
Abstract

This paper introduces a new approach for continual planning
and model learning in relational, non-stationary stochastic
environments. Such capabilities are essential for the deploy-
ment of sequential decision-making systems in the uncertain
and constantly evolving real world. Working in such prac-
tical settings with unknown (and non-stationary) transition
systems and changing tasks, the proposed framework models
gaps in the agent’s current state of knowledge and uses them
to conduct focused, investigative explorations. Data collected
using these explorations is used for learning generalizable
probabilistic models for solving the current task despite con-
tinual changes in the environment dynamics. Empirical eval-
uations on several non-stationary benchmark domains show
that this approach significantly outperforms planning and RL
baselines in terms of sample complexity. Theoretical results
show that the system exhibits desirable convergence proper-
ties when stationarity holds.

1 Introduction
This paper addresses the problem of planning in non-
stationary stochastic settings with unknown domain dy-
namics. In particular, we consider problems where a goal-
oriented agent is not given a closed-form model of the prob-
abilities of states that may result upon execution of an ac-
tion. Furthermore, these probabilities can change at poten-
tially unknown time steps as the agent is executing in the
environment. Such settings are commonly encountered by
planning systems in the real-world. For example, an au-
tonomous warehouse robot would be expected to continue
achieving goals through different paths when some corri-
dors get blocked due to spills or when the layouts of stor-
age racks change to accommodate changing inventory pro-
files. Currently, such changes require renewed modeling by
domain experts thus limiting the scope and deployability of
automated planning methods.

These settings are technically challenging due to the need
to correctly model uncertainty about the agent’s knowl-
edge when a discrepancy is detected, and to conduct fo-
cused exploration that can improve the agent’s knowledge
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for subsequent planning. Prior work on the problem inves-
tigates the role of randomized exploration for addressing
non-stationarity. E.g., if the rate of novelty events induc-
ing non-stationarity are sufficiently low compared to the
timesteps available for learning in each epoch of stationary
dynamics, Reinforcement Learning (RL) techniques such
as Q-Learning with variations of ϵ-greedy exploration can
be guaranteed to successively converge to optimal policies.
However, these methods are likely to be sample-inefficient
as the collection of new data is not easily focused towards
parts of the environment that changed.

We present a new framework for continual learning and
planning under non-stationarity for such settings (Sec. 3.1),
develop solution algorithms for this paradigm (Sec. 3.3) and
evaluate their performance across various forms of the prob-
lem, depending on whether the change in dynamics is known
to the agent and whether the agent conducts comprehensive
re-learning or need-based learning (Sec. 4).

Our approach addresses the challenges discussed above
with autonomous processes for deliberative data gathering,
planning, and model learning. It starts with the inputs avail-
able to a standard RL agent (a simulator, action names, and
a reward generator), but instead of learning a policy, it in-
teracts with the environment to first learn a relational prob-
abilistic planning model geared towards solving the current
goal, and then uses it to compute solution policies. When
a discrepancy is detected, it flags aspects of the currently
learned model that are no longer accurate, and conducts in-
vestigative exploration with auto-generated epistemically-
guided policies to re-learn aspects that may have changed.
The problem of computing useful investigative policies
is non-trivial. This is reduced to a fully-observable non-
deterministic (FOND) (Cimatti, Roveri, and Traverso 1998)
planning problem and solved without interacting with the
simulator. The computed investigative policies are then ex-
ecuted and the resulting data is used to learn more accurate
models. Although these executions are not focused on pol-
icy learning for the current task, they are used to learn and
maintain relational Probabilistic Planning Domain Descrip-
tion Language (PPDDL) style models. We show that (i) this
significantly increases transferability and generalizability of
learning, and (ii) the resulting paradigm vastly outperforms
SOTA RL and existing model-based RL paradigms.

Our main contribution is the first known approach for us-
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ing information about epistemic uncertainty of a logic-based
internal probabilistic model to create exploration strategies,
learn better models, and then compute plans even as transi-
tion systems change. Additionally, this is also the first ap-
proach to interleave active learning with epistemic explo-
ration to discover a stochastic symbolic model suited for task
transfer in non-stationary environments. Empirical analysis
on non-stationary versions of benchmark domains show that
in such settings our approach (i) significantly reduces the
sample complexity compared to SOTA baselines; (ii) can
quickly adapt to changes in environment dynamics; and (iii)
performs very close to an oracle that has access to all the
information about changes in the environment apriori.

2 Background
Relational Markov Decision Processes (RMDPs) We
model tasks as RMDPs expressed in PPDDL (Younes
et al. 2005). An RMDP environment or domain D↑ =
⟨P↑,A↑⟩ is a tuple consisting of a set of parameterized
predicates P↑ and actions A↑. Here, P↑contains predi-
cates of the form p↑(x1, . . . , xm), and A↑contains actions
of the form a↑(x1, . . . , xn), where xi are the parameters.
We use ↑ to specify lifted predicates and actions with vari-
ables as arguments and omit the parameterization when it
is clear from context. A grounded RMDP task (or prob-
lem) is defined as a tuple M = ⟨D↑, O, S,A, δ,R, s0, g, γ⟩
where O is a set of objects. A literal p(o1, . . . , on) rep-
resents a grounded predicate parameterized with objects
oi ∈ O. Formally, predicates are grounded by comput-
ing a mapping between their parameters to the objects,
σ(p↑(x1, . . . , xn), [o1, . . . , on]) = p(o1, . . . , on), where
p↑ ∈ P↑, oi ∈ O. Similarly, σ can also be used to lift
grounded predicates and actions. We refer to P as the set
of all possible grounded predicates derivable using P↑ and
O. For clarity, we use the notation e↑ to denote whether an
entity e is lifted and use e otherwise.

A state s is a complete valuation of all possible predicates
p ∈ P . Following the closed-world assumption, predicates
whose values are false are omitted from the state represen-
tation. The set of all possible subsets of predicates forms
the state space S of the RMDP M . Similarly, the action
space A of M is formed by grounding each action a↑ ∈ A↑.
δ : S×A×S → [0, 1] is the transition function and is imple-
mented by a simulator. For a given transition τ = (s, a, s′),
δ(s, a, s′) specifies the probability of executing action a ∈ A
in a state s ∈ S and reaching a state s′ ∈ S. Naturally,∑

s′∈S δ(s, a, s′) = 1 for any s ∈ S and a ∈ A.
The simulator ∆ : S × A → S is a function that returns

a state s′ on executing a in s by sampling over δ. Execut-
ing an action ∆(s, a) constitutes one step on the simulator.
|∆| represents the total steps executed by the simulator and
∆S ∈ N+ indicates the simulator step budget after which
the simulator cannot be used. s0 is the initial state and g is
a conjunctive first-order logic goal formula obtained using
P↑and O. A goal state sg ∈ S is a state such that sg |= g.
R : S × A → {0,−1} is the reward function and R(s, a)
indicates the reward obtained for executing action a in state
s. For all a ∈ A, we set R(sg, a) = 0 for any goal state
sg and R(s, a) = −1 otherwise. γ ∈ [0, 1) is the discount

factor. Execution begins in the initial state and terminates
when a goal state is reached or when a horizon H ∈ N+ has
been exceeded. An RMDP task is accomplished whenever
execution terminates in a goal state.
Running Example Consider a robot that is deployed
to assist in a warehouse. The robot is equipped with
sensors and actuators (e.g., camera, wheels, grip-
pers, etc.) that can help it perform a variety of tasks
such as cleaning floors, restocking shelves, etc. Such
tasks could be specified by using a domain with P↑ =
{robot-at↑(rx, lx),box-at

↑(lx, bx),holding
↑(rx, bx),

handempty↑(rx)}. A↑ would consist of actions such as
move-from↑(rx, lx, ly),pick-up

↑(rx, lx, bx), etc. with
their transition function implemented by a simulator.
Example RMDP task Consider an environment with one
robot r1, two locations l1, l2, and one box b1. An RMDP
task of moving b1 to l1 and parking r1 anywhere could
be modeled as M where O = {r1, l1, l2, b1}, s0 =
{handempty(r1), robot-at(r1, l1), box-at(b1, l2)},
and g = box-at(b1, l1) ∧ ∃lx robot-at(r1, lx).

A solution to an RMDP is a deterministic policy π : S →
A that maps states to actions. The value of a state s when fol-
lowing a policy π is defined as the expected cumulative re-
ward obtained when executing a in s and following π there-
after, i.e., V π(s) = R(s, a) + γ

∑
s′∈S δ(s, a, s′)V π(s′)

The objective of an RMDP is to compute an optimal policy
π∗ that maximizes the expected reward obtained by follow-
ing it.1 Model-based RMDP algorithms compute π∗(s0) by
solving the Bellman Optimality Equation iteratively starting
from s0 (Sutton and Barto 1998):

V ∗(s) = max
a

[
R(s, a) + γ

∑
s′∈S

δ(s, a, s′)V ∗(s′)

]
(1)

The above equation requires access to closed-form knowl-
edge of the transition function δ. When such informa-
tion is unavailable, RL-based RMDP algorithms use sam-
ple estimates of Q-values instead. Given a policy π,
the Q-value of a state s when executing action a is
defined as the expected reward obtained when execut-
ing a in s and following π thereafter, i.e. Qπ(s, a) =
Eπ [

∑∞
t=0 γ

tR(St, At)|S0 = s,A0 = a]. The Q-Learning
Equation (Watkins 1989) can be written as: as:

Q(s, a)=(1− α)Q(s, a)+α

[
R(s, a)+γmax

a′∈A
Q(s′, a′)

]
where α ∈ [0, 1] is the learning rate. It employs an explo-
ration strategy such as ϵ-greedy wherein a random action is
selected with probability ϵ and selecting the greedy action
argmax

a
Q(s, a) otherwise. Q-Learning has been shown to

converge to the optimal policy (Sutton and Barto 1998).
PPDDL transition models Our approach learns lifted
PPDDL models that can be used for stochastic planning
using Eqn. 1. We note that the simulator’s implementation
of the transition function could be arbitrary and does not

1Without loss of generality, we focus on optimal policies that
are optimal w.r.t. the initial state s0.



need to be a PPDDL model. Given an RMDP M , a PPDDL
model Ma for an action a(o1, . . . , on) ∈ A is a tuple
⟨Prea,Proba,Effa⟩. We omit the subscript when it is clear
from context. Pre represents the precondition and is ex-
pressed as a conjunctive formula of predicates p ∈ Pa where
Pa = {σ(p↑(x1, . . . , xm), [oi, . . . , oj ]|p↑ ∈ P↑}. Prob is a
list of probabilities such that

∑
i Prob[i] = 1. Eff is a list of

effects. Each effect Eff[i] ∈ Eff is a tuple ⟨Eff[i]−,Eff[i]+⟩
both of which are sets composed of predicates p ∈ Pa.

An action a is applicable in a state s iff s |= Pre. An
effect Eff[i] when applied to a state s results in a state
s \ Eff[i]− ∪ Eff[i]+. Applying an action a to a state s re-
sults in exactly one effect Eff[i] being applied with probabil-
ity Prob[i] if the action is applicable else the state remains
unchanged. A PPDDL transition model M = {Ma|a ∈ A}
translates to a closed-form specification of the transition
function δ of M , i.e., M ≡ δ. A lifted (grounded) PPDDL
model Ma↑(Ma) can be easily obtained from Ma(Ma↑)
using σ. As is the case with RMDP domains, several RMDP
tasks from a single domain can also share the same lifted
PPDDL model M↑ = {Ma↑ |a ∈ A↑}.
Example The pick-up↑(rx, lx, bx) action described in the
running example could be modeled as a PPDDL model
Mpick-up↑ with precondition Pre = box-at↑(bx, lx) ∧
robot-at↑(rx, lx) ∧ handempty↑(rx) to indicate that
the action is applicable only when the robot is not hold-
ing anything is at the same location as the box. The ef-
fects could be modeled as Eff[0] = ⟨{¬box-at↑(bx, lx),

¬handempty↑(rx)} {holding↑(rx, bx)}⟩ to indicate
that the robot successfully picked up the box and is cur-
rently holding it. Similarly, another effect Eff[1] = {} with
Prob[1] = 0.1 could be used to model a slippery gripper with
a 10% chance to fail to pick-up the box.

Definition 2.1 (M-Consistent Transition). Given a PPDDL
model M and an action a(o1, . . . , on) ∈ A of an RMDP M ,
a transition τ = (s, a, s′) where s, s′ ∈ S is said to be M-
consistent, τ ⇌ M, iff s = s′ when s ̸|= Pre or ∃i such that
Prob[i] > 0 and s′ = s\Eff[i]−∪Eff[i]+ whenever s |= Pre.

A lifted PPDDL model Ma↑ is implicitly converted to a
grounded PPDDL model Mσ(a↑,o1,...,on) when checking for
M-consistency w.r.t. a transition τ .
PPDDL Model-Learning Given a dataset T that is com-
posed of a set of transitions τ = (s, a, s′) obtained from an
RMDP task, the PPDDL model-learning problem is to com-
pute a model M s.t. τ ⇌ M for any τ ∈ T . The two major
techniques of model learning are active and passive learn-
ing. Active learners interactively explore the state space to
generate T for learning the model whereas passive learners
require T to be provided as input. We use active learning
as it has been shown to work well for deterministic, non-
stationary settings (Nayyar, Verma, and Srivastava 2022).

Definition 2.2 (Policy Trace). Given an RMDP M and
simulator ∆, a policy trace ∆π = ⟨s0, a0, . . . , an−1, sn⟩
of a policy π is a sequence of states and actions where
si ∈ S, ai ∈ A s.t. ai = π(si) and si+1 = ∆(si, ai).

Definition 2.3 (p-distinguishing policies). Given an RMDP
M , a predicate p, policies π1, π2 and a simulator ∆, π1 and

π2 are p-distinguishing policies iff ∃i s.t. for policy traces
∆π1

and ∆π2
, p ∈ s

∆π1
i and p ̸∈ s

∆π2
i .

Active Query-based Model Learning (AQML) AQML
is an epistemic method that seeks to prune the space of
models under consideration by guiding exploration towards
states that can help update the model. The key observation
is that for any given a↑ ∈ A↑, a predicate p↑ can appear
as a positive precondition, a negative precondition, or not
appear at all in Ma↑ . Similarly, p↑ could appear in any of
these modes in any of the effect lists of Ma↑ . This induces
an exponentially large number of models over which a
model-learner must search. We can prune this search space
by selecting a predicate p↑ and generating candidate models
M+p(Pre|Eff)

a↑ M−p(Pre|Eff)

a↑ M⊗p(Pre|Eff)

a↑ where p↑ appears in
a positive (+), negative (−), or absent (⊗) mode in the
preconditions Pre↑ or effects Eff↑ respectively. Ignoring
probabilities, AQML uses a combination of any two pairs
of these models, and reduces query synthesis to a Fully
Observable Non-Deterministic (FOND) problem. The cen-
tral idea behind this reduction is that the two models being
used correspond to two separate copies of each predicate in
the FOND problem, and a solution is found when a state
is reached such that the two copies of predicates do not
match. This problem can be passed to off-the-shelf solvers
and the solution to these FOND problems are policies that
AQML uses as queries to the planning agent. Due to the
nature of these models where only a single predicate is
changed, solution policies of any pair of these models are
guaranteed to be p-distinguishing or unsolvable. AQML
then checks which model of the predicate p↑ is consistent
with the simulator and updates Ma↑ appropriately (either
in preconditions or one of the effects). The process repeats
for the next predicate p′↑ with the difference being that the
learned information about p↑ can now be considered by the
FOND planner in the subsequent learning process.
Example Upon identifying that ¬handempty↑(rx)

is an effect of the pick-up↑(rx, lx, bx) action,
AQML can generate distinguishing queries by using
a FOND planner to resolve other uncertainties such
as whether ¬handempty↑(rx) is a precondition of
put-down↑(rx, lx, bx). AQML does this by generating
two abstract models, one with predicate handempty↑(rx)
in the precondition of put-down↑(rx, lx, bx), and another
where it is absent. As part of the policy generated by the
FOND planner it would be ensured that ¬handempty↑(rx)
is true in the state before executing the put-down action
(possibly by executing a pick-up action).

The key insight is that unlike other methods, this learning
methodology does not wait for random exploration to gener-
ate p-distinguishing policies but rather actively encourages
exploration by utilizing information about parts of the model
that are inaccurate. We discuss how such components are an-
notated in Sec. 3.1. This leads to improved sample efficiency
in converging to a model M ≡ δ, i.e., M translates to a
closed-form specification of the transition function δ. Once
a p-distinguishing policy is identified, probabilities can be
estimated using Maximum Likelihood Estimation (MLE) by



executing the policy η times where η is a configurable hyper-
parameter that represents the sampling frequency.

There are two difficulties with vanilla AQML. Firstly,
complete models are learned in a single pass in order to guar-
antee correctness. Secondly, this framework assumes sta-
tionarity of the simulator and the query synthesis process
is not resilient to changing environment dynamics during
the model-learning loop. As a result, AQML cannot effi-
ciently use learned information to update the model when
only small parts of the transition system change.

3 Our Approach: Adaptive Model Learning
We use an active learning approach as it can cope with
non-stationarity. Existing approaches using active learning
are sample inefficient since they are comprehensive learners
that relearn from scratch. Building upon the Active Query-
based Model Learning framework (AQML) (Verma, Karia,
and Srivastava 2023), we develop a paradigm that can work
in the presence of non-stationarity. We now begin by de-
scribing the problem that we address, followed by a detailed
overview of our approach.
Definition 3.1 (RMDP equivalence). Given a domain D↑

and RMDP tasks Mi and Mj derived using D, we define
Mi = Mj iff their objects are the same OMi

= OMj
, the

initial state and goals are equal soMi
= soMj

and gMi
=

gMj , and the transition systems are equivalent δMi = δMj .
Definition 3.2 (Continual Planning under Non-Stationarity).
Given a stream of RMDP tasks M = ⟨M1, . . . ,Mn⟩ where
Mi ̸= Mi+1, a simulator ∆ with budget ∆S per task, and
with the simulators transition system changing at arbitrary
intervals, the objective is to maximize the total tasks accom-
plished within |M |∆S .

The above problem setting captures many real-world sce-
narios where environment dynamics often change in situ,
i.e., while the agent is actively solving a stream of tasks and
without informing the agent. E.g., events like liquid spills on
the gripper affecting its friction, navigation pathways being
blocked, etc. are outside the robot’s control and can arbitrar-
ily change at any given moment. Implicitly, this translates
to the agent indirectly optimizing a new RMDP task with
the same goal but different transition system. The overall
objective is to enable solving all tasks in a sample-efficient
fashion thus making it essential to learn-and-transfer knowl-
edge. An agent that learns a fixed model of the environment
or one that is incapable of detecting such change can thus
perform quite poorly or dangerously.

We consider the following taxonomy of the methods for
continual planning under non-stationarity; (a) Adaptive vs.
Non-adaptive learners where adaptive learners can automat-
ically adapt to unknown changes in the transition system,
whereas the latter cannot and needs to be informed that a
change has occurred and in some cases need to be informed
of exactly what changed; (b) Comprehensive vs. Need-based
learners where the former completely learn a new model
from scratch whereas the latter only perform updates to fix
the model w.r.t. transitions that are not M-consistent.

We integrate planning and learning by continually learn-
ing and updating a PPDDL model of the environment

and using it to accomplish tasks. We develop an active,
need-based learner that automatically detects and adapts
to changes in the transition system. Our approach actively
monitors simulator execution and performs sample efficient
active learning via directed exploration when transitions are
inconsistent w.r.t. the current model. We now describe the
components that facilitate continual learning for planning.

3.1 Non-stationarity Aware Model Learning
We significantly alter the AQML framework so that it can
work even if the transition system changes during the model-
learning process (as policy traces are being generated using
the simulator) and enable it to selectively and correctly learn
information that is not consistent with the learned model.
We accomplish this by always monitoring executions of the
simulator. If a transition τ = (s, a, s′) is not consistent w.r.t.
the learned model M, i.e., τ ̸⇌ M, then we simultaneously
update the model-learning process since a new query now
needs to be synthesized that can resolve the inconsistency.
To do so, we identify the predicates p↑ in the preconditions
(or effects) of a that were inconsistent with the model and
then we add p↑ in the precondition (or effect) of a to be
relearned. This also applies to inconsistencies identified as
policy traces are being generated as a part of the model-
learning process. The new FOND problem will not include
p↑ in the action a in any form in its precondition (or effect)
and thus the planner will need to compute an alternate solu-
tion for the current query.
Example If a predicate ¬p↑ ∈ Prea, p ∈ s and s ̸= s′ then
this means that the action executed successfully on the sim-
ulator and the precondition ¬p↑ is incorrectly represented in
the currently learned model M↑

a and must be relearned. We
then add M+lpre

a and M⊗lpre
a to the list of models that need

to be considered again by the query-synthesis process.

3.2 Goodness of Fit Tests
Another key difficulty when operating in non-stationary en-
vironments is when the transitions themselves are consistent
w.r.t. the preconditions and effects but are drawn from a sig-
nificantly different distribution. For example, two models of
an action with similar preconditions and effects but differing
only in the probabilities of effects can impact the ability of
an agent to solve a task.
Example In our running example of a slippery gripper,
as the probability of slippage increases, the optimal policy
might switch to navigating to a human operator and com-
municating to them to pick up the object.

Such changes cannot be quickly reflected if only MLE
estimates are used to compute probabilities since these esti-
mates can be slow to adapt to the new distribution. We mit-
igate this by including goodness-of-fit tests in the planning
and learning loop that actively invigilate whether the distri-
butions have undergone shift and can promptly restart the
MLE estimation process.

We use Pearson’s chi-square test (Pearson 1992) for de-
tecting o.o.d. effects as follows. Once a model Ma↑ for
an action has been learned (or a new task is specified),
we initialize a table entry Freqa↑ [i] = 0 for each effect



Algorithm 1: Continual Learning and Planning
Input : RMDP M , Simulator ∆, Simulator Budget ∆S ,

Learned ModelM↑, Horizon H , Sampling Count
η, Threshold θ, Failure Threshold β

Output:M↑

1 s← s0; h← 0; f ← 0

2 π ← modelBasedSolver(S,A, s0, g,M↑, R, γ,H)
3 while |∆| < ∆S do
4 if f > β or unreachableGoal(s0, g,M↑, π) then
5 explore(M↑,∆)

6 if needsLearning(M) then
7 M↑ ← learnModel(∆,M↑)

8 π ← modelBasedSolver(S,A, s0, g,M↑, R, γ,H)

9 a← π(s)
10 s′ ← ∆(s, a)
11 h← h+ 1

12 if (s, a, s′) ⇌M↑ then
13 M←goodnessOfFitTest(s, a, s′,∆,M↑, θ,Freq)

14 else
15 M↑←addInconsistentPredicates(s, a, s′,M↑)

16 if s |= g or h ≥ H then
17 s← s0; f ← f + 1 iff s ̸|= g

18 else
19 s← s′

20 returnM↑

Eff[i] ∈ Ma↑ . Whenever a new M-consistent transition
(s, a, s′) is obtained using the simulator, we identify the
index i s.t. s′ = s \ Eff[i]− ∪ Eff[i]+. We then increment
Freqa↑ [i] and perform a goodness of fit test using Pearson’s
chi-square test with 0 degrees of freedom.

χ2 =

n∑
i=1

(Freqa↑ [i]− F × Proba↑ [i]))2

F × Proba↑ [i]

where F =
n∑

i=1

Freqa↑ [i] is total observed frequency for a. If

the confidence computed using χ2 is less than some thresh-
old θ (0.05 in our experiments), the goodness-of-fit test is
deemed to have failed and we reset the probabilities for all
effects in a. To ensure that we have enough samples, we
only perform this test when F > 100. We then update the
probabilities using the recorded frequencies via MLE, i.e.,
Proba↑ [i] =

Freq
a↑ [i]

F .

3.3 Continual Learning and Planning (CLaP)
Our approach of continual learning of PPDDL models
has two key advantages. Firstly, since we learn models,
Eqn. 1 can be used to compute policies for the task with-
out needing to collect experience from the simulator. Sec-
ondly, lifted PPDDL models are generalizable in that they
can be zero-shot transferred to tasks with differing ob-
ject names, quantities, and/or goals. For example, the same
pick-up↑(rx, lx, bx) action described earlier can be reused
by different RMDP tasks with differing numbers of robots,

locations, and/or packages. This methodology allows our ap-
proach to solve tasks efficiently.

Alg. 1 describes our overall process for continual learning
and planning. The algorithm takes as input an RMDP task
M , a simulator ∆, a simulator budget ∆S , a learned model
M↑, and hyperparameters H, η, β, and θ representing the
horizon, sampling count, failure threshold, and confidence
threshold respectively. Note that in the context of Alg. 1, M
only specifies the initial state s0 and goal g for the task. The
transition system represented by the simulator can arbitrar-
ily change at any time but the agent still perceives it as the
same task. Alg. 1 attempts to compute a policy π for M us-
ing the learned model M↑ (line 2) using an off-the-shelf
RMDP solver such as LAO* (Hansen and Zilberstein 2001).

If the transition graph of π derived using M↑ has no path
to the goal or if the goal has not been reached for a certain
threshold (lines 4-5) the agent performs an exploration of
the state space using the simulator in order to find a tran-
sition that is not M-consistent. Initially, when the learned
model is empty (empty preconditions and effects for all ac-
tions), this step allows the agent to quickly discover transi-
tions for which useful learning can be performed. We used
random walks of length H to conduct this exploration step in
our experiments. If an inconsistent transition is discovered
as part of the exploration process, then several models to
consider are added to the model learner using the approach
in Sec. 3.1. This causes model learning to be invoked to re-
solve the inconsistency and updates the learned model M↑

(line 7). We note that, as mentioned in Sec. 3.1, if new in-
consistencies are identified during the model learning then
they are resolved as well. Since the model has been updated,
a new policy is computed (line 8).

Once any learning steps are complete and π has been
computed, we execute an action a = π(s) on the simula-
tor (lines 9-10). If (s, a,∆(s, a)) ⇌ M, then a goodness
of fit test is performed to improve probability estimates as
noted in Sec. 3.2 (line 13). An inconsistent transition always
adds new models for the inconsistencies that need to be re-
solved by the model learner (line 15). If the goal is reached
or the horizon is exceeded, the simulator is reset to the ini-
tial state and the total failures are incremented accordingly
(lines 16-17). Finally, once the budget is exhausted (line 3)
the learned model is returned (line 20) that can be used for
solving future tasks.

3.4 Theoretical Results
Definition 3.3 (Variational Distance (VD)). Given an
RMDP M , let Z = {(s, a, s′)|s, s′ ∈ S, a ∈ A} be a set
of transitions. Also let M and M′ be two models. The Vari-
ational Distance (VD) between these two models is then de-
fined as VDZ(M,M′) = 1

|Z|
∑
ζ∈Z

|1ζ⇌M − 1ζ⇌M′ |.

Definition 3.4 (Locally Convergent Model Learning).
Given an RMDP M , let M be the current model and Mδ

be the accurate (unknown) model s.t. Mδ ≡ δ. Consider
ε to be an error bound on the variational distance between
two models. Model learning is locally convergent iff ∀ε such
that 0 < ε < VDτn(M,Mδ), ∃n ∈ N and a set τn of
n distinct transitions sampled from δ, s.t. the model M′



learned using any T containing τn(τn ⊆ T ) will satisfy:
VDT (M′,Mδ) ≤ ε < VDτn(M,Mδ).

Theorem 1. Let M be an RMDP with a series of transi-
tion system changes δ1, . . . , δn at timesteps t1, . . . , tn im-
plemented using a simulator ∆, then during each stationary
epoch between ti and ti+1 Alg. 1 performs locally conver-
gent model learning.

Proof (Sketch). Let M be the learned model at timestep i.
By the correctness property of AQML (Thm. 2 in Verma,
Karia, and Srivastava (2023)) the set of transitions that M
can generate must be a subset of the ones that Mδi can. Let
Z = {s : (s, a, s′)|s, s′ ∈ S, a ∈ A)} and let z = |Z|. Let
VD(M,Mδ) be x/z. ε has to be such that 0 < ε < x/z.
Let M′ be the model learned using a set of transitions τn
that are consistent with Mδ but cannot be generated by M.
Choose τn such that τn has exactly n(> zϵ) elements. Now,
using the model M′ that AQML learns, it will be able to
generate τn in addition to all the transitions that M could
generate. This implies: VD (M,Mδ) − V D(M′,Mδ)=
x/z−(x−n)/z > x/z−(x−zϵ)/z = x/z−x/z+(zϵ)/z =
ε, and we have the desired result with τn as the set that
is required for local convergence. By properties of AQML
(Thm. 1 in Verma, Karia, and Srivastava (2023)) any super-
set of transitions valid under Mδ that contains τn will also
reduce VD by at least ε.

4 Experiments
We implemented our approach (Alg. 1) in Python 3 and per-
formed an empirical evaluation on four benchmark domains
using a single core on a Xeon E5-2680 v4 CPU running at
2.4 GHz with a memory limit of 8 GiB. We found that our
approach leads to significantly better transfer performance
as compared to the baselines. We describe the empirical
setup that we used for conducting the experiments followed
by a discussion of the obtained results (Sec. 4.1).
Domains We used four benchmark domains that have been
used in various International Probabilistic Planning Compe-
titions (IPPCs) 2 for our experiments. We used these bench-
mark domains since ground truth models for them are avail-
able and we synthesized simulators using these domains.

We briefly describe the domains that we used below. We
refer to each domain as D↑(|P↑|, |A↑|) to indicate the total
number of predicates and actions in the domain.
Tireworld(4, 2) is a popular domain that has been used in
several IPPCs. The objective of this IPPC benchmark is to
drive from the initial position to the goal position (account-
ing for flat tires that can stochastically occur).
FirstResponders(13, 10) is a domain inspired from emer-
gency services. The objective is to put out all fires and treat
all victims. To do so, a planning agent needs to be able to
plan to reach locations under fire and put them out (refilling
water as needed) and also treat victims either at the fire site
or ferry them to a hospital if the injuries are too severe.
Elevators(9, 10) is a stochastic extension of the determin-
istic Miconic (Long and Fox 2003) domain wherein there

2https://www.icaps-conference.org/competitions/

are several new objectives such as coins to be collected and
elements such as shafts and gates that constrain navigation.
Blocksworld(5, 4) is an environment where the goal is to ar-
range blocks in specific configurations. The IPPC variant is
ExplodingBlocks wherein the table can be destroyed whilst
stacking blocks. We tried to generate problems for Explod-
ingBlocks but were unsuccessful and as a result used the er-
godic version instead where stacking blocks has a chance to
drop them on the table. Nevertheless, the non-stationarity we
introduce (described below) can often introduce dead-end
states (i.e., states from which the goal cannot be reached).
Task Generation All tasks in the benchmark suite share a
single transition system and, to the best of our knowledge,
there are no official problem generators that can introduce
non-stationarity and generate tasks for it. Thus, we intro-
duced non-stationarity by generating new domain files ob-
tained by changing a randomly selected action from the do-
main file of the previous task that was generated. We per-
formed between 0 – 3 changes in both the preconditions and
effects of the selected action by adding or deleting a pred-
icate or by modifying an existing predicate in the action’s
model and ensured that at least one change was made. This
method of introducing non-stationarity resulted in the tran-
sition system of the final task being significantly different
from the benchmark task with several actions changed.
Task Setup We generated five different tasks M0, . . . ,M4

with different initial states and goals. M0 was the bench-
mark task and the others were generated using Breadth First
Search. We used γ = 0.9 and horizon H = 40 for all tasks.
Baselines We used Q-Learning as our non-transfer RL base-
line. We also used an Oracle that has complete access to the
closed-form model of the simulator and uses LAO∗ to com-
pute policies. The Oracle baseline provides an upper bound
on the performance achievable by any algorithm.

We utilized QACE (Verma, Karia, and Srivastava 2023), a
SOTA stochastic model learner, as the AQML-based model-
learning algorithm for developing our second baseline. We
modified QACE to detect changes in the transition sys-
tem thus creating a SOTA adaptive baseline called Adap-
tive QACE. When an inconsistency is detected, Adaptive
QACE invokes QACE to relearn the model from scratch.
The extended version (Karia et al. 2024) includes an abla-
tion called Non-adaptive QACE wherein QACE is informed
when a change in the transition system occurs.

We also considered ILM (Ng and Petrick 2019) since it
can learn noisy deictic rules but could not use it despite em-
ploying significant effort (and contacting the authors).

We compare the baselines against our system (CLaP): an
active, adaptive, need-based learner implementing Alg. 1.
Hyperparameters We used α = 0.3 for Q-Learning, η =
100 for the AQML-based methods and CLaP. Additionally,
we used β = 10 and θ = 0.05 for CLaP.

4.1 Analysis of Results
As mentioned in Sec. 2, we consider a task accomplished
when a goal state is reached. We used a simulator budget
∆S = 100k for each task. The transition system is kept sta-
tionary for ∆S steps. The simulator is then loaded with a
new task Mi+1 and a new transition system δi+1.



Figure 1: Results (best viewed in color) from our experiments averaged across 10 runs with 1-std deviation (shaded). (a) plots
the learning curves of the methods, (b) plots the avg. reward obtained by greedily running the policy computed 10 times
(for clarity, the Oracle’s avg. reward is annotated with × periodically), (c) plots the total steps needed to achieve steady-state
performance (defined in Sec. 4.1) equal to the Oracle’s. Higher values are better for (a) and (b); lower for (c). Vertical squiggly
lines denote the step where a new task Mi+1 and transition system δi+1 were loaded (Mi ̸= Mi+1 and δi ̸= δi+1).

Fig. 1 shows the obtained results from our experiments
with 10 different random seeds used by the algorithms. We
analyze the results to answer the following questions.

a. Is CLaP sample efficient?
b. Are CLaP solutions performant?
c. Are CLaP solutions generalizable?

Evaluation Metrics We use the following evaluation met-
rics to answer the questions above; We answer (a) by plot-
ting learning curves that showcase how many tasks were
accomplished during the learning process; We answer (b)
by comparing the policy quality wherein at every k = 100
simulator steps, we freeze the computed policy and gener-
ate 10 policy traces each starting from the initial state s0 of
the task with a maximum horizon of 40. These simulations
do not count towards the simulators budget. We report the
average reward obtained while doing so; We answer (c) by
computing the adaptive delay (Balloch et al. 2022) which
measures how many steps are necessary in the environment
before the steady-state performance converges to that of the
Oracle’s. We defined steady state performance as the total
steps needed in an environment after which performance in
an episode was always within 2σ of the Oracle’s.

It is clear from Fig. 1 that our approach of continual learn-
ing and planning (CLaP) outperforms both non-transfer (Q-
Learning) and model-based relearning (Adaptive QACE).
(a) Sample Efficiency Our results in Fig. 1(a) show that
CLaP has a much better sample complexity compared to the
baselines. The learning curves from FirstResponders, Ele-
vators and Blocksworld show that our approach can accom-

plish significantly more tasks than the baselines. Q-Learning
does not learn and transfer any knowledge and thus needs to
collect large amounts of experience to solve tasks.

Adaptive QACE cannot efficiently correct the model
when transition systems change since it needs to relearn all
actions to converge. This drawback of comprehensive learn-
ers is highlighted in the results on the Elevators domain
where even Q-Learning outperformed Adaptive QACE. For
the Elevators domain, the transition system change rendered
some task-irrelevant actions executable from states that were
reachable only over very long horizons. Adaptive QACE ex-
hausted the simulator’s budget trying to relearn these task-
irrelevant actions and thus was not able to solve the task.
CLaP on the other hand only lazily-evaluates whether to
learn a fraction of the model or not and was able to quickly
fix the learned model and compute a policy that could solve
the task. These trends can also be seen in FirstResponders
where Adaptive QACE must relearn 10 actions from scratch
every time an inconsistency is observed.
(b) Better Task Performance Fig. 1(b) shows that avg. re-
wards of CLaP policies are very close to the Oracle’s. This
suggests that our learned models are often good approxima-
tions of the transition system. CLaP’s policies converge to
those of the Oracle’s across all tasks in our evaluation.
(c) Better Generalizablity Our approach has a significantly
lower adaptive delay (Fig. 1(c)), i.e., CLaP is able to uti-
lize and transfer the learned knowledge across problems effi-
ciently compared to the baselines that take a significant num-
ber of samples to converge to the Oracle’s performance. For
example, CLaP zero-shot transferred (adaptive delay was 0)



between Blocksworld tasks M1 and M2 requiring no learn-
ing to solve task M2 while also matching the Oracle’s per-
formance. In cases where adaptation was needed (e.g., be-
tween Blocksworld tasks M0, M1, and M2,M3) CLaP few-
shot learns the required knowledge to accomplish the task
with policy qualities similar to that of the Oracle. In general,
CLaP’s adaptive delay was the best among all baselines.

We also conducted a directed experiment to evaluate the
adaptability of our method to changing distributions. To do
this, we generate two tasks from a 2-armed bandit domain.
Pulling any of the levers stochastically takes the agent to the
goal. Thus, the optimal policy is to repeatedly pull the lever
with the highest probability of reaching the goal. In task one,
the first (second) lever would succeed with probability 0.8
(0.2). In the second, it was 0.1 (0.9) respectively with pre-
conditions and effects unchanged. CLaP utilizes goodness of
fit tests and thus was able to adapt to this distribution shift
and chose lever 1 (2) for task one (two). Adaptive QACE
cannot adapt to such changes and continued to use lever 1
for task two. This resulted in its policies being 9x worse than
CLaP’s with overall only ≈950 goals achieved compared to
CLaP’s ≈1550 (∆S = 1000 per task, η = 10). Plots are
available in the extended version (Karia et al. 2024).
Limitations and Future Work Currently, CLaP does not
consider the task goal in the model learning process (line
7 of Alg. 1). Making optimistic estimates about the model
w.r.t. the goal might allow the model learner to expend fewer
samples for learning a model that can accomplish the task.

We do not take into account transition system changes or
goals that could be provided in advance. CLaP could uti-
lize that information to develop a curriculum so that useful,
unlikely-to-change actions are prioritized to be learned early
even if they do not contribute towards the current task’s goal.

PPDDL models have expressiveness limitations such as
difficulty in modeling exogenous effects. Future work could
use techniques like inductive logic programming to learn
models that are more expressive than PPDDL models.

When is it better to learn-from-scratch There were not
many performance gains compared to Adaptive QACE in
the Tireworld domain. This is because Tireworld is a small
domain with only 2 (4) actions (predicates) that need to be
learned. Devising heuristics that can evaluate whether learn-
ing from scratch would be easier than correcting the model
is an interesting problem that we leave to future work.

5 Related Work
There has been plenty of work for transfer in RL (Mnih et al.
2013; Schulman et al. 2017) and on non-stationarity (com-
monly referred to as novelty in the RL literature). We focus
on approaches that transfer across RMDP tasks. Tadepalli,
Givan, and Driessens (2004) provides an extensive overview
for relational RL approaches.
Model-Based Reinforcement Learning The Dyna frame-
work (Sutton 1990) forms the basis of several model-based
reinforcement learning (MBRL) approaches. Ng and Petrick
(2019) use conjunctive first-order features to learn models
and generalizable policies that transfer to related classes of
RMDPs. Their approach does not perform guided explo-
ration to resolve ambiguities. REX (Lang, Toussaint, and

Kersting 2012) enables MBRL to automatically learn tasks
autonomously. One challenge with this approach is learn-
ing accurate models since exploration can be sparse when
using REX. V-MIN (Martı́nez et al. 2017) integrates model-
learning and planning with RL by requesting demonstrations
from a teacher if it cannot find a policy whose expected value
is greater than a certain threshold. The requirement of an
available teacher limits the transfer capabilities of this ap-
proach. Taskable RL (TRL) (Illanes et al. 2020) and RePReL
(Kokel et al. 2023) show how Hierarchical Reinforcement
Learning (HRL) using the options framework can be used
for TRL. They use symbolic plans to guide the RL process.
This approach requires models provided as input and are not
learned. In contrast, our generates its own data for learning
models using an active learning process.
Learning Models for Non-Stationary Settings GRL
(Karia and Srivastava 2022) train a neural network to learn
reactive policies that can transfer to problems from the same
domain but with different state spaces. Their approach is
limited to only changes in the state space and cannot adapt to
changes in the transition dynamics. Nayyar, Verma, and Sri-
vastava (2022) and Musliner et al. (2021) learn PDDL mod-
els whereas approaches like Sridharan and Meadows (2018)
and Sridharan, Meadows, and Gómez (2017) use Answer Set
Prolog to represent domain knowledge. These approaches
work in non-stationary environments and can be integrated
into the interleaved learning and planning loop. However,
they only learn deterministic models. Bryce, Benton, and
Boldt (2016) address the problem of learning the updated
mental model of a user using particle filtering given prior
knowledge about the user’s mental model. However, they
assume that the entity being modeled can tell the learning
system about flaws in the learned model if needed.

Eiter et al. (2010) propose a framework for updating ac-
tion laws depicted in the form of graphs representing the
state space. They assume that changes can only happen in
effects, and that knowledge about the state space and what
effects might change is available beforehand. There is a large
body of work on adapting symbolic models to novelties in
open-world environments for RL (Goel et al. 2022; Balloch
et al. 2023; Sreedharan and Katz 2023; Mohan et al. 2023).
These methods are limited to deterministic settings and/or
can only learn new models from passively collected data.

6 Conclusions
We developed a sample-efficient method for transferring
epistemial knowledge between an interleaved learning and
planning process. Our approach can easily handle non-
stationary environments on-the-fly by automatically detect-
ing any changes that are inconsistent with the learned model.
We reduce sample complexity by only updating parts of the
model that are inconsistent with the simulator’s execution.
Our approach is resilient to changes in the transition system
even if it occurs during the model learning process. We show
that when the transition system is stationary our approach is
locally convergent. Furthermore, our learned lifted models
easily transfer to new tasks. Our empirical results show that
our approach significantly reduces sample complexity whilst
remaining performant with respect to the optimal policy.
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