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Abstract
One of the several obstacles in the widespread use
of AI systems is the lack of requirements of in-
terpretability that can enable a layperson to ensure
the safe and reliable behavior of such systems. We
extend the analysis of an agent assessment mod-
ule that lets an AI system execute high-level in-
struction sequences in simulators and answer the
user queries about its execution of sequences of
actions. We show that such a primitive query-
response capability is sufficient to efficiently derive
a user-interpretable causal model of the system in
stationary, fully observable, and deterministic set-
tings. We also introduce dynamic causal decision
networks (DCDNs) that capture the causal struc-
ture of STRIPS-like domains. A comparative anal-
ysis of different classes of queries is also presented
in terms of the computational requirements needed
to answer them and the efforts required to evaluate
their responses to learn the correct model.

1 Introduction
The growing deployment of AI systems presents a pervasive
problem of ensuring the safety and reliability of these sys-
tems. The problem is exacerbated because most of these AI
systems are neither designed by their users nor are their users
skilled enough to understand their internal working, i.e., the
AI system is a black-box for them. We also have systems that
can adapt to user preferences, thereby invalidating any design
stage knowledge of their internal model. Additionally, these
systems have diverse system designs and implementations.
This makes it difficult to evaluate such arbitrary AI systems
using a common independent metric.

In this work, we develop a non-intrusive system that allow
for assessment of arbitrary AI systems independent of their
design and implementation. The Agent Assessment Module
(AAM) is such a system which uses active query answering
to learn the action model of black-box autonomous agents. It
poses minimum requirements on the agent – to have a rudi-
mentary query-response capability – to learn its model us-
ing interventional queries. This is needed because we do not
intend these modules to hinder the development of AI sys-
tems by imposing additional complex requirements or con-

straints on them. This module learns the generalized dynami-
cal causal model of the agents capturing how the agent oper-
ates and interacts with its environment; and under what con-
ditions it executes certain actions and what happens after it
executes them.

Causal models are needed to capture the behavior of
AI systems as they help in understanding the relationships
among underlying causal mechanisms, and they also make it
easy to make predictions about the behavior of a system. E.g.,
consider a delivery agent which delivers crates from one loca-
tion to another. If the agent has only encountered blue crates,
an observational data-based learner might learn that the crate
has to be blue for it to be delivered by the robot. On the other
hand, a causal model will be able to identify that the crate
color does not affect the robot’s ability to deliver it.

The causal model learned by AAM is user-interpretable
as the model is learned in the vocabulary that the user pro-
vides and understands. Such a module would also help make
the AI systems compliant with Level II assistive AI – sys-
tems that make it easy for operators to learn how to use them
safely [Srivastava, 2021].

This paper presents a formal analysis of the AAM, presents
different types of query classes, and analyzes the query
process and the models learned by AAM. It also uses the
theory of causal networks to show that we can define the
causal properties of the models learned by AAM – in re-
lational STRIPS-like language [Fikes and Nilsson, 1971;
McDermott et al., 1998; Fox and Long, 2003]). We call this
network Dynamic Causal Decision Network (DCDN), and
show that the models learned by AAM are causal owing to
the interventional nature of the queries used by it.

2 Background
2.1 Agent Assessment Module
A high-level view of the agent assessment module is shown
in Fig. 1 where AAM connects the agent A with a simulator
and provides a sequence of instructions, called a plan, as a
query. A executes the plan in the simulator and the assess-
ment module uses the simulated outcome as the response to
the query. At the end of the querying process, AAM returns
a user-interpretable model of the agent.

An advantage of this approach is that the AI system need
not know the user vocabulary or the modeling language and it
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Figure 1: The agent-assessment module uses its user’s preferred vo-
cabulary, queries the AI system, and delivers a user-interpretable
causal model of the AI system’s capabilities [Verma et al., 2021]

.

can have any arbitrary internal implementation. Additionally,
by using such a method, we can infer models of AI systems
that don’t have such in-built capability to infer and/or com-
municate their model. Also, the user need not even know
what questions are being asked as long as (s)he gets the cor-
rect model in terms of her/his vocabulary. It is assumed that
the user knows the names of the agent’s primitive actions.
Even when they are not known, without loss of generality, the
first step can be a listing of the names of the agent’s actions.

Note that we can have modules like AAM with vary-
ing level of capabilities of evaluating the query responses.
This results in a trade-off between the evaluation capabilities
of the assessment modules and the computational require-
ments of the AI systems to support such modules. E.g., if
we have an assessment module with strong evaluation ca-
pabilities, the AI systems can support them easily, whereas
we might have to put more burden on AI systems to sup-
port modules with weaker evaluation systems. To test and
analyze this, we introduce a new class of queries in this
work, and study the more general properties of Agent In-
terrogation Algorithm (AIA) [Verma and Srivastava, 2020;
Verma et al., 2021] used by AAM. We also present a more
insightful analysis of the complexity of the queries and the
computational requirements on the agents to answer these
queries.

2.2 Causal Models
In this work, we focus on the properties of the models learned
by AIA, and show that the models learned by AIA are causal.
But prior to that, we must define what it means for a model to
be causal. Multiple attempts have been made to define causal
models [Halpern and Pearl, 2001; Halpern and Pearl, 2005;
Halpern, 2015]. We use the definition of causal models based
on Halpern [2015].

Definition 1. A causal model M is defined as a 4-tuple
〈U ,V,R,F〉 where U is a set of exogenous variables (rep-
resenting factors outside the model’s control), V is a set
of endogenous variables (whose values are directly or indi-
rectly derived from the exogenous variables), R is a func-
tion that associates with every variable Y ∈ U ∪ V a
nonempty set R(Y ) of possible values for Y , and F is a
function that associates with each endogenous variable X ∈
V a structural function denoted as FX such that FX maps
×Z∈(U∪V−{X})R(Z) toR(X).

Note that the values of exogenous variables are not deter-
mined by the model, and a setting ~u of values of exogenous

variables is termed as a context by Halpern [2016]. This helps
in defining a causal setting as:

Definition 2. A causal setting is a pair (M,~u) consisting of
a causal model M and context ~u.

A causal formula ϕ is true or false in a causal model, given
a context. Hence, (M,~u) |= ϕ if the causal formula ϕ is true
in the causal setting (M,~u).

Every causal model M can be associated with a directed
graph, G(M), in which each variable X is represented as a
vertex and the causal relationships between the variables are
represented as directed edges between members of U ∪ {V \
X} and X [Pearl, 2009]. We use the term causal networks
when referring to these graphs to avoid confusion with the no-
tion of causal graphs used in the planning literature [Helmert,
2004].

To perform an analysis with interventions, we use the con-
cept of do-calculus introduced in Pearl [1995]. To perform
interventions on a set of variables X ∈ V , do-calculus as-
signs values ~x to ~X , and evaluates the effect using the causal
model M . This is termed as do( ~X = ~x) action. To define this
concept formally, we first define submodels [Pearl, 2009].

Definition 3. Let M be a causal model, X a set of variables
in V , and ~x a particular realization of ~X . A submodel M~x

of M is the causal model M~x = 〈U ,V,R,F~x〉 where F~x
is obtained from F by setting X ′ = x′ (for each X ′ ∈ ~X)
instead of the corresponding FX′ , and setting F ~xY = FY for
each Y 6∈ X .

We now define what it means to intervene ~X = ~x using the
action do( ~X = ~x).

Definition 4. Let M be a causal model, X a set of variables
in V , and ~x a particular realization of ~X . The effect of action
do( ~X = ~x) on M is given by the submodel M~x.

In general, there can be uncertainty about the effects of
these interventions, leading to probabilistic causal networks,
but in this work we assume that interventions do not lead to
uncertain effects.

The interventions described above assigns values to a set
of variables, without affecting any another variable. Such in-
terventions are termed as hard (independent) interventions.
It is not always possible to perform such interventions and
in some cases other variable(s) also change without affecting
the causal structure [Korb et al., 2004]. Such interventions
are termed as soft (dependent) interventions.

We can also derive the structure of causal networks using
interventions in the real world, as interventions allow us to
find if a variable Y depends on another variable X . We use
Halpern [2016]’s definition of dependence and actual cause.

Definition 5. A variable Y depends on variable X if there is
some setting of all the variables in U ∪ V \ {X,Y } such that
varying the value of X in that setting results in a variation in
the value of Y .

Definition 6. Given a signature S = (U ,V,R), a primitive
event is a formula of the form X = x, for X ∈ V and x =
R(X). A causal formula is [~Y ← ~y]ϕ, where ϕ is a Boolean



combination of primitive events, ~Y = 〈Y1, Y2, . . . Yi〉 are dis-
tinct variables in V , and yi ∈ R(Yi). ϕ holds if Yk would set
to yk, for k = 1, . . . , i.
Definition 7. Let X ⊆ V be the subset of exogenous vari-
ables V , and ϕ be a boolean causal formula expressible using
variables in V . ~X = ~x is an actual cause of ϕ in the causal

setting (M,~u), i.e., ( ~X = ~x)
(M,~u)

// ϕ, if the following con-
ditions hold:
AC1. (M,~u) |= ( ~X = ~x) and (M,~u) |= ϕ.

AC2. There is a set ~W of variables in V and a setting ~x′ of
the variables in ~X such that if (M,~u) |= ~W = ~w∗,
then (M,~u) |= [ ~X ← ~x′, ~W ← ~w∗]¬ϕ.

AC3. ~X is minimal; there is no strict subset ~X ′ of ~X such
that ~X ′ = ~x′ satisfies conditions AC1 and AC2, where
~x′ is the restriction of ~x to the variables in ~X .

AC1 mentions that unless both ϕ and ~X = ~x occur at the
same time, ϕ cannot be caused by ~X = ~x. AC21 mentions
that there exists a ~x′ such that if we change a subset ~X of
variables from some initial value ~x to ~x′, keeping the value of
other variables ~W fixed to ~w∗, ϕ will also change. AC3 is a
minimality condition which ensures that there are no spurious
elements in ~X .

The following definition specifies soundness and complete-
ness with respect to the actual causes entailed by a pair of
causal models.
Definition 8. Let ~U and ~V be the vectors of exogenous and
endogenous variables, respectively; and Φ be the set of all
boolean causal formulas expressible over variables in V .

A causal model M1 is complete with respect to another
causal model M2 if for all possible settings of exogenous
variables, all the causal relationships that are implied by
the model M1 are a superset of the set of causal relation-
ships implied by the model M2, i.e., ∀~u ∈ ~U ,∀ ~X, ~X ′ ⊆
~V,∀ϕ,ϕ′ ∈ Φ,∃~x ∈ ~X, ∃~x′ ∈ ~X ′ s.t. {〈 ~X, ~u, ϕ, ~x〉 : ( ~X =

~x)
(M2,~u)

// ϕ} ⊆ {〈 ~X ′, ~u, ϕ′, ~x′〉 : ( ~X ′ = ~x′)
(M1,~u)

// ϕ′}.
A causal model M1 is sound with respect to another causal

model M2 if for all possible settings of exogenous variables,
all the causal relationships that are implied by the model M1

are a subset of the set of causal relationships implied by the
model M2, i.e., ∀~u ∈ ~U ,∀ ~X, ~X ′ ⊆ ~V,∀ϕ,ϕ′ ∈ Φ,∃~x ∈
~X, ∃~x′ ∈ ~X ′ s.t. {〈 ~X, ~u, ϕ, ~x〉 : ( ~X = ~x)

(M1,~u)
// ϕ} ⊆

{〈 ~X ′, ~u, ϕ′, ~x′〉 : ( ~X ′ = ~x′)
(M2,~u)

// ϕ′}.

2.3 Query Complexity
In this paper, we provide an extended analysis of the com-
plexity of the queries that AIA uses to learn the agent’s
model. We use the complexity analysis of relational queries
by Vardi [1982, 1995] to find the membership classes for data,
expression, and combined complexity of AIA’s queries.

Vardi [1982] introduced three kinds of complexities for re-
lational queries. In the notion of query complexity, a specific

1Halpern [2016] termed it as AC2(am)

query is fixed in the language, then data complexity – given
as function of size of databases – is found by applying this
query to arbitrary databases. In the second notion of query
complexity, a specific database is fixed, then the expression
complexity – given as function of length of expressions – is
found by studying the complexity of applying queries rep-
resented by arbitrary expressions in the language. Finally,
combined complexity – given as a function of combined size
of the expressions and the database – is found by applying
arbitrary queries in the language to arbitrary databases.

These notions can be defined formally as follows
Vardi [1995]:

Definition 9. The complexity of a query is measured as the
complexity of deciding if t ∈ Q(B), where t is a tuple, Q is
a query, and B is a database.

• The data complexity of a language L is the complex-
ity of the sets Answer(Qe) for queries e in L, where
Answer(Qe) is the answer set of a query Qe given as:
Answer(Qe) = {(t, B) | t ∈ Qe(B)}.

• The expression complexity of a language L is the com-
plexity of the sets AnswerL(B), where AnswerL(B)
is the answer set of a database B with respect to a lan-
guage L given as:
AnswerL(B) = {(t, e) | e ∈ L and t ∈ Qe(B)}.

• The combined complexity of a language L is the com-
plexity of the set AnswerL, where AnswerL is the an-
swer set of a language L given as:
AnswerL = {(t, B, e) | e ∈ L and t ∈ Qe(B)}.

Vardi [1982, 1995] gave standard complexity classes for
queries written in specific logical languages. We show the
membership of our queries in these classes based on the log-
ical languages we write the queries in.

3 Formal Framework
The agent assessment module assumes that the user needs
to estimate the agent’s model as a STRIPS-like planning
model represented as a pair M = 〈P,A〉, where P =

{pk11 , . . . , pknn } is a finite set of predicates with arities ki;
A = {a1, . . . , ak} is a finite set of parameterized actions
(operators). Each action aj ∈ A is represented as a tu-
ple 〈header(aj), pre(aj), eff(aj)〉, where header(aj) is the
action header consisting of action name and action param-
eters, pre(aj) represents the set of predicate atoms that
must be true in a state where aj can be applied, eff(aj)
is the set of positive or negative predicate atoms that will
change to true or false respectively as a result of execution
of the action aj . Each predicate can be instantiated using
the parameters of an action, where the number of parame-
ters are bounded by the maximum arity of the action. E.g.,
consider the action load truck(?v1, ?v2, ?v3) and predicate
at(?x, ?y) in the IPC Logistics domain. This predicate can
be instantiated using action parameters ?v1, ?v2, and ?v3
as at(?v1, ?v1), at(?v1, ?v2), at(?v1, ?v3), at(?v2, ?v2),
at(?v2, ?v1), at(?v2, ?v3), at(?v3, ?v3), at(?v3, ?v1), and
at(?v3, ?v2). We represent the set of all such possible predi-
cates instantiated with action parameters as P∗.



AAM uses the following information as input. It receives
its instruction set in the form of header(a) for each a ∈ A
from the agent. AAM also receives a predicate vocabulary
P from the user with functional definitions of each predicate.
This gives AAM sufficient information to perform a dialog
with A about the outcomes of hypothetical action sequences.

We define the overall problem of agent interrogation as fol-
lows. Given a class of queries and an agent with an unknown
model which can answer these queries, determine the model
of the agent. More precisely, an agent interrogation task is
defined as a tuple 〈MA,Q,P,AH〉, where MA is the true
model (unknown to AAM) of the agentA being interrogated,
Q is the class of queries that can be posed to the agent by
AAM, and P and AH are the sets of predicates and action
headers that AAM uses based on inputs from H and A. The
objective of the agent interrogation task is to derive the agent
model MA using P and AH . Let Θ be the set of possible
answers to queries. Thus, strings θ∗ ∈ Θ∗ denote the infor-
mation received by AAM at any point in the query process.
Query policies for the agent interrogation task are functions
Θ∗ → Q∪ {Stop} that map sequences of answers to the next
query that the interrogator should ask. The process stops with
the Stop query. In other words, for all answers θ ∈ Θ, all
valid query policies map all sequences xθ to Stop whenever
x ∈ Θ∗ is mapped to Stop. This policy is computed and exe-
cuted online.
Running Example Consider we have a driving robot hav-
ing a single action drive (?t ?s ?d), parameterized by the
truck it drives, source location, and destination location. As-
sume that all the locations are connected, hence the robot
can drive between any two locations. The predicates avail-
able are at(?t ?loc), representing the location of a truck; and
src blue(?loc), representing the color of the source location.
Instantiating at and src blue with parameters of the action
drive gives four instantiated predicates at(?t ?s), at(?t ?d),
src blue(?s), and src blue(?d).

4 Learning Causal Models
The classic causal model framework used in Def. 1 lacks the
temporal elements and decision nodes needed to express the
causality in planning domains.

To express actions, we use the decision nodes similar to
Dynamic Decision Networks [Kanazawa and Dean, 1989].
To express the temporal behavior of planning models, we use
the notion of Dynamic Causal Models [Pearl, 2009] and Dy-
namic Causal Networks (DCNs) [Blondel et al., 2017]. These
are similar to causal models and causal networks respectively,
with the only difference that the variables in these are time-
indexed, allowing for analysis of temporal causal relations
between the variables. We also introduce additional boolean
variables to capture the executability of the actions. The re-
sulting causal model is termed as a causal action model, and
we express such models using a Dynamic Causal Decision
Network (DCDN).

A general structure of a dynamic causal decision network is
shown in Fig.2. Here st and st+1 are states at time t and t+1
respectively, at is a decision node representing the decision
to execute action a at time t, and executability variable Xa

t

st+1

st

Xt
a at

Figure 2: An example of a Dynamic Causal Decision Network
(DCDN). st and st+1 are states at time t and t + 1 respectively,
at is a decision node representing the decision to execute action a at
time t, and Xa

t represents if action a is executable at time t.

represents if action a is executable at time t. All the decision
variables and the executability variables Xa

t , where a ∈ A, in
a domain are endogenous. Decision variables are endogenous
because we can perform interventions on them as needed.

4.1 Types of Interventions
To learn the causal action model corresponding to each do-
main, two kinds of interventions are needed. The first type
of interventions, termed IP , correspond to searching for the
initial state in AIA. AIA searches for the state where it can ex-
ecute an action, hence if the state variables are completely in-
dependent of each other, these interventions are hard, whereas
for the cases where some of the variables are dependent the
interventions are soft for those variables. Such interventions
lead to learning the preconditions of an action correctly.

The second type of interventions, termed IE , are on the de-
cision nodes, where the values of the decision variables are set
to true according to the input plan. For each action ai in the
plan π, the corresponding decision node with label ai is set
to true. Of course, during the intervention process, the struc-
ture of the true DCDN is not known. Such interventions lead
to learning the effects of an action accurately. As mentioned
earlier, if an action a is executed in a state st which does not
satisfy its preconditions, the variable Xa

t will be false at that
time instant, and the resulting state st+1 will be same as state
st, signifying a failure to execute the action. Note that the
state nodes st and st+1 in Fig.2 are the combined representa-
tion of multiple predicates.

We now show that the model(s) learned by AIA are causal
models.
Lemma 1. Given an agentA with a ground truth model MA
(unknown to the agent interrogation algorithm AIA), the ac-
tion model M learned by AIA is a causal model consistent
with Def. 1.

Proof (Sketch). We show a mapping between the components
of the causal models used in Def. 1 and the planning models
described in Sec. 3. The exogenous variables U maps to the
static predicates in the domain, i.e., the ones that do not ap-
pear in the effect of any action; V maps to the non-static pred-
icates;Rmaps each predicate to> if the predicate is true in a
state, or ⊥ when the predicate is false in a state; F calculates



the value of each variable depending on the other variables
that cause it. This is captured by the values of state predicates
and executability variables being changed due to other state
variables and decision variables.

The causal relationships in the modelM learned by AIA
also satisfy the three conditions – AC1, AC2, and AC3 –
mentioned in the definition for the actual cause (Def. 7). By
Thm. 1 in Verma et al. [2021], AIA returns correct models,
i.e.,M contains exactly the same palm tuples asMA.

This also means that AC1 is satisfied due to correctness
of IP – a predicate p is a cause of Xa only when p is pre-
condition of action a; and IE– a predicate p is a caused by
Xa and a only when p is an effect of action a. AC2 is satis-
fied because if any precondition of an action is not satisfied,
it will not execute (defining the relationship “state variables
→ Xa”); or if any action doesn’t execute, it won’t affect
the predicates in its effects (defining the relationship “Xa →
state variables”). Finally, AC3 is satisfied, as neither spurious
preconditions are learned by AIA, nor incorrect effects are
learned.

We now formally show that the causal model(s) learned by
AIA is(are) sound and complete.

Theorem 1. Given an agent A with a ground truth model
MA (unknown to the agent interrogation algorithm AIA), the
action model M learned by AIA is sound and complete with
respect to MA.

Proof (Sketch). We first show that M is sound with respect
to MA. Assume that some ~X = ~x is an actual cause of ϕ

according to M in the setting ~u, i.e., ( ~X = ~x)
(M,~u)

// ϕ.
Now by Thm. 1 in Verma et al. [2021], M contains exactly
the same palm tuples asMA. Hence any palm tuple that is
present inM will also be present inMA, implying that under
the same setting ~u according toMA ~X = ~x is an actual cause
of ϕ.

Now lets assume that some ~X = ~x is an actual cause of ϕ

according to MA in the setting ~u, i.e., ( ~X = ~x)
(MA,~u)

// ϕ.
Now by Thm. 1 in Verma et al. [2021], M contains exactly
the same palm tuples as MA. Hence any palm tuple that
is present in Mag will also be present in M , implying that
under the same setting ~u according to M ~X = ~x is an actual
cause of ϕ. Hence the action model M learned by the agent
interrogation algorithm are sound and complete with respect
to the model MA.

4.2 Comparison with Observational Data based
Learners

We compare the properties of models learned by AIA with
those of approaches that learn the models from observational
data only. For the methods that learn models in STRIPS-like
the learned models can be classified as causal, but it is not
necessary that they are sound with respect to the ground truth
model MA of the agent A. E.g., in case of the robot driver
discussed earlier, these methods can learn a model where the
precondition of the action drive is src blue if all the obser-
vation traces that are provided to it as input had src blue as

true. This can happen if all the source locations are painted
blue. To avoid such cases, some of these methods run a pre-
processing or a post-processing step that removes all static
predicates from the preconditions. However, if there is a paint
action in the domain that changes the color of all source lo-
cations, then these ad-hoc solutions will not be able to handle
that. Hence, these techniques may end up learning spurious
preconditions as they do not have a way to distinguish be-
tween correlation and causations.

On the other hand, it is also not necessary that the mod-
els learned by approaches using only observational data are
complete with respect to the ground truth model MA of the
agent A. This is because they may miss to capture some
causal relationships if the observations do not include all the
possible transitions, or contains only the successful actions.
E.g., if we have additional predicates city from(?loc), and
city to(?loc) in the domain, and all the observed transitions
are for the transitions within same city, then the model will
not be able to learn if the source city and destination city have
to be same for driving a truck between them.

Hence, the models learned using only observational data
are not necessarily sound or complete, as they can learn
causal relationships that are not part of set of actual causal
relationships, and can also miss some of the causal relation-
ships that are not part of set of actual causal relationships.
Pearl [2019] also points out that it is not possible to learn
causal models from observational data only.

4.3 Types of Queries
Plan Outcome Queries Verma et al. [2021] introduced
plan outcome queries QPO, which are parameterized by a
state sI and a plan π. Let P be the set of predicates P∗ in-
stantiated with objects O in an environment. QPO queries
ask A the length of the longest prefix of the plan π that it can
execute successfully when starting in the state sI ⊆ P as well
as the final state sF ⊆ P that this execution leads to. E.g.,
“Given that the truck t1 is at location l1, what would happen
if you executed the plan 〈drive(t1, l1, l2), drive(t1, l2, l3),
drive(t1, l2, l1)〉?”

A response to such queries can be of the form “I can ex-
ecute the plan till step ` and at the end of it truck t1 is at
location l3”. Formally, the response θPO for plan outcome
queries is a tuple 〈`, s`〉, where ` is the number of steps for
which the plan π could be executed, and s` ⊆ P is the final
state after executing ` steps of the plan. If the plan π can-
not be executed fully according to the agent modelMA then
` < len(π), otherwise ` = len(π). The final state s` ⊆ P
is such that MA |= π[1 : `](sI) = s`, i.e., starting from a
state sI ,MA successfully executed first ` steps of the plan π.
Thus,QPO : U → N× 2P , where U is the set of all the mod-
els that can be generated using the predicates P and actions
A, and N is the set of natural numbers.

Action Precondition Queries In this work, we introduce a
new class of queries called action precondition queriesQAP .
These queries, similar to plan outcome queries, are parame-
terized by sI and π, but have a different response type.

A response to the action precondition queries can be ei-
ther of the form “I can execute the plan completely and at



the end of it, truck t1 is at location l1” when the plan is suc-
cessfully executed, or of the form “I can execute the plan till
step ` and the action a` failed because precondition pi was
not satisfied” when the plan is not fully executed. To make
the responses consistent in all cases, we introduce a dummy
action afail whose precondition is never satisfied. Hence, the
responses are always of the form, “I can execute the plan till
step ` and the action a` failed because precondition pF was
not satisfied”. If a` is afail and ` = len(π), then we know
that the original plan was executed successfully by the agent.
Formally, the response θAP for action precondition queries is
a tuple 〈`, pF 〉, where ` is the number of steps for which the
plan π could be executed, and pF ⊆ P is the set of precondi-
tions of the failed action aF . If the plan π cannot be executed
fully according to the agent modelMA then ` < len(π)− 1,
otherwise ` = len(π)− 1. Also, QAC : U → N× P , where
U is the set of all the models that can be generated using the
predicates P and actions A, and N is the set of natural num-
bers.

5 Complexity Analysis
Theoretically, the asymptotic complexity of AIA (with plan
outcome queries) isO(|P∗|×|A|), but it does not take into ac-
count how much computation is needed to answer the queries
or to evaluate their responses. This complexity just shows the
amount of computation needed in the worst case to derive the
agent model by AIA. Here, we present a more detailed anal-
ysis of the complexity of AIA’s queries using the results of
relational query complexity by Vardi [1982].

To analyzeQPO’s complexity, let us assume that the agent
has stored the possible transitions it can make (in proposi-
tional form) using the relations R(valid, s, a, s′, succ), where
valid, succ ∈ {>,⊥}, s, s′ ∈ S, a ∈ A; and N(valid, n, n+),
where valid ∈ {>,⊥}, n, n+ ∈ N, 0 ≤ n ≤ L, and
0 ≤ n+ ≤ L + 1, where L is the maximum possible length
of a plan in the QPO queries. L can be an arbitrarily large
number, and it does not matter as long as it is finite. Here,
S and A are sets of grounded states and actions respectively.
succ is > if the action was executed successfully, and is ⊥ if
the action failed. valid is > when none of the previous ac-
tions had succ = ⊥. This stops an action to change a state
if any of the previous actions failed, thereby preserving the
state that resulted from a failed action. Whenever succ = ⊥
or valid = ⊥, s = s′ and n = n+ signifying that applying
an action where it is not applicable does not change the state.

Assuming the length of the query plan, len(π) = D, we
can write a query in first order logic, equivalent to the plan
outcome query as

{(sD,nD) | ∃s1, . . . ,∃sD−1,∃succ1, . . . ,∃succD−1,
∃n1, . . . ,∃nD−1R(>, s0, a1, s1, succ1)∧
R(succ1, s1, a2, s2, succ2) ∧ · · · ∧
R(succD−1, sD−1, aD, sD,>)∧
N(>, 0, n1) ∧N(succ1, n1, n2) ∧ · · · ∧
N(succD−1, nD−1, nD)}

The output of the query contains the free variables sD =
s` and nD = `. Such first order (FO) queries have

the expression complexity and the combined complexity in
PSPACE [Vardi, 1982]. The data complexity class of FO
queries is AC0 [Immerman, 1987].

The following results use the analysis in Vardi [1995]. The
query analysis given above depends on how succinctly we
can express the queries. In the FO query shown above, we
have a lot of spurious quantified variables. We can reduce
its complexity by using bounded-variable queries. Normally,
queries in a language L assume an inifinite supply x1, x2, . . .
of individual variables. A bounded-variable versionLk of the
language L is one which can be obtained by restricting the
individual variables to be among x1, . . . , xk, for k > 0. Us-
ing this, we can reduce the quantified variables in FO query
shown earlier, and rewrite it more succinctly as an FOk query
by storing temporary query outputs.

E(succ, s, a, s′, succ′, n, n′)=R(succ, s, a, s′, succ′)∧
N(succ, n, n′)

α1(succ, s, a1, s
′, succ′, n, n′)=E(>, s0, a1, s′, succ′, 0, n′)

We then write subsequent queries corresponding to each step
of the query plan as

αi+1(succ, s, ai+1, s
′, succ′, n, n′) =

∃s1,∃succ1,∃n1{E(succ, s, ai+1, s1, succ1, n1)∧
∃s,∃succ,∃n[succ = succ1 ∧ s = s1∧
n = n1 ∧ αi(succ, s, ai, s′, succ′, n, n′)]}

Here i varies from 1 to D, and the value of k is 6 because of
6 quantified variables – s, s1, succ, succ1, n, and n1. This
reduces the expression and combined complexity of these
queries to ALOGTIME and PTIME respectively. Note that
these are the membership classes as it might be possible to
write the queries more succinctly.

For a detailed analysis of QAP ’s complexity, let us
assume that the agent stores the possible transitions it
can make (in propositional form) using the relations
R(valid, s, a, s′, succ), where valid, succ ∈ {>,⊥}, s, s′ ∈
S, a ∈ A; and S(p, s), where p ∈ P , s ∈ S. S contains (p, s)
if a grounded predicate p is in state s.

Now, we can write a query in first order logic, equivalent
to the action precondition query as:

{(p) | (∀s1 S(p, s1)⇒ ∃s′R(>, s1, a1, s′,>)) ∧
(∀s1 ¬S(p, s1)⇒ ∀s′R(>, s1, a1, s′,⊥))}

This formulation is equivalent to the FOk queries with
k = 2. This means that the data, expression and combined
complexity of these queries are in complexity classes AC0,
ALOGTIME, and PTIME respectively.

The results for complexity classes of the queries presented
above holds assuming that the agent stores all the transitions
using a mechanism equivalent to relational databases where
it can search through states in linear time. For the simulator
agents that we generally encounter, this assumption almost
never holds true. Even though both the queries have member-
ship in the same complexity class, an agent will have to spend



more time in running the action precondition query owing to
the exhaustive search of all the states in all the cases, whereas
for the plan outcome queries, the exhaustive search is not al-
ways needed.

Additionally, plan outcome queries place very little re-
quirements on the agent to answer the queries, whereas action
precondition queries require an agent to use more computa-
tion to generate it’s responses. Action precondition queries
also force an agent to know all the transitions beforehand. So
if an agent does not know its model but has to execute an
action in a state to learn the transition, action precondition
queries will perform poorly as agent will execute that action
in all possible states to answer the query. On the other hand,
to answer plan outcome queries in such cases, an agent will
have to execute at most L actions (maximum length of the
plan) to answer a query.

Evaluating the responses of queries will be much easier
for the action precondition queries, whereas evaluating the
responses of plan outcome queries is not straightforward,
as discussed in Verma et al. [2021]. As mentioned earlier,
the agent interrogation algorithm that uses the plan outcome
queries has asymptotic complexity O(|P∗|× |A|) for evaluat-
ing all agent responses. On the other hand, if an algorithm is
implemented with action precondition queries, its asymptotic
complexity for evaluating all agent responses will reduce to
O(|A|). This is because AAM needs to ask two queries for
each action. The first query in a state where it is guaranteed
that the action will fail, this will lead AAM to learn the ac-
tion’s precondition. After that AAM can ask another query in
a state where the action will not fail, and learn the action’s ef-
fects. This will also lead to an overall less number of queries.

So there is a tradeoff between the computation efforts
needed for evaluation of query responses and the computa-
tional burden on the agent to answer those queries.

6 Empirical Evaluation

We implemented AIA with plan outcome queries in Python to
evaluate the efficacy of our approach. In this implementation,
initial states were collected by making the agent perform ran-
dom walks in a simulated environment. We used a maximum
of 60 such random initial states for each domain in our exper-
iments. The implementation is optimized to store the agent’s
answers to queries; hence the stored responses are used if a
query is repeated.

We tested AIA on two types of agents: symbolic agents
that use models from the IPC (unknown to AIA), and simula-
tor agents that report states as images using PDDLGym [Sil-
ver and Chitnis, 2020]. All experiments were executed on
5.0 GHz Intel i9-9900 CPUs with 64 GB RAM running
Ubuntu 18.04.

The analysis presented below shows that AIA learns the
correct model with a reasonable number of queries, and com-
pares our results with the closest related work, FAMA [Aineto
et al., 2019]. We use the metric of model accuracy in the fol-
lowing analysis: the number of correctly learned palm tuples
normalized with the total number of palm tuples inMA.

Domain |P∗| |A| |Q̂| tµ (ms) tσ (µs)

Gripper 5 3 17 18.0 0.2
Blocksworld 9 4 48 8.4 36
Miconic 10 4 39 9.2 1.4
Parking 18 4 63 16.5 806
Logistics 18 6 68 24.4 1.73
Satellite 17 5 41 11.6 0.87
Termes 22 7 134 17.0 110.2
Rovers 82 9 370 5.1 60.3
Barman 83 17 357 18.5 1605
Freecell 100 10 535 2.24† 33.4†

Table 1: The number of queries (|Q̂|), average time per query (tµ),
and variance of time per query (tσ) generated by AIA with FD. Av-
erage and variance are calculated for 10 runs of AIA, each on a sep-
arate problem. †Time in sec.

6.1 Experiments with symbolic agents
We initialized the agent with one of the 10 IPC domain mod-
els, and ran AIA on the resulting agent. 10 different problem
instances were used to obtain average performance estimates.

Table 1 shows that the number of queries required increases
with the number of predicates and actions in the domain. We
used Fast Downward [Helmert, 2006] with LM-Cut heuris-
tic [Helmert and Domshlak, 2009] to solve the planning prob-
lems. Since our approach is planner-independent, we also
tried using FF [Hoffmann and Nebel, 2001] and the results
were similar. The low variance shows that the method is sta-
ble across multiple runs.

Comparison with FAMA
We compare the performance of AIA with that of FAMA in
terms of stability of the models learned and the time taken
per query. Since the focus of our approach is on automati-
cally generating useful traces, we provided FAMA randomly
generated traces of length 3 (the length of the longest plans
in AIA-generated queries) of the form used throughout this
paper (〈sI , a1, a2, a3, sG〉).

Fig. 3 summarizes our findings. AIA takes lesser time
per query and shows better convergence to the correct model.
FAMA sometimes reaches nearly accurate models faster, but
its accuracy continues to oscillate, making it difficult to as-
certain when the learning process should be stopped (we in-
creased the number of traces provided to FAMA until it ran
out of memory). This is because the solution to FAMA’s in-
ternal planning problem introduces spurious palm tuples in
its model if the input traces do not capture the complete do-
main dynamics. For Logistics, FAMA generated an incorrect
planning problem, whereas for Freecell and Barman it ran
out of memory (AIA also took considerable time for Free-
cell). Also, in domains with negative preconditions like Ter-
mes, FAMA was unable to learn the correct model. We used
Madagascar [Rintanen, 2014] with FAMA as it is the pre-
ferred planner for it. We also tried FD and FF with FAMA,
but as the original authors noted, it could not scale and ran out
of memory on all but a few Blocksworld and Gripper prob-
lems where it was much slower than with Madagascar.
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Figure 3: Performance comparison of AIA and FAMA in terms of
model accuracy and time taken per query with an increasing number
of queries.

6.2 Experiments with simulator agents
AIA can also be used with simulator agents that do not know
about predicates and report states as images. To test this, we
wrote classifiers for detecting predicates from images of sim-
ulator states in the PDDLGym framework. This framework
provides ground-truth PDDL models, thereby simplifying the
estimation of accuracy. We initialized the agent with one of
the two PDDLGym environments, Sokoban and Doors. AIA
inferred the correct model in both cases and the number of
instantiated predicates, actions, and the average number of
queries (over 5 runs) used to predict the correct model for
Sokoban were 35, 3, and 201, and that for Doors were 10, 2,
and 252.

7 Related Work
One of the ways most current techniques learn the agent mod-
els is based on passive or active observations of the agent’s
behavior, mostly in the form of action traces [Gil, 1994; Yang
et al., 2007; Cresswell et al., 2009; Zhuo and Kambhampati,
2013]. Jiménez et al. [2012] and Arora et al. [2018] present
comprehensive review of such approaches. FAMA [Aineto et
al., 2019] reduces model recognition to a planning problem
and can work with partial action sequences and/or state traces
as long as correct initial and goal states are provided. While
FAMA requires a post-processing step to update the learnt

model’s preconditions to include the intersection of all states
where an action is applied, it is not clear that such a process
would necessarily converge to the correct model. Our exper-
iments indicate that such approaches exhibit oscillating be-
havior in terms of model accuracy because some data traces
can include spurious predicates, which leads to spurious pre-
conditions being added to the model’s actions. As we men-
tioned earlier, such approaches do not feature interventions,
and hence the models learned by these techniques do not cap-
ture causal relationships correctly and feature correlations.

Pearl [2019] introduce a 3-level causal hierarchy in terms
of the classification of causal information in terms of the
type of questions each class can answer. He also notes that
based on passive observations alone, only associations can be
learned, not the interventional or counterfactual causal rela-
tionships, regardless of the size of data.

The field of active learning [Settles, 2012] addresses the
related problem of selecting which data-labels to acquire for
learning single-step decision-making models using statistical
measures of information. However, the effective feature set
here is the set of all possible plans, which makes conventional
methods for evaluating the information gain of possible fea-
ture labelings infeasible. In contrast, our approach uses a hi-
erarchical abstraction to select queries to ask, while inferring
a multistep decision-making (planning) model. Information-
theoretic metrics could also be used in our approach whenever
such information is available.

Blondel et al. [2017] introduced Dynamical Causal Net-
works which extend the causal graphs to temporal domains,
but they do not feature decision variables, which we introduce
in this paper.

8 Conclusion

We introduced dynamic causal decision networks (DCDNs)
to represent causal structures in STRIPS-like domains; and
showed that the models learned using the agent interrogation
algorithm are causal, and are sound and complete with re-
spect to the corresponding unknown ground truth models. We
also presented an extended analysis of the queries that can be
asked to the agents to learn their model, and the requirements
and capabilities of the agents to answer those queries.

Extending the empirical analysis to action precondition
queries, and extending our predicate classifier to handle
noisy state detection, similar to prevalent approaches using
classifiers to detect symbolic states [Konidaris et al., 2014;
Asai and Fukunaga, 2018] are a few good directions for fu-
ture work. Some other promising extensions include replac-
ing query and response communication interfaces between
the agent and AAM with a natural language similar to Lind-
say et al. [2017], or learning other representations like Zhuo
et al. [2014].
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