 
its use in previous estimates and its role as an outlier justify including it as a potential branch. 
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Figure E6 illustrates the slip-length scaling relations of the five recommended branches, with 
three coming from implied slip from magnitude-area scaling, and two coming from surface slip 
scaling. 

 

Figure E6. Graph showing slip length scaling relations for large strike-slip events. Dashed lines are implied 
slip-length scaling relations derived from magnitude-area scaling relations. Solid lines are slip-length 
scaling relations derived from surface slip observations. The dashed lines are systematically above the 
solid lines at large lengths. Dashed lines from implied slip-length scaling parameters based on 
magnitude-area fits, table E2a. Dashed cyan line is implied slip-length from Ellsworth-B (Working 
Group on California Earthquake Probabilities, 2003) magnitude-area relation, equation 1. Dashed blue 
line is implied slip-length from S09 equation 3, shown using default W=15 km value. Dashed green line 
is implied slip-length from Hanks and Bakun (2002) bilinear relation, equation 2. Solid curves are fits to 
surface slip-length data. Solid red line is L1/2 scaling, equation 10. Solid black line is constant stress 
drop scaling (Shaw, 2013), equation 13. The dashed blue line best fits the slip-length data derived from 
the magnitude-area data. The solid black line best fits the surface slip-length data. 

Logic Tree Recommendation 
The recommended combined branches and parameter values are shown in table E4. The 

full branch sets are shown in table E4a. A potential trimming of the full branch is shown in table 
E4B. An equal weighting of the branches in table E4a is one potential recommended approach 
with the most branches. A trimming based on consistency between functional forms in sizes and 
rates, as was done in UCERF2 (shown in table E4b), is an alternative with the fewest branches. 
An expansion to include previously used branches is shown in table E4c. 
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Table E4.  Logic tree branches. 
[Branches in the logic tree are shown in tables 4a–c. (a) Maximal branches showing four viable magnitude-area 
scaling laws combined with four viable slip-length scaling laws, for a total of 16 branches. (b) Trimmed set of 
branches using consistency in scaling assumptions, with basis of scaling in sizes consistent with same assumptions 
underlying scaling in rates. This type of consistency was used in UCERF2. (c) Extension of trimmed consistency set 
to include previously used branch that also has role as outlier. Default values unless otherwise specified are W=15 
km; µ=30 GPa] 

 
(a) Full branches. 

Sizes Rates 
Name Eqn Table Name Eqn Table 
S09 (3) E1a S09 (9) E2a 

   EB (6) E2a 
   S12 (13) E3a 
   L1/2 (10) E3a 

EB (1) E1a S09 (9) E2a 
   EB (6) E2a 
   S12 (13) E3a 
   L1/2 (10) E3a 

HB (2) E1a S09 (9) E2a 
   EB (6) E2a 
   S12 (13) E3a 
   L1/2 (10) E3a 

WC† (4) E1c S09 (9) E2a 
   EB (6) E2a 
   S12 (13) E3a 
   L1/2 (10) E3a 

 
(b) Trimmed by consistency of scaling assumption. 

Sizes Rates 
Name Eqn Name Eqn 
S09 (3) S09 (3) 

  S12 (13) 
EB (1) EB (1) 

  L1/2 (10) 
 

(c) Extension of consistency set to previously used branch. 
Sizes Rates 

Name Eqn Table Name Eqn Table 
S09 (3) E1a S09 (3) E1a 

   S12 (13) E3a 
EB (1) E1a EB (1) E1a 

   L1/2 (10) E3a 
HB (2) E1a HB (2) E1a 

Hazard Sensitivity Tests to Data Uncertainties 
Hazard sensitivities to various model components are important to understand. Sensitivity 

to one data uncertainty could be explored in the following way. A question of whether area 
estimates of aftershocks may be biased high at the smaller magnitudes (W. Ellsworth, USGS, 
oral commun. 2009) warrants further observations. Although the data side of this is beyond the 
scope of what can be accomplished in UCERF3, the hazard sensitivity could be tested. 
Exploration of the hazard significance of deviations in this range could be studied by exploring a 
range of parameters in the Shaw09 relations, which has the flexibility to change scaling at small 
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earthquakes separately from scaling at the largest earthquakes. For example, comparing the 
hazard from S09' with (C0=3.98, W=15 km, β=7.4) against S09' with a perturbed set of 
parameters would be a good test of hazard sensitivity to the differences in scaling at small 
earthquake sizes. Thus, modified parameters (C0+δC0, , ) with, in particular, 
δC0=0.22 so as to match the scaling of Ellsworth-B at the small earthquakes, giving modified 
parameters (C0=4.20, W=32.0 km, β=1.6), would be an interesting comparison against the 
unperturbed values. Rates will be affected minimally by any of this because slip sums are 
dominated by the largest earthquakes. 

Depth Extent of Rupture 
Relationship between W and Seismogenic Depth 

Past working groups have used the seismogenic depth H as a proxy for downdip width W 
during large earthquakes. However, there is some uncertainty as to the precise relationship 
between W and H. Dynamic ruptures are able to push at least some distance into velocity-
strengthening layers, so W may be at least as large as H. Rolandone and others (2004) found a 
deepening of seismicity following the Landers earthquake. We propose to handle the uncertainty 
posed by the additional potential deepening with a constant proportionality parameter ξ: 

  (16)  

We also have explicitly included in the expression the geometric correction for the fault dip 
angle θ to transform depth to downdip length. There needs to be a discussion about which values 
should be used for ξ. We probably can place one bound on ξ because it is unlikely that W would 
break less deep than H: 

  . (17)  

In principle, ξ need not be a constant, and could be a function of L, implying that W is a 
function of L (King and Wesnousky, 2007; Leonard, 2010). This further extension merits 
additional study. It would, for example, allow the association of the Hanks-Bakun magnitude-
area scaling with a sublinear slip-length scaling; one could trade high implied slips instead for 
high implied downdip widths (though the widths associated with the longest ruptures might be 
considered problematic). It would, however, lead to additional moment rate estimates for the 
same slip rates on faults, and because current UCERF3 estimates are already high relative to 
preferred values, this extension has not yet been examined. 

Branch Recommendations 
In the tables, we have used Ws of 15 km, a standard value from aftershock data. A value 

of ξ = 1.25 would be compatible with California observations that H=12 km as well as with 
Rolandone and others (2004). However, weightings in a logic tree to different values of ξ should 
be discussed, as this parameter has implications for many different things. ξ =1 and 1.5 are two 
other values to consider. 

Coefficients for the regressions to the California-only data in table E3b also may address 
questions about which W may be relevant. Here, tectonic differences reflected in stress drops 
(that is, intraplate versus interplate) and differences in W might tend to increase the global data 
amplitudes relative to the California-only amplitudes. The fact that California-only amplitudes 
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differ by only 5–10 percent from the global amplitudes (as reflected in amplitude comparisons of 
tables E3a and 3b), suggests that global observations should serve as a good guide for what to 
expect in California. 

Faults with Substantial Surface Creep 
In locations where surface creep is a substantial fraction of the slip budget, traditional 

magnitude-area estimates are more appropriate for slip-rate budgeting, and full weighting should 
be given to those branches of the logic tree. This is a very rare situation for faults. Exceptions in 
California include the creeping and Parkfield sections of the San Andreas Fault, and the 
Hayward Fault, but these exceptions prove the rule, constituting a very small fraction of the 
active faults considered in California hazard calculations (Working Group on California 
Earthquake Probabilities, 2008). Where there is substantial creep, slip estimates that normally 
would come from surface slip estimates would instead come from magnitude-area estimates. 
This is because ruptures where much surface creep is occurring interseismically are expected to 
have altered rupture areas, and potentially different slip from full seismogenic ruptures 
represented in the surface slip scaling relations. A simple way to implement the full weighting on 
the traditional magnitude-area branches is to do this when average aseismicity α averaged along 
a candidate rupture is above a critical threshold: 

  (18) 

with αc = .2 as a recommended value. Other values of αc that could be tried include .15 and .3. 
We only expect minimal effects on hazard estimates from this choice of αc. 

Other Issues Regarding the Depth Extent of Rupture 
Variable Width Dip-Slip Faults 

Our scaling relations were formulated in terms of a downdip seismogenic width W. When 
this width varies along-strike, the relevant quantity is the average width (to leading order is the 
arithmetic average W that matters in constant stress drop scalings [Shaw, 2009]). With respect to 
UCERF, which has variable W’s in its database, there are two ways to handle varying W. One 
way is to take the seismogenic widths as given in the fault database, and to calculate an 
arithmetic average across candidate length L ruptures. This assumes that the variation in the 
widths in the database are relatively well known beyond only dip information, and that varying 
seismogenic depth on dipping faults is sufficiently constrained to make the added information 
useful to incorporate. The second way is to presume the most homogeneous case and to make 
minimal demands on observations, by assuming a constant seismogenic depth, and to assume all 
width variations come from dip variations. Both of these ways are straightforward to implement. 
It would be useful to implement both of them, and to compare the results. Which one would be 
favored from a branch weight point of view depends on how much confidence there is in 
deviations of seismogenic depths on dip slip faults relative to default values, and the 
relationships to downdip rupture. 
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Physics-Based Ground Motion Simulators 
The depth extent of rupture is relevant not only to helping constrain slips and rates in 

earthquakes, but also as input constraints for statistically based kinematic models of ruptures. 
Many such models have been developed (for example, Herrero and Bernard, 1994; Mai and 
Beroz, 2000). Statistically based kinematic models have also been used to forward-model ground 
motions. In the Cybershake case (Graves and others, 2011), the goal was to get a better estimate 
of ground motions and hazard in geographically specific settings, replacing ground-motion 
prediction equations, which relate shaking levels to various rupture parameters such as 
magnitude and closeness of rupture in generic settings, with geographically specific basin and 
directivity effects from sets of ruptures for particular velocity models and rupture distributions. 

Cybershake (Graves and others, 2011) is outside the scope of UCERF3, but it is, 
nevertheless, an interested user, and potentially could develop into a useful constraint, feeding 
back on the scaling laws as a consistency check. We, therefore, focus our attention on 
Cybershake in this discussion. 

Initial efforts Cybershake efforts have encountered difficulties combining magnitude-area 
scaling laws used in UCERF2 with particular kinematic models to match some features of 
Ground Motion Prediction Equations (GMPEs). Whether the issues are associated with the 
scaling laws, the particular kinematic models, the GMPEs, or some combination of these effects 
is an open question. 

Because Cybershake has many underlying assumptions (such as the degree of coherence 
in the ruptures), sensitivities in Cybershake need to be explored further before it is used as a 
constraint on UCERF relations. Nevertheless, a goal is to develop compatibility, and, therefore, 
exploring the implications of the various relations in this context is an important task. 

An unresolved epistemic uncertainty in the depth dependence of slip concerns how much 
coseismic slip may be occurring below the seismogenic layer. Dynamic models suggest a 
significant fraction of slip may be occurring below the seismogenic layer—as much as about 
one-third the total moment (Shaw and Wesnousky, 2008). This slip would be occurring mainly 
as long period motion, with a lack of high frequencies (Shaw and Wesnousky, 2008). 

An exponential decay or a linear decay with depth below the seismogenic layer is a 
reasonable parameterization of what is observed in the dynamic models (Shaw and Wesnousky, 
2008). The scale length of the decay depends on the degree of velocity strengthening; the degree 
of strengthening is not well constrained, and, therefore, the scale length remains an epistemic 
uncertainty. 

The distributions of slip, and rupture velocities, are important factors that warrant further 
study in Cybershake. Correlations of slip at the surface have Gaussian, or even faster than 
Gaussian falloff in the tails (Shaw, 2011), so Cybershake simulations with extreme slip values in 
the distributions (for example, 50 meters slip in great strike-slip earthquake patches) should be 
reexamined. Recent lidar measurements of surface offsets in California confirm this lack of high 
slip values. 

Given the implied high stress drops at moderate earthquake magnitudes in the Ellsworth-
B relations, and the implied high stress drops at large earthquake magnitudes in the Hanks-
Bakun relations, it would be interesting to study whether constant stress drop models are 
compatible with Cybershake. For example, is the Shaw09 magnitude-area scaling relation, 
combined with a 30-percent subseismogenic high-frequency deficient moment, compatible with 
higher variance rupture velocity, low variance slip patch versions of Cybershake? 
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