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Abstract: Optimal control of multidimensional particulate processes for crystal shape manipu-
lation based on the minimum principle and the method of characteristics is discussed. The posed
optimal control problems consist in achieving a desired morphology for a seed crystal population
within a free or a limited time scope, while minimizing the net mass of the nucleated crystal
particles. An ODE system is obtained by neglecting the natural feedback of the nucleation mass
into the crystallization kinetics. Optimal solutions resulting thereof reduce to boundary value
problems in only one or two unknown parameters. Moreover, for the original optimal control
problem, involving the full process dynamics, a simple feasible sub-optimal solution and an upper
bound for the cost function are proposed. The proposed computational approach is compared
with dynamic optimization techniques in terms of the efficiency and accuracy by means of a
numerical example.
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1. INTRODUCTION

Crystal shape manipulation is a critical engineering and
economical venture in numerous industries, including the
chemical, pharmaceutical, microelectronics, and food in-
dustry, Charpentier [2009]. Specific instances can be found
in a wide scale ranging from several nm in catalysis and
materials engineering, tens of µm in active pharmaceutical
substances, up to several mm in base chemicals. The im-
pact of the crystal particle shape into the product quality
is likewise of key importance. For instance, it has been
shown that the catalytic activity of nanocrystal particles
is strongly linked to their shape, Yang et al. [2008].

From the engineering point of view, manipulation of the
crystal morphology is, therefore, essential. While much of
the effort in the past has gone into the control and opti-
mization of (1D) crystal-size-distributions, see e.g. Braatz
and Hasebe [2002], and the references therein, research on
multidimensional crystallization processes has been scarce,
despite of its evident importance in practice, Bajcinca
et al. [2010]. The limitation in monitoring of crystal shape
has been recognized as the major bottleneck, Patience and
Rawlings [2001]. However, recent progress in image pro-
cessing techniques for particle shape monitoring has been
an impetus for intensification of theoretical research efforts
in modeling and control of multidimensional crystalliza-
tion processes, in general. In contrast to the traditional
techniques, that utilize chemical additives for blocking or
promoting of specific crystal faces, here, shape manipula-
tion by means of temperature control only is considered.

The research on optimal control of crystallization pro-
cesses has been extensive ever since it was first addressed
in Mullin and Nyvlt [1971], where the authors realized
that the final crystal size can be increased by using
a “programmed” crystallization temperature trajectory
rather than the natural cooling of the solution. There-
after, diverse optimal control problems were formulated
and solved using optimal control theory and numerical
methods, including Jones [1974], Ajinkya and Ray [1974],
Miller and Rawlings [1994], Lang et al. [1999], and many
other. One of the rare works which deals with optimization
of multidimensional processes is Ma et al. [2002], where
a sequential quadratic programming (SQP) algorithm was
used for maximizing the average length of crystals. Diverse
optimal control solutions for shape manipulation of single
crystal particles are discussed in Bajcinca et al. [2010] and
Bajcinca et al. [2011]. Other relevant references for the
ideas presented in this article are the recent works Hof-
mann and Raisch [2010] and Bajcinca and Hofmann [2011],
where the minimum principle is applied for the design of
efficient optimization algorithms for size-independent and
size-dependent growth rate kinetics, respectively.

This work considers optimization of a multidimensional
batch crystallization process with a special emphasis on
the shape manipulation for crystal population systems.
The optimization task we refer to consists in suppress-
ing the nucleation, while steering the growth of the seed
crystals towards the required final shape. To this end,
we use the method of characteristics to derive a model
from the population balance equation with a source and
advective term in Section 2. The optimization problem in
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two scenarios is formulated and its solutions using the min-
imum principle are given in Section 3. Thereby, a model
reduction is introduced by removing the natural feedback
of the nucleated crystal mass into the crystallization ki-
netics. The obtained solutions result from two boundary
value problems with one and two unknown parameters,
respectively. Finally, in Section 4, a numerical example
taken from the literature is worked out to compare the
efficiency and accuracy of our optimization scheme with
standard dynamic optimization ones.

2. MULTIDIMENSIONAL PARTICULATE SYSTEMS

A large class of particulate systems are conveniently mod-
eled by an advective linear first-order partial differential
equation (PDE), referred to as the population balance
equation (PBE), which expresses the conservation of the
number of particles in an infinitesimal volume element of
the state space (a subset of R

n
≥0)

∂f

∂t
+

n
∑

i=1

Gi(t)
∂f

∂Ln

= B(t)

n
∏

i=1

δ(Li), t > 0, (1a)

f(L1, . . . , Ln, 0) = fseed(L1, . . . , Ln). (1b)

The function f(L1, . . . , Ln, t) represents the population
density function (PDF), defined as the number density of
particles per unit volume, i.e. the net number of particles is
then given by

∫ ∞

0
. . .

∫ ∞

0
f(L1, . . . , Ln, t)dL1 . . .dLn. The

function fseed(L1, . . . , Ln) stands for the given initial den-
sity function. The advective term Gi = ∂Li/∂t refers to
the i-th component of the growth rate vector of a particle
in the state space, which is here assumed to be size inde-
pendent. In the source term, in the right-hand side of (1a),
B(t) stands for the nucleation (or birthrate) function, and
δ(Li) is the Dirac function, suggesting that new particle
nuclei are born at negligible size. Other phenomena, such
as the particle agglomeration and breakage, are ignored.

2.1 Method of characteristics

The method of characteristics is a standard technique
for solving general first order of PDEs by transforming
them into a family of ODEs parametrized by given initial
conditions on a suitable hypersurface. For the sake of
completeness, we review here very briefly the method,
which we use for the solution of (1a)-(1b).

Consider a linear first order PDE in the form

F (x1, . . . , xn) · ∇f(x1, . . . , xn) = φ(x1, . . . , xn), (2a)

where f : R
n → R is the function to be solved for,

F : R
n → R

n is a vector field, and φ : R
n → R. Then,

if f is a solution for the equation (2a), we have that

(F1, . . . , Fn, φ) · (fx1
, . . . , fxn

,−1) = 0, (2b)

where Fi and fxi
are the components of F and ∇f ,

respectively. If S is the graph of f , defined by

S = (x1, . . . , xn, z)

with z = f(x1, . . . , xn), the equation (2b) suggests that
the vector (F1, . . . , Fn, φ) lies in the tangent plane to S at
(x1, . . . , xn, z), because (f1, . . . , fn,−1) is perpendicular to
S. Thus, to find a solution, one should construct a surface
S, such that at each its point (x1, . . . , xn, z), the vector
(F1, . . . , Fn, φ) lies in the tangent plane. To this end, note
that curves C=(x1(β), . . . , xn(β), z(β)) on S exist, such that

dxi

dβ
= Fi(x1(β), . . . , xn(β)), i = 1, . . . , n

dz

dβ
= φ(x1(β), . . . , xn(β)). (2c)

This system of ODEs can be seen as the tool for construct-
ing particular curves C on S, known as the integral curves
for the vector field (F1, · · · , Fn, φ), or characteristic curves
(shortly, also characteristics) of the PDE (2a), which re-
sult by solving (2c) for xi = xi(β) and z = z(β). The
union of integral curves C defines the integral surface S
for (F1, · · · , Fn, φ), which represents the required solution
z = f(x1, . . . , xn) for the PDE (2a).

Obviously, such constructed solutions are not unique.
Typically, the PDE (2a) is associated with some restriction
or boundary condition on Γ

f |Γ = φ, (2d)

where Γ is a given (noncharacteristic) manifold in R
n−1,

parametrized by

(γ1(r1, . . . , rn−1), . . . , γn(r1, . . . , rn−1)) . (2e)

Intuitively, one needs to select the integral surfaces which
contain the manifold Γ, that is the characteristics that
emanate from the manifold Γ at β = 0. In other words, the
ODE system (2c) are associated the boundary conditions

xi(r1, . . . , rn−1, 0) = γi(r1, . . . , rn−1), i = 1, . . . , n

z(r1, . . . , rn−1, 0) = φ(r1, . . . , rn−1). (2f)

whose solutions are, say

xi = xi(r1, . . . , rn−1, β), i = 1, . . . , n.

z = z(r1, . . . , rn−1, β). (2g)

As Γ is assumed to be noncharacteristic, the first n
equations can be uniquely inverted, i.e.

β = β(x1, . . . , xn), ri = ri(x1, . . . , xn), i = 1, . . . , n− 1,

which are now substituted into (2f), to end up with the
sought integral surface z = f(x1, . . . , xn).

2.2 PBE solution

Consider the homogeneous equation corresponding to (1a).
Physically, nucleation is set to zero, while the resulting
homogenous PDF solution refers to the crystal seeds,
which we denote by fs, and require it to satisfy the full
initial conditions (1b)

∂fs
∂t

(L1, . . . , Ln, t) +

n
∑

i=1

Gi(t)
∂fs
∂Li

(L1, . . . , Ln, t) = 0 (3)

fs(L1, . . . , Ln, 0) = fseed(L1, . . . , Ln). (4)

Applying the concepts from Section 2.1, we will construct
characteristic curves C = (t, L1, . . . , Ln, z) by using a
parametrization (β, r1, . . . , rn). The curve C with z =
fs(t, L1, . . . , Ln), then, lies on the graph of the solution,
while the parametrization (r1, . . . , rn, β) 7→ (L1, . . . , Ln, t)
needs to be inverted to get the solution. From (2c)

dt

dβ
= 1,

dLi

dβ
= Gi(β),

dz

dβ
= 0. (5)

Restricting the solution of the system of ODEs (5) to
match the initial condition (4)

t(r1, . . . , rn, 0) = 0,

Li(r1, . . . , rn, 0) = ri, i = 1, . . . , n

z(r1, . . . , rn, 0) = fseed(r1, . . . , rn),
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fseed(L1, L2)

L2

L1

ℓ2(t)

ℓ1(t)

ℓ2(t)

ℓ1(t)

fs(L1, L2, t)

Nucleation PDF

Fig. 1. Bidimensional PBE solution at a time instant t.

we obtain the characteristic curves parametrized in terms
of (r1, . . . , rn, β)

t(r1, . . . , rn, β) = β,

Li(r1, . . . , rn, β) = ri +

∫ β

0

Gi(ξ)dξ, i = 1, . . . , n,

z(r1, . . . , rn, β) = fseed(r1, . . . , rn).

Inverting the mapping (r1, . . . , rn, β) 7→ (L1, . . . , Ln, t),

ri = Li − ℓi(t), ℓi(t) :=

∫ t

0

Gi(ξ)dξ, i = 1, . . . , n. (6)

Hence, the homogenous solution reads

fs(L1, . . . , Ln, t) = fseed(L1 − ℓ1(t), . . . , Ln − ℓn(t)), (7)

that is, this solution is a translation of the initial PDF, as
a consequence of the growth of the crystals, see Fig. 1.

Now, let fn be the particular solution of the PBE, which
satisfies the homogenous initial condition fn(L1, . . . , Ln, 0) =
0. The ODE system in (5) preserves the same directions
for the characteristic curves, except for the z dimension

dz

dβ
(r1, . . . , rn, β) = B(β)

n
∏

i=1

δ(Li), z(r1, . . . , rn, 0) = 0,

implying

z(r1, . . . , rn, β) =

∫ β

0

B(ξ)
n

∏

i=1

δ(ri + ℓi(ξ))dξ. (8)

Thus, the particular solution, referring to the nucelation
PDF is given by

fn(L1, . . . , Ln, t)=

∫ t

0

B(ξ)

n
∏

i=1

δ(Li − ℓi(t) + ℓi(ξ))dξ. (9)

To conclude, while the initial distribution is translated,
the nucleated PDF emerges over a line domain, because
of the Dirac distribution inside the integral (9). This is
depicted in Fig. 1. Note that (7) and (9) reflect a decompo-
sition of the total density function into two separate parts
referring to the seed and nucleation crystals, respectively.

2.3 Volume computation

With reference to the crystallization process dynamics,
which we will shortly focus on, for our computation
framework the net volume function VC = VC(t) of the
crystal particles is essential. Given the expression for
the volume of a single particle η = η(L1, . . . , Ln), and
the solution for the density function f(t, L1, . . . , Ln), the
expression for the net volume reads

VC(t)=

∫ ∞

0

. . .

∫ ∞

0

f(L1, . . . , Ln, t)η(L1, . . . , Ln)dL1. . .dLn.

(10)
Let VC,s and VC,n be the volume components stemming
from the seed fs, and the nucleation fs distributions,
respectively. Then, from (7), it follows

VC,s(t) =

∫ ∞

0

. . .

∫ ∞

0

fseed(L1, . . . , Ln)×

× η (L1+ℓ1(t), . . . , Ln+ℓn(t)) dL1 . . . dLn (11)

and

VC,n(t) =

∫ t

0

∫ ∞

0

. . .

∫ ∞

0

B(ξ)

n
∏

i=1

δ(Li − ℓi(t) + ℓi(ξ))

η(L1, . . . , Ln)dL1 . . . dLndξ

=

∫ t

0

B(ξ)η(ℓ1(t) − ℓ1(ξ), . . . , ℓn(t) − ℓn(ξ))dξ, (12)

which is a line integral along the time-parameterized
trajectory (ℓ1(t), . . . , ℓn(t)).

2.4 Bidimensional crystallization process

Bidimensional particulate crystallization systems (n =
2), are often encountered in practice. The corresponding
population balance equations for f(L1, L2, t) is given by

∂f

∂t
+G1(t)

∂f

∂L1
+G2(t)

∂f

∂L2
= B(t)δ(L1)δ(L2), (13)

f(L1, L2, 0) = fseed(L1, L2). (14)

The growth and secondary nucleation rates depend on
the relative supersaturation σ, and on the total volume
of crystals according to

B(t) = kbσ(t)bVC(t), (15a)

G1(t) = kg1
σ(t)g1 , G2(t) = kg2

σ(t)g2 . (15b)

We consider here the secondary nucleation only in the
metastable region, and do not address the primary nu-
cleation. The supersaturation σ is defined by

σ(t) =
c(t)

csat(t)
− 1, (15c)

where c is the solution concentration, while the solubility
csat is a function of the solution temperature T

csat(t) = A0 +A1T (t) +A2T (t)2. (15d)

Note that for a given function c(t), (15c) and (15d) can be
solved analytically for T (t). Thus, σ(t) or T (t) can be used
interchangeably as the control variables; here, we employ
the former, while the temperature T will be considered as
output (see below). Namely, its optimal profile is to be
stored, and used for the control of a real process.

Finally, the mass balance describes the solute consump-
tion. From the mass conservation of the system, the so-
lution concentration c, in grams of solute per grams of
solvent, is given by

c(t) = c0 − ρc(VC(t) − VC(0)), (15e)

where ρc is the mass density of crystal particles.
For a given expression of η = η(L1, L2), representing

the volume of a single particle of the underlying crystal
morphology, the volume VC,s(t) in (11) can be explicitly
expressed in terms of the evolution of the trajectory ℓi(t).
To illustrate this, let n = 2, and consider

η(L1, L2) =
1

3
L3

1 + (L2 − L1)L
2
1, L2 > L1, (15f)
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which refers to the KDP crystal and will be employed
in Section 4 as the case-study for a numerical example.
Substitution of this into equation (11), we obtain

VC,s(t) =η(ℓ1(t), ℓ2(t))µ00(0) + 2ℓ1(t)(ℓ2(t) − ℓ1(t))µ10(0)

+ (ℓ2(t) − 2ℓ1(t))µ20(0) + ℓ21(t)µ01(0)

+ 2ℓ1(t)µ11(0) + VC(0), (15g)

where µij(0) (i = 0, 1, 2, j = 0, 1) are constants, repre-
senting the moments of the distribution fseed(L1, L2) (see
below), given by

µij(0) =

∫ ∞

0

∫ ∞

0

fseed(L1, L2, t)L
i
1L

j
2dL1dL2. (16)

Note that VC,s (ℓ1, ℓ2) in (15g) is a polynomial in terms
of ℓ1 and ℓ2. Now we are in the position to define the
integro-differential model.

Definition 1. (Integro-differential model). With σ(t) > 0
as input, use the process kinetics (15a)-(15b) to compute
B(t), G1(t) and G2(t). From (6), ℓ1(t) and ℓ2(t) are
integrated, and hence, L1(t) and L2(t), too. Using (15g)
and (12) compute the total volume VC(t) = VC,s(t) +
VC,n(t). The, computation loop in now closed, as VC(t)
is fed back to (15a) for B(t). The temperature T (t), which
is a model output, is computed by solving the kinetics
equations (15c)-(15e) for T (t).

In the latter integration scheme the computation of the
net volume VC(t) can be carried out by making use of the
bidimensional moment model. Therefore, note that a given
density function f(L1, L2, t) can be associated the mixed
moments, defined as

µij(t) =

∫ ∞

0

∫ ∞

0

f(L1, L2, t)L
i
1L

j
2dL1dL2. (17)

Using this definition, the following ODE system can be
derived from the PBE (13), see e.g. Ma et al. [2002]

µ̇00(t) = B(t),

µ̇ij(t) = iG1(t)µi−1,j(t) + jG2(t)µi,j−1(t), i, j > 0. (18)

For a given expression η(L1, L2), an expression for VC(t)
in terms of mixed moments can be derived. E.g. for (15f)

VC(t) = µ21(t) −
2
3µ30(t). (19)

In view of (15a), it is obvious that the moment model (18)
is closed. This leads us to the following integration scheme.

Definition 2. (Moment model). Consider σ(t) > 0 as in-
put, and use the process kinetics (15a)-(15b) to compute
B(t), G1(t) and G2(t). Integrate the moment model (18)
for the moments µ21(t) and µ30(t). Then, use (19) to
compute VC(t). At this point, the computation loop closes.
Again, the temperature T (t) is computed by solving (15c)-
(15e) for T . If required, the trajectory (ℓ1(t), ℓ2(t)) is
computed by integrating (6).

For both models, to solve for fn(L1, L2, t) and fs(L1, L2, t)
of the PBE (13)-(14), use (7) and (9). [Of course,
fseed(L1, L2) is available from the initial conditions.]

We assume that the operation is always maintained
within the metastable region where, given σ(t), a unique
solution for T (t) in the domain of interest exists. Thus, for
a given profile σ(t), the temperature profile T (t), which
realizes σ(t), is uniquely determined, depending on the
initial conditions and the system dynamics.

3. OPTIMAL CONTROL

3.1 Problem formulation

In this section, we pose two optimal control problems
emerging from the crystal shape manipulation task. To
present the main ideas, we focus the discussion on the
bidimensional crystal populations. The optimal control
problem in higher dimensions and its solution remain
conceptually the same, but the computation gets more
extensive.

By considering σ(t) as the control input to our system,
we define the following optimal control problems

Problem 1’: min
σ(t)∈[σ,σ]

VC,n(tf ) s.t.
ℓ1(tf ) = ℓ1,d

ℓ2(tf ) = ℓ2,d
(20)

Problem 2’: min
σ(t)∈[σ,σ]

VC,n(tf ) s.t.
ℓ1(tf ) = ℓ1,d

ℓ2(tf ) = ℓ2,d

tf ≤ tf,c

(21)

For the input σ(t), we accordingly define the upper and
lower bounds, σ and σ, respectively. The maximum limit
is used to avoid primary nucleation, and is also motivated
by the limitations on the temperature, while the minimum
supersaturation limit is used to maintain the solution
supersaturated. Note that we will allow σ to be chosen
arbitrarily close [but not equal] to zero. Problem 1’ reflects
the basic shape manipulation problem of attaining a de-
sired final shape for the seed crystals, while, in Problem 2’,
additionally, the process is required to be completed within
a fixed time interval [0, tf,c]. In both cases, the amount
(volume) of the resulting nucleation mass is penalized.
It turns out that in contrast to the analogous optimal
control problem for one-dimensional PBE (see Hofmann
and Raisch [2010] and Bajcinca and Hofmann [2011]), the
final time constraint may be inactive. This infers that for
a given desired shape, the crystallization process under
optimal control can never take longer than this limit.

3.2 Idealized model

The integro-differential model and the moment model,
as defined by Definition 1, and 2, respectively, are not
appropriate for the application of the minimum principle,
as this would lead to a two-point boundary value problem
with relatively many unknown boundary values. Following
a model simplification from Hofmann and Raisch [2010],
where for one-dimensional processes, the natural feedback
of the nucleation mass in the crystallization kinetics is
entirely neglected, we introduce here a so-called idealized
model, which will lead to an essentially simplified boundary
value problem. More precisely, the idealization condition
consists in adapting the equations (15a) and (15e) to

B(t) ≈ kbσ(t)bVC,s(t), (22a)

c(t) ≈ c0 − ρc(VC,s(t) − VC(0)), (22b)

where VC,s(t) is given by the polynomial expression (15g).
This idealization is intuitively motivated by the optimal
control problem itself, whose goal is the very minimization
of the amount of nucleation. [To justify the idealization
condition, and the acceptable accuracy of the resulting
solution, it has to be verified that the feasible solution
allows a “sufficiently low” minimal value for VC,n.]
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The integral expression for the net nucleation volume
function Vc,n(t) given by

VC,n(t) =

∫ t

0

B(ξ)η (ℓ1(t) − ℓ1(ξ), ℓ2(t) − ℓ2(ξ)) dξ (23)

is intricate to use directly as a cost function. Therefore,
following the approach in Bajcinca and Hofmann [2011],
we introduce the modified integral expression

vC,n(t) =

∫ t

0

B(ξ)η (ℓ1,d − ℓ1(ξ), ℓ2,d − ℓ2(ξ)) dξ (24)

instead. Given that the equaltiy constraints ℓ1(tf ) = ℓ1,d

and ℓ2(tf ) = ℓ2,d imply the condition vC,n(tf ) = VC,n(tf ),
and the fact that [due to the underlying idealization]
VC,n(t) does not affect the system solutions for all t ∈
[0, tf ], a new model can be introduced, if (23) in the
integro-differential model is substituted by (24). Such a
model, referred to as the idealized model, then, reads:

Definition 3. (Idealized ODE model). Use σ(t) > 0 as in-
put to compute G1(t), G2(t), ℓ1(t), ℓ2(t) and VC,s(t), as
before using (15b), (6) and (15g), respectively, whereas
B(t) is now computed using (22a). [The computation loop
closes here.] The temperature T (t), which is again a model
output, is computed by solving the kinetics equations
(15c), (15d) and the idealized mass-balance equation (22b)
for T (t). In addition, introduce, the state equation

v̇C,n = B(t)η (ℓ1,d − ℓ1(t), ℓ2,d − ℓ2(t)) , vC,n(0)=0. (25)

which, as indicated above, provides the value VC,n(tf ) at
t = tf [in accordance with the idealized B(t) computed via
(22a)], and therefore is suitable to use as a cost function.

3.3 Idealized model in τ -domain

Introduce a new “time” variable, τ , which is related to the
“real” time t, via the ODE

dτ = G1(t)dt, (26)

where G1(t) > 0 is required for all t ∈ [0, tf ]. Choosing
one of the growth rates as the time scaling function helps
in simplifying the solution, as will be shown next. W.l.o.g.
we assume for the exponential growth parameters g2 > g1,
and b > g1 and b > g2. The latter two hold predominantly
in practice, while for g1 > g2 define dτ = G2(t)dt.

In the transformed τ -domain, the idealized process
kinetics becomes [the dependency on τ is designated by
the ‘̃ ’-attribute]

B̃(τ) = kbσ̃(τ)bṼC,s(τ), (27a)

G̃1(τ) = kg1
σ̃(τ)g1 , G̃2(τ) = kg2

σ̃(τ)g2 (27b)

c̃(τ) = c0 − ρc(ṼC,s(τ) − VC,s(0)) (27c)

and c̃sat(τ) = A0 + A1T̃ (τ) + A2T̃ (τ)2. No state variable

must be reserved for the evolution of ℓ̃1(τ), as ℓ̃1(τ) = τ .
By introducing the state variables

x1
∧

= ℓ̃2, x2
∧

= ṽC,n, x3
∧

= t̃ (27d)

we, effectively, retain the following ODE system that will
be utilized to solve the optimal control problem

dx1

dτ
=
kg2

kg1

σ̃g2−g1 (27e)

dx2

dτ
=

kb

kg1

σ̃b−g1 ṼC,s(τ, x2)η̃ (ℓ1,d − τ, ℓ2,d − x1) (27f)

dx3

dτ
=

1

kg1

σ̃−g1 , (27g)

with zero initial conditions. Note that the time t̃ appears
as an additional state due to the time-constraint in the
optimal control in Problem 2, and for back-transformation
of the optimal solution to the t-domain, a step which has
to be carried out ultimately for its implementation to a
real process. Moreover, using ℓ̃1(τ) = τ , (15g) simplifies to

ṼC,s(τ) =
(

1
3τ

3 +
(

ℓ̃2(τ) − τ
)

τ2
)

µ00(0)

+ 2τ
(

ℓ̃2(τ) − τ
)

µ10(0) +
(

ℓ̃2(τ) − 2τ
)

µ2,0(0)

+ τ2µ0,1(0) + 2τµ1,1(0) + VC,s(0). (28)

The optimal control problems in the idealized and time
scaled model now read

Problem 1: min
σ̃(τ)∈[σ,σ]

ṽC,n(τf ) s.t.
τf = ℓ1,d

ℓ̃2(τf ) = ℓ2,d
(29)

Problem 2: min
σ̃(τ)∈[σ,σ]

ṽC,n(τf ) s.t.

τf = ℓ1,d

ℓ̃2(τf ) = ℓ2,d

t̃(τf ) ≤ tf,c

(30)

Note that compared to Problem 1’, Problem 1 is simplified
in the τ -domain, as the model order is reduced by one [due
to ℓ1 = τ ], and, the final “time” τf is now fixed.

3.4 Minimum principle solutions

The idealized ODE model in the τ -domain with the
states x = [x1, x2, x3]

T , including the simplified kinetics
(27a)-(27g), is suitable apply the minimum principle. The
Hamiltonian H, and the adjoint system with the costates
Ψ = [ψ1, ψ2, ψ3]

T is the same for both optimal control
problems, while the necessary conditions required by the
minimum principle differ only in the boundary conditions.
The Hamiltonian H = ΨT d

dτ
x reads

H (x,Ψ, σ̃, τ) = ψ1
kg2

kg1

σ̃g2−g1 + ψ2
kb

kg1

σ̃b−g1×

× ṼC,s(τ, x1)η (ℓ1,d − τ, ℓ2,d − x1) + ψ3
1

kg1

σ̃−g1 , (31a)

with the adjoint system given by

d
dτ
ψ1 = −ψ2

kb

kg1

σ̃b−g1×

×
∂

∂x1

[

ṼC,s(τ, x1)η (ℓ1,d − τ, ℓ2,d − x1)
]

, (31b)

d
dτ
ψ2 = 0, (31c)

d
dτ
ψ3 = 0. (31d)

Solution to Problem 1: According to the minimum
principle, in this case, the boundary conditions for each
state and costate, corresponding to the optimal solutions
(always denoted by a ‘*’), are simple

x∗1(0) = 0; x∗2(0) = 0; x∗3(0) = 0; (32a)

x∗1(τf ) = ℓ2,d; ψ∗
2(τf ) = 1; ψ∗

3(τf ) = 0. (32b)

In addition, the final “time” τf is fixed and known

τf = ℓ1,d. (32c)

It immediately follows that

ψ∗
2(τ) = 1, ∀τ ∈ [0, τf ] (32d)

ψ∗
3(τ) = 0, ∀τ ∈ [0, τf ] . (32e)

At each “time” instant τ ∈ [0, τf ], the optimal control
input, σ̃∗(τ), must globally minimize H, hence
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σ̃∗(τ) =argmin
σ̃∈[σ,σ]

H (x∗,Ψ∗, σ̃, τ)

=argmin
σ̃∈[σ,σ]

(

ψ∗
1

kg2

kg1

σ̃g2−g1 + ψ∗
2

kb

kg1

σ̃b−g1×

× ṼC,s(τ, x
∗
1)η (ℓ1,d − τ, ℓ2,d − x∗1)

)

. (32f)

A candidate for σ̃∗(τ) is a solution σ̃o(τ) ∈ [σ, σ], defined
by ∂

∂σ̃
H = 0, which is given by

σ̃o(τ) =

(

−
1

ψ1

kb

kg2

b− g1
g2 − g1

ṼC,s (τ, x∗1)×

× η (ℓ1,d − τ, ℓ2,d − x∗1)

)− 1

b−g2

, (32g)

provided that ψ∗
1(τ) < 0. Otherwise, σ̃∗(τ) = σ, as both

summation terms in (32f) are positive and b > g2 > g1.
Therefore, the optimal control can be declared by

σ̃∗(τ) = argmin
σ̃∈{σ,σ̃o,σ}

H (x∗,Ψ∗, σ̃, τ) . (32h)

The problem of finding the optimal control has been redu-
ced to a two-point boundary value problem, which can be
solved by finding the only unknown initial condition ψ∗

1(0).

Solution to Problem 2: To deal with the additional
inequality constraint, x3(τf ) ≤ tf,c, one needs to know,
whether the constraint is active or not. For instance, in
a first step, the optimal control Problem 1 is solved. If
x∗3(τf ) < tf,c results, then the underlying solution is also
a solution to Problem 2, since the time constraint is not
active. In all other cases, one can replace the inequality
constraint by the equality one x3(τf ) = tf,c. This leads to
the following boundary conditions

x∗1(0) = 0; x∗2(0) = 0; x∗3(0) = 0; (33a)

x∗1(τf ) = ℓ2,d; ψ∗
2(τf ) = 1; x∗3(τf ) = tf,c. (33b)

Again, the final “time” τf is fixed and known

τf = ℓ1,d. (33c)

At each “time” instant τ ∈ [0, τf ], the optimal control
input, σ̃∗(τ), must globally minimize H

σ̃∗(τ)=argmin
σ̃∈[σ,σ]

H (x∗,Ψ∗, σ̃, τ)

=argmin
σ̃∈[σ,σ]

(

ψ∗
1

kg2

kg1

σ̃g2−g1 + ψ∗
2

kb

kg1

σ̃b−g1×

×ṼC,s(τ, x
∗
1)η (ℓ1,d−τ, ℓ2,d−x

∗
1)+ψ

∗
3

1

kg1

σ̃−g1

)

(34)

Note that ψ∗
3 = const must be a positive constant, ψ∗

3 > 0,
otherwise, [that is, if ψ∗

3 < 0] due to the last term in (34)
[which becomes dominant for small σ̃], and if σ is chosen
small enough, σ̃∗(τ) = σ, ∀τ ∈ [0, τf ] would hold, and the
time-constraint would be violated.

In this case, ∂
∂σ̃

H = 0 can not be solved analytically. In-
stead, the following equation has to be solved numerically
for σ̃o(τ) [again, we drop the implicit dependencies on τ ]

kb(b− g1)(σ̃
o)bṼC,s(τ, x

∗
1)η(ℓ1,d − τ, ℓ2,d − x∗1)

+ ψ∗
1kg2

(g2 − g1)(σ̃
o)g2 − ψ∗

3g1 = 0.

The optimal control problem is therefore reduced to a two-
point boundary value problem, involving two unknown
initial conditions ψ∗

1(0) and ψ∗
3 = const. For its solution,

e.g. a single shooting numerical method can be used (see
Section 4).

Implementation in the t-domain: The computed optimal
solution σ̃∗(τ) refers to the idealized model given by
Definition 3. It does not identically match to the optimal
profile of the exact integro-differential model (Definition 1)
or moment model (Definition 2). This section concerns the
errors, resulting from the use of the underlying idealization
conditions (22a)-(22b). Here, we construct a feasible sub-
optimal temperature profile in the “real” time domain,
denoted by T̂ (t), which guarantees the constraints, and
provides an upper bound for the minimal possible cost.
Related thorough discussions can be found in Hofmann
and Raisch [2010] and Bajcinca and Hofmann [2011].

For the implementation of the solution σ̃∗(τ) to the
optimal control problems with free or constrained tf , two
final steps have to be carried out, additionally. First, the
signals, in particular σ̃∗(τ), must be back-transformed
to the “normal” time t-domain. Therefore, the inverse
function [denoted by τ∗(t)] of the optimal time trajectory
t = x∗3(τ), representing the optimal profile of the variable
τ in the t-domain, is to be used in accordance with

σ∗(t) = σ̃∗ (τ∗(t)) , t ∈ [0, x∗3(τf )] . (35)

To compute the temperature profile in the t-domain, which
is ultimately needed as the input to a crystallization pro-
cess in practice, one could apply the available profile σ∗(t)
as the input to the idealized model from Definition 3. The
temperature profile resulting from this, however, is not
preferable for application to a real process, as it would
very likely lead to the constraints violation. On the other
hand, if σ∗(t) is used as the input to the integro-differential
model (Definition 1) or moment model (Definition 2), it is
obvious that the constraints ℓ1(tf ) = ℓ1,d and ℓ2(tf ) = ℓ2,d

defined by the final desired morphology of the underlying
crystal population, in addition to the time constraint in
Problem 2 are precisely held. This is a consequence of the
fact, that the idealization conditions (22a)-(22b) do not
affect the trajectory (ℓ1(t), ℓ2(t)) in (6) [with σ defined as

the input]. Hence, if the resulting temperature profile T̂ (t)
would be applied to the real process, the supersaturation
profile σ∗(t) is, per construction realized, and therefore the
constraints must hold, too.

To summarize, we suggest such constructed temperature
profiles T̂ (t), t ∈ [0, tf ], as convenient sub-optimal solu-
tions to the original optimal control problems Problem 1’
and Problem 2’. Note that this is a feasible solution, in
that it guarantees all constraints, and therefore, provides
an upper bound for the cost in Problem 1’ and Problem 2’.

(a)

L2

L1

(b)
Fig. 2. KDP crystals.

4. NUMERICAL EXAMPLE

A numerical example for illustrating the proposed optimal
control algorithm for shape manipulation of a bidimen-
sional crytal population is extensively discussed in this
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section. As a case study we consider potassium dihydrogen
phosphate (KH2PO4, abbr. KDP), see Fig. 2. The model
parameters are listed in Table 2. The initial seed distri-
bution fseed(L1, L2) is adapted from Ma et al. [2002] to
satisfy the geometrical condition L2 > L1 for all particles
of the population, and is given by

fseed = −6.99×10−4(L2
1+L

2
2)+0.25L1+ 0.33L2−65.52

for L1 ∈ [160, 220], L2 ∈ [220, 280] (in [µm] units), and null
otherwise. The intial seed mass is 5.6 [mg]. Note that fseed
is parabola-like shaped, centered at (196, 256) [µm]. The
desired center for the seed PDF at the end of the batch is
(320, 630) [µm], which provides the equality optimization
constraints at (ℓ1,d, ℓ2,d) = (124, 374) [µm]. In Problem 2’
resp. Problem 2, the final time constraint is set to two
hours, tf,c = 7200 [s]. The supersaturation is limited by
σ = 0.1% and σ = 6%.

The single shooting method is used to solve the two-
point boundary value problems, resulting from the appli-
cation of the minimum principle to Problem 1 and Problem
2, as defined in Section 3.3. For Problem 1, where the final
time tf is free, the boundary value problem involves the
initial value ψ∗

1(0), as the only unknown parameter, which
is determined by using the fzero function from Matlab R©,
in conjunction with the ode15s solver. If the final time
constraint tf ≤ tf,c is active, the solution to Problem 2
is more demanding, as the initial values of two costates,
namely, ψ∗

1(0) and ψ∗
3(0), are unknown. Therefore, the

solver bvp4c of Matlab R© is employed.
For comparison purposes, the optimal control problems

Problem 1 and Problem 2 are solved also with a dynamic
optimization approach using the fmincon non-linear pro-
gramming tool from Matlab R©. Thereby, the control profile
σ̃(τ) is discretized using a uniform grid with a spacing
equal to 2 [µm] in the interval [0, ℓ1,d], while a first-order
interpolation between the grids is applied.

In Table 1 we provide some important outcomes ob-
tained by making use of the minimum principle (PMP),
and the dynamic optimization (DYN), for the two under-
lying optimization scenarios Problem 1 and Problem 2.
Note that the signs of the resulting costate initial values
ψ∗

1(0) < 0 and ψ∗
3(0) > 0 are in agreement with the

discussion in Section 3.4. The very good matching between
the outcomes corresponding to the minimum principle and
the dynamic optimization solutions is a strong indicator
for their correctness. Furthermore, as intuitively expected,
the cost v∗C,n(tf ) in Problem 2 must increase due to the

introduced final time constraint of 2 [h]. Additionally,

in the table is included V̂C,n(tf ), which results from the
simulation of the non-idealized models from Definition 1
or Definition 2 with σ∗(t) as input. As discussed in the
previous section, this represents an upper bound for the
cost in the real process under optimal control.

Table 1.

Problem 1 Problem 2

PMP DYN PMP DYN

ψ∗

1
(0) (×106) −2.55 −0.992

ψ∗

3
(0) (×103 [µm3/s]) 8.611

v∗
C,n

(tf ) (×106 [µm3]) 300.873 300.875 324.436 324.431

V̂C,n(tf ) (×106 [µm3]) 303.800 308.234 325.437 329.248
t∗
f

[h] 6.627 6.621 2 2

computation time [s] 4.99 29.33 188 32
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(c) Upper bound cost function

Fig. 3. Optimal solutions for Problem 1 and Problem 2
(black lines refer to PMP; gray to DYN).

In Fig. 3 we depict the evolution of the optimal su-
persaturation profile σ∗(t), the sub-optimal temperature

profile T̂ (t) (see Section 3.4.3), and the corresponding net

volume of nucleated crystals V̂C,n(t), respectively. Note
that the temperature and supersaturation plots exhibit a
typical behavior, which is well known in optimal control
of batch crystallization. Namely, a flat part prevailing for
most of the time is followed by a steep decrease of the
temperature corresponding to a steep increase of super-
saturation, shortly before the process is completed. From
Fig. 3(a) one can observe that the supersaturation refer-
ring to Problem 2, must be kept at a higher level in order
to complete the shape manipulation task in a shorter time.
Also, in the solutions to both Problem 1 and Problem 2 the
supersaturation constraint σ is always inactive, indicating
that ψ∗

1(t) < 0 for all t ∈ [0, tf ] [recall the discussion
in Section 3.4]. All plots indicate a very tight match in
the trajectories of the optimal solutions, resulting from
the application of the minimum principle and dynamic
optimization.

Finally, for validation purposes, the PDF f(L1, L2, tf )
can be reconstructed using the evolution of the mo-
ments computed via the model in Definition 2. Therefore,
we utilized the method suggested in Qamar and Seidel-
Morgenstern [2009]. The results are depicted in Fig. 4 and
Fig. 5, referring to Problem 1’ with free time duration, and
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Fig. 4. Evolution of the optimal PDF for Problem 1.

Problem 2’ with limited time duration, respectively. Both
figures indicate that the obtained size and shape for the
seed crystals fit very well to the desired one. Note also,
that the state-space constraints L2 > L1 [which we did
not explicitly consider!], defined by the morphology of the
KDP crystals are not violated.

5. CONCLUSION

Optimal control problem for crystal shape manipulation
of a multidimensional population of crystal particles has
been addressed. The general goal in attaining a population
of crystals with a desired morphology, naturally leads to
an optimal control problem, where seed crystals must be
grown towards a prespecified shape, while the overall mass
of nucleated particles is to be minimized. Using the method
of characteristics and a physically motivated simplifying
condition, we derive a closed ODE system, which is suit-
able for the application of the minimum principle. We
present solutions to optimal control problems, either with
or without a limitation on the process duration, which
essentially reduce to boundary value problems, involving
only one or two unknown variables. In addition, for the

Table 2.

Parameter Value Units

kg1
12.1 µm×s−1

kg2
100.75 µm×s−1

kb 7.49 × 10−8 # µm−3
×s−1

g1 1.48 —
g2 1.74 —
b 2.04 —
A0 0.21 g/g solv.
A1 −9.76 × 10−5 g×◦C−1 /g solv.
A2 9.30 × 10−5 g×◦C−2 /g solv.
c0 0.31 g/g solv.
ρc 2.34 × 10−12 g×µm−3

(a) 3D
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Fig. 5. Evolution of the optimal PDF for Problem 2.

original problem setting, including the full process dynam-
ics, a simple feasible sub-optimal solution and an upper
bound for the cost function are proposed.
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