


Data-Efficient Paradigms for Personalized 
Assessment of Taskable AI Systems

Pulkit Verma
verma.pulkit@asu.edu
pulkitverma.net

PhD Dissertation Defense April 03, 2024

Georgios Fainekos Yu ZhangNancy CookeSiddharth Srivastava
[Chair]

Dissertation Committee

mailto:verma.pulkit@asu.edu
https://pulkitverma.net/


02
GeneralizationsIntroduction Foundational 

Approach

0301 05
Conclusion

04
Applications



Data-Efficient Paradigms for
 

Personalized Assessment of
 

Taskable AI Systems
Adaptive

V

Black-Box

V

4



5

• Sequential Decision-Making 
Systems.

• Systems designed to be able 
to help user.

• User has a task in mind and 
expects the AI system to help 
in that task.

User gives a task and Robots have to complete it

Taskable AI Systems: Systems that can Learn and Plan



• Users would like to give AI systems 
multiple tasks.
• How would users know what the AI 

systems can do?

• AI systems should support third-party 
assessment.

• The assessment should work with:
• Adaptive AI systems.
• Black-Box AI systems.

Personalized Assessment of AI Systems that can Learn and Plan

6



Adaptive Taskable AI Systems

7



Desiderata of Assessment System

Interpretability Correctness

Generalizability Easy to Satisfy 
Requirements

8



The Assessment Problem

9

Will it be able to safely 
rearrange my lab for the next 
round of experiments?

• Arbitrary internal 
implementation

• Comes with a 
Trained Policy

Black-Box AI

Output
• A description of 

agent’s working:
• A list of capabilities.
• An interpretable 

description of each 
capability.



[Input]

Learner Description of the
AI system’s working

Related Work

10

…

[Output]

Learning Interpretable Descriptions
of Capabilities of a Given Agent

Learning  Functionality 
from Passive 
Observations

Stern et al. (IJCAI’17) 
Cresswell et al. (ICAPS’09) 
Yang et al. (AIJ 2007)
Zhuo et al. (IJCAI’13)
Aineto et al. (AIJ’19)

Discovering and 
Learning Agent 

Capabilities

[Our Approach]

Improving Agent 
Capabilities

Better Sequential 
Decision-Making 

Algorithms

E.g., Learning High- 
Level Actions, etc.

Konidaris et al. (JAIR’18) 
James et al. (ICML’20)
Allen et al. (IJCAI’21)

• No other work on 
assessment.

• The closest work is on 
learning from passive 
observations.

• Learn what the agent 
does, not what it can do 
when it is retasked.
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Can we build something like an OBD 
scanner for Black-Box AI Systems?

Yes!!
But we’ll need something 
more general and powerful.

OBD Scanner for Black-Box AI?

Cars have:
• Well-understood components
• Known internal design 
• (Commonly) limited functionality
• Not as versatile as a household 

robot



Arbitrary internal 
implementation

Personalized 
AI-Assessment
Module (AAM)

Black-Box AI

12

[Input]
Concepts that the 
user understands

at(p0,cell_6_3)
clear(cell_0_0)
door_at(cell_9_2)
next_to(m0)
alive(m0)
key_at(9_4)

Doesn’t know
user’s vocabulary



[Input]
Concepts that the 
user understands

Arbitrary internal 
implementation

Personalized 
AI-Assessment

Module

Doesn’t know
user’s vocabulary

at(p0,cell_6_3)
clear(cell_0_0)
door_at(cell_9_2)
next_to(m0)
alive(m0)
key_at(9_4)

Black-Box AI

13

Response

Query
simulator



• Simple Query-Response Interface

• Should work for a variety of taskable AI systems.
• Independent of their internals.

• Requirement: ⟨QueryType, ResponseType, 𝜌⟩.

Black-Box AI System Interface

14



[Input]
Concepts that the 
user understands

[Output]
User-Interpretable 

description of 
Black-Box AI’s 

capabilities

Response

Query

Now I understand
what it can do!

simulator

Arbitrary internal 
implementation

Doesn’t know
user’s vocabulary

Personalized 
AI-Assessment
Module (AAM)

Black-Box AI

15
My Thesis



Black-Box AI

16

The Assessment Problem

Output
• A description of agent’s working:

• A list of capabilities.
• An interpretable description of each 

capability.

Input
• Predicates (User vocabulary)

• With their evaluation functions

Black-Box (Taskable) AI
• Can be connected to a simulator.
• Can have arbitrary internal 

implementation.
• Does not know input vocabulary.

simulator



(:action open-door
 :parameters (?l1)
  :precondition (and 
 (has_key)
     (player_at ?l1)
 (door_adjacent ?l1))
  :effect (probabilistic 
 0.95 (and (door_open))
 0.05 (and (not (has_key))
       (game-over))
)

Precondition: This condition must be true for this 
action to execute

Effect: This is a set of conditions, one of which 
becomes true when this action is executed

Probabilities: Each set of effect has an associated 
probability with which that effect set is executed

Interpretable Description: PDDL/PPDDL

17



(:action open-door
  :parameters (?l1)
  :precondition (and 
 (has_key)
     (player_at ?l1)
 (door_adjacent ?l1))
  :effect (probabilistic 
 0.95 (and (door_open))
 0.05 (and (not(has_key))
       (game-over))
)  

The player can open the door when in 
location ?l1 if:
• It has the key
• The player is at location ?l1
• The door is adjacent to location ?l1
After executing that capability:
• With 95% probability, the door will open
• With 5% probability, the player will not 

have the key and the game will be over

Interpretable: Easily Convertible to Natural Language

18
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Deterministic and  Stationary Setting

20

• User’s vocabulary matches 
simulator’s vocabulary.

• Black-Box AI provides a list 
of capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions



• Consider the following 4 
predicates/concepts: 

• (has_key)
• (door_open)        
• (door_adjacent ?x)
• (player_at ?x)

• Consider just one capability: 
(open-door ?x)

• 9 ! ×|$| = 9%×&=6561 possible models
(Assuming deterministic models/ 
descriptions, i.e., no probabilities).

(:action open-door
 :parameters (?l1)
  :precondition (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))
 :effect (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))

Exponential Search for Learning Correct Description

21



Query In state 𝑠!, what will happen if you execute 
the plan 𝜋 = ⟨𝑐", … , 𝑐#⟩?

Response I can execute first ℓ steps of the plan, 
ending up in state 𝑠$.

Plan Outcome Queries State Reachability Query

Can you go from state 𝑠! to 
state 𝑠$? 

Yes / No.

• How to generate the queries?

• How to use the responses to 
generate models?

Simple Queries

22

We have a reduction that converts this to a 
planning problem, so it automatically 

generates queries.



𝑛!
𝑛"
𝑛#
𝑛$

𝑛%
𝑛&
𝑛'
𝑛(

𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

(∅)has_key(-)has_key

𝑀( 𝑀∅

(+)has_key
𝑀*

Generate a 
distinguishing query: 

𝑄 such that 𝑄 𝑀( ≠ 𝑄 𝑀*

Hierarchical Query Synthesis

(:action open-door
  :parameters (?l1)
  :precondition (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))
  :effect (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))

(+/-/∅)(has_key)

23

Query-plan generated 
automatically by 

reduction to planning

[Verma, Marpally, Srivastava; AAAI ‘21] 



𝑄

𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

¬ℎ𝑎𝑠_𝑘𝑒𝑦

𝑀+ 𝑀,

ℎ𝑎𝑠_𝑘𝑒𝑦
𝑀-

(-)has_key

𝑀( 𝑀∅

𝑀*

𝑛!
𝑛"
𝑛#
𝑛$

𝑛%
𝑛&
𝑛'
𝑛(

(:action open-door
  :parameters (?l1)
 :precondition (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))
  :effect (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))

(+/-/∅)(has_key)

Hierarchical Query Synthesis

24

(∅)has_key

(+)has_key

[Verma, Marpally, Srivastava; AAAI ‘21] 



𝜃 = 𝑄(𝐴𝑔𝑒𝑛𝑡)
𝑄 𝑀( ≠ 𝑄 𝑀*

𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

¬ℎ𝑎𝑠_𝑘𝑒𝑦

𝑀+ 𝑀,

ℎ𝑎𝑠_𝑘𝑒𝑦
𝑀-

𝑛!
𝑛"
𝑛#
𝑛$

𝑛%
𝑛&
𝑛'
𝑛(

(:action open-door
  :parameters (?l1)
  :precondition (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))
  :effect (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))

(+/-/∅)(has_key)

𝑀( 𝑀∅

𝑀*

Hierarchical Query Synthesis

25

Check the consistency 
of refinements with 
the agent response

(-)has_key (∅)has_key

(+)has_key

[Verma, Marpally, Srivastava; AAAI ‘21] 



𝑀∅

𝑀*

Reject abstract model(s) that are 
not consistent with the agent

𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

𝑛!
𝑛"
𝑛#
𝑛$

𝑛%
𝑛&
𝑛'
𝑛(

(:action open-door
  :parameters (?l1)
  :precondition (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))
  :effect (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))

(+/∅)(has_key)

Hierarchical Query Synthesis

26

(∅)has_key

(+)has_key

[Verma, Marpally, Srivastava; AAAI ‘21] 



Generate a distinguishing query 
for these two abstract models

𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

𝑛!
𝑛"
𝑛#
𝑛$

𝑛%
𝑛&
𝑛'
𝑛(

(:action open-door
  :parameters (?l1)
  :precondition (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))
  :effect (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))

(+/∅)(has_key)

Hierarchical Query Synthesis

𝑀∅

𝑀*

27

(∅)has_key

(+)has_key

[Verma, Marpally, Srivastava; AAAI ‘21] 



Reject the abstract model
that is not consistent with the agent

𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

(∅)ℎ𝑎𝑠_𝑘𝑒𝑦

𝑛!
𝑛"
𝑛#
𝑛$

𝑛%
𝑛&
𝑛'
𝑛(

(:action open-door
 :parameters (?l1)
  :precondition (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))
  :effect (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))

(+)(has_key)

𝑀*

Hierarchical Query Synthesis

28

At least one of these 3 options 
will be consistent with the agent

Lemma

(+)has_key

[Verma, Marpally, Srivastava; AAAI ‘21] 



𝑛% 𝑛&
𝑛" 𝑛'

…

𝑛"

… … …

𝑀! 𝑀∅𝑀#

𝑛% 𝑛. 𝑛'

𝑛. 𝑛'

𝑛'

…

…

…

Whenever we prune an abstract 
model, we prune a large number 

of concrete models.

Key feature of the algorithm

Hierarchical Query Synthesis

29
[Verma, Marpally, Srivastava; AAAI ‘21] 

Active Learning



Deterministic and  Stationary Setting

30

• User’s vocabulary matches 
simulator’s vocabulary.

• Black-Box AI provides a list 
of capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions

Output
• PDDL-like description of each capability.

Input
• Predicates (User vocabulary)
• With their evaluation functions

• List of capabilities.



AAM learned the correct 
model with 134 queries

AAM

AAM takes very
less time

AAM

AAM learns Accurate Model with fewer Queries

31

• Asses by learning the model and compare 
with ground truth.

• Baseline†: A passive learner (FAMA) that 
observes agent behavior

FAMA ran out of memory 
with 46 traces as input

(h
ig

he
r v

al
ue

s 
be

tte
r)

(lo
w

er
 v

al
ue

s 
be

tte
r)

[Verma, Marpally, Srivastava; AAAI ‘21] 

Random deterministic 
planning agent from IPC

†Aineto, D.; Celorrio, S. J.; and Onaindia, E. 2019. Learning Action Models With Minimal Observability. Artificial Intelligence 275: 104–137.
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AAM learns Accurate Deterministic Models

• Theorem (termination) : The algorithm terminates after a 
finite number of iterations.

• Theorem (soundness):  The resulting (set of) model(s) 
is(are) functionally equivalent to the ground truth model.

Lemma  8 in Thesis 

Theorem 4 in Thesis 



• Use the framework for Actual 
Causality† to define the causal 
accuracy of the models that we learn.

• Explain theoretically why models 
learned using passive learners may 
not be causally accurate.

• Show that the models AAM learns are 
causally accurate†.
(Theorem 11 in Thesis)

𝑎,

…

𝑝,-./

…

𝑝,-./-. 𝑝,-.0𝑝,-..

𝑝,1-. 𝑝,0𝑝,. 𝑝,1𝑝,2

𝑝,-.2 … …

33

Causal Accuracy Analysis

[Verma, Srivastava; 2024]  

†According to AC2 definition of Actual Cause. Joseph Halpern. Actual Causality. MIT Press. 2016.



Stochastic and  Stationary Setting

34

• User’s vocabulary matches 
simulator’s vocabulary.

• Black-Box AI provides a list 
of capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions

Stochastic

Output
• PPDDL-like description of each capability.

Input
• Predicates (User vocabulary)
• With their evaluation functions

• List of capabilities.
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• User’s vocabulary matches 
simulator’s vocabulary.

• Black-Box AI provides a list 
of capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions

Stochastic

pick-item (table1 soda-can) 

pick-item (table1 soda-can) 

(holding soda-can) move-to (dish-washer) 

move-to (dish-washer) 

(empty-arm)
(robot-at table1)

(at table1 soda-can)

(robot-at dish-washer)

New Queries

Initial State

Policy: Generated Autonomously 
by Reduction to Non-Deterministic 

Planning

What happens if you start in the given 
initial state and follow this partial 

policy?

Changes for Stochastic Settings



(:action open-door
  :parameters (?l1)
 :precondition (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))
 :effect (oneof 
    (and 
      (+/-/∅)(has_key)
      (+/-/∅)(door_open)        
      (+/-/∅)(door_adjacent ?l1)
      (+/-/∅)(player_at ?l1))
    (and
      (+/-/∅)(has_key)
      (+/-/∅)(door_open)        
      (+/-/∅)(door_adjacent ?l1)
      (+/-/∅)(player_at ?l1)))

Changes for Stochastic Settings

Step 1: Learn a Non-Deterministic Model
(:action open-door
  :parameters (?l1)
  :precondition (and 
    (+/-/∅)(has_key)
    (+/-/∅)(door_open)        
    (+/-/∅)(door_adjacent ?l1)
    (+/-/∅)(player_at ?l1))
  :effect (probabilistic 
    0.xx (and 
      (+/-/∅)(has_key)
      (+/-/∅)(door_open)        
      (+/-/∅)(door_adjacent ?l1)
      (+/-/∅)(player_at ?l1))
    0.yy (and
      (+/-/∅)(has_key)
      (+/-/∅)(door_open)        
      (+/-/∅)(door_adjacent ?l1)
      (+/-/∅)(player_at ?l1)))

Step 2: Convert to Probabilistic Model

Apply Maximum 
Likelihood Estimation

 

on the observed data 
(query responses)

[Verma, Karia, Srivastava; NeurIPS ‘23] 
36



Elevator Control Agent
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AAM GLIB-G GLIB-L

AAM learns accurate probabilistic models faster

AAM takes very
less time

AAM learns a 
much better 

model than GLIB

37

• Baseline: directed exploration approach (GLIB)

• Increase time taken to learn the model.

[Verma, Karia, Srivastava; NeurIPS ‘23] 

Random probabilistic 
planning agent from IPC

†Chitnis, R.; Silver, T.; Tenenbaum, J.; Kaelbling, L. P.; Lozano-Perez, T. GLIB: Efficient Exploration for Relational MBRL via Goal-Literal Babbling. AAAI 2021.
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AAM learns Accurate Probabilistic Models

• Theorem (soundness and completeness):  The 
intermediate non-deterministic model  (after step 1) is 
sound and complete w.r.t. the ground truth model.

• Theorem (probabilistic correctness):  The resulting 
probabilistic model is correct w.r.t. the ground truth 
model.

Theorem 9 in Thesis 

Theorem 10 in Thesis 
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Link

Ganon

Key

Door

User Vocabulary can be Less Expressive

40
[Verma, Marpally, Srivastava; KR ‘22] 

Agent’s State
Representation

pixel_1_1(#42A8B3)
pixel_1_2(#42A8B3)

.

.

.
pixel_n_m(#203A3D)

State Representation 
in User’s Vocabulary

(at ganon 5,3)

(at link 6,3)

(at key 9,4)

(at door 9,2)



Discovering Capabilities 

41

• User’s vocabulary matches 
simulator’s vocabulary.

• Black-Box AI provides a list 
of capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions

transitions.
S A E A

Input
• Predicates (User vocabulary)
• With their evaluation functions

• Samplers: high-level state to low-level state.
• Low-level state transitions.

Output
• List of capabilities.
• PDDL-like description of each capability.



at(p0,cell_6_3)
clear(cell_0_0)…
wall(cell_0_1)…
door_at(cell_9_2)
key_at(9_4)

at(p0,cell_6_3)
at(m0,cell_5_3)
clear(cell_0_0)…
wall(cell_0_1)…
next_to(monster)
alive(m0)
door_at(cell_9_2)
key_at(9_4)

c1 c2

S A E A

at(p0,cell_5_3)
clear(cell_0_0)…
wall(cell_0_1)…
door_at(cell_9_2)
key_at(9_4)

The player and the monster 
are in neighboring cells.

The player killed the
monster, and is still

in the same location.

The player has 
moved to a

new location.

Expressed
in User

Vocabulary

Discovering Capabilities using  Input Predicates as Abstractions

42
[Verma, Marpally, Srivastava; KR ‘22] 



Position of Link has not changed

Ganon is not at its previous location

Ganon is not alive anymore

Link is not next to Ganon

This capability is: “Defeat Ganon”

Example of a Learned Capability Description

43
[Verma, Marpally, Srivastava; KR ‘22] 



[Capability Description Example] [Functionality Description Example]

User Study Setup to Verify Interpretability

44
[Verma, Marpally, Srivastava; KR ‘22] 
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Utility of Discovered Capability Descriptions

45

If Link starts in the state 
shown below:

Which sequence of actions 
can Link take to reach the 
state shown below:

[Verma, Marpally, Srivastava; KR ‘22] 
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Learned Capability Descriptions are Maximally Consistent 

• Theorem (consistency): The learned descriptions are 
consistent with the observations and the queries.

• Theorem (maximal consistency): This approach is 
maximally consistent, i.e., we cannot add any more 
literals to the preconditions or effects without ruling out 
some truly possible models.

• Theorem (probabilistic completeness): In the limit of 
infinite execution traces, the probability of discovering all 
capabilities expressible in the user vocabulary is 1.

Theorem  5 in Thesis 

Theorem 6 in Thesis 

Theorem 8 in Thesis 

[Verma, Marpally, Srivastava; KR ‘22] 



Differential Assessment

47

• User’s vocabulary matches 
simulator’s vocabulary.

• Black-Box AI provides a list 
of capabilities.

• Stationary agent model.

• Deterministic environment.

• Fully observable setting.

Assumptions

AdaptiveOutput
• Updated PDDL-like description of each 

capability.

Input
• Initial model of the AI system.
• Predicates (User vocabulary)

• With their evaluation functions
• List of capabilities.

• Observations of AI system working in the 
environment.

Can we learn an updated model 
without doing a complete assessment?



Initial Model
known to the user

𝑀𝑖𝑛𝑖𝑡

Agent updates

Observations
(collected once)

E.g., software update,

new deployment,
adapted for user needs, etc.

Use observations and 
𝑀𝑖𝑛𝑖𝑡 to predict what 
might’ve changed.

simulator

Personalized 
AI-Assessment Module

ResponseQuery

Updated model 𝑀drift of 

Black-Box AI System’s 
capabilities

48
[Nayyar*, Verma*, Srivastava; AAAI ‘22]  



134 queries needed if
starting from scratch

0.9

21

Number of queries
are much lower than 134

Accuracy Used 10 observations 
per domain

Number of queries when learning from scratch

Fewer Queries Needed Compared to Learning from Scratch 

49
[Nayyar*, Verma*, Srivastava; AAAI ‘22]  

Random deterministic 
planning agent from IPC
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Learned Updated Capability Descriptions are Consistent 

• Theorem (consistency): The learned descriptions are 
consistent with the observations and the query 
responses.

Theorem  4 in Thesis 

[Nayyar*, Verma*, Srivastava; AAAI ‘22]  



01
Foundational

Approach
ApplicationsIntroduction

02 04 05
Conclusion

03
Generalizations



Objective
• Maximize #tasks completed within 

a fixed budget.
• Minimize adaptive delay and regret.

Continual Learning and Planning (CLaP)

Setting
• A stream of tasks as input.
• Different goals for each task.
• Simulator’s transition function can 

change arbitrarily.
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• Applying Agent Assessment to RL 
settings.
• Agent does not know the model.
• List of capabilities is known.
• List of predicates is known.

• Learning a model for both agent and 
environment.

• Use assessment to see how the 
environment responds to agent actions.

[Karia*, Verma*,Speranzon, Srivastava; ICAPS ‘24]  



Continual Learning and Planning (CLaP)
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[Karia*, Verma*,Speranzon, Srivastava; ICAPS ‘24]  

Model

Stochastic 
Planner

Simulator

Goodness 
of Fit

Model Learner
(AAM)

Task



Non-adaptive + Comprehensive

CLaP Few Shot Transfers in Non-Stationary Settings

Simulator Steps

A
ve

ra
ge

 R
ew

ar
d
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Oracle

Q-Learning Adaptive + Comprehensive

Adaptive + Need-Based (Ours) 

Simulator Steps

A
ve

ra
ge

 R
ew

ar
d

[Karia*, Verma*,Speranzon, Srivastava; ICAPS ‘24]  

Adaptive Delay least 
with CLaP

Random probabilistic 
planning agent from IPC

Ablations
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Desiderata of Assessment System

Interpretability Correctness

Generalizability Easy to Satisfy 
Requirements

56



We showed with a user study that the discovered capability 
models and their descriptions we learn are interpretable.

We defined how correctness can be measured for each work 
and proved that we can achieve it.

The approaches are applicable to any taskable AI that satisfies 
the given assumptions for each approach.

The requirements on the AI system are:
• Simulator access.
• Support for simple queries available to any SDM system.
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How well we did on Desiderata?

Interpretability

Correctness

Generalizability

Easy to satisfy 
requirements



• Formally defined the Third-Party AI Assessment Problem for the Taskable AI 
Systems.

• The first work that shows we can make some assumptions about the interface 
and assess black-box AI systems on the fly.

• We explain how to assess an adaptive agent after it is deployed.

• Explain theoretically why models learned using passive learners may not be 
causally accurate.
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• Perform extensive analysis of queries in 
terms of:
• Complexity of generating them.
• Complexity of answering them.
• Complexity of inferring models from 

Black-Box AI’s responses.

• Extend the work for partially observable 
settings.
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