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Summary 
This appendix provides estimates of long-term mean recurrence intervals and rates and 

their respective uncertainties for 32 paleoseismic sites on California faults. The Uniform 
California Earthquake Rupture Forecast, Version 3 (UCERF3) Grand Inversion (appendix N, this 
report) uses these estimates as one constraint among many to solve for the rates of fault ruptures 
in California. Maximum likelihood (ML) methods are applied to the paleoseismic event dates to 
estimate parameters and uncertainties for the log-normal and exponential recurrence distribution 
models. Open intervals since the most recent event are used where available. We show in 
synthetic tests that ML parameters are not systematically biased even for short paleoseismic 
records. Two approaches were used to develop long-term mean recurrence intervals. The 
exponential model provides one direct estimate in the calculation of its rate parameter. Another 
long-term mean can be calculated from the log-normal mean and variance parameters. These 
estimates will converge for very long series, but with limited data they can differ, primarily 
because log-normal estimates are less sensitive to the length of the open interval. A degree of 
time dependence is observed in most long paleoseismic series in California. Also, modified 
Akaike Information Criteria (AICc) generally favor the log-normal model where the AICc 
resolves between models. Therefore the long-term mean rates are estimated using the ML log-
normal parameter sets. A few event series are too short to provide log-normal parameters; for 
these cases, exponential rate estimates are provided. Resulting long-term mean rates and 2.5-, 
16-, 84-, and 97.5-percent uncertainties are provided as inputs for the Grand Inversion. A 
likelihood surface approach is presented to show the relationship among equally likely model 
parameter pairs. The likelihood surface for the South Hayward site shows that a previous 
estimate of 210 years should now be considered improbable. New estimates may also be 
compared to those from UCERF2. The UCERF2 estimates vary, significantly in many cases, 
around the current ML values. 

Introduction 
Earthquake recurrence at paleoseismic sites provides a fundamental, data-derived 

estimate of long-term seismic hazard on faults. Catalogs of seismic data do not cover long 
enough time periods to provide these estimates, and seismicity rates on many important faults are 
known to underpredict fault behavior at large magnitudes. For these reasons paleoseismic 
earthquake recurrence is an important contributor in long-term regional hazard estimates. 
                                                        
1University of Nevada, Reno. 
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The occurrence of ground rupture at sites along active faults is established by 
paleoseismologists by the application of geologic, structural, and chronologic methods to trench-
scale deformations and discontinuities. Normally paleoseismic ground ruptures are not dated 
directly, but rather are bounded by youngest radiocarbon dates of disrupted layers and the oldest 
samples from an overlying undisrupted layer. Layer dates can be improved by applying 
stratigraphic ordering information (Biasi and Weldon, 1994; Lienkaemper and others, 2010), but 
rarely are better defined than a few decades. Ruptures dated by bounding inherit uncertainties 
from the layer dates. In California, a few event dates of large events are known from historical 
accounts, including the San Andreas events of 1812, 1857, and 1906, and the Hayward fault 
event of 1868. In general, paleoseismic-event series for California sites consist of a mixture of 
precise historical and uncertain paleoseismic dates. 

The objectives of this appendix are threefold: 
 

 Present and describe a maximum likelihood (ML) process for estimating recurrence 
interval (RI) parameters from paleoseismic event series. 

 Develop ML parameter estimates for log-normal and exponential distributions for 
UCERF3 paleoseismic sites. 

 Provide mean recurrence interval and rate estimates and respective 2.5-, 16-, 84-, and 
97.5-percent uncertainties 

Data Basis for UCERF3 Recurrence Interval Estimation 
The primary data source for recurrence interval parameter estimation is UCERF3 

appendix G (this study). Sites with three or more events or two events and an open interval were 
analyzed. Probability density functions (PDFs) for earthquake dates were available or could be 
developed for some sites. For the south Hayward site, the OxCal model of Lienkaemper and 
others (2010) was rerun and event PDFs were extracted from the OxCal output (Lienkaemper 
and Bronk-Ramsey, 2009). PDFs generated by the author were used for the Wrightwood (Biasi 
and others, 2002) and most recent Pallett Creek (Scharer and others, 2011) records. Where 
appendix G (this study) gives only central 95-percent date ranges, date PDFs were synthesized 
using a Gaussian shape applied symmetrically to these ranges. Note that this allows event dates 
outside the ranges of appendix G (this study) at commensurably small probabilities. Examples of 
the two types of event chronologies are shown in figure H1. Other notes on the data sources are 
provided in table H1. 
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(A) 

(B) 

Figure H1. Earthquake date probablility distribution functions (PDFs) for two sites used as inputs for 
parameter estimation.  Event numbers are given on the vertical axis.  A, Wrightwood upper section with 
PDFs from Bayesian analysis (Biasi and others, 2002). Vertical bars are historic 1812 and 1857 events. 
B, Burro Flat. For these events, only a date range was available, so the date structure was added as a 
Gaussian distribution. Though these are Gaussian, note that they are not identically distributed. Event 
number 9 is the historical 1812 event. All event PDFs have been normalized for plotting purposes to 
the same height. 
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Table H1.  Site-by-site review of data used to calculate maximum likelihood recurrence intervals for 
California faults. 

[Nev, number of events; MRE, most recent event; PDF, probability distribution function; UCERF3, Uniform 
California Earthquake Rupture Forecast, version 3; PE, penultimate event; RI, recurrence interval; SAF, San 
Andreas Fault; N. SAF, northern San Andreas Fault; S. SAF, southern San Andreas Fault] 

Fault and site Nev Closed 
total 
time 
(yrs) 

Time 
since 
MRE* 
(yrs) 

Adjustments relative to UCERF3 appendix A (this 
study); UCERF3 appendix G (this study); and other 

notes 

Calaveras North 4 1382 720 Prehistoric MRE 
Compton 6 11,105 1208 Prehistoric MRE 
Elsinore – Glen Ivy 6 872 102 MRE in 1910 
Elsinore – Julian 2 1502 1750 Notes indicate record may be incomplete. Pre-

historic MRE 
Elsinore – Temecula 
New 

3 1996 N/A Left censor information for oldest event was not 
used; youngest event is not the site MRE 

Elsinore-Whittier 2 1407 1791 Prehistoric MRE 
Garlock Central 6 6378 470 Prehistoric MRE 
Garlock West 5 4716 326 Dates from Madden-Madugo and others (2012). 

Event 6 considered equivocal by them and not 
included here. Prehistoric MRE 

Green Valley—Mason 4 602 411 Prehistoric MRE 
North Hayward (Mira 
Vista) 

8 2003 301 Prehistoric MRE 

South Hayward, 
Tyson Lagoon 

12 1777 145 Event PDFs calculated from Lienkaemper and 
others’ (2010) OxCal model. Historic MRE in1868 

Little Salmon 
(Strong’s Creek) 

3 2650 10,840 Prehistoric MRE; time since MRE>>apparent RI of 
events; record potentially incomplete; not used in 
the UCERF3 Grand Inversion (appendix N, this 
study) 

N. SAF Alder Creek 2 784 107 Historic MRE in 1906. 
N. SAF Santa Cruz 
Segment 

10 847 107 Hybrid to represent the Santa Cruz segment of the 
SAF. Events consist of the Arano Flat record with 
two changes: Arano PE = historic 1890, and the 
former Arano E2 was redated to historic 1838. 
MRE in 1906. UCERF3 uses this in lieu of Arano 
Flat, Mill Canyon, and Hazel Dell 

N. SAF Fort Ross 4 923 107 Historic MRE in 1906 
N. SAF Vedanta N. 
Coast 

12 2732 107 Historic MRE in 1906 

N. SAF Noyo 15 2548 107 Events assigned ±100 year uncertainties; event 
mean dates calculated from preferred interval 
lengths working backward from 1906 MRE 

Puente Hills 3 7122 249 Prehistoric MRE 
San Gregorio North 2 528 487 Prehistoric MRE 
Rodgers Creek 3 452 303 Prehistoric MRE 
San Jacinto – Hog 
Lake 

14 3235 243 Prehistoric MRE 

San Jacinto – 
Superstition Mountain 

3 508 462 Prehistoric MRE 

S. SAF Bidart 
(Carrizo) 

6  156 Historic MRE in 1857. 

S. SAF Burro Flat 7 1039 201 Historic MRE in 1812. 
S. SAF Coachella 7 753 320 Nev=7 adopted for consistency with Parsons 

(2013); prehistoric MRE circa 1690 
S. SAF Frazier 8 830 156 Historic MRE in 1857 
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Fault and site Nev Closed 
total 
time 
(yrs) 

Time 
since 
MRE* 
(yrs) 

Adjustments relative to UCERF3 appendix A (this 
study); UCERF3 appendix G (this study); and other 

notes 

Mountain 
S. SAF Indio 4 659 334 Prehistoric MRE circa 1690 
S. SAF Pallett Creek 10 1213 156 Event C added from Biasi and others (2002). 

Historic MRE in 1857 
S. SAF Pitman 
Canyon 

7 887 201 Pit2 with a paleoseismic uncertainty and mean 
calendar date of 1704 was adopted as the PE. 
Historic MRE, 1812  

S. SAF Plunge Creek 3 350 201 Historic MRE in 1812 
S. SAF Thousand 
Palms 

5 858 331 Prehistoric MRE circa 1690 

S. SAF Wrightwood 15 1333 156 Event PDFs from Biasi and others (2002); includes 
event T extrapolated from Pallett Creek (Weldon 
and others, 2004). Historic MRE in 1857 

*Time since prehistoric MRE is 2013 minus the mean sampled date of the MRE. 
 
Estimates in this appendix address the temporal recurrence of ground rupturing 

displacements at individual locations. We regard as given that the reported observations are 
accurate in their essential qualities including identification of the rupture evidence, association of 
the evidence with an earthquake cause, and association of the evidence with relevant absolute 
dates. Displacements and indicators of relative event size are not used. Weldon and others 
(appendix G, this report) review the paleoseismic data and displacement evidence available to 
UCERF3, and their results have been adopted directly. 

Recurrence Interval Parameter Estimation Methods 
Many methods for recurrence interval parameter estimation have been presented in the 

paleoseismic literature. Standard methods for common recurrence models are well known from 
statistics texts. Uncertainty in the paleoseismic event dates presents complications for parameter 
estimation. Ellsworth and others (1999) sampled from the event dates and used a bootstrap 
method to estimate uncertainties. Biasi and others (2002) use the event dating uncertainty 
directly. They draw thousands of samples of size N from event dates (where N is the number of 
events at the site), and use maximum likelihood methods to find log-normal and exponential 
distribution parameters for the Wrightwood and Pallett Creek paleoseismic sites on the southern 
San Andreas Fault (SAF). They did not formally include the open interval, reasoning that it was 
similar in length to the site mean and that it would have little effect on the estimates. Parsons 
(2008a) estimated recurrence parameters using a variant of the Maximum Likelihood method. 
These estimates were developed for UCERF2, but the method was ineffective for modeling long 
series and series with precisely known (that is, historical) intervals. As a result, parameter 
estimates using the Biasi and others (2002) method were developed for UCERF2 Type A faults 
(Dawson and others, 2008). For other perspectives and methods, consult Bakun and Lindh 
(1984), Cornell and Winterstein (1988), Savage (1993), Sykes and Menke (2006), and Parsons 
(2012). 
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Maximum Likelihood Parameter Estimation 
Paleoseismic event series are inevitably a sample of small size drawn from a physical 

system that creates ground rupture and presumably significant earthquakes. A basic distinction 
must be preserved between variability in an observed paleoseismic event series and variability in 
the underlying process. The statistical parameters of the physical system (the population 
statistics) are unknown, but presumably sufficiently stationary that the past can be used to infer 
statistics for the next event. Given some limited sample of earthquake intervals and their 
uncertainties, the main challenge in earthquake-recurrence-rate estimation is understanding the 
true underlying rate and its uncertainties.  

A principle of recurrence interval estimation methods is that they should work without 
modification of any mixture of historical and uncertain dates. Historical events are an end 
member for hazard estimation purposes because the time of the event is known to within a small 
fraction of the interseismic interval (that is, a day or less). A sequence comprised entirely of 
historical events would provide the most precise sample of data about earthquake recurrence at 
that site, but the intrinsic uncertainty associated with sampling from a random process remains. 
For example, while the mean and variance of a given sample might be known with some 
precision, the sampling contribution to recurrence interval uncertainty may be (and often is) 
disconcertingly large. The focus of maximum likelihood estimation procedures is to identify the 
most likely underlying process parameters given the (fuzzy) data that we have. 

Maximum likelihood methods were introduced by R.A. Fisher (1922). The ML method 
uses something of an inverse approach: Given the data and a distribution model, what is the best 
estimate and likely range of parameters that may have given rise to these data? A noteworthy 
property of the ML approach is its strict basis in observations. On the one hand this may not 
seem wise, because, for example, a short-time-interval sample is unlikely to observe the full 
behavior of the system, especially for an underlying distribution with a long tail. On the other 
hand, asserting information from sources other than the data itself implies knowledge about the 
real system that is not expressed in the sample, or equally, knowledge of what is missing from 
the sample. We explore this topic further in a later section. 

We develop recurrence-interval-parameter estimates for two model distributions. For 
paleoseismic sites with two or more intervals, parameters are developed using the log-normal 
distribution,  

 

                                                                                (1) 

 
It models the natural logs of recurrence intervals as being normally distributed around mean µ 
with variance σ2. The symmetry in log space means that in the time-domain, intervals twice the 
average length and half the average length are equally likely. Because the log-normal distribution 
is defined only for positive intervals, its distribution is asymmetric, with a potentially significant 
right tail (fig. H2). Physically, the log-normal distribution corresponds to a case where factors 
affecting recurrence combine as products of one another. The sample mean µln of the logs of 
observed RIs is the minimum variance unbiased estimator for µ (for example, Larson, 1982). 
Unbiased means that the sample mean converges to the population mean as the sample size 
increases. Minimum variance means that the sample mean is associated with the narrowest range 
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of uncertainties among possible unbiased estimators of . Other estimates might be proposed (for 
example, the median), but the ML properties are well researched and suited to the present needs. 
 

 

Figure H2. Four log-normal distributions all having the same 150-year long-term mean. Width of standard 
deviation (sd), in years, corresponds with log-standard deviation (s=). Black stars mark emu=exp() 
values, which are a function of variance for a given long-term mean rate. 

While the ML estimate μln from the sample mean is an unbiased estimator of the 
underlying log-normal location parameter, it is not the mean long-term event-recurrence rate. 
The long-term mean rate is equal to the expected value of the ML distribution: 

E(t | ln , ln )  


                                             tf (t | ln , ln )dt                                          (2) 

which for the log-norm
	

0

al distribution yields: 

                                              E(t|

	

ln, ln) = exp(ln+  2
ln /2)                                              (3) 

As equation 3 makes clear, E(t) is systematically larger than an interval estimate from 
exp(ln) alone, with the difference being a function of the variance. Figure H2 considers equation 
3 another way, with four examples, all with the same expected value of 150 years, but with a 
range of time uncertainties on the RI from thirty to one hundred years. Parameters ln and ln 
compensate in opposite ways to keep the expected value fixed. Increasing the variance gives 
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more weight to rare long intervals, and mean log point µln adjusts to the left and increases the 
probability of shorter intervals to maintain a balance at the expected value (the long-term mean). 
As an aside, the mode M(µln, σln) = µln - σln

2/2 is the maximum point of the continuous 
distribution and is as far below the ML estimate of µln in log space as the expected value (long-
term mean) is above it. 

Estimates of recurrence-interval parameters are also estimated using the exponential 
distribution, which is a single-parameter model where the ML estimate is the sample mean, and 
variance is equal to the mean. The exponential distribution, 

                                                              f(x|λ) = λe-λx                                                        (4) 

characterizes the time between events that can be described as random in time (that is, Poisson). 
The exponential-model parameter estimate λe is the only parameter that can be offered when the 
data consist of one interval and a censored period since the most recent event (MRE). The 
uncertainties in samples with one or two intervals are generally so large that the data offer very 
little constraint on recurrence.  

Ellsworth and others (1999) and Matthews and others (2002) proposed another 
distribution for recurrence intervals known as the Brownian Passage Time (BPT) model. Like the 
log-normal, the BPT model can also be expressed with two parameters, in this case a mean and a 
coefficient of variation. BPT models recurrence as the first exceedence time of a combination of 
a linear term that monotonically increases in time with a periodically applied Gaussian step as in 
conventional Brownian motion. The linear term might correspond to a constantly increasing 
tectonic load and the random term to the influence of variations in background stress, earthquake 
interactions, or fault properties. The BPT also has a long right tail for fits to typical recurrence 
interval data. Available data are insufficient to distinguish between the BPT and log-normal 
distributions based on their numerical likelihoods (Biasi and Scharer, 2012). An argument in 
favor of the BPT has been made on the basis of its nonzero asymptotic hazard function 
(Matthews and others, 2002). However, for timeframes and requirements of UCERF3 
forecasting, this property is of little practical advantage. 

Potential Bias in ML Estimates of Recurrence 
As noted earlier, longer-than-average intervals could be missing in a short paleoseismic 

record. This potential omission has been suggested to explain some longer-than-expected 
recurrence-interval estimates (for example, Parsons, 2008a). The potential for missing long 
intervals has also been cited in support of an alternate strategy in which recurrence parameters 
are estimated from the data distribution folded around its mean, and using the mode to 
characterize the log distribution (Parsons, 2012).  

Synthetic test cases were developed to explore the nature and extent of potential bias in 
ML log-normal RI parameter estimates (fig. H3). As a first test (fig. H4), 1,000 records of some 
number of intervals (sample size from two to ten) were generated using a log-normal random 
number generator (150-year long-term mean, 30- and 70-year equivalent σln cases) and then fit 
using the log-normal parameter estimation tool in the Matlab software package. Figure H4 shows 
the distribution of long-term mean estimates. Focusing on the mean of many trials, results show 
that if the paleoseismic record consists of at least three events and two intervals, the closed 
period from the first event to the last recovers, on average, an unbiased estimate of the long-term 
mean. Shorter series have a greater spread in potential µln estimates, as would be expected. 
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Focusing on the spread of estimates, figure H4 can be interpreted to show the range of estimates 
one might find among individual samples despite having the same underlying long-term rate. 
This range increases with σln. We conclude that the input mean is recovered without bias by the 
ML fitting procedure.

 

Figure H3. Two models used to test for bias in ML parameter estimates. Red “+” symbols are interval end 
points, starting at 0, generated at random with a 150-year long-term mean and σ corresponding to 70 
years. Lower brackets opening upward indicate closed time windows with variable length (here, 450 yr) 
but having equal numbers of events. Upper, fixed width time windows (for variety, windows of 650 yr) 
have variable numbers of events in them, with open intervals at both ends. The dark gray line is the 
time since the most recent event, and is used to estimate maximum likelihood parameters. The open 
interval (light gray) after the window starts but before the first event is not included in the maximum 
likelihood estimation. Window lengths as short as three times that of the long-term mean show no 
material bias in their average estimates. 
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(A) 

(B) 

 

Figure H4.  Histograms of parameter exp(ln) for 1,000 trials using samples of size ni=2 to 10 recurrence 
intervals (RIs), drawn as log-normal random variables. A, Long-term mean RI=150, ln=0.198 (30 
years), exp(ln)=147.1 years. Recovered values for exp(ln) are in the titles and are uniformly good 
approximations of the input. B, Mean RI=150, ln=0.444 (70 years), exp(ln)=135.9 years. When a 
closed interval bounded by events defines the record length, the input mean parameter ln is recovered 
with as few as three events and two intervals. Uncertainty decreases as the sample size increases. 
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Figure H5 shows a test more representative of the paleoseismic data. The input series 
consists of 5,000 log-normal intervals using a long-term mean of 150 years and an equivalent 
variance of 502 years (ln=142.3 yr). A comb of windows of a fixed width is dropped on the 
series, and whatever events are inside each window are then fit as a sample for log-normal 
parameters (fig. H3). Thus the number of intervals and the length of time from the first event to 
the last varies from one window to the next. Unlike figure H4, the open interval since the most 
recent event is also included as censored data. The time since the MRE is measured from the 
latest event in the series to the right edge of the window. The distribution of left- and right-
censored intervals is show in figure H6. Because only the minimum length of the final interval is 
known, the ML estimate is developed by an inverse process that solves for the most likely log-
normal parameters that explain both the definite data and the open time since the MRE. Figure 
H5 shows the distribution of input right-censored interval lengths included in the fitting. The 
open interval tends to increase the estimate of ln by slightly down-weighting the probability of 
shorter intervals. However, even for event series as short as three intervals the average increase 
of the mean ln for this sample set is about two percent (145.6 versus 142.3 years). Even this 
modest increase is not properly interpreted as a bias because the open interval is positive 
evidence in the observed data favoring a slightly larger ln estimate. Thus we find no evidence 
that short paleoseismic record lengths should be prone to missing longer intervals in any way 
that would systematically affect recurrence-interval parameter estimation. 

 

Figure H5. Histogram of right and left censored interval lengths for the random log-normal series used in 
Figure H5. The input mean=150 years, ln=142.3 years, ln=50 years. The right censor information 
(upper graph) carries the information about the time since the most recent event. 
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Figure H6. Plot showing the range in log-normal mean parameters at the 2.5- and 97.5-percent confidence 

levels after normalizing by the mean for paleoseismic records of Table H1. Upper bound ratios greater 
than 3:1 are not shown in order to preserve details of the usefully bounded estimates. Blue “x” symbols 
show parameter ranges using only the closed paleoseismic record. Using the open interval (red “+” 
symbols) uniformly improves parameter resolution with greatest effects on records with fewer than 6-7 
intervals. 

Developing Sets of Recurrence Interval Samples 
A crucial point in estimates developed in this appendix is that the paleoseismic data at 

any given site are few in number. At the same time, paleoseismic event dates are, in general, 
uncertain, and have empirically shaped PDFs. These facts frame the strategy for parameter 
estimation. Specifically, we sample from the event PDFs to develop possible fault rupture 
histories, use ML methods to estimate parameters for these histories, and estimate recurrence 
parameters for the site from ensembles of these individual solutions. The fact that the event dates 
are uncertain does not increase their number, and dating uncertainty cannot be used as a proxy 
for process uncertainty.  

To sample at random from event PDFs, each PDF is divided into bins narrow on the time 
axis with their height determined by the probability. We used bins two years wide centered on 
odd year boundaries. Bins in the central 95 percent of the PDF are divided into 10,000 total small 
patches of equal probability (their area being two years wide by a probability increment tall). 
Dates in the middle of the PDF have taller bins and divide into more patches, making those bin 
years commensurably more likely to be selected. For historical events, all 10,000 patches have 
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the same date. We have found that the results are generally not sensitive to bin width. An 
alternate and perhaps more general method would be to vary the bin width inversely to the 
probability “height” such that 10,000 equal-area slices are produced. A random number 
generator with uniform probability on 1:10,000 is used to select the sample event date. 

Candidate paleoseismic event series are made by drawing from each event PDF 
independently, then testing the sample series. Earthquake dates commonly overlap in time 
because of the uncertainties of radiometric dating and evidence preservation. Thus the first test 
of the event series is one of positivity—that is, within this sample, do the earthquakes occur in 
the correct order? Series failing this test are discarded and another is drawn. In addition to 
maintaining independence among resulting interval lengths, this approach implements an 
ordering-based “shaving” of overlapping event PDFs. Types of sites where this sampling 
approach can be important include those with flurries of events (for example, Hog Lake, Frazier 
Mountain, Bidart Fan). An alternative we explicitly avoid is to sample from the events in order 
of their occurrence. Where event PDFs overlap, this method would create a biased interval 
sample because a choice from the first PDF could restrict date choices for successive events. 
Monte Carlo-Markov Chain sampling from events can be used to develop unbiased estimates of 
parameters such as mean intervals (for example, Oxcal), but we require individual event series to 
develop ML recurrence interval parameters. 

Positivity is a minimum standard for accepting a sample set of recurrence intervals. 
However, the processes of preservation and identification of paleoseismic events allow an 
additional constraint to be applied. One constraint in paleoseismic event identification is that 
resolvable geologic structures must develop between events in order to tell them apart. This 
means that some amount of time to accumulate sediments can be assumed to separate events. To 
implement this geologically motivated constraint, a separation of at least fifteen years is 
assumed, and event series with shorter separations are discarded. This assumption could, in 
principle, be modified in cases where particular knowledge of the site and events were available. 
A minimum separation of twenty years was used in Biasi and others (2002) and the A-fault 
estimates in UCERF2 (Dawson and others, 2008), but the shorter minimum was required to 
accommodate the historical 1890-1906 interval of the composite northern SAF-Santa Cruz 
record. Smaller minimum separations typically cause minor increases in σln. 

Parameter Estimation from Event Series 
Each event series is a sequence of exact earthquake dates for which similarly exact 

interval lengths are computed. For estimates that will use the open interval since the MRE, the 
final censored interval is computed from the year 2013 unless otherwise noted. In general, left-
censor information (earthquake-free time before the oldest event) is not available for California 
paleoseismic sites, and no use of it was attempted (contrast Parsons, 2008a). For the log-normal 
recurrence model, the ML estimate of µln for each individual event series is the mean of the 
natural logs of the interval lengths. Standard deviation of the natural logs σln is estimated in the 
same way as the sample variance is computed for Gaussian data, including n-1 in the 
denominator that makes σln an unbiased estimator (Larson, 1982). To estimate the mean log-
normal recurrence interval parameters, estimates are compiled for many event series. The mean 
of the individual estimates of µln is adopted as the final estimate. 

Confidence intervals for recurrence-interval parameters cannot be taken from the 
distribution of estimates of µln. Consider an historical sequence of events. In that case there is 
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exactly one mean parameter and no uncertainty in the estimate. Dating uncertainty does lead to a 
range of estimates of µln, but the range says nothing about the actual recurrence-process rate 
uncertainty. To estimate confidence intervals on the mean µln, we can use results for the normal 
distribution. For an individual sample of recurrence intervals, the range ±St(1-α/2)/√(n) around 
the sample mean defines the central 100(1-α) percent confidence interval for µln (for example, 
Larson, 1982, p. 385). Here S is the sample standard deviation and t(1-α/2) is the argument of the 
T distribution at which the cumulative T-distribution =1-α/2. Matlab implements this calculation 
to estimate confidence intervals of µln. Confidence intervals of 2.5, 16, 84, and 97.5 percent are 
used in UCERF3. 

Results 
Table H2 gives maximum likelihood estimates and uncertainty ranges for parameters of 

the log-normal and exponential distributions for paleoseismic sites used to constrain the 
UCERF3 Grand Inversion. A nominal mean recurrence time can be estimated for a reference 
point by dividing the number of intervals into the “closed t” column. The oldest paleoseismic 
event starts the time window. As seen in figure H4, this is an unbiased estimate of the mean 
recurrence interval length if the open interval is not considered. Inclusion of the open interval 
increases mean parameters for both the log-normal and exponential distributions. The sometimes 
radical increase in the exponential recurrence estimate when the open interval is included can be 
explained by way of the relationship between the exponential and Poisson distributions. If 
earthquakes are random in time (Poisson), the rate parameter (in units of per year) is the number 
of earthquakes per total time. If the total time is increased by an open interval, the denominator 
absorbs this extra time into the revised estimate of the RI. Because the exponential distribution is 
memoryless, the probability of a future event is unaffected by the wait since the last one. The 
open time is less influential for the log-normal distribution. 

The range of parameter uncertainty is shown as a function of the number of intervals in 
figure H7. In both plots, uncertainty is shown as a ratio with the mean. The vertical axis has been 
restricted in both plots to highlight the main trends. Uncertainties for records with only 2-3 
intervals can be unstable (table H2). The wider uncertainty range in figure H7 (blue “X” 
symbols) is for the closed period from the oldest to the youngest event. The inner range (red “+” 
symbols) shows the uncertainty range when the open interval is used. Two clear trends emerge. 
First, parameter uncertainty does indeed decrease as the number of intervals increases. There 
would be cause for concern if this trend were not clear. Second, in most cases using the open 
interval improves the definition of the mean parameter. The open interval functions in the ML 
estimator as something like a fractional extra interval. Exceptions to this trend involve sites 
where the open interval is strongly different from closed event series (for example, Little 
Salmon) and the use of a time-predictable model might be questioned. 
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Table H2.  Maximum likelihood recurrence model parameters and uncertainties. 
[ni, number of interseismic intervals; Closed T, mean estimate time between oldest and youngest event; MRE, years since most recent event; −, not applicable, record is too short; SAF, San Andreas Fault; N. SAF, northern San Andreas Fault; S. SAF, southern San 
Andreas Fault]  

    Lognormal parameters and ranges, including open interval Exponential parameter and ranges, including open interval 
 ni Closed T MRE 

(yr) 
exp(µ) µ 2.5% µ 16% µ 84% µ 97.5% σ σ 2.5 σ 16 σ 84 σ 97.5 λ λ 2.5 λ 16 λ 84 λ 97.5 

Calaveras Fault—North 3 1389 722 511.3 271.2 366.3 705.3 963.8 0.62 0.3 0.41 0.96 1.43  703.7 292.2 454.7 1531.6 3412.3 
Compton 5 11110 1209 1629.9 709.3 1067.7 2479.4 3745.6 1 0.67 0.73 1.36 1.84  2463.8 1202.9 1723 4322.7 7588.1 
Elsinore—Glen Ivy 5 872 102 161.6 110.1 134 196 237.1 0.45 0.31 0.32 0.6 0.83  194.9 95.1 136.4 342.2 600.1 
Elsinore—Julian 1 1503 1755 - - - - - - - - - -  3258.1 883.2 1779.3 18701.8 128688.4 
Elsinore—Temecula 2 2012 ** 893.1 8.5 471.2 1691.7 94305.8 0.52 0.23 0.35 2.46 16.55  1005.3 361.1 607.1 2804 8306.9 
Elsinore—Whittier 1 1397 1801 - - - - - - - - - -  3198.1 867 1746.6 18357.8 126319 
Garlock Central (all events) 5 6378 469 882.7 385.5 580.3 1343.8 2020.8 0.98 0.67 0.72 1.34 1.81  1369.5 668.6 958 2403.5 4217.6 
Garlock—Western (all events) 4 4729 330 821.1 351 532.2 1260.1 1920.7 0.9 0.6 0.64 1.27 1.77  1264.9 577.1 854.6 2410.9 4642.6 
Green Valley—Mason Road 3 605 407 244.8 132.9 179.6 334.1 451.1 0.6 0.22 0.39 0.92 1.4  337.3 140.1 219 737.7 1635.6 
Hayward Fault—North 7 2003 300 263.6 170.5 211.9 328.8 407.5 0.61 0.42 0.47 0.8 1.04  329 176.4 240.8 520 818.3 
Hayward Fault—South 11 1777 144 151.5 117.1 133 172.7 196.1 0.45 0.33 0.36 0.55 0.68  174.7 104.5 134.9 247.9 349.9 
Little Salmon—Strong's Creek 2 2621 10890 3220.4 401.7 1138.2 9240.8 25820.4 1.71 0.3 0.98 2.95 5.07  6755.5 2425 4113.4 18997.7 55782.3 
N. SAF—Alder Creek 1 772 106 - - - - - - - - - -  878.1 238 474.2 4984.1 34684.6 
N. SAF—Santa Cruz Segment 9 847 106 79.7 48.2 61.6 102.9 131.9 0.8 0.56 0.63 1.02 1.27  105.9 60.5 80 157.1 231.6 
N. SAF—Fort Ross 3 924 106 292.9 208.4 245.8 348.8 411.8 0.3 0.19 0.21 0.46 0.67  343.2 142.5 222.7 750.1 1664.3 
N. SAF—North Coast 11 2734 106 198.9 128.6 159.1 248.1 307.7 0.75 0.56 0.61 0.93 1.14  258.1 154.4 199.4 366.6 517.1 
N. SAF—Offshore Noyo 14 2548 106 162.5 123.3 140.8 186.8 214.1 0.53 0.41 0.45 0.65 0.77  189.5 119.4 150.1 257 346.7 
Puente Hills 2 7153 250 3342.7 2219.4 2719.3 4126.4 5034.5 0.3 0.19 0.18 0.49 0.78  3701.8 1328.8 2255.3 10416.1 30566.6 
San Gregorio—North 1 525 490 - - - - - - - - - -  1015.3 275.2 554.1 5824.1 40102.5 
Rodgers Creek 2 454 304 252.5 107 163.3 393.1 595.9 0.7 0.32 0.41 1.19 1.97  379 136 231.4 1068.6 3129.4 
San Jacinto—Hog Lake 13 3237 243 176.4 100.3 132.2 234.8 310.3 1.07 0.78 0.88 1.3 1.57  267.7 166 210.4 367.8 502.8 
San Jacinto—Superstition 2 499 462 314.4 93.7 168.7 576.6 1054.9 0.99 0.42 0.58 1.68 2.82  480.5 172.5 290.1 1339.9 3967.2 
S. SAF—Carrizo Bidart 5 442 156 89.3 50 66.5 119.9 159.4 0.71 0.4 0.51 0.98 1.34  119.5 58.4 83.6 209.8 368.1 
S. SAF—Burro Flats 6 1039 200 159.1 92.7 120.5 209.9 273.2 0.71 0.47 0.54 0.96 1.26  206.6 106.2 148.4 342 562.9 
S. SAF—Coachella 6 754 329 131.6 73.1 97.6 177.3 236.9 0.78 0.43 0.58 1.05 1.41  180.5 92.8 129.4 298.3 491.8 
S. SAF—Frazier Mountain 7 830 156 104.2 57.4 77.2 141.2 189.2 0.84 0.56 0.64 1.1 1.44  140.8 75.5 103.2 222.9 350.3 
S. SAF—Indio   3 660 333 248.4 152.6 193.6 318.2 404.3 0.47 0.22 0.31 0.73 1.1  331 137.5 214.7 723.4 1605.2 
S. SAF—Pallett Creek 9 1213 156 120.6 80 98 148.6 182 0.65 0.45 0.51 0.82 1.04  152.1 86.9 114.8 225.6 332.7 
S. SAF—Pitman Canyon       6 888 200 140.4 85.9 108.7 180.1 229.5 0.65 0.41 0.49 0.88 1.16  181.4 93.3 129.9 299.4 494.3 
S. SAF—Plunge Creek    2 349 200 187.8 110.4 145.5 248.7 319.2 0.43 0.21 0.25 0.72 1.2  274.4 98.5 169.1 780.8 2265.5 
S. SAF—Mission Creek, 1000 Palms 4 859 332 231.2 146.9 185 289.6 363.8 0.5 0.26 0.34 0.7 1.03  297.7 135.8 201.5 568.3 1092.6 
S. SAF—Wrightwood         14 1333 156 86 61.9 72.7 101.6 119.5 0.65 0.46 0.54 0.78 0.94  106.4 67 84.3 144.4 194.6 

* lncluding open intervals 
** No open interval available; parameters are for the available closed interval  
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Table H3.  Long-term mean recurrence intervals and rates, and respective uncertainties. 
[Lat, latitude of site; Long, longitude of site; Nevents, number of events in time T; T, time between the oldest and youngest events; MRE, most recent event; MRI, mean recurrence interval; yr, years; %, percent; S. SAF, southern San Andreas Fault; N. SAF, northern San 
Andreas Fault] 

Site Lat Long Nevents T closed T since 
MRE 

Long-term MRI 
(yr) 2.5% 16% 84% 97.5% Mean long-term 

rate 2.5% 16% 84% 97.5% 

Calaveras Fault—North 37.5104 -121.8346 4 1375 720 618.1 321.3 446.1 858.8 1189.1 0.001618 0.000841 0.0011644 0.0022419 0.0031128 
Compton 33.9660 -118.2629 6 11102 1207 2658.4 1163.8 1748.1 4059.3 6072.3 0.0003762 0.0001647 0.0002464 0.0005721 0.0008592 
Elsinore—Glen Ivy 33.7701 -117.4909 6 874 102 179.1 122.3 147.7 216 262.3 0.0055828 0.0038119 0.0046288 0.00677 0.0081764 
Elsinore—Julian 33.2071 -116.7273 2 1502 1753 3251.1 881.3 1779.3 18701.8 128410.1 0.0003076 0.0000078 0.0000535 0.000562 0.0011347 
Elsinore—Temecula 33.4100 -117.0400 3 2011 N/A 1019.2 11 533.1 1914 94145.3 0.0009812 0.0000106 0.0005225 0.0018758 0.090633 
Elsinore—Whittier 33.9303 -117.8437 2 1400 1799 3197 866.7 1746.6 18357.8 126276.6 0.0003128 0.0000079 0.0000545 0.0005725 0.0011538 
Garlock Central (all events) 35.4441 -117.6815 6 6379 471 1435 625.5 940.6 2178.1 3292.3 0.0006969 0.0003037 0.0004591 0.0010631 0.0015988 
Garlock—Western (all events) 34.9868 -118.5080 5 4716 330 1230.2 523.5 797.8 1889 2890.7 0.0008129 0.0003459 0.0005294 0.0012535 0.00191 
Green Valley—Mason Road 38.2341 -122.1619 4 606 406 293.3 158.7 214.7 399.4 542.1 0.0034094 0.0018448 0.0025038 0.004657 0.0063008 
Hayward Fault—North 37.9306 -122.2977 8 2003 300 318.3 205.8 255.3 396.2 492.4 0.0031413 0.0020308 0.0025239 0.0039174 0.0048591 
Hayward Fault—South 37.5563 -121.9739 12 1778 144 167.6 129.4 147 190.8 217 0.0059677 0.0046073 0.0052416 0.0068047 0.0077298 
Little Salmon—Strong's Creek 40.6002 -124.1218 3 2625 10877 6750.8 2423.3 4113.4 18997.7 55743.8 0.0001481 0.0000179 0.0000526 0.0002431 0.0004127 
N. SAF—Alder Creek 38.9813 -123.6770 2 764 106 869.7 235.8 474.2 4984.1 34349.9 0.0011499 0.0000291 0.0002006 0.0021088 0.0042417 
N. SAF—Santa Cruz Seg. 36.9626 -121.6981 10 848 106 109.8 66.3 85 142 182.1 0.0091041 0.0054923 0.0070415 0.0117617 0.0150912 
N. SAF—Fort Ross 38.5200 -123.2400 4 922 106 306.3 217.8 257.6 365.5 430.7 0.003265 0.0023217 0.0027356 0.0038814 0.0045915 
N. SAF—North Coast 38.0320 -122.7891 12 2732 106 263.9 170.4 211.4 329.6 408.5 0.0037898 0.0024481 0.0030343 0.0047303 0.0058668 
N. SAF—Offshore Noyo 39.5167 -124.3333 15 2548 106 187.6 142.1 162.8 216 247.8 0.0053293 0.004035 0.0046304 0.0061415 0.0070387 
Puente Hills 33.9053 -118.1104 3 7167 251 3505.9 2346.4 2842.2 4312.8 5238.3 0.0002852 0.0001909 0.0002319 0.0003518 0.0004262 
San Gregorio—North 37.5207 -122.5135 2 530 484 1019.1 276.3 554.1 5824.1 40250.5 0.0009813 0.0000248 0.0001717 0.0018047 0.0036199 
Rodgers Creek 38.2623 -122.5334 3 454 303 325.3 134.8 208.8 502.7 785 0.003074 0.001274 0.0019892 0.004789 0.0074173 
San Jacinto—Hog Lake 33.6153 -116.7091 14 3236 243 311.8 176.9 233.9 415.5 549.4 0.0032074 0.0018202 0.0024066 0.0042752 0.0056519 
San Jacinto—Superstition 32.9975 -115.9436 3 503 462 508.3 153.2 274.3 937.5 1686.6 0.0019675 0.0005929 0.0010666 0.0036454 0.0065288 
S. SAF—Carrizo Bidart 35.2343 -119.7887 6 441 156 114.7 64.1 85.5 154.1 205.1 0.0087179 0.0048746 0.0064913 0.0117016 0.0155916 
S. SAF—Burro Flats 33.9730 -116.8170 7 1040 200 205.4 119.2 156.1 271.7 354.1 0.0048677 0.002824 0.0036799 0.0064073 0.0083903 
S. SAF—Coachella 33.7274 -116.1701 7 753 329 178.5 99.2 132.4 240.6 321.1 0.0056037 0.0031142 0.0041571 0.0075507 0.0100834 
S. SAF—Frazier Mountain 34.8122 -118.9034 8 829 156 148.6 81.9 110 201.2 269.4 0.0067307 0.0037115 0.0049697 0.0090886 0.0122057 
S. SAF—Indio   33.7414 -116.1870 4 659 334 277.4 171.5 216.9 356.5 448.7 0.0036053 0.0022287 0.002805 0.0046111 0.0058323 
S. SAF—Pallett Creek 34.4556 -117.8870 10 1213 156 149.3 98.9 121.1 183.6 225.3 0.006698 0.0044376 0.005447 0.0082553 0.0101097 
S. SAF—Pitman Canyon 34.2544 -117.4340 7 887 200 173.5 105.8 134.9 223.5 284.5 0.0057643 0.003515 0.0044747 0.0074149 0.0094529 
S. SAF—Plunge Creek 34.1158 -117.1370 3 350 200 205.4 122.2 159.3 272.3 345.2 0.0048695 0.0028965 0.0036725 0.0062762 0.0081864 
S. SAF Mission Creek—1,000 Palms 33.8200 -116.3010 5 859 330 261.3 166.8 208.4 326.1 409.4 0.0038266 0.0024425 0.0030666 0.0047993 0.0059951 
S. SAF—Wrightwood 34.3697 -117.6680 15 1335 156 106 76.2 89.7 125.4 147.5 0.0094304 0.0067778 0.0079741 0.0111519 0.0131212 
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Figure H7. Plot showing the log-normal likelihood surface for the southern Hayward fault site at Tyson’s 
Lagoon (Lienkaemper and others, 2010). This site shows a well-resolved maximum at ln=148, 
ln=0.40. The maximum differs slightly from table H2 (151.7, 0.45) because of slight differences in 
handling the open interval and run-to-run differences that arise, because both are based on random 
sampling from the date probability distribution functions. The 0.32 contour corresponds to the central 
68-percent probability region for this appendix. Uncertainties in table H2 (133  ln  173, 0.36 ln  
0.55) are similar but slightly narrower than the extrema of the 0.32 contour. Neither ln or ln can be 
fully expressed as a range because they trade off at equal likelihood levels. The contour levels 
correspond to real probabilities, so the likelihood of alternative parameter estimates can be read 

≤ ≤ ≤ ≤

directly. For example, the UCERF2 estimate of 210 years for the 11-event Hayward record (Parsons, 
2008b) would now seem unlikely.  
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Maximum likelihood estimates and ranges can be visualized and specific estimates may 
be quantitatively compared by plotting a likelihood surface (fig. H8; Biasi and Scharer, 2012). 
Each point on this plot is associated with some pair of µ,σ of a log-normal model. To estimate 
the relative likelihood of any individual paleoseismic sequence, a probability of each individual 
interval length is calculated. To relate the continuous log-normal distribution to discrete 
outcomes, the log-normal distribution is binned in 2-year widths, so the probability of the 
interval, numerically, is actually the probability that it falls in a two-year window. Parametric 
results do not depend materially on the discretization. The likelihood function for a given µ,σ is 
the product of the individual probabilities across all intervals. On contouring, the ML parameters 
µln, σln are selected from the peak. A water-level approach is taken to develop confidence 
contours in which, starting from the peak, the level is progressively lowered until it encloses 
some level of total probability. Figure H8 shows an example for the Southern Hayward fault 
paleoseismic site. The maximum value of this surface is at µln=148, σln=0.40, and quite close to 
the values in table H2. The contour levels may be interpreted as parameter pairs, which could 
explain the data with equal probability. They also show that the parameters at any given 
likelihood level are not independent of one another. 

 

 

Figure H8. Ratio of long-term log-normal mean recurrence interval estimates to exponential model 
estimates for paleoseismic sites with three or more earthquake dates. For paleoseismic records with 
five or more intervals, the estimates are within 10 percent of each other. The declining ratio for some 
sites with 4 or fewer intervals is due to the strong effect of the open interval length on exponential 
estimates. 
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The likelihood plots can be used to check how important the event date PDF structure is 
for parameter estimation. To do this we replace the dating structure from Bayesian analysis of 
the radiocarbon dates with uniform PDFs on their 95-percent date ranges. Figure H9 shows the 
results. Compared to figure H8, the main effect of neglecting the dating structure is to increase 
the σln estimate and its uncertainty. Parsons (2008b) also estimated recurrence for the Southern 
Hayward site with a method that neglects event date structure. Figure H9 indicates that the 
UCERF2 recurrence interval estimate of 210 years is would be improbable by a factor of 20 to 
100 compared to the maximum likelihood estimate. Part of the difference might be explained by 
the current event series now including one more earthquake than the UCERF2 estimate 
(Lienkaemper and others, 2010), but other causes are apparently also at work. 

 

 

Figure H9. Plot showing the differences of modified Akaike Information Criteria (AICc) between the log-
normal and exponential models. Negative differences correspond to cases where the log-normal model 
fits the data better than the exponential even after correcting for the additional parameters. The AICc 
also adjusts for the small sample size. San Andreas Fault sites (red squares) and non-San Andreas 
sites (blue diamonds) are separated to explore whether the log-normal model cases concentrate in 
mature faults. These data may show some site-averaged preference for the log-normal model, but at 
least show that the log-normal distribution is not an unreasonable basis for estimating the time-
independent long-term mean recurrence parameters. 

Because both the exponential and log-normal models give long-term mean (LTM) 
recurrence intervals and rates, the question becomes which distribution should be used to provide 
the estimates. Figure H10 shows the difference between these estimates as a ratio of the log-
normal to exponential LTM. 
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(A) 
 

(B) 
 

Figure H10. Plots comparing of recurrence interval between UCERF2 and the present maximum likelihood-
based estimates. A, UCERF2 recurrence-rate estimates compared with maximum likelihood long-term 
means. UCERF2 estimates differ in how they were calculated and do not formally include the open 
intervals since most recent events. B, A systematic relationship is observed between the UCERF2 
recurrence-interval (RI) estimates made from short paleoseismic records and their corresponding 
maximum likelihood-based values. The difference is primarily due to how the open intervals were 
incorporated. Two long- and two short-record points with RI>1,200 years are not shown to preserve 
visibility of the most active faults. They follow the descending trend of the data shown.  

Maximum likelihood parameter estimates for both models are asymptotically unbiased, so as 
may be seen, long-term mean interval estimates from the two distributions converge for long 
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records. For short records the two estimates can differ, primarily because of how they integrate 
the open interval since the MRE. The exponential distribution estimate is based on the total time 
with event coverage divided by the number of intervals in that time. The LTM thus increases by 
T/n-intervals for T=time since the MRE. For example, for a record of two intervals with a closed 
average of A and T~A, the exponential LTM estimate increases by about 1/3. If the event 
happens at T=A, the parameter estimate would immediately revert to A. The log-normal 
distribution is much less sensitive to the length of the open interval. The predicted divergence of 
LTM estimates for short records and their similarities for long ones are evident in figure H10. If 
we view the time since the MRE as an accident of the sample, figure H10 suggests that the log-
normal estimates will tend to be more robust. 

We explore an alternative model comparison method using the modified Akaike 
Information Criteria (AICc; Hurvich and Tsai, 1989; Burnham and Anderson, 2002). The 
original definition of the Akaike Information Criteria (AIC; Akaike, 1974) is a measure of model 
fit used to compare models at their maximum likelihood points, L(θ|g), after compensating for 
differences in the number of parameters K in the model g: 
 

                                             AIC = -2*log(L(θ|g)) + 2K                                                  (5) 

 
The AICc measure adjusts the AIC in equation 5 to compensate for cases where the 

sample size is not large with respect to the number of data, n:  
 

                                                  𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + 2𝐾(𝐾+1)
𝑛−𝐾−1

                                                   (6) 

 
As may be seen in equation 6, the AICc criteria is not defined for the log-normal model for fewer 
than n=4 sample recurrence intervals. Figure H11 shows the difference in AICc estimates 
between the exponential and log-normal models. For sample sizes of 7 or more the AIC and 
AICc are very similar. AICc differences of two can be considered good support for one model 
over another. The data slightly favor the log-normal recurrence model, even after compensating 
for the additional model parameter of the log-normal model. This is consistent with findings by 
others that most long paleoseismic records in California exhibit at least some degree of time 
predictability (Biasi and others, 2012; Parsons, 2008b; Scharer and others, 2010). However this 
debate is resolved in the future, and whether better measures than the AICc may be proposed in 
future model comparisons, the clear message in figure H11 is that the log-normal model shape is 
at least a reasonable choice for estimating long-term mean recurrence intervals and rates. 

Long-term mean recurrence intervals are calculated using equation 3 and given in table 
H3. Long-term mean recurrence rates are obtained from the intervals by a simple reciprocal. For 
records of three or fewer events, the log-normal parameters are not resolved, and exponential 
parameters and uncertainties are given instead. An exception was made for the Little Salmon 
site, where the event series consists of three events in a 2,500-year period ending about 9,000 
B.C.E., then an 11,000-year hiatus. The time since the MRE effectively contradicts the log-
normal model from the two definite intervals, and so inflates σln that the equation 3 long-term-
mean interval made no sense. As a result, the exponential parameters are given in table H3 for 
the Little Salmon site. In a review of the original report for the site (Hemphill-Haley and Witter, 
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2006), investigators indicated that they considered it likely that their event record reflected 
temporal clustering on a fault splay and that it was not characteristic of the fault as a whole. As a 
result we recommend that this site not be used to constrain the Grand Inversion. 

ML-based long-term mean rate estimates can be compared with estimates for UCERF2 
(fig. H12; Dawson and others, 2008; Parsons, 2008a). UCERF2 RI estimates are generally 
distributed around the current ML values (fig. H12A), but with significant scatter. In figure H12B 
ratios of UCERF2 to ML mean recurrence interval are plotted versus the RI itself. This view 
provides a way of separating the UCERF2 estimates, which were based on an ML-informed 
approach and the BPT model (Parsons, 2008a). Since the BPT location parameter is 
approximately the long-term mean, differences should not be due to model parameterization. 

Discussion 
Use of maximum likelihood methods for recurrence-interval parameter estimation is not 

new. Biasi and others (2002) applied them to the Wrightwood and Pallett Creek records. Parsons 
(2008a) used an implicit maximum likelihood method to estimate recurrence parameters using 
exponential and BPT models. In that study the likelihood basis was implemented by trying ten 
million random samples per µ, σ pair over a large range of candidate parameters. The origin of 
differences between that method, also used for UCERF2, and the present estimates, is unclear. 
Parsons (2008a) neglects event dating structure within event series, replacing event-date PDFs 
with uniform distributions. A more important potential source could be unintended consequences 
of an extra interval apparently inserted before the oldest event in order to give the sampling 
method a definite starting point. Biasi and Scharer (2012) found RI parameter estimates 
lengthened, especially for short series, when an analogous unbounded future event was included 
with the current open interval. Something of this nature is suggested by figure H12B. In all, 
however, our attempts to reproduce the bias in ML estimates reported by Parsons (2008a) have 
thus far been unsuccessful. 

Tests for bias in log-normal parameter estimates (figs. H4 and H5) make two points 
important for understanding their use in rupture rate estimates. First, when a set of intervals is 
drawn from a true log-normal process and analyzed as a closed total interval bounded by 
earthquakes, on average there is no bias in ML estimates of the parameters. Individual samples 
may vary according, of course, but in ways consistent with uncertainty in the fitting parameters. 
Second, when data are analyzed like most paleoseismic event series, adopting as a time window 
the oldest event to the present day, a bias is introduced, but it is modest in magnitude and readily 
explained. This approach neglects the open interval before the oldest event. The expected time 
thus neglected is about half a recurrence interval. For the log-normal model, this part of the 
censored interval contains the least information about parameter values. What effect it does have 
on µln is then reduced by the number of intervals. This leads to the stability in long-term mean 
intervals discussed in association with figure H10. For representative California fault recurrence 
rates (fig. H5), parameter bias from this approach is expected to be a few percent or less. 

Future studies might give closer examination to the fitness of the log-normal model 
relative to other candidates, including the Brownian Passage Time and Weibull distributions. The 
log-normal model has the unattractive quality that the hazard function begins to decline after the 
mean recurrence time and asymptotically approaches zero when the open interval since the MRE 
is very long compared to the average recurrence interval (Matthews and others, 2002). However, 
with the apparent exception of the Little Salmon site, times since the MRE for California’s 
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paleoseismic records are similar to the RIs, meaning that the log-normal model will provide a 
reasonable approximation of the time-dependent hazard at those sites. 

We have not attempted to resolve the relative merits of a time-dependent model relative 
to the less prescriptive exponential distribution. It is true that small samples of recurrence 
intervals from a random process can sometimes appear regular, but short samples of a modestly 
time-dependent model can also appear random. Dating uncertainty makes conclusions from short 
series that much more difficult. For short series one might argue that the data do not justify two 
fitting parameters, but neither can they offer a positive argument for using only one. Tests with 
the AICc tend to confirm this conclusion (fig. H11). However, if we instead focus on the longest 
records, most sites exhibit a coefficient of variation (COV) of 0.5 to 0.8, compared to a COV 
near 1.0 for truly random processes (Biasi and others, 2012). This comprises positive evidence 
for time dependence, but leaves to speculation whether the shorter records of the present data set 
would follow this pattern. 

The fact that the Grand Inversion uses the long-term rate without reference to the internal 
structure of the earthquake sequence reduces the impact of not being able to resolve a best 
recurrence model. For long records we find that mean recurrence intervals from exponential and 
log-normal long-term means are very similar, so that compared to other sources of uncertainty, 
the marginal impact of the choice of models is small. Our use of equation 3 and the log-normal 
model has been preferred here because it makes consistent use of estimators both for the long-
term means and time dependence at most individual sites. In addition, as seen in figure H10, the 
long-term means from the log-normal model tend to be less dependent on the time since the 
MRE. This is as it should be for long-term estimates. 

It has been pointed out that if the log-normal model is correct, most recurrence intervals 
will be shorter than the long-term mean, and the actual hazard may be higher than inferred from 
the long-term mean. This is an unavoidable consequence of using a time-independent method to 
estimate rupture recurrence. Hazard is outside the scope of this appendix, but we can at least note 
here that the paleoseismic data provide encouragement to pursue the long-term time-dependent 
component of hazard estimation both within UCERF3 and in future research.
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