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Conversion Factors
International System of Units to U.S. customary units

Multiply By To obtain

Length

millimeter (mm) 0.03937 inch (in.)
meter (m) 3.281 foot (ft)
kilometer (km) 0.6214 mile (mi)

Area

hectare (ha) 2.471 acre
square kilometer (km2) 0.3861 square mile (mi2)

Volume

cubic kilometer (km3) 0.2399 cubic mile (mi3)
Flow rate

millimeter per hour (mm/h) 0.003281 foot per hour (ft/hr)
Density

kilogram per cubic meter (kg/m3) 0.06242 pound per cubic foot (lb/ft3)
Energy

joule (J) 0.0000002 kilowatthour (kWh)

Abbreviations
α	 surface albedo

ε0	 broadband surface thermal emissivity

λ	 latent heat of vaporization

ρair	 density of air

ρw	 density of water

ALEXI	 Atmosphere-Land Exchange Inverse

ASTER	 Advanced Spaceborne Thermal Emission and Reflection Radiometer

Cp	 specific heat of air at constant pressure

DEM	 digital elevation model

dT	 temperature difference between two near-surface heights (temperature gradient)

DTD	 Dual Temperature Difference

EF	 evaporative fraction

ET	 evapotranspiration

ET0	 reference evapotranspiration

ETa	 actual evapotranspiration

ETEML	 Enhanced Two-Source Evapotranspiration Model for Land

ETf	 fractional evapotranspiration



v

ETf(el)	 fractional evapotranspiration corrected for elevation

ETf(elvi)	 fractional evapotranspiration corrected for elevation and vegetation index

ETinst	 instantaneous actual evapotranspiration

ETperiod	 actual evapotranspiration cumulated over a period

ETr	 reference evapotranspiration

ETrF	 reference evapotranspiration fraction

G	 ground heat flux

GDAS	 Global Data Assimilation System

H	 sensible heat flux

HUC8	 8-digit hydrologic unit code

K	 Kelvin

KL	 lapse rate in temperature of air moving over the landscape

LAI	 leaf area index

LE	 latent heat flux

LST	 land surface temperature

LSTc	 land surface temperature corrected for elevation

METRIC	 Mapping Evapotranspiration at High Resolution with Internalized Calibration

MODIS	 Moderate Resolution Imaging Spectroradiometer

NDVI	 normalized difference vegetation index

NSE	 Nash-Sutcliffe efficiency

PRISM	 Parameter-Elevation Regressions on Independent Slopes Model

r	 correlation coefficient

r 2	 coefficient of determination

rah	 aerodynamic resistance between two near-surface heights

RMSE	 root mean square error

RL↓	 incoming longwave radiation

RL↑	 outgoing longwave radiation

Rn	 net radiation

RS↓	 incoming shortwave radiation

S-SEBI	 Simplified Surface Energy Balance Index

SEBAL	 Surface Energy Balance Algorithm for Land 

SEBS	 Surface Energy Balance System

SSEB	 Simplified Surface Energy Balance

SSEBelvi	 Simplified Surface Energy Balance with correction for elevation and vegetation 	
	 index

SSEBop	 Operational Simplified Surface Energy Balance
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Ta	 air temperature

Tc	 land surface temperature at “cold” reference pixel

Th	 land surface temperature at “hot” reference pixel

Ts	 land surface temperature

Ts datum	 land surface temperature adjusted to a standard elevation per pixel of the satellite 	
	 image

TSM	 Two-Source Model

TSTIM	 Two-Source Time Integrated Model



A Review of Surface Energy Balance Models for Estimating 
Actual Evapotranspiration with Remote Sensing at High 
Spatiotemporal Resolution over Large Extents

By Ryan R. McShane, Katelyn P. Driscoll, and Roy Sando

Abstract
Many approaches have been developed for measuring 

or estimating actual evapotranspiration (ETa), and research 
over many years has led to the development of remote sensing 
methods that are reliably reproducible and effective in estimat-
ing ETa. Several remote sensing methods can be used to esti-
mate ETa at the high spatial resolution of agricultural fields and 
the large extent of river basins. More complex remote sensing 
methods apply an analytical approach to ETa estimation using 
physically based models of varied complexity that require a 
combination of ground-based and remote sensing data, and 
are grounded in the theory behind the surface energy balance 
model. This report, funded through cooperation with the Inter-
national Joint Commission, provides an overview of selected 
remote sensing methods used for estimating water consumed 
through ETa and focuses on Mapping Evapotranspiration at 
High Resolution with Internalized Calibration (METRIC) and 
Operational Simplified Surface Energy Balance (SSEBop), 
two energy balance models for estimating ETa that are cur-
rently applied successfully in the United States. The METRIC 
model can produce maps of ETa at high spatial resolution 
(30 meters using Landsat data) for specific areas smaller than 
several hundred square kilometers in extent, an improvement 
in practice over methods used more generally at larger scales. 
Many studies validating METRIC estimates of ETa against 
measurements from lysimeters have shown model accuracies 
on daily to seasonal time scales ranging from 85 to 95 percent. 
The METRIC model is accurate, but the greater complexity of 
METRIC results in greater data requirements, and the inter-
nalized calibration of METRIC leads to greater skill required 
for implementation. In contrast, SSEBop is a simpler model, 
having reduced data requirements and greater ease of imple-
mentation without a substantial loss of accuracy in estimating 
ETa. The SSEBop model has been used to produce maps of ETa 
over very large extents (the conterminous United States) using 
lower spatial resolution (1 kilometer) Moderate Resolution 
Imaging Spectroradiometer (MODIS) data. Model accuracies 

ranging from 80 to 95 percent on daily to annual time scales 
have been shown in numerous studies that validated ETa esti-
mates from SSEBop against eddy covariance measurements. 
The METRIC and SSEBop models can incorporate low and 
high spatial resolution data from MODIS and Landsat, but the 
high spatiotemporal resolution of ETa estimates using Land-
sat data over large extents takes immense computing power. 
Cloud computing is providing an opportunity for processing 
an increasing amount of geospatial “big data” in a decreasing 
period of time. For example, Google Earth EngineTM has been 
used to implement METRIC with automated calibration for 
regional-scale estimates of ETa using Landsat data. The U.S. 
Geological Survey also is using Google Earth EngineTM to 
implement SSEBop for estimating ETa in the United States at a 
continental scale using Landsat data.

Introduction
Consumptive water use refers to water that is evaporated 

and transpired from soils, vegetation, and open water (collec-
tively called evapotranspiration [ET]); ingested by livestock 
and humans; or incorporated into crops and other commodi-
ties; and that consequently is unavailable for other demands 
on a water supply (Maupin and others, 2014). Most water con-
sumption is through actual evapotranspiration (ETa), which is 
an important component of the water cycle, and it is estimated 
that about 70 percent of precipitation on land in the United 
States returns to the atmosphere through ETa (Carr and others, 
1990). In addition, in the United States, more than 80 percent 
of water consumption is for agriculture (Carr and others, 
1990), most of which is from ETa. Therefore, water resource 
users and managers have a vested interest in accurately deter-
mining consumptive water use, especially when considering 
the effect of population growth and climate change on water 
demand and supply (Vörösmarty and others, 2000). Distribu-
tion of water resources depends on knowing the volume of 
water that initially is available for use and knowing how much 
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of that water is consumed, thus making it unavailable for 
additional uses.

Many approaches have been developed for measur-
ing or estimating ETa, which constitutes a large fraction of 
consumptive water use (Allen and others, 2011b). The ETa at 
a site can be measured directly using lysimeters (Pruitt and 
Angus, 1960), eddy covariance flux towers (Swinbank, 1951), 
or scintillometers (Meijninger and others, 2002); however, 
using these instruments can involve substantial expense and 
effort and requires well-trained personnel. The ETa also can be 
measured indirectly at a site using evaporation pans (Snyder, 
1992) or Bowen ratio stations (Fritschen, 1965). The use of 
these instruments, although requiring less expense and training 
than directly measuring ETa, still entails considerable labor. 
Additionally, these direct and indirect measurements of ETa are 
limited to the sites and times at which they are taken.

A simple technique for estimating ETa over larger extents 
and longer time periods involves the use of crop coefficients 
(Allen and others, 1998). A crop coefficient is a factor that 
relates ETa of a plant to that of a reference state by parameter-
izing several characteristics of the plant and the soil. Crop 
coefficients have been developed for numerous plant species. 
This technique can be scaled to larger extents or longer time 
periods and transferred among sites because crop coefficients 
are fixed parameters, although a crop type may have several 
factors depending on the number of growth stages (for exam-
ple, initial and development). Applying this technique more 
broadly, however, is difficult because of complications with 
determining crop types or growth stages from aerial photogra-
phy or satellite imagery. Furthermore, this technique makes a 
questionable assumption that local conditions affecting param-
eters are spatially homogenous. Despite these limitations, the 
crop coefficient technique is still used worldwide because of 
its simplicity (Allen, 2000; Allen and others, 2005a).

Remote sensing data have been useful in developing 
methods for estimating consumptive water use from ETa that 
are scalable and transferable, which is important because 
apportionment of water resources is affected by environmental 
and economic circumstances differing in extent and spatio-
temporal resolution. Research over many years has led to 
the development of remote sensing methods that are reliably 
reproducible and effective in estimating ETa. Since satellites 
first began collecting data on natural resources in the 1970s, 
researchers have been developing models to process these 
data for estimating ETa (Idso and others, 1975; Jackson and 
others, 1977). Some remote sensing methods for estimat-
ing ETa are focused at very local scales (Jackson and others, 
1977), whereas others are focused at scales ranging from 
regional or continental (Senay and others, 2013; Singh and 
Senay, 2016) to global (Mu and others, 2007). These methods 
also range from simple (Jackson and others, 1977) to complex 
(Bastiaanssen and others, 1998a; Allen and others, 2007b). 
Several remote sensing methods can be used to estimate ETa at 
the high spatial resolution of agricultural fields and the large 
extent of river basins—a scale that is useful to water resource 
managers.

Purpose and Scope

This report, prepared in cooperation with the Interna-
tional Joint Commission, provides an overview of selected 
remote sensing methods used for estimating water consumed 
through ETa. Two of the more recently developed methods 
are discussed in detail, Mapping Evapotranspiration at High 
Resolution with Internalized Calibration (METRIC) and 
Operational Simplified Surface Energy Balance (SSEBop), 
including the theory behind the continued improvement of 
these methods and some of their applications in ETa estima-
tion. Various qualities of these methods, including the extent 
and spatiotemporal resolution of model estimates and their 
accuracies, the cost, and the ease of implementation, also are 
discussed in comparing the usefulness of the two methods 
for a particular project. This report is not intended to provide 
a systematic review of all remote sensing methods that have 
been developed to estimate consumptive water use from ETa, 
but rather a synopsis of some recently developed techniques 
that currently (2017) seem most applicable to ETa estimation at 
scales appropriate for water resource management, along with 
a discussion of the potential for cloud computing to enable 
the operability of these techniques over large extents at high 
spatiotemporal resolution.

Review of Remote Sensing Methods for 
Estimating Actual Evapotranspiration

The use of remote sensing data for estimating ETa began 
in the 1970s (Li and others, 2009). Original remote sensing 
methods have been improved over the years with refinements 
in modeling the processes that affect ETa as well as advances 
in satellite technology and computing power. These develop-
ments have meant that fewer ground-based measurements of 
model parameters are required, and models can be applied 
more accurately over larger extents at higher spatiotemporal 
resolution.

Initial Empirical Methods

One of the earliest remote sensing methods for estimating 
ETa was a simplified empirical regression model that estimated 
ETa from the difference between surface and air temperatures 
(Jackson and others, 1977):

	 ET R B T Ta n s a= − −( ) 	 (1)

where
	 Rn	 is net radiation, in watts per square meter;
	 B	 is a composite constant related to undefined 

parameters;
	 Ts	 is land surface temperature, in kelvins; and
	 Ta	 is air temperature, in kelvins.
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Remote sensing data are used to generate Rn and Ts, but Ta 
is taken from on-the-ground measurements and B requires 
site-specific parameterization using ordinary least squares fit 
to empirical data. Jackson and others (1977) determined that 
this model estimated ETa reasonably well for a wheat field in 
Arizona.

Other researchers have revised parameterization of the 
model of Jackson and others (1977) and have developed 
modifications (additional exponents and/or coefficients) that 
improve its scalability and transferability. Seguin and Itier 
(1983) determined that the model parameters were most 
strongly influenced by atmospheric stability, wind speed, and 
surface roughness, which allowed for a more standardized 
parameterization of the model. Nieuwenhuis and others (1985) 
tried to ease the constraints of site-specific parameterization 
using a boundary layer model to simulate the model param-
eters. Taconet and others (1986) also used a boundary layer 
model to simulate the model parameters relative to changes 
in surface roughness, wind speed, and vegetation. Because 
of these physical factors, ETa estimates from the Jackson and 
others (1977) model were determined to be very sensitive 
to the height above the surface that Ta is measured (Carlson 
and Buffum, 1989). This finding made it reasonable to use 
remote sensing data for generating Ta like other parameters 
in the model. It was shown that Ta became less influenced by 
surface features when estimated at least 50 meters (m) above 
the surface, which reduces some of the need for on-the-ground 
measurements. Moreover, this finding made it possible to 
scale the model from local to regional extents, although ETa 
estimates were produced at a coarse resolution beyond the size 
of most agricultural plots (Seguin and others, 1994).

The model of Jackson and others (1977) for estimat-
ing ETa is expedient because of its simplicity—the only data 
requirements being Ts, Ta, and Rn—which has facilitated 
applications from local to regional scales. This model has been 
applied successfully in many areas under varied atmospheric 
conditions and vegetative cover (Nieuwenhuis and others, 
1985; Carlson and Buffum, 1989; Seguin and others, 1994); in 
these three studies, the error in ETa estimation averaged about 
1 millimeter (mm) per day. All these applications, however, 
are limited by a need for site-specific parameterization that 
does not allow for transference to new locations. More com-
plex analytical methods have been developed that overcome 
limitations of this earlier empirical method, and most use some 
form of the surface energy balance model.

Current Surface Energy Balance Models

More complex remote sensing methods for estimating 
ETa are grounded in the theory behind the surface energy 
balance model (Biggs and others, 2015), also known as the 
energy balance model, where available energy from shortwave 
and longwave radiation is balanced by fluxes from the heating 
of Earth’s surface and phase changes of water such as ETa. The 

ETa is estimated by fully or partially solving the energy bal-
ance model (Khan and others, 2015):

	 R LE H Gn = − − 	 (2)

where
	 Rn	 is net radiation, in watts per square meter;
	 LE	 is latent heat flux (energy consumed through 

ETa), in watts per square meter;
	 H	 is sensible heat flux (energy convected to the 

air), in watts per square meter; and
	 G	 is ground heat flux (energy conducted to the 

ground), in watts per square meter.
Additionally, these methods apply an analytical approach to 
ETa estimation using physically based models of varied com-
plexity that require a combination of ground-based and remote 
sensing data.

Surface energy balance models can be divided into two 
categories: single-source energy balance models, where veg-
etation and soil are analyzed in a combined energy budget, and 
dual-source energy balance models, where vegetation and soil 
energy budgets are analyzed separately. Single-source energy 
balance models include Surface Energy Balance Algorithm 
for Land (SEBAL; Bastiaanssen and others, 1998a), Simpli-
fied Surface Energy Balance Index (S-SEBI; Roerink and 
others, 2000), Surface Energy Balance System (SEBS; Su, 
2002), Mapping Evapotranspiration at High Resolution with 
Internalized Calibration (METRIC; Allen and others, 2007b), 
and Operational Simplified Surface Energy Balance (SSEBop; 
Senay and others, 2007; 2013). Dual-source energy balance 
models include the Two-Source Model (TSM; Norman and 
others, 1995), Two-Source Time Integrated Model (TSTIM; 
Anderson and others, 1997), Atmosphere-Land Exchange 
Inverse (ALEXI; Mecikalski and others, 1999), Dual Tem-
perature Difference (DTD; Norman and others, 2000), and 
Enhanced Two-Source Evapotranspiration Model for Land 
(ETEML; Yang and others, 2015).

The premise for using dual-source energy balance models 
to estimate ETa is that they better estimate evaporation from 
bare surfaces, whereas single-source energy balance mod-
els are best used for estimating transpiration from vegetated 
surfaces. However, dual-source energy balance models can 
require more data and parameterization and do not seem to 
provide greatly improved estimates of ETa compared to single-
source models (Timmermans and others, 2007; French and 
others, 2015). The theory and application of many of these 
methods have already been reviewed in detail (Gowda and 
others, 2008a; Li and others, 2009; Liou and Kar, 2014) and 
are beyond the scope of this report. Instead, this report focuses 
on METRIC and SSEBop, two energy balance models for 
estimating ETa that are currently applied successfully in the 
United States.
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Mapping Evapotranspiration at High Resolution 
with Internalized Calibration (METRIC)

Allen and others (2007a; 2007b) developed METRIC, 
which is one of the more successfully applied remote sensing 
methods for estimating ETa with the energy balance model 
(eq. 2). The METRIC model can produce maps of ETa at high 
spatial resolution (30 m using Landsat data) for specific areas 
smaller than several hundred square kilometers in extent 
(Allen and others, 2007a), an improvement in practice over 
methods used more generally at larger scales. This method 
has been applied for many purposes, including planning of 
water resources, modeling of watershed hydrology, mapping 
of water use by riparian vegetation, monitoring of water rights 
compliance, evaluation of aquifer depletion from pumpage, 
and assessment of irrigation performance (Allen and others, 
2007a).

Theory

The METRIC model is a further development of the 
techniques used by SEBAL (Bastiaanssen and others, 1998a). 
Both models estimate ETa as a residual of the energy balance 
at the land surface using equation 2 (Allen and others, 2007b). 
To compute the parameters in equation 2, METRIC uses 
shortwave and longwave radiation from satellite imagery, a 
30-m digital elevation model (DEM), and hourly ground-based 
weather data near the study area (Allen and others, 2007b). In 
brief, METRIC computes net radiation (Rn) from narrowband 
reflectance and surface temperature; ground heat flux (G) from 
Rn, surface temperature, and vegetation indices; and sensible 
heat flux (H) from surface temperature, wind speed, and sur-
face roughness.

Net radiation (Rn) in equation 2 is computed by adding all 
incoming radiation and subtracting all outgoing radiation:

	 R R R R R Rn S S L L L= − + − − −( )↓ ↓ ↓ ↑ ↓α ε1 0 	 (3)

where
	 RS↓ 	 is incoming shortwave radiation, in watts per 

square meter;
	 α 	 is surface albedo (dimensionless);
	 RL↓ 	 is incoming longwave radiation, in watts per 

square meter;
	 RL↑ 	 is outgoing longwave radiation, in watts per 

square meter; and
	 ε0 	 is broadband surface thermal emissivity 

(dimensionless).
These intermediate parameters are calculated in METRIC with 
numerous submodels that apply additional parameters derived 
from the ground-based weather data, DEM, and satellite imag-
ery (Allen and others, 2007b).

Ground heat flux (G) in equation 2 is computed with 
one of two alternative submodels (Bastiaanssen, 2000; 
Tasumi, 2003). Both submodels apply empirical relationships 
between Rn, α, surface temperature, and a vegetation index 

to compute G (Allen and others, 2007b). Bastiaanssen (2000) 
uses normalized difference vegetation index (NDVI) as the 
vegetation index, whereas Tasumi (2003) uses leaf area index 
(LAI).

Sensible heat flux (H) in equation 2 is computed with an 
aerodynamic function:

	 H C dT
rair p
ah

= ρ 	 (4)

where
	 ρair	 is density of air, in kilograms per cubic meter;
	 Cp	 is specific heat of air at constant pressure, in 

joules per kilogram per kelvin;
	 dT	 is temperature difference between two near 

surface heights, Z1 and Z2 , in kelvins; and
	 rah	 is aerodynamic resistance (surface roughness 

and atmospheric stability) between Z1 and 
Z2 , in seconds per meter.

Wind speed, elevation, and LAI or NDVI are used to calculate 
rah with several submodels in an iterative process (Allen and 
others, 2007b). The temperature gradient (dT) is calculated 
with a linear function developed by Bastiaanssen (1995):

	 dT a bTs datum= + � 	 (5)

where
	 a	 is the intercept;
	 b	 is the slope; and
	 Ts datum	 is land surface temperature adjusted to a 

standard elevation per pixel of the satellite 
image, in kelvins.

The parameter Ts datum corrects for temperature change within 
a satellite image that is related to elevational change but unre-
lated to dT or H (Allen and others, 2007b).

The METRIC model reduces the complications of other 
methods that use the surface energy balance model (eq. 2) 
by focusing its calibration on computing H and internalizing 
the errors and biases associated with computing LE (Allen 
and others, 2007b). This calibration primarily depends on dT, 
which is indexed to surface temperature estimated radio-
metrically rather than measured on the ground, simplifying 
the computation of H. Two reference pixels are used to define 
the evaporative extremes of the energy balance at the land 
surface. Both pixels are chosen by the user to represent the 
range of dT over the land surface. A “cold” (also called “wet”) 
reference pixel is selected in a well-irrigated field with full 
vegetative cover where ETa is assumed to equal reference 
evapotranspiration (ETr ). The standardized Penman-Monteith 
equation (American Society of Civil Engineers, 2005) is used 
to calculate ETr. The sensible heat flux for the cold pixel (Hcold) 
is calculated with the energy balance model:

	 H R G LEcold n cold cold= −( ) − 	 (6)
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where
	 Rn cold	 is net radiation at the cold pixel, in watts per 

square meter;
	 Gcold	 is ground heat flux at the cold pixel, in watts 

per square meter; and
	 LEcold	 is latent heat flux at the cold pixel, in watts 

per square meter.
Research has shown that the coldest (wettest) agricultural 
fields have ETa rates about 5 percent greater than those for 
a reference alfalfa crop (Tasumi and others, 2005a), so for 
the cold pixel, the ratio of LE to ETr is assumed to be 1.05; 
however, this assumption does not apply outside of, or at the 
beginning of, the growing season when the abundance of 
vegetation is much less than that of the reference alfalfa crop. 
During these times of the growing season, a more appropri-
ate ratio of LE to ETr for the cold pixel can be calculated with 
a function of NDVI defined by the user (Allen and others, 
2007b). The temperature gradient for the cold pixel (dTcold) is 
calculated with the inverse of equation 4:

	
dT

H r
Ccold

cold ah cold

air cold p

= �

�ρ 	 (7)

where
	 Hcold	 is sensible heat flux at the cold pixel, in watts 

per square meter;
	 rah cold	 is surface roughness and atmospheric stability 

at the cold pixel, in seconds per meter;
	 ρair cold� 	 is density of air at the cold pixel, in kilograms 

per cubic meter; and
	 Cp	 is specific heat of air at constant pressure, in 

joules per kilogram per kelvin.
The “hot” (also called “dry”) reference pixel is chosen in 
a dry, bare field where ETa is assumed to be zero. Unlike 
SEBAL, METRIC verifies this assumption with a daily soil 
water balance model, which determines whether evaporation 
is greater than zero because of antecedent moisture (Allen and 
others, 2007b). The calculations of H and dT for the hot pixel 
are the same as those for the cold pixel (eqs. 6 and 7, respec-
tively). The values for dT and Ts datum for the hot and cold pixels 
are used to calculate the two coefficients (a, b) in equation 5:

	 a
dT dT

T T
hot cold

s datum hot s datum cold

=
−
−� � � �

	 (8)

	
b

dT a
T

hot

s datum hot

=
−

� � 	 (9)

where
	 dThot/cold	 is temperature gradient at the hot/cold pixel, 

in kelvins; and
	 Ts datum hot/cold	 is land surface temperature at the hot/cold 

pixel adjusted to a standard elevation per 
pixel of the satellite image, in kelvins.

Once the user determines the linear relationship between dT 
and Ts datum (eq. 5), H is computed for each pixel of the satellite 
image.

The values for G and H are subtracted from that of Rn to 
compute LE, the energy consumed through ETa. Subsequently, 
LE is used to estimate ETa for each pixel of the satellite image:

	
ET LE

inst
w

= 3600
λρ 	 (10)

where
	 ETinst	 is instantaneous ETa (depth of liquid 

evaporated at the time of the satellite 
image), in millimeters per hour;

	 3600	 is a factor for converting from seconds to 
hours;

	 LE	 is latent heat flux, in watts per square meter;
	 λ 	 is latent heat of vaporization, in joules per 

kilogram; and
	 ρw 	 is density of water (about 1,000 kilograms per 

cubic meter).
The ETa is extrapolated to a daily time scale by calculating ETr 
fraction (ETrF), which is equivalent to the crop coefficient for 
the cold pixel (Allen and others, 2007b):

	
ET F

ET
ETr
inst

r

=
	

(11)

where
	 ETinst	 is instantaneous ETa, in millimeters per hour; 

and
	 ETr 	 is reference ET at the time of the satellite 

image, in millimeters per hour.
It is assumed that ETrF is constant throughout the day—an 
assumption that Allen and others (2007b) verified with obser-
vational data—and ETrF is used to calculate daily ETa (ET24):

	
ET ET F ETr r24 24= ×

	
(12)

where
	 ETrF 	 is ETr fraction (dimensionless); and
	 ETr24	 is ETr cumulated over 24 hours on the date of 

the satellite image, in millimeters.
With the assumption that ETa for the study area varies in pro-
portion to changes in ETr at the weather station, ETa is extrapo-
lated to a monthly or seasonal period (ETperiod) by interpolating 
ETrF between successive dates of satellite images (using a 
linear or curvilinear function) and multiplying by ETr for each 
day:

	 ET ET F ETperiod i m

n
r i r i= ×( )

=∑ 24 	 (13)
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where
	 ETperiod	 is ETa cumulated over a period from days m to 

n, in millimeters;
	 ETrFi	 is ETrF interpolated over day i 

(dimensionless); and
	 ETr24i	 is ETr cumulated over 24 hours for day i, in 

millimeters.
One satellite image for each month can be sufficient to 
estimate seasonal ETa (Allen and others, 2007b), but during 
times of rapid vegetative growth, multiple dates of satellite 
images may be needed. In addition, one weather station can 
be adequate for calculating ETr (Allen and others, 2007b), but 
if the study area is very heterogeneous and multiple stations 
are available, the user may need to apply METRIC to separate 
sections in the study area.

Lastly, unlike SEBAL, METRIC uses ETrF to extrapolate 
ETa from instantaneous to daily instead of using the evapora-
tive fraction (EF), which is the ratio of ETa to available energy 
( R Gn − ). Research has shown that EF underestimates daily 
ETa in drier climates (Allen and others, 2007b), whereas ETrF 
incorporates changing weather such as wind and humidity 
that affect advection of heat throughout the day because these 
changes are integrated in the calculation of ETr, which is done 
hourly and summed over 24 hours.

Application

Several studies have compared on-the-ground measure-
ments of ETa to satellite-based estimates from METRIC. 
Estimates of ETa from METRIC were compared to measure-
ments from lysimeters near Montpelier, Idaho, for a 150- by 
300-kilometer (km) portion (two Landsat scenes) of the Bear 
River basin (Allen and others, 2007a). Measurements of ETa 
were taken with lysimeters located near an irrigated field of 
a native sedge forage crop that was characteristic of the area. 
Estimates of ETa were made with METRIC for a field close 
to the lysimeters on four dates throughout the 1985 grow-
ing season. The least accurate monthly ETa estimate was for 
July 14, which had a difference of 28 percent between the 
estimated and measured ETa; however, this difference was 
deemed reasonable because of vegetation growing rapidly at 
that time and precipitation preceding the date of the satellite 
image. The average difference between monthly ETa estimated 
with METRIC and that measured with the lysimeters was plus 
or minus 16 percent. When data for the growing season were 
compared, the difference was only 4 percent, which was attrib-
uted to the reduction in random errors associated with each 
monthly METRIC estimate and lysimeter measurement (Allen 
and others, 2007a).

Estimates of ETa from METRIC also were compared 
to lysimeter measurements on the Snake River Plain near 
Kimberly, Idaho, on eight dates of Landsat 5 scenes dur-
ing the 1989 growing season (Allen and others, 2007a). The 
lysimeters had been measuring ETa for more than 20 years 
over a range of ground cover and weather conditions, enabling 
comparisons of those measurements to estimates of ETa from 

METRIC over various times of the growing season and for 
various crop types and growth stages. This study showed that 
METRIC functioned consistently across clear, partly cloudy, 
and cloudy days, validating the assumption that ETrF for a 
daily time scale can be estimated by instantaneous ETrF at the 
time of the satellite image. Estimates of ETrF for the 24-hour 
period were within 5 percent of instantaneous ETrF in nearly 
all samples for clipped grass and sugar beets. Estimates of 
ETa from METRIC were least accurate during the early and 
late growing season, which had differences of 139 percent for 
April 18 and 34 percent for September 25, although the differ-
ence for April 18 was partially attributed to drying of recently 
wetted bare ground. When omitting the value for April 18, 
the average difference was 14 percent. Like the study from 
Montpelier, Idaho, this difference decreased when data for the 
growing season were compared. Measured by the lysimeters, 
the seasonal ETa of the sugar beet crop was 718 mm, whereas 
the estimate from METRIC was 714 mm, a difference of less 
than 1 percent (Allen and others, 2007a).

Estimates of ETa from METRIC also have been compared 
to those made with SEBAL. The two models were applied 
independently in southern Idaho to two partially overlapping 
Landsat 5 and 7 scenes in 2000 (Tasumi and others, 2005b). 
These independent applications of METRIC and SEBAL 
involved different users, different pathways and dates for 
the Landsat scenes, different weather stations, and different 
choices of the hot and cold reference pixels. Monthly and sea-
sonal estimates of ETa made with SEBAL and METRIC were 
compared for pixels sampled from the overlapping portion 
of the Landsat scenes. The seasonal estimates of ETrF from 
METRIC and EF from SEBAL were consistent and repeat-
able; coefficients of determination (r 2; Helsel and Hirsch, 
2002) were 0.59 and 0.58 and standard deviations were 
0.06 percent and 0.05 percent, respectively, in comparisons of 
the two scenes. The monthly estimates had more variability 
because data were less available in some months. These appli-
cations demonstrated the value of METRIC for estimating ETa 
of agriculture in the semi-arid western United States.

Another application of METRIC has been to improve 
estimates of water balance models that have used empirical 
models, rather than a physically based surface energy balance 
model, to estimate ETa. Using METRIC to estimate ETa, San-
tos and others (2008) applied a water balance model to pro-
duce more efficient irrigation schedules for the Genil-Cabra 
Irrigation Scheme of Spain. The high temporal resolution of 
the water balance model and the high spatial resolution of 
the satellite imagery provided near real-time estimates of ETa 
from METRIC to improve irrigation scheduling for individual 
agricultural plots. The study area consisted of 6,800 hect-
ares (ha) of irrigated farmland with a diversity of crop types, 
including wheat, cotton, olive, maize, sugar beet, beans, 
garlic, sunflower, and other vegetables. Landsat scenes on 
11 dates in 2004–5 and weather data from five ground-based 
stations were used to make estimates with the model. Among 
plots, estimates of ETa from METRIC ranged from 0 mm for 
non-agricultural fields in the study area to 1,000 mm for some 
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well-irrigated plots of sugar beet. The estimates showed high 
variability in crop coefficients (ETa from METRIC divided 
by ETr) among the crop types, suggesting in part subopti-
mal irrigation scheduling. In addition, the estimates showed 
great variability within plots, ranging from 70 mm for pepper 
(12 percent of seasonal ETa) to 160 mm for sunflower (44 per-
cent of seasonal ETa). Using the model estimates to update 
the irrigation schedule in real-time would have reduced the 
watering depth from 733 mm to 559 mm for cotton, a 24-per-
cent decrease in water use, but would have increased water use 
for sugar beet by 21 percent. Estimated ETa from METRIC for 
selected crops and plots was 677 mm, whereas the measured 
delivery of irrigation water was 699 mm, an error of 3 percent. 
In this application, METRIC provided estimates of ETa at high 
spatiotemporal resolution, improving irrigation performance 
and water consumption throughout the growing season for 
individual agricultural plots.

Gowda and others (2008b) applied METRIC to ETa 
estimation in the Texas High Plains near Lake Meredith in 
agricultural fields dependent on irrigation water pumped from 
the Ogallala Aquifer. The study area encompassed 234,000 ha, 
about one-half of which were planted with corn, cotton, 
sorghum, soybean, and wheat, and the rest had interspersed 
semi-arid shrubs and grasses. The study area experiences 
strong winds and temperature gradients across the landscape 
during the growing season, affecting advection of heat, which 
is responsible for more than half of ETa. Estimates of ETa were 
made with METRIC using Landsat 5 scenes on two dates 
(June 27 and July 29) in 2005 and ground-based weather data 
from four stations. Estimates of ETa in four fully or partially 
irrigated fields of corn and cotton, experiencing varied water 
stress, were compared to a daily soil water balance model. The 
partially irrigated cotton field had relatively high differences 
between estimated and measured ETa, potentially because 
of less plant biomass and more bare soil. When omitting the 
values for this field, the average difference was 13 percent and 
-5 percent on June 27 and July 29, respectively, which Gowda 
and others (2008b) deemed exceptional given the prevailing 
weather conditions that promote advection of heat.

Most applications of METRIC have been at local scales 
at high spatial (30 m) but lower temporal (8–16 days) resolu-
tion using data from Landsat 5, 7, and 8. Few studies have 
attempted to apply METRIC or SEBAL at regional scales at 
lower spatial (250–1,000 m) but higher temporal (1–2 days) 
resolution using data from Moderate Resolution Imaging 
Spectroradiometer (MODIS). Data from MODIS were used 
in applications of SEBAL in Brazil and China (Ruhoff and 
others, 2012; Yang and others, 2012). Trezza and others 
(2013) used METRIC with MODIS data in a study of a 3- by 
3-degree section of the Middle Rio Grande Basin in New 
Mexico. The main difficulty in using METRIC with low spa-
tial resolution (1 km) MODIS data is the selection of hot and 
cold reference pixels that are uniform within 1 square kilo-
meter (km2), the area of a pixel. To overcome this limitation, 
the cold pixel was chosen with a procedure that incorporated 
MODIS and Landsat 5 data, whereas the hot pixel selection 

was made with MODIS data. Comparisons were made 
between METRIC estimates of ETa using MODIS and Landsat 
5 data for scenes on 13 dates in 2002. Estimates of ETa using 
data from MODIS were lower than those made with Landsat 
for pixels with high NDVI but comparable for pixels with 
low NDVI. Moreover, ETa estimates made with MODIS data 
were highly correlated with those using Landsat (r 2 = 0.9); 
annual ETa averaged over the Middle Rio Grande Basin was 
1,045 mm with MODIS and 1,067 mm with Landsat. Uncer-
tainty of ETa estimates for individual agricultural plots, how-
ever, was very high when using METRIC with MODIS data.

Operational Simplified Surface Energy Balance 
(SSEBop)

Senay and others (2013) developed SSEBop, which is 
the most recent revision of Simplified Surface Energy Balance 
(SSEB; Senay and others, 2007). Because SSEBop builds on 
the theory from SSEB, this section will focus first on SSEB 
and then discuss its progression toward SSEBop. Similar to 
METRIC, SSEBop is another remote sensing method that 
applies the simplified version of the surface energy balance 
model (eq. 2) to estimate ETa. Applications of this method 
also have had many purposes, including drought monitoring 
and famine early warning in regions with sparse ground-based 
data, mapping of water use by different land cover classes, and 
estimation of ETa in the United States at regional to continental 
scales (Senay and others, 2007; 2011a; 2013; 2016). The SSE-
Bop model has been used to produce maps of ETa over very 
large extents (the conterminous United States) using lower 
spatial resolution (1 km) MODIS data (Senay and others, 
2016). Unlike METRIC, SSEBop requires less parameteriza-
tion of the energy balance model, making for simpler applica-
tion over larger extents, and does not have the same require-
ments for finely resolved ground-based data such as hourly 
weather information.

Theory

The SSEB model functions similarly to METRIC (Allen 
and others, 2007b). The METRIC model assumes that varia-
tion in land surface temperature (LST) is linearly related to the 
temperature difference between the land surface and air. This 
relation is defined through the selection of two reference pix-
els: a hot pixel that represents bare, dry fields; and a cold pixel 
that represents vegetated, wet fields. The temperature gradi-
ent is used in equation 2 to estimate H (sensible heat flux), 
which is assumed to vary linearly between the hot and cold 
pixels. This assumption holds for SSEB, where it is further 
assumed that LE in equation 2 (energy consumed through ETa) 
also varies linearly between the hot and cold pixels. Senay 
and others (2007) remark that this assumption is supported by 
research showing that the temperature difference between the 
land surface and air is linearly related to soil moisture. They 
additionally assume that ETa can be inferred from the tem-
perature gradient, which can be estimated from land surface 
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temperatures of the hot and cold pixels. At the hot pixel, ETa is 
assumed to be zero, and ETa at the cold pixel is assumed to be 
maximal—that is, to equal ETr. At all other pixels in a study 
area, ETa is scaled proportionately to the surface temperature 
of each pixel in relation to that of the hot and cold pixels. With 
this assumption, fractional evapotranspiration (ETf ) is calcu-
lated for each pixel:

	
ET

T T
T Tf
h s

h c

=
−
− 	

(14)

where
	 Th	 is LST for the hot pixel, in kelvins;
	 Ts	 is LST of each pixel, in kelvins; and
	 Tc	 is LST for the cold pixel, in kelvins.

To calculate the parameters in equation 14, SSEB uses 
satellite imagery for LST and a vegetation index (NDVI) to 
assist in choosing the hot and cold reference pixels. From the 
study area, regions of high temperature and low NDVI (hot, 
bare fields) and low temperature and high NDVI (cold, well-
vegetated fields) are identified from which the hot and cold 
reference pixels are chosen. The ETa is calculated from ETf for 
each pixel in the study area:

	 ET ET ETa f= × 0 	 (15)

where
	 ETf	 is fractional ET (dimensionless); and
	 ET0	 is reference ET, in millimeters.
Available gridded data such as those from the Global Data 
Assimilation System (GDAS) model are used to calculate 
ET0, which results in a 1-degree grid of global daily data 
(Senay and others, 2008). The GDAS model uses the standard-
ized Penman-Monteith equation (American Society of Civil 
Engineers, 2005) to compute ET0 for a shortgrass crop (Allen 
and others, 1998). Senay and others (2007) disaggregate the 
1-degree data from this model onto a 10-km grid. However, 
if ET0 is available from a weather station, ETa estimates will 
likely be more accurate using the local values of ET0.

A major assumption of SSEB is that differences in LST 
over a homogeneous landscape are related to differences in 
vegetation and its water use (Senay and others, 2007). Because 
this assumption ignores α  and G, ETa is underestimated for 
surfaces with low albedo (light reflectance) and overestimated 
for surfaces with high albedo and high ground heat flux, such 
as bare soils (Senay and others, 2011a). In addition, SSEB 
assumes that LST and ETa are linearly related, but this assump-
tion is questionable if α and G of a pixel on the landscape dif-
fer greatly from that of the reference crop (Senay and others, 
2011a). To better support these assumptions, Senay and others 
(2011a) developed an adaptation of SSEB (SSEBelvi) with 
a correction for elevation with a DEM and another correc-
tion for land cover with a vegetation index. These modifica-
tions were developed to improve SSEB in applications on 

landscapes with varied elevation, slope, or aspect, and with 
mixed bare soil and green or senesced vegetation.

To improve SSEB for applications not just on flat, 
irrigated fields but also on more complicated terrain, LST is 
corrected for topographic differences:

	 LST LST K DEMc L= + × 	 (16)

where
	 LSTc	 is  LST corrected for elevation, in kelvins;
	 LST	 is uncorrected LST, in kelvins;
	 KL	 is lapse rate in temperature of air moving over 

the landscape, in kelvins per meter; and
	 DEM	 is land surface elevation from a digital 

elevation model, in meters.
The standard value for the lapse rate is 0.0065 kelvins per 
meter. When using SSEBelvi, LSTc is substituted for LST to 
calculate ETf in equation 14.

To improve the application of SSEB for mixed land 
cover, NDVI is used to correct for vegetation differences:

	
ET NDVI ETf elvi f el( ) ( )= × +






×0 35
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(17)

where
	 ETf(elvi)	 is ETf corrected for elevation and vegetation 

index (dimensionless);
	 NDVI	 is normalized difference vegetation index 

(dimensionless); and
	 ETf(el)	 is ETf from equation 14 corrected for land 

surface elevation (dimensionless).
With SSEBelvi, it is assumed that if the NDVI value of a pixel 
is greater than 0.7, that pixel is well-vegetated and will have 
ETa greater than that of the reference crop if water is not limit-
ing (Senay and others, 2011a). The possible range of the coef-
ficient in equation 17 (the resulting value of all terms within 
the parentheses) is 0.65–1.15, but the probable maximum is 
1.05 because NDVI is rarely greater than 0.8 for a pixel. Senay 
and others (2011a) state that this range has no strong theoreti-
cal basis, but that the probable maximum is equivalent to the 
correction factor used by METRIC (1.05) for calculating ETf 
of the cold reference pixel. When using SSEBelvi, ETf(elvi) is 
substituted for ETf to calculate ETa in equation 15.

To reduce the potential for bias from the user selecting 
the hot and cold reference pixels in SSEB and SSEBelvi, SSE-
Bop was developed with a procedure similar to that of SEBS 
(Su, 2002) to predetermine the difference between the hot 
and cold boundary conditions for each pixel (Senay and oth-
ers, 2013). The SSEBop model, unlike METRIC, SSEB, and 
SSEBelvi, does not require the user to select the hot and cold 
reference pixels for a study area. The only data required are Ts, 
Ta, and ET0. Senay and others (2013) state that their model is 
boldly simple, but that it is grounded in knowledge that avail-
able Rn drives the surface energy balance model. They argue 
that under clear skies the hot and cold boundary conditions do 
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not vary significantly among years, and more importantly the 
difference between the hot and cold reference values can be 
assumed constant for a given location and day of year. With 
this assumption, ETa is calculated as a fraction of ET0:

	 ET ET kETa f= × 0 	 (18)

where
	 ETf	 is fractional ET (dimensionless);
	 k	 is a coefficient that scales ET0 to maximum 

ETa of a less aerodynamic crop; and
	 ET0	 is reference ET for a shortgrass crop, in 

millimeters.
The standard value for the coefficient is 1.2, but it also can 
be determined with calibration procedures using soil water 
balance or surface energy balance approaches, or field data 
(Senay and others, 2013). The idealized hot and cold reference 
values for each pixel are used to calculate ETf in equation 14.

It is assumed that under clear-sky conditions ETa will be 
equivalent to potential ET if Ts is similar to Ta (H is minimal), 
so daily maximum air temperature (Ta) can be multiplied by a 
correction factor to calculate land surface temperature for the 
cold pixel (Tc) in equation 14:

	 T cTc a= 	 (19)

where
	 c	 is a coefficient that relates Ts to Ta for well-

irrigated vegetation at maximum ETa; and
	 Ta	 is air temperature, in kelvins.
This assumption can be verified by relating Ts to Ta from 
remote sensing data for well-irrigated vegetation in the study 
area.

Land surface temperature for the hot pixel (Th) is calcu-
lated by adding the temperature difference to Tc from equation 
19:

	 T T dTh c= + 	 (20)

where
	 Tc	 is land surface temperature for the cold pixel, 

in kelvins; and
	 dT	 is temperature gradient between the idealized 

hot and cold reference values for each 
pixel, in kelvins.

The parameter dT is predetermined for each pixel and day of 
year by partially solving the energy balance model for dry, 
bare soil where it is assumed that ETa is zero and H is maximal 
(Bastiaanssen and others, 1998a; Allen and others, 2007b). 
Because LE and G in equation 2 are assumed to be zero at a 
daily time scale for bare, dry soil, Rn can be estimated as H in 
equation 4, and dT can be calculated with the inverse of equa-
tion 4. Senay and others (2013) used a trial-and-error calibra-
tion approach to determine rah, which they fix at 110 seconds 

per meter, a value also found in the range reported by other 
research (Qiu and others, 1998).

Lastly, satellite imagery can underestimate Ts on some 
non-vegetated surfaces with high albedo, such as desert sands, 
or high emissivity, such as lava rocks. Consequently, SSEBop 
may overestimate ETa for these surfaces. To correct for this 
misinterpretation of Ts when using SSEBop to estimate ETa, 
either a mask is applied over these surfaces or a correction fac-
tor is used with α to increase Ts.

Application

The SSEB, SSEBelvi, and SSEBop models have been 
applied at local, regional, and continental scales, and tested 
against more complex remote sensing methods for estimating 
ETa. Senay and others (2007) used SSEB to estimate ETa in 
irrigated agricultural lands in two river basins in Afghanistan 
during 2000–5. Because these river basins had varied tempera-
ture gradients, they were each divided by elevation into three 
subdivisions, ranging in size from 430 to 2,100 km2. Irrigated 
fields were delineated with data from Landsat, MODIS, and 
Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER). Afghanistan lacked field data for model 
validation, but spatial and temporal patterns of estimated ETa 
were consistent with observations of vegetative cover from 
NDVI, estimates of ETa from a water balance model, and 
published reports of precipitation (Senay and others, 2007). 
Furthermore, in a preliminary validation of SSEB against 
METRIC applied to corn and soybean fields in South Dakota 
in 2001 with Landsat data (Senay and others, 2007), ETa 
estimates from both models were highly correlated (r 2 greater 
than 0.9).

Satellite-based estimates of ETa from SSEB have been 
compared to on-the-ground measurements in several studies. 
Estimates of ETa using SSEB were compared to measurements 
taken with lysimeters near Bushland, Texas, on the Southern 
High Plains (Gowda and others, 2009). Lysimeters measured 
ETa in dryland and irrigated agricultural plots planted with 
corn and sorghum. Estimates of ETa were made with SSEB for 
Landsat scenes on 14 dates during the 2007 and 2008 growing 
seasons. Estimates of ETa from SSEB explained 84 percent 
of the variance in the daily measurements from lysimeters, 
and had a root mean square error (RMSE; Helsel and Hirsch, 
2002) of 1.2 mm. The differences between SSEB and the 
lysimeters mostly involved the dryland agricultural plots; 
SSEB overestimated ETa at lower values (less than 2.5 mm) of 
lysimeter-measured daily ETa and underestimated ETa at higher 
values. It was determined that SSEB performed comparably 
to more complex energy balance models at estimating ETa in 
semi-arid landscapes. Gowda and others (2009) concluded that 
SSEB is promising for regional-scale applications because of 
its simplified approach with minimal data requirements.

Estimates of ETa made with SSEB also have been 
compared to those from a water balance model (Senay and 
others, 2011b). For 1,399 eight-digit hydrologic unit code 
(HUC8) subbasins in the conterminous United States, ETa 
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was estimated using SSEB and was modeled as the difference 
between precipitation and runoff (Senay and others, 2011b). 
The comparison was made with the median values for pre-
cipitation and runoff for 2000–9. Estimates of ETa from SSEB 
and the water balance model were highly correlated (r 2 greater 
than 0.9) and had a mean error of -67 mm (11 percent of the 
difference between precipitation and runoff). Senay and others 
(2011b) ascertained that SSEB showed the expected patterns 
of ETa across the contiguous United States but underestimated 
ETa in more arid regions. This underestimation most likely was 
due to the low spatial resolution (1 km) of MODIS data, which 
assimilates land within a 1-km2 pixel that may not be contrib-
uting to ETa.

Senay and others (2011a) compared spatial and tempo-
ral variation in ETa estimates from SSEBelvi to those from 
METRIC for agricultural fields in southern Idaho. Spatial 
variation in ETa estimates was compared for the whole study 
area on June 28, 2003, and temporal variation in ETa esti-
mates was compared for six plots in Landsat scenes on seven 
dates throughout the 2003 growing season. For pixels in the 
study area at elevations less than 2,000 m, where the terrain 
was homogeneous, spatial variation in ETa estimates from 
SSEBelvi and METRIC were highly correlated, having a 
correlation coefficient (r; Helsel and Hirsch, 2002) of 0.95. 
For pixels greater than 2,000 m in elevation, which had more 
complicated terrain, SSEBelvi tended to overestimate ETa at 
lower values of ETa estimated with METRIC; however, the 
corrections for elevation and vegetative cover with a DEM and 
NDVI were determined to improve the correlation between 
SSEB and METRIC for pixels at higher elevations (r = 0.62). 
Temporal variation in ETa estimates also was comparable 
between SSEBelvi and METRIC for most of the agricultural 
plots. Although SSEBelvi tended to overestimate ETa earlier 
in the growing season, it was similar to METRIC later in the 
growing season when daily or monthly ETa is much greater. 
Senay and others (2011a) surmised that selecting the cold ref-
erence pixel in a water body would help reduce this error.

Two studies have compared SSEBop estimates of ETa 
to eddy covariance measurements (Senay and others, 2013; 
Chen and others, 2016). In both studies, ETa estimates were 
compared to measurements taken at more than 40 flux towers 
covering diverse ecosystems across the contiguous United 
States, including cropland, grassland, forest, shrubland, and 
woody savanna. Senay and others (2013) parameterized 
SSEBop with monthly air temperature data in 2005 from 
Parameter-Elevation Regressions on Independent Slopes 
Model (PRISM) and found high correlation between monthly 
ETa estimates from SSEBop and eddy covariance measure-
ments (r 2 = 0.64; RMSE = 27 mm). Senay and others (2013) 
concluded that SSEBop is promising for applications at a 
continental scale given the minimal data requirements and the 
consistency of model estimates produced by different users. 
Chen and others (2016) parameterized SSEBop for monthly 
data during 2001–7 and determined that across five land cover 
classes, SSEBop estimates of ETa explained 86 percent of the 
variance in the monthly eddy covariance measurements and 

had an RMSE of 15 mm. The model performed best for crop-
land (r 2 = 0.92; RMSE = 13 mm). A sensitivity analysis of the 
model determined that errors in all six parameters might cause 
errors in ETa estimation as great as 30 percent, and that the 
model is most sensitive during the non-growing season and in 
more arid regions. Despite the potential for error in parameter-
izing SSEBop, Chen and others (2016) determined that uncer-
tainty in the simplification of the model did not significantly 
affect how well SSEBop estimates ETa at a regional scale.

Singh and Senay (2016) compared ETa estimates from 
SSEBop to those from three different energy balance models 
(METRIC, SEBAL, and SEBS) for irrigated and non-irrigated 
farmlands in the midwestern United States. Estimates of ETa 
were made with Landsat scenes on seven dates throughout the 
2001 growing season over three sites planted with maize and 
soybean. Estimates of ETa from METRIC, SEBAL, SEBS, and 
SSEBop were compared to eddy covariance measurements 
taken at the three sites. Singh and Senay (2016) determined 
that all four models demonstrated similar spatial and tempo-
ral patterns of ETa. Performance of the models was evaluated 
with four metrics: r, r 2, Nash-Sutcliffe efficiency (NSE), and 
RMSE. The NSE compares the relative fit of model simula-
tions to observed data and ranges from negative infinity to 1, 
with 1 being the optimal value and values less than 0 being 
worse than the mean observed value (Nash and Sutcliffe, 
1970). When compared to eddy covariance measurements, 
estimates of ETa made with METRIC had an r, r 2, NSE, and 
RMSE of 0.96, 0.92, 0.87, and 93 mm, respectively; for SSE-
Bop, they were 0.96, 0.92, 0.90, and 84 mm, respectively.

Two studies have used ETa estimated with SSEBop to 
help improve water resource management in the Colorado 
River Basin (Singh and others, 2014a; Senay and others, 
2016). In both studies, ETa was estimated with Landsat and 
MODIS data for 144 HUC8 subbasins. Singh and others 
(2014a) determined there was high correlation between SSE-
Bop estimates of annual ETa made with high spatial resolution 
(30 m) Landsat data and eddy covariance measurements taken 
at seven sites in 2000 (r 2 = 0.78); removing two sites affected 
by wildfire further increased the correlation (r 2 = 0.95). More-
over, annual ETa estimates from SSEBop for the HUC8 sub-
basins were highly correlated with those from a water balance 
model (r 2 = 0.85). Singh and others (2014b) also determined 
that estimates of annual ETa made with SSEBop using lower 
spatial resolution (1 km) MODIS data had high correlation 
to those made with Landsat data (r 2 = 0.79). However, ETa 
estimates made with MODIS data were not spatially explicit 
enough to manage water resources at the field scale. Senay 
and others (2016) determined that SSEBop estimates of daily 
ETa were highly correlated to eddy covariance measurements 
taken at two sites (r 2 greater than or equal to 0.82; RMSE 
less than or equal to 0.6 mm), and annual ETa estimated with 
SSEBop had high correlation to that from a water balance 
model (r 2 =0.78; RMSE = 77 mm). To increase the temporal 
resolution of ETa estimates, SSEBop was parameterized with 
daily air temperature data from Daymet (Thornton and oth-
ers, 1997). Senay and others (2016) analyzed ETa by 16 land 
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cover classes and determined that shrubland, the dominant 
land cover, consumed 146 cubic kilometers (km3) of water, 
whereas cropland consumed 4 km3. However, they determined 
that precipitation only provided 26–43 percent of water used 
by cropland in five irrigation districts, emphasizing the value 
of the high spatiotemporal resolution estimates to managing 
water resources.

Comparison of METRIC and SSEBop 
Models

The METRIC and SSEBop models each have been 
shown to estimate ETa with acceptable accuracies in many 
applications. A robust remote sensing method for estimating 
ETa, METRIC has been applied successfully in the United 
States and internationally, and METRIC and SEBAL (the 
model from which METRIC was developed) have been used 
to estimate ETa in more than 25 countries and on all conti-
nents except Antarctica (Bastiaanssen and others, 1998b; 
2005; Allen and others, 2007a). The SSEBop model largely 
has been used to estimate ETa in the United States (Senay and 
others, 2007; 2011a; 2013; 2016). The METRIC and SSE-
Bop models have many similarities (table 1), including their 
theoretical grounding in the surface energy balance model and 
their ability to incorporate low (1 km) and high (30 m) spatial 
resolution data from MODIS and Landsat; however, they have 
important differences in data requirements, ease of implemen-
tation, and cost.

The METRIC model has shown greater accuracy at esti-
mating ETa than simpler techniques that use crop coefficients 
or vegetation indices exclusively (Choudhury and others, 
1994; Allen and others, 1998), and also removes the need to 
know crop type and growth stage (Allen and others, 2011a). 
The model can detect reductions in ETa from water shortages, 
soil salinity, and frozen soil, and can detect evaporative losses 
from bare soil. In addition, many studies validating METRIC 
estimates of ETa against measurements from lysimeters have 
shown model accuracies on daily to seasonal time scales rang-
ing from 85 to 95 percent (Allen and others, 2007a).

The METRIC model is accurate and accounts for all 
terms of the energy balance model (table 1). The greater 
complexity of METRIC results in greater data requirements, 
including remote sensing data in the visible, near-infrared, and 
infrared regions of the electromagnetic spectrum, as well as 
on-the-ground measurements of wind speed and air tempera-
ture. Some of the complexity of solving the energy balance 
model is mitigated by the internalized calibration of METRIC, 
which reduces data requirements compared to more complex 
energy balance models; however, this internalized calibration 
leads to greater skill required for implementation compared to 
SSEBop.

Skill is required in the selection of the hot and cold 
reference pixels by the user, which is the principal determi-
nant of the accuracy of METRIC. Long and Singh (2013) 

demonstrated that context dependency can affect this selec-
tion by the user. An appropriate reference pixel may not exist 
within a satellite image if all the land cover is vegetated (or 
non-vegetated), or the choice of the reference pixels can 
be affected if the extent or resolution of the satellite image 
changes, which in turn would change estimates of ETa. User 
error in choosing the hot and cold reference pixels is the 
greatest source of error in ETa estimates from METRIC. To 
apply METRIC appropriately, the user needs background in 
the theoretical basis of the surface energy balance model and 
knowledge of the biophysics of vegetation. This user training 
and the sophistication of the physically based model means 
that METRIC can cost more than $75,000 per year (in 2004 
dollars) to estimate ETa for a Landsat scene (Allen and others, 
2005b). Although METRIC may cost less than estimating ETa 
for a study area using crop coefficient techniques with on-the-
ground measurements of reference ET, it is still expensive for 
a 1-year application.

Because of the training needed to apply METRIC prop-
erly and the variability in ETa estimates among even trained 
users, effort has been made to automate the calibration of 
METRIC (Allen and others, 2013). Morton and others (2013) 
developed an algorithm that might simplify ETa estimation 
with METRIC. Six trained users manually calibrated METRIC 
for estimating ETa with Landsat scenes from 2006 for a study 
area in Nevada. Statistics from empirical cumulative distribu-
tion functions of the selection of the hot and cold reference 
pixels by these users were used to parameterize the automated 
calibration algorithm. Comparisons of daily ETa estimates 
from the automated calibration to Bowen ratio and eddy cova-
riance measurements at eight sites showed high correlation 
(r 2 = 0.8). Morton and others (2013) affirmed that the auto-
mated calibration algorithm compared well to manual selec-
tion of the reference pixels, but that more validation is needed 
in other study areas with different crop types and growing 
conditions. The automated algorithm for selecting reference 
pixels is a promising development toward greater objectivity 
in METRIC estimates of ETa, and more importantly a more 
user-friendly means of implementation.

In contrast, SSEBop is a simpler model (table 1), having 
reduced data requirements and greater ease of implementa-
tion without a substantial loss of accuracy in estimating ETa. 
Performance has improved greatly from SSEB to SSEBelvi 
and SSEBop. Like other energy balance models, SSEBop does 
not perform as well on more complicated terrain, but Senay 
and others (2013) have suggested further adaptations of the 
model that may include corrections for slope and aspect in cal-
culating net radiation. Additionally, model accuracies ranging 
from 80 to 95 percent on daily to annual time scales have been 
shown in numerous studies that validated ETa estimates from 
SSEBop against eddy covariance measurements (Senay and 
others, 2013; Chen and others, 2016).

The data requirements of SSEBop are air temperature, 
albedo, land surface elevation, NDVI, net radiation, refer-
ence ET, and land surface temperature, most of which are 
taken from remote sensing data (table 1). Although greater 
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accuracy is possible with the incorporation of ground-based 
data, no ground-based data are required. The process followed 
by SSEBop in estimating ETa is relatively simple. Instanta-
neous or averaged surface temperature is taken from Landsat 
or MODIS data. Daily, weekly, or monthly air temperature 
is taken from Daymet data, or ground-based weather data 
for higher spatial resolution applications at smaller scales. 
A correction factor can be calculated relating land surface 
temperature to air temperature under clear-sky conditions 
for wet, vegetated pixels. A seasonally dynamic but annually 
static temperature difference under clear-sky conditions for 
each pixel is calibrated to a dry, bare pixel. Reference ET is 
calculated with data from gridded weather fields such as those 
from GDAS, or ground-based weather data for more local 
applications. Fractional ET is calculated using the idealized 
hot and cold reference values for each pixel, and estimates 
of ETa at the desired time scale are calculated by multiplying 
reference ET by fractional ET. Although some parts of the 
process necessitate internal calibration, the skill required is 
greatly reduced.

Implementation of Large-Scale 
Estimation of Actual Evapotranspiration 
with Cloud Computing

Estimation of consumptive water use at large scales is 
difficult but is a key priority of the U.S. Geological Survey 
(USGS) and part of the focus of the National Water Census on 
mapping water use and availability nationally (U.S. Geologi-
cal Survey, 2007; Alley and others, 2013). The USGS has 
been developing an objective way to estimate ETa at this scale, 
but the high spatiotemporal resolution of ETa estimates using 
Landsat data over large extents takes immense computing 
power. For example, in the two consumptive water use studies 
of the Colorado River Basin that used SSEBop (Singh and 
others, 2014a; Senay and others, 2016), 43 Landsat scenes on 
multiple dates, each about 1 gigabyte in size, were analyzed. 
The Colorado River Basin is about 7.5 percent of the area of 
the conterminous United States, so a continental-scale analysis 
of consumptive water use might need to process more than 
550 scenes on multiple dates throughout the growing season. 
This processing involves masking clouds from the satellite 
images, interpolating between dates of satellite images with 
clear skies, and seamlessly mosaicking the satellite images. 
Other remote sensing data, such as air temperature, albedo, 
land surface elevation, and reference ET also require process-
ing prior to inclusion in SSEBop. Because of these geospatial 
processing needs, an effort at this scale has not occurred.

The size of high spatial resolution satellite imagery can 
be prohibitive for doing large-scale analyses on an average 
desktop computer. For example, all the data associated with 
a Landsat 8 scene downloaded from Earth Explorer (https://
earthexplorer.usgs.gov) are about 1 gigabyte. To download and 

process data for a great number of scenes on multiple dates is 
unfeasible at this size, particularly when exploratory analy-
sis is first required. Cloud computing—based on computing 
resources that are shared over the internet—is providing an 
opportunity for processing an increasing amount of geospatial 
“big data” in a decreasing period of time (Yang and others, 
2011; Lee and Kang, 2015). For example, although it might 
take an individual computer 10 hours to process 1 gigabyte of 
data, cloud computing might apportion that data among 100 
(or 1,000) computers, which each take 1 hour (or 1 minute) to 
process its portion of the data.

Many cloud computing options, such as Amazon Web 
ServicesTM, Google Earth EngineTM, IBM CloudTM, or Micro-
soft Azure TM, have potential for estimating ETa over larger 
extents and longer time periods. For example, Google Earth 
EngineTM, which uses Google’s computer infrastructure to 
process data in parallel on many servers, is already operative 
in research in the earth sciences (Yu and Gong, 2012). Google 
Earth EngineTM has been used to implement METRIC with 
automated calibration for regional-scale estimates of ETa using 
Landsat data, with a beta version of a web app presented at 
Google’s 2015 Earth EngineTM User Summit (J.L. Huntington, 
Desert Research Institute, oral commun., 2016). The USGS 
also is using Google Earth EngineTM to implement SSEBop 
for estimating ETa in the United States at a continental scale 
using Landsat data, with a proof-of-concept annual ETa 
product showcased by the Google Earth EngineTM Team at 
the American Geophysical Union’s 2016 Fall Meeting (G.B. 
Senay, U.S. Geological Survey, written commun., 2016). 
Although estimates of ETa at low spatiotemporal resolution 
for the contiguous United States are already available (Senay 
and others, 2013), higher resolution estimates are currently in 
development.

Summary
Water resource users and managers have a vested interest 

in accurately determining consumptive water use, and many 
approaches have been developed for measuring or estimat-
ing actual evapotranspiration (ETa), which constitutes a large 
fraction of consumptive water use. The ETa at a site can be 
measured directly using lysimeters, eddy covariance flux 
towers, or scintillometers, or indirectly using evaporation 
pans or Bowen ratio stations, but these direct and indirect 
measurements of ETa are limited to the sites and times at 
which they are taken. A simple technique for estimating ETa 
over larger extents and longer time periods involves the use 
of crop coefficients, but applying this technique more broadly 
is difficult because of complications with determining crop 
types or growth stages from aerial photography or satellite 
imagery. Research over many years has led to the development 
of remote sensing methods that are more reproducible and 
effective in estimating ETa. Several remote sensing methods 
can be used to estimate ETa at the high spatial resolution of 



14    Models for Estimating Actual Evapotranspiration with Remote Sensing at High Spatiotemporal Resolution

agricultural fields and the large extent of river basins—a scale 
that is useful to water resource managers.

One of the earliest remote sensing methods for estimat-
ing ETa was a simplified empirical regression model that 
estimated ETa from the difference between land surface and 
air temperatures. This method for estimating ETa is expedient 
because of its simplicity, and it has been applied successfully 
in many areas, but applications are limited by a need for site-
specific parameterization that does not allow for transference 
to new locations. More complex analytical methods have been 
developed that overcome limitations of this earlier empiri-
cal method and are grounded in the theory behind the surface 
energy balance model, where available energy from shortwave 
and longwave radiation is balanced by fluxes from the heating 
of Earth’s surface and phase changes of water such as ETa. 
These methods apply an analytical approach to ETa estima-
tion using physically based models of varied complexity that 
require a combination of ground-based and remote sensing 
data.

This report, prepared in cooperation with the Interna-
tional Joint Commission, provides an overview of selected 
remote sensing methods used for estimating water consumed 
through ETa and focuses on Mapping Evapotranspiration at 
High Resolution with Internalized Calibration (METRIC) and 
Operational Simplified Surface Energy Balance (SSEBop), 
two energy balance models for estimating ETa that are cur-
rently applied successfully in the United States. The METRIC 
model can produce maps of ETa at high spatial resolution 
(30 meters using Landsat data) for specific areas smaller than 
several hundred square kilometers in extent, an improvement 
in practice over methods used more generally at larger scales. 
This method has been applied for many purposes, including 
planning of water resources, modeling of watershed hydrol-
ogy, mapping of water use by riparian vegetation, monitoring 
of water rights compliance, evaluation of aquifer depletion 
from pumpage, and assessment of irrigation performance. 
Similar to METRIC, SSEBop is another remote sensing 
method that applies the surface energy balance model to esti-
mate ETa, and applications of this method also have had many 
purposes, including drought monitoring and famine early 
warning in regions with sparse ground-based data, mapping 
of water use by different land cover classes, and estimation 
of ETa in the United States at regional to continental scales. 
The SSEBop model has been used to produce maps of ETa 
over very large extents (the conterminous United States) using 
lower spatial resolution (1 kilometer) Moderate Resolution 
Imaging Spectroradiometer (MODIS) data. Unlike METRIC, 
SSEBop requires less parameterization of the energy balance 
model, making for simpler application over larger extents, 
and does not have the same requirements for finely resolved 
ground-based data such as hourly weather information.

The METRIC and SSEBop models each have been 
shown to estimate ETa with acceptable accuracies in many 
applications. A robust remote sensing method for estimating 
ETa, METRIC has been applied successfully in the United 
States and internationally. The SSEBop model largely has 

been used to estimate ETa in the United States. The METRIC 
and	SSEBop	models	have	many	similarities,	including	their	
theoretical grounding in the surface energy balance model 
and that they can incorporate low (1 kilometer) and high 
(30 meter) spatial resolution data from MODIS and Landsat; 
however, they have important differences in data require-
ments, ease of implementation, and cost.

The METRIC model has shown greater accuracy at esti-
mating ETa	than	simpler	techniques	that	use	crop	coefficients	
or vegetation indices exclusively, and also removes the need to 
know crop type and growth stage. The model can detect reduc-
tions in ETa from water shortages, soil salinity, and frozen soil, 
and can detect evaporative losses from bare soil. In addition, 
many studies validating METRIC estimates of ETa against 
measurements from lysimeters have shown model accuracies 
on daily to seasonal time scales ranging from 85 to 95 percent. 
The METRIC model is accurate, but the greater complexity of 
METRIC results in greater data requirements, and the internal-
ized calibration of METRIC leads to greater skill required for 
implementation.	In	contrast,	SSEBop	is	a	simpler	model,	hav-
ing reduced data requirements and greater ease of implementa-
tion without a substantial loss of accuracy in estimating ETa. 
Model accuracies ranging from 80 to 95 percent on daily to 
annual time scales have been shown in numerous studies that 
validated ETa	estimates	from	SSEBop	against	eddy	covariance	
measurements.

Estimation of consumptive water use at large scales is 
difficult	but	is	a	key	priority	of	the	U.S.	Geological	Survey	
(USGS) and part of the focus of the National Water Census 
on mapping water use and availability nationally. The USGS 
has been developing an objective way to estimate ETa at this 
scale, but the high spatiotemporal resolution of ETa estimates 
using Landsat data over large extents takes immense comput-
ing power. Cloud computing is providing an opportunity for 
processing an increasing amount of geospatial “big data” in a 
decreasing period of time. For example, Google Earth Engi-
neTM has been used to implement METRIC with automated 
calibration for regional-scale estimates of ETa using Land-
sat data. The USGS also is using Google Earth EngineTM to 
implement	SSEBop	for	estimating	ETa in the United States at 
a continental scale using Landsat data. Although estimates of 
ETa at low spatiotemporal resolution for the contiguous United 
States are already available, higher resolution estimates are 
currently in development.
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