
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

Database engineering process modelling

Roland, Didier

Award date:
2003

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 16. Aug. 2024

https://researchportal.unamur.be/en/studentTheses/784cfaed-c3a6-40a3-81cd-117716eab505

Database engineering process modelling

Didier Roland

SupervisorSupervisorSupervisorSupervisor

Prof. Jean-Luc Hainaut

JuryJuryJuryJury

Jean Fichefet (president, FUNDP, Namur, Belgium)

Jean-Luc Hainaut (FUNDP, Namur, Belgium)

Colette Rolland (Sorbonne, Paris I, France)

Éric Dubois (CRP Henri Tudor, Luxembourg)

Naji Habra (FUNDP, Namur, Belgium)

Academic year 2002-2003

A thesis submitted for the degree of PhD in sciences, computer science option

FUNDP
Institut d’Informatique
rue Grandgagnage 21
B-5000 Namur
Belgium
Tél. +32 81 72 49 64
Fax. +32 81 72 49 67
http://www.fundp.ac.be

iii

Abstract
An important research subject in Software engineering is concerned with modelling the develop-
ment process of huge software in order to bring some help to engineers when designing and main-
taining an application. In general, every design process is seen a rational application of transforma-
tion operators to one or more products (mainly specifications) in order to produce new products
that satisfy some given criteria: O=f(I). I and O being sets of products compliant with formalisable
models, f is a transformation composition whose specifications are the properties of I and O. This
modelling is a sound basis for a methodological guidance. Indeed, at each step of the process, the
set of pertinent activities and types of products are proposed to the designer, without any other.
This guidance can be reinforced with some help. Furthermore, this modelling allows to document
the process with its history, i.e. with a representation of performed activities. This history is itself
the basis of maintenance activities.

The thesis holds in four phases:

• elaboration of a general model of design processes, a method specification language (MDL), and
a history representation

• basic methodological recommendation proposals for the elaboration of engineering methods
according to the defined model

• development and integration of some methodological control functions in the DB-MAIN
CASE tool, including an extension of the repository, the definition of the interface of the meth-
odological functions, the development of the methodological engine and the development of
history processors (recording, replay, analysis,...)

• evaluation of this model with case studies using classical methods.

Résumé
Un sujet de recherche important dans le monde de l’ingénierie logicielle concerne la modélisation
des processus de développement de grosses applications afin d’apporter de l’aide aux ingénieurs
pour concevoir et maintenir leurs applications. En général, chaque processus de conception est vu
comme l’application rationnelle d’opérateurs de transformation à un ou plusieurs produits (généra-
lement des spécifications) pour obtenir de nouveaux produits qui satisfont un ensemble défini de
critères: S=f(E). E et S étant des ensembles de produits conformes à des modèles formalisables, f est
une composition de transformations dont les spécifications sont les propriétés de E et S. Cette
modélisation permet, principalement, un suivi méthodologique. En effet, à chaque étape du proces-
sus, seul l’ensemble des outils pertinents est mis à la disposition du concepteur. Ce guidage peut
éventuellement être renforcé par des messages d’aide. De plus, cette modélisation permet de docu-
menter le processus avec son historique, c’est-à-dire avec une représentation des actions entreprises.
Cet historique peut lui-même être à la base d’activités de maintenance.

La thèse tient en quatre parties :

• élaboration d’un modèle général pour la définition de processus d’ingénierie, d’un langage de
spécification de méthodes (MDL) et d’une représentation des historiques;

• propositions de recommandations méthodologiques pour l’élaboration de méthodes d’ingénierie
selon le modèle défini;

• développement et intégration de fonctions de contrôle méthodologique dans l’atelier DB-
MAIN; ceci inclut l’extension du référentiel, la définition de l’interface homme-machine pour
les fonctions méthodologiques, le développement du moteur méthodologique et le développe-
ment de processeurs d’historiques (enregistrer, rejouer, analyser,...);

• évaluation de ce modèle avec des études de cas utilisant des méthodes classiques.

iv

v

Acknowledgement

This thesis is the result of a long work. A long time during which I met many people who
helped me and who showed some interest. All these people deserve to be thanked.

First of all I want to Thank Jean-Luc Hainaut, with who I did all the job. I want to thank
him for the opportunity he gave to me, for his support and for his availability in the frame-
work of this thesis, but also for his great job in founding and leading the LIBD research
team. I want to thank all this team too, including its present and former members, for their
support and collaboration. In particular, many thanks to Jean Henrard, Jean-Marc Hick
and Vincent Englebert for the great job we did in the DB-MAIN project, and to Virginie
Detienne with who I also worked on another interesting project.

Many thanks to all the other people from the Insistut d'Informatique and from many other
research labs for all the interesting discussion I had with them all. I will not list them all
because I should fill several pages with all their names, but they can really be sure I do not
forget them.

Many thanks to the readers of this thesis and to the members of the jury for their interest
in it.

I also want to thank all the friends and family members who supported me along the years.
Special thanks to Raoudha who particularly supported me along the whole work while pre-
paring her own PhD and to Xia who particularly supported me in the last months. Many
thanks to Renaud, Lysia, Sivilay, Olfa and many other friends who also supported me a lot.

But this thesis could not have been written if I had not received a very good education
before. For this education, and for supporting me all the time from my birth, many, many,
many thanks to my parents. Many thanks too to all my other family members (in the
broader sense) and to all the people who participated to this education, including all the
teachers at kindergarten, primary school, secondary school, and all the years at university
before PhD.

vi

vii

Contents

GlossaryGlossaryGlossaryGlossary 14141414

Chapter 1 Chapter 1 Chapter 1 Chapter 1
IntroductionIntroductionIntroductionIntroduction 1111

1.1. Process modelling presentation 2

1.2. State of the art and related works 3
1.2.1. History of data and process engineering 3
1.2.2. Process modelling in the large 4
1.2.3. CASE tools and meta-CASE tools 7
1.2.4. History recording 7

1.3. Database specifics 8

1.4. Goals 9

1.5. Structure of the thesis 10

1.6. DB-MAIN 11

Part 1Part 1Part 1Part 1
Models and MethodsModels and MethodsModels and MethodsModels and Methods 13131313

Chapter 2 Chapter 2 Chapter 2 Chapter 2
BasicsBasicsBasicsBasics 15151515

2.1. Basic definitions 16

2.2. Architecture 19

Chapter 3 Chapter 3 Chapter 3 Chapter 3
Product modelsProduct modelsProduct modelsProduct models 23232323

3.1. Basic considerations 24

3.2. The GER model 25
3.2.1. Schema 25
3.2.2. Entity types 26
3.2.3. Relationship types (rel-types) 26
3.2.4. Attributes 26
3.2.5. Roles 27
3.2.6. Constraints 28
3.2.7. Is-a relations 31
3.2.8. Processing units 32
3.2.9. Collections 32
3.2.10. Dynamic properties 32

3.3. Schema model 33

3.4. Text model 45

viii

3.5. Product model hierarchies 47

Chapter 4 Chapter 4 Chapter 4 Chapter 4
Product types and process typesProduct types and process typesProduct types and process typesProduct types and process types 49494949

4.1. Defining product types 50

4.2. Modelling engineering process types 51
4.2.1. Engineering process type decomposition 51
4.2.2. Engineering process type interface 52
4.2.3. Engineering process type strategy 55

4.3. Comparison with other modelling techniques 70

Chapter 5 Chapter 5 Chapter 5 Chapter 5
The MDL languageThe MDL languageThe MDL languageThe MDL language 73737373

5.1. Requirements 74

5.2. Language definition 74
5.2.1. Generalities 74
5.2.2. Method 75
5.2.3. Product Models 76
5.2.4. Global product types 79
5.2.5. Toolboxes 80
5.2.6. External function declarations 81
5.2.7. Process types 82

5.3. Language analysis 96
5.3.1. The syntax is unambiguous 97
5.3.2. Syntactical analysis 98
5.3.3. The semantics is unambiguous 99
5.3.4. Compliance with the requirements 99

Part 2Part 2Part 2Part 2
HistoriesHistoriesHistoriesHistories 101101101101

Chapter 6 Chapter 6 Chapter 6 Chapter 6
HistoriesHistoriesHistoriesHistories 103103103103

6.1. Usefulness of histories 104
6.1.1. Documentation 104
6.1.2. Undo 104
6.1.3. Database design recovery 104
6.1.4. Database evolution 105
6.1.5. History analysis 105
6.1.6. Method induction 105

6.2. Expectations for histories 106

6.3. Structure of histories 106
6.3.1. Products 106
6.3.2. Processes 107
6.3.3. Primitive processes 107
6.3.4. Engineering processes 112
6.3.5. Decisions 113
6.3.6. The history of a project 114

ix

6.4. History representation 116
6.4.1. Representation of the tree structure 116
6.4.2. Representation of primitive process histories 116
6.4.3. Representation of engineering process graphs 117

6.5. History construction 120
6.5.1. Primitive processes 120
6.5.2. Engineering processes 120
6.5.3. Hypotheses, versions and decisions 121

Chapter 7 Chapter 7 Chapter 7 Chapter 7
History processingHistory processingHistory processingHistory processing 125125125125

7.1. Basic hypotheses 126

7.2. History replay 126
7.2.1. Replaying primitive processes of automatic basic type 126
7.2.2. Replaying primitive processes of automatic configurable type 126
7.2.3. Replaying primitive processes of automatic user configurable type 126
7.2.4. Replaying primitive processes of manual type 126
7.2.5. Replaying every primitive processes 128
7.2.6. Replaying engineering processes 129

7.3. History evolution 129

7.4. History transformation 132
7.4.1. History characteristics 132
7.4.2. Excerpts 135
7.4.3. Independent history excerpts 136
7.4.4. Equivalent history excerpts 137
7.4.5. Minimal history excerpts 137
7.4.6. Operations on history excerpts 137
7.4.7. History transformation 139

7.5. History cleaning 139
7.5.1. History cleaning 140
7.5.2. Primitive process history cleaning 140
7.5.3. Engineering process history cleaning 142

7.6. History flattening 143

7.7. History inversion 145

Part 3Part 3Part 3Part 3
In practiceIn practiceIn practiceIn practice 147147147147

Chapter 8 Chapter 8 Chapter 8 Chapter 8
Method design: basic elementsMethod design: basic elementsMethod design: basic elementsMethod design: basic elements 149149149149

8.1. Product model declarations 150

8.2. Product type declarations 151

8.3. Process type declarations 152
8.3.1. Loops 152
8.3.2. Sequences and each structures 155
8.3.3. Sub-process use 155
8.3.4. Degrees of freedom 158

x

Chapter 9 Chapter 9 Chapter 9 Chapter 9
CASE tool usageCASE tool usageCASE tool usageCASE tool usage 161161161161

9.1. Requirements 162
9.1.1. Method development environment requirements 162
9.1.2. CASE environment requirements 163

9.2. HMI proposals 166
9.2.1. Method development environment 167
9.2.2. Method visualisation and browsing 168
9.2.3. Following a method 170
9.2.4. Recording a history 178
9.2.5. Complementary tools 181
9.2.6. Configuring the CASE environment 186
9.2.7. Browsing through a history 187
9.2.8. History replay and transformation 187

Chapter 10 Chapter 10 Chapter 10 Chapter 10
Architectural issuesArchitectural issuesArchitectural issuesArchitectural issues 189189189189

10.1. General architecture 190

10.2. The repository 191
10.2.1. Notations 192
10.2.2. The original repository of the DB-MAIN CASE environment 192
10.2.3. The repository extension 193

10.3. Parsing an MDL source file 202

10.4. The GUI 203
10.4.1. Loading a method 203
10.4.2. History window extension 203
10.4.3. The methodological engine 204
10.4.4. The GUI look and feel 204

10.5. The methodological engine 207
10.5.1. Following a method 207
10.5.2. Product and expression evaluation 209

Chapter 11 Chapter 11 Chapter 11 Chapter 11
Case studiesCase studiesCase studiesCase studies 211211211211

11.1. First case study: a simple forward engineering project 212
11.1.1. Defining the method 212
11.1.2. Performing the project 216
11.1.3. The resulting history 222

11.2. Second case study: a complex reverse engineering project 223
11.2.1. Method description 223
11.2.2. Project performance 229
11.2.3. The resulting history 239
11.2.4. Design recovery 241

11.3. Conclusion 241

Chapter 12 Chapter 12 Chapter 12 Chapter 12
Professional useProfessional useProfessional useProfessional use 247247247247

xi

12.1. List of questions 248

12.2. Relational database applications evolution 248

12.3. XML Engineering 248

12.4. Conclusion 250

Part 4Part 4Part 4Part 4
Future workFuture workFuture workFuture work 251251251251

Chapter 13 Chapter 13 Chapter 13 Chapter 13
Method evolutionMethod evolutionMethod evolutionMethod evolution 253253253253

13.1. Presentation 254

13.2. The problem 254
13.2.1. Product models and product types 254
13.2.2. Process types 255
13.2.3. The method evolution problem 255

13.3. Solution proposal 256
13.3.1. Temporal databases 256
13.3.2. A solution proposal for the method evolution problem 260

Chapter 14 Chapter 14 Chapter 14 Chapter 14
Conclusion and future worksConclusion and future worksConclusion and future worksConclusion and future works 263263263263

14.1. Conclusion 263

14.2. Future works 264
14.2.1. Method evolution implementation 264
14.2.2. Method engineering methodology 264
14.2.3. Method recovery 265
14.2.4. Graphical method development environment 265
14.2.5. Extending to software engineering in general 266
14.2.6. Supporting a Meta-CASE 266
14.2.7. Supporting co-operative design 266

BibliographyBibliographyBibliographyBibliography 267267267267

Appendix A Appendix A Appendix A Appendix A
Schema analysis predicatesSchema analysis predicatesSchema analysis predicatesSchema analysis predicates 277277277277

A.1. Constraints on schema 277

A.2. Constraints on collections 277

A.3. Constraints on entity types 278

A.4. Constraints on is-a relations 281

A.5. Constraints on rel-types 282

A.6. Constraints on roles 284

A.7. Constraints on attributes 284

A.8. Constraints on groups 286

xii

A.9. Constraints on entity type identifiers 287

A.10. Constraints on rel-type identifiers 290

A.11. Constraints on attribute identifiers 293

A.12. Constraints on access keys 295

A.13. Constraints on referential groups 296

A.14. Constraints on processing units 298

A.15. Constraints on names 298

A.16. Using DYN_PROP_OF_... constraints 300

A.17. Using Voyager 2 constraints 302

Appendix B Appendix B Appendix B Appendix B
The PDL syntaxThe PDL syntaxThe PDL syntaxThe PDL syntax 303303303303

B.1. BNF notation 303

B.2. The PDL language 303

Appendix C Appendix C Appendix C Appendix C
Global transformationsGlobal transformationsGlobal transformationsGlobal transformations 305305305305

C.1. Transformations 305

C.2. Control structures 307

Appendix D Appendix D Appendix D Appendix D
The MDL syntaxThe MDL syntaxThe MDL syntaxThe MDL syntax 309309309309

D.1. BNF notation 309

D.2. Miscellaneous rules 309
D.2.1. Spaces and comments 309
D.2.2. Forward references 310

D.3. Multi-purpose definitions 310

D.4. Expressions 310

D.5. Method description 311

D.6. External declaration 311

D.7. Schema model description 312

D.8. Text model description 312

D.9. Product type description 312

D.10. Toolbox description 313

D.11. Process type description 313

Appendix E Appendix E Appendix E Appendix E
DB-MAIN functionsDB-MAIN functionsDB-MAIN functionsDB-MAIN functions 315315315315

Appendix F Appendix F Appendix F Appendix F
Case study listingsCase study listingsCase study listingsCase study listings 321321321321

F.1. The first case study: a forward engineering method 321

xiii

F.2. The first case study: the interview report 327

F.3. The first case study: the script of actions performed by the engineer 327

F.4. The second case study: a reverse engineering method 330

F.5. The Order.cob program analysed in the second case study 339

F.6. A small C program to clean log files 343

xiv

Glossary

This glossary is a list of the main terms used in this thesis. They are fully defined in the
thesis. These definitions are summarised here for reference, as a reminder for the reader.

actoractoractoractor: An actor is a person, or a machine, that can perform actions and conduct processes.

automaticautomaticautomaticautomatic primitiveprimitiveprimitiveprimitive processprocessprocessprocess typetypetypetype: A primitive process type that can be performed by the
CASE environment without the intervention of an engineer.

decisiondecisiondecisiondecision: A decision is either a choice of one or several product versions to abandon among
several ones, or a yes or no answer to a question imposed by the method.

engineeringengineeringengineeringengineering processprocessprocessprocess: An engineering process is a goal-driven process, i.e. a process that
tries to make its output products comply with specific design requirements.

GERGERGERGER: The Generic Entity-Relationship model used as the basis for defining database
schema models within the DB-MAIN CASE environment and the MDL language.

historyhistoryhistoryhistory: A history is the recording of everything that happens during the life cycle of an
engineering project. It also includes all the products that are used or produced during the
project, as well as all the rationales according to which the processes are carried out.

hypothesishypothesishypothesishypothesis: An hypothesis is a statement that confines a problem to a particular context in
order to solve it.

loglogloglog filefilefilefile: A log file is an ASCII-based text file containing the trace of performed actions. In
this thesis, log files are used to store primitive process histories.

manualmanualmanualmanual primitiveprimitiveprimitiveprimitive processprocessprocessprocess typetypetypetype: A primitive process that must be performed by a human
being, using the tools provided by the CASE environment.

MDLMDLMDLMDL: The Method Definition Language is a non-deterministic procedural language aimed
at defining database engineering method in order to configure a CASE environment.

methodmethodmethodmethod: A method is a way-of-working commonly agreed among engineers to perform a
given work.

methodologicalmethodologicalmethodologicalmethodological engineengineengineengine: The methodological engine is a piece of program which is added
to a CASE environment in order for it to be able to follow a defined method.

methodologymethodologymethodologymethodology: A methodology is a system of methods and principles for doing something1,
database engineering in this thesis.

method-freemethod-freemethod-freemethod-free projectprojectprojectproject: A project performed without the guidance of a declared method.
The engineer may follow an implicit method anyway.

method-supportedmethod-supportedmethod-supportedmethod-supported projectprojectprojectproject: A project performed according to a method defined with the
MDL language.

1 This definition is from [COLLINS,95].

xv

primitiveprimitiveprimitiveprimitive processprocessprocessprocess: A primitive process is an atomic process, that is to say, a process that
comprises a single operation. It is a single step on the path towards the goals of an engi-
neering process.

processprocessprocessprocess: A process is an activity that is carried out by an actor in order to transform prod-
ucts.

processprocessprocessprocess typetypetypetype: A process type describes the general properties of a class of processes that
have the same purpose, and that use, update or generate products of the same types.

productproductproductproduct: A product is a document used, modified or produced during the design life cycle
of an information system. They are database schemas and database-related texts.

productproductproductproduct modelmodelmodelmodel: A model defines a general class of products by stating the basic compo-
nents they are allowed to be included and the assembly constraints that must be satisfied.

productproductproductproduct typetypetypetype: A product type describes a class of products that play a definite role in the
system life cycle. A product type is expressed into a product model. A product is an
instance of a product type.

productproductproductproduct versionversionversionversion: A version of a product is the result of solving a problem in a particular
context after specifying an hypothesis. Several hypotheses may lead to several versions of a
product.

schemaschemaschemaschema: Database schemas can be any data structure description that can be of interest dur-
ing the whole life cycle of the database engineering project, in any phase, at every abstrac-
tion level, ranging from conceptual entity-relationship, object oriented or UML schemas,
to physical Oracle or COBOL schemas.

strategystrategystrategystrategy: The strategy of an engineering process type specifies how any process of this type
must be, or can be, carried out in order to solve the problems it is intended to, and to make
it produce output products that meet its requirements. In particular, a strategy mentions
what processes, in what order, are to be carried out, and following what reasoning.

texttexttexttext: A text is any relevant character-based document that is not a schema. This concept
encompasses program source files, SQL-DDL scripts, help files, word processing files,
forms, etc.

tooltooltooltool: A tool is a function of the CASE environment that can be used through the menus,
the toolbars, keyboard shortcuts, or with the mouse when it points to a window.

toolboxtoolboxtoolboxtoolbox: A toolbox is a collection of tools provided by the CASE environment. A toolbox
can be put at the engineer’s disposal by the CASE environment when required by the
method.

Chapter 1

Introduction

This chapter introduces the concept of process modelling. Then it draws a
state of the art in the field. It lists a large series of research projects and
classifies them according to several criteria which draw the main
orientation of this thesis. The concept of process modelling in the large
will then be restricted to the database realm, and to the DB-MAIN
environment in particular for prototyping.

1.1. Process modelling presentation 2

1.1. Process modelling presentation
Every day, every living being performs a series of processes. Some of these processes are
innate, such as breathing. Most must be learned though. Some processes are learned early
in the life, naturally, without help, because they are vital, such as walking. All beings of the
same species generally agree on the way of performing the process. More complex and less
vital processes are learned by everybody. Talking is such a process for human beings. But all
men and women do not speak the same language, some even communicate with hands. In
this case, some references (specialist, book,...) detailing the way of performing the proc-
esses, or simply tips, can be useful. This is why most widespread languages have dictionar-
ies. Finally, there are much more complex processes which are only practised by restricted
groups only, like a specific kind of job. Each job can even have some specialities. In these
cases, learning the process can be very long and the path can be littered with pitfalls
because the way of working can be complex and various minds may apprehend it differ-
ently. In fact, we should write “ways of working”, plural form, because each specialist can
have his or her own one. In some cases, two specialists who should do the same work may
do it differently enough for them to not understand each other during a discussion. For
instance, two programmers can write applications that are compliant with the same
requirements, that do the same things, but one writes the application in C++, while the
other one writes it in Prolog.

The good health of a large company is based on three fundamental resources: money, peo-
ple, and information. Money is necessary to pay people, to buy supplies, for buildings,
heating, communications,... People are necessary to do the job. And information is neces-
sary to manage people, to manage stocks, to manage customers, to manage suppliers, to
manage production,... The lack of one of these three resources will inevitably lead to bank-
rupt the company. Managing these three resources are three different jobs that all need to
be performed by specialists. Nowadays, for competitiveness reasons, information manage-
ment must be supported by an information system. Since flaws in this information system
can produce incorrect information, or no more information at all, the flaws can lead to
bankruptcy. Furthermore, the information system has to evolve with the company and
with the company environment (laws, markets, company size, users’ wishes,...) in order to
be trustworthy all along the company life. So the information system design is a vital proc-
ess, as well as its maintenance and its evolution, so important that it cannot be performed
by a single man or woman, but rather by teams. To do their job correctly, all these people
need to understand each others, and to work in the same way. That is why, a few decades
ago, some people tried to define good methods that would be followed by everybody. Mer-
ise is such a method example among many others. But if such general methods can be good
starting points, they hardly suit the needs of companies that have specific problems. That is
why researchers all over the world have been working on designing tools to help companies
to model ways of working which are relevant to them, and to help these companies to
make their ways of working available to their people and accepted by them.

Computers evolve, applications evolve, new information arrive and must be stored every
day, but the archives, the memory of the company, do not evolve. Data stored in the infor-
mation system have to survive to all changes in the computers or in the applications. Data
have to survive during a very long time, possibly the whole life of the company. In other
words, the databases around which an information system is build is a basic asset that must
be handled as such. This is why we will concentrate, in this thesis on modelling the proc-
esses that can be performed by engineers who are in charge of designing, maintaining and
making databases evolve.

Since a large database design activity has to be performed by several persons, it is important
for them to share their knowledge. Since a database may have to survive during several dec-

1.1. Process modelling presentation 3

ades, engineers who designed it at the beginning will probably retire before its death. So
the engineers who maintain the database are not the same. It is thus very important that all
the knowledge elaborated by the previous engineers be transmitted to their successors. For
that reason, a good recording of all activities, all decisions taken, and all rationales that jus-
tify the decisions must be recorded in a reusable way. In other words, the complete history
of the database design, maintenance and evolution must be kept.

In this thesis we will examine one particular way of seeing the modelling of database engi-
neering processes and the recording of histories.

1.2. State of the art and related works
Process modelling is a rather general subject for which a lot of research have been con-
ducted for several decades. The first researches recognised the necessity of well defined
methods and models.

1.2.1. History of data and process engineering

Some first ways of structuring and representing data were introduced in the late sixties and
in the seventies. For instance, [BACHMAN,69] gave birth to the entity-relationship (ER)
model, and [CHEN,76] popularised this model. It then evolved to better suit the users
needs, like [FOUCAUT,78] who adds the processing and their operational dynamics with
the REMORA project, and [HAINAUT,89] who extended it in order to cover a broader
range of data models. More recently, [OMG,01] presents the last release in date of the
UML model, a graphical communication model for representing all the aspects of an appli-
cation design, including the static (ER-like schemas) and dynamic aspects of data struc-
tures, as well as use cases and packaging.

Meanwhile, researchers noticed that software was becoming more and more unstable while
becoming larger and more complex [DIJKSTRA,68]. So these researchers began to model
ways of developing reliable software. This included researches on programming languages:
structured programming with, among others, the birth of the ALGOL 58,60,68 language
[DIJKSTRA,62], and the Pascal language [JENSEN,78], object oriented languages such as
SIMULA 67 [DAHL,67], logical programming with languages such as Lisp [MCCAR-
THY,60][STEELE,90], or Prolog [CLOCKSIN,84]. It also included researches on the
ways of designing software independently of the final programming language, that is to say
ways to specify formally the different parts of the programs: The Jackson Structured Pro-
gramming (JSP) [MCLEOD] is a method for modelling programs “in the small”, which
are programs manageable by a single programmer; the Jackson Structured Development
(JSD) [MCLEOD] is aimed at larger projects; the waterfall model [ROYCE,70], the spiral
model [BOEHM,88] and the fountain model [HENDERSON,90] are also well-known
software engineering methods. [FICKAS,85] implements software automatically with a
transformational development. More recently, researchers have explored ways to develop
new software by reusing pre-existing software chunks [BENGHEZALA,01] instead of
redesigning everything every time. A less technical, more human-oriented approach of
improving software is proposed in XP programming [XP] which focus on team work and
communication inside the team.

Other people also began to model other aspects of information systems engineering, such
as the requirements in [SORENSON,88], [CHUNG,91], [ROLLAND,93], [DUBOIS,
94] or [POHL,96], or the human-machine interfaces [BODART,95], [VANDER-
DONCKT,97].

People then noticed that simply designing clean software does not solve entirely the prob-
lem of instability because the software has to be maintained and to evolve. These activities

1.2. State of the art and related works 4

deserve great care too. All the rationales behind the changes have to be stored correctly in
order to not redo the same errors several times along the whole life of the applications
[HAUMER,99]. In particular, since the information systems are build on top of a database
system, this one deserves great attention too [HICK,98].

Eventually comes a time when the applications, or simply the hardware onto which the
applications are run, become obsolete. It is then necessary to build new applications. But
the content of the database, which is the memory without which the organisation cannot
live, has to be kept. It is thus necessary to re-engineer the databases, as presented in
[HAINAUT,95] and [HAINAUT,96a].

1.2.2. Process modelling in the large

For such activities as requirements engineering, human-machine interface design, mainte-
nance and evolution, re-engineering, as well as for forthcoming activities, the software pro-
cess models defined previously are not adapted. Furthermore, those methods also proved to
be poorly adapted to the particular needs of each organisation, even for the jobs for which
they were originally conceived. So a new trend is born: to give means to each organisation
to define its own methods. [CURTIS,92] is a general paper which presents various aspects
of process modelling in the large, including business process modelling and software proc-
ess modelling. [FEILER,93] and [JAMART,94] define various terms commonly used in
the process modelling domain. [KRASNER,92] shows the usefulness of process modelling
with a particular case study. Along the years, several research labs published various project
results. [FINKELSTEIN,94] and [GARG,96] present in details several process modelling
projects. Among these project and others, we can enumerate:

• HFSP [KATAYAMA,89]: a process-centred software engineering model with a mathe-
matical functional representation of processes.

• APPL/A [SUTTON,90]: a process-centred software engineering model with a program-
ming (extension of the Ada language) way of representing processes. It is implemented
in the Arcadia environment [TAYLOR,88].

• MELMAC [DEITERS,90]: A process centred software engineering process modelling
approach using FUNSOFT nets (high level Petri nets).

• DAIDA [JARKE,92]: a knowledge-based process-centred environment for database
applications.

• TAME [OIVO,92]: a goal-oriented approach to software engineering with a rule-based
mechanism for constructing methods.

• KBMS [ZEROUAL,92]: a knowledge-based system for modelling software engineering
methods with rule-based techniques.

• Marvel [BARGHOUTI,90][FINKELSTEIN,92]: a rule-based software engineering
environment centred on reuse.

• Process Weaver [FERNSTROM,93][CAPGEMINI,95]: a process-centred environment
for managing team-based activities with a Petri-net-like representation of the processes.

• SPADE [BANDINELLI,93]: a software engineering environment with an object-ori-
ented process model based on Petri nets (using the SLANG language).

• TAP [YONESAKI,93]: the Task-Agent-Products approach is a process-centred environ-
ment for software process modelling with agents and Petri-net representation of the
methods.

• EPOS [CONRADI,93][CONRADI,94b][EPOS,95]: A process centred approach for
defining software engineering process models with an object-oriented specification lan-

1.2. State of the art and related works 5

guage (SPELL).

• Merlin [JUNKERMANN,94]: a process-centred software development environment
with a Prolog-like process representation.

• SOCCA [ENGELS,94]: a process-centred software engineering environment with
object-oriented and data flow diagram representation of the processes.

• Adele [BELKHATIR,94][ESTUBLIER,94]: a process-centred software engineering
modelling environment with object-oriented and trigger representation of the processes.

• Sentinel+Latin [CUGOLA,95]: a process-centred software engineering environment
(Sentinel) with a rule-based temporal constraint language (Latin) to represent processes.

• MCASE [BRUNO,95]: a process-centred software engineering environment with data
flow based processes.

• Metaview [SORENSON,88][FROEHLICH,95]: a process-centred software engineer-
ing environment with a rule-based description of processes.

• MetaEdit+/GOPPR [KELLY,96]: MetaEdit+ is both a CASE and a CAME (computer
aided method engineering) environment; the method engineering part is process-cen-
tred and uses a graph and object oriented representation of the processes (GOPPR).

• Nature, Crews [NATURE,96][ROLLAND,97][TAWBI,99]: context-and-decision-ori-
ented meta-models for defining requirements engineering processes with a rule-based
representation of processes. It is implemented in the Mentor CARE (Computer-Aided
Requirement Engineering) environment [SISAID,96].

• APEL [DAMI,97]: a graphical (using data flow, control flow and state transition graphs)
representation of software engineering processes.

• E3 [JACCHERI,98]: An object-oriented language with graphical representation for pro-
cess-centred software engineering.

• Prime [POHL,99]: A process-centred environment for requirements engineering which
uses the process representation of Nature and extends it to allow the use of third party
tools.

• PROSYT [CUGOLA,99]: A process-centred distributed business process modelling tool
using an artifact-based approach which allows deviations in enactment.

• [DITTRICH,00] presents a roadmap to using database technology for software engi-
neering.

[MARTTIIN,98] and [SAEKI,94] are also nice papers that complete the list above with
many other projects. [TOLVANEN,98] presents method engineering approaches in its
third chapter too.

A lot of the tools above allow the interoperability of several third party tools (editor, com-
piler,...). More recent works [ESTUBLIER,96] [DAMI,97] [KELLY,96] [POHL,99] go
further by investigating ways to make several process engines communicate with each
other, and/or with third party tools.

The use of process models has proved its usefulness in various other domains as well. For
example:

• [BOGUSCH,99] shows the use of a process model for chemistry practices.

• [MUETZELFELDT,01] uses a process model for ecology activities.

One of the most widespread use of process modelling outside software engineering is cer-
tainly business process modelling which is useful for three main purposes, namely Total

1.2. State of the art and related works 6

Quality Management, Business Process Reengineering, and Workflow Management:

• Catalysis [DSOUZA,98]: a graphical representation of business processes using UML.

• Artemis [CASTANO,99]: a business process reengineering environment.

• IDEF [DEWITTE,97]: a standard modelling and analysis method for business engi-
neering.

• ProVision [PROFORMA,99]: an environment for business modelling and system
design.

• Other business modelling works include: [BARROS,97], [BRATAAS,97], [MAYER,
98], [JORGENSEN,99], [GREEN,00], and [VONDRAK,01](workflow automation).

To summarise the previous enumeration of research project, six process modelling para-
digms can be found in the literature:

1. Rule based: each process type is a set of rules. Some rules are preconditions that must be
fulfilled for the process to be enactable. Some rules are postconditions that are guaran-
tied to be fulfilled when the process terminates. Other rules describe the behaviour of
the process type (the equivalent of the strategy in our model). This model is one of the
most widespread (DAIDA, TAME, KBMS, Marvel, Merlin, Sentinel+Latin, Metaview,
Nature, Prime,...).

2. Functional: preconditions, postconditions and behaviour are all stated with mathemati-
cal functions. This model is seldom used (HFSP for instance).

3. Petri nets: the strategy of process types are described with Petri nets, coloured Petri nets
or any other variant of Petri nets. Also an often used technique (MELMAC, Process
Weaver, SPADE, TAP among others).

4. Graph based: the strategy is represented with dataflow diagrams or state transition
graphs. This technique is less used (MCASE, MetaEdit+ or APEL for example).

5. Procedural: the strategy is expressed in a procedural language. This is the technique we
will use in this thesis. It is also used by a few other research projects (such as APPL/A).

6. Object oriented: a variant of the procedural technique with the in fashion technique of
object encapsulation (EPOS, SOCCA, Adele,E3,...).

The research projects can also be divided in two categories: process-centred and goal-ori-
ented. Process centred techniques put the accent on the method itself, while goal-oriented
techniques stress their attention on the product that are to be produced and on the search
for a way to reach that goal.

All the projects mentioned above present a way to describe a method and to use it. All of
them also tell how to create such a method, but generally very briefly: the environment
integrates a tool that provides this capability, nothing more. A few of them go further by
giving some methodological guidelines. [SCHLENOFF,96] presents some requirements
for modelling processes, with the hope to define a general framework that would suit every
process modelling needs. [HUMPHREY,95] presents a way to make a process model
(using the Personal Software Process model) evolve in the way of greater efficiency. [ROL-
LAND,97] presents a complete framework for engineering methods for requirement engi-
neering: a method is build like requirements, with a context-and-decision approach, possi-
bly with the reuse of method chunks. [RALYTE,01a] and [RALYTE,01b] go further in
the same direction, focusing on the reuse of method chunks. Still further, [JORGENSEN,
00a] shows how to define a particular process model by reuse of “general process models”
and to harvest the latter with the knowledge gained by the use of the particular process
model.

1.2. State of the art and related works 7

One of the main goals of all these researches is the quality of software. The SCOPE project
[WELZEL,92] provides an assessment method to measure the quality of software design
and generated products. But the quality of software also passes through the quality of the
process model itself: [BROCKERS,93] verifies properties of a software process model,
using FUNSOFT nets in the MELMAC environment; [SADIQ,00] proposes another
technique to analyse workflow based process models using graph reduction, in search of
deadlocks and lack of synchronisation.

All the process modelling tools presented so far use their own representation of their data.
[SCHLENOFF,00] presents the Process Specification Language (PSL) which is aimed at
allowing the previous tools to exchange information.

A roadmap to the future of software engineering which identifies the principal research
challenges is presented in [FINKELSTEIN,00].

1.2.3. CASE tools and meta-CASE tools

Software engineering, in particular database engineering, not only needs good methods to
be performed, but also good CASE tools. Concerning specifically database engineering,
[ROSENTHAL,94] proposed a prototype CASE tool, DDEW, that can handle several
database schema models using a unified underlying model called ER+ and transform a
schema from one model to another using content-preserving schema transformations.
[HAINAUT,94] and [ENGLEBERT,95] present another similar tool called DB-MAIN
which evolved towards a mature CASE tool [DB-MAIN,02a], while incorporating more
advanced features, such as reverse engineering facilities [HENRARD,98]. This is the CASE
tool that will be used in this thesis, and that will be extended with a methodological
engine. A more general software engineering CASE tool, which already supports method
specification, namely Phedias, is presented in [WANG,95]. This tool is in fact a meta-
CASE tool (called a CASE shell in the paper): it is general enough to be used in various
situations, and it needs to be customised in order to be usable as a CASE tool for specific
needs. Prime [POHL,99] (see above) is another metaCASE tool which is requirement engi-
neering oriented.

1.2.4. History recording

The use of a CASE tool or of a metaCASE tool can help a software (or database) engineer
not only to perform a particular job. If the analyst has to perform a second or a third job of
the same kind, he or she can simply follow the same way of working. But it appears clearly
that learning the lessons from the first job can improve the quality and the efficiency of the
subsequent jobs. The best way recognised by the research community to learn the lessons
of a job is to keep a whole trace of it, and to record all the rationales behind all the deci-
sions taken by the analyst. It allows engineers to be reminded, during subsequent projects,
how the discussion was conducted and why the final decision was taken as such; it allows
engineers to take future decisions much faster, and in concordance with the first one. Even
the first application, result of the first engineering job, may have to evolve. It is even more
important in this case to remind exactly what was done the first time and why it was done
that way. The matter of recording rationales is discussed in [POTTS,88]. Later on, several
researchers followed the idea. [SOUQUIERES,93] presents a requirement engineering
framework in which all the decisions and their rationales are perfectly documented.
[POHL,97] and [DOMGES,98] note that traces of genuine engineering projects can be
very huge and time consuming, and propose a way to capture the needed information only,
which may vary according to the projects specific needs. In [HAUMER,99], the traces of
the original engineering of a system are accompanied with traces of concrete system usage
scenarios in order to make the information even more pertinent when making the system
evolve. [ZAMFIROIU,98] (also [ZAMFIROIU,01]) studies software engineering traces

1.2. State of the art and related works 8

independently of any CASE tool. This work has three objectives: recording traces (possibly
with version management), synthesise them into operation flow (to enhance readability
and usability), and a measure of the continuity of the flow (in order to detect subsequent
changes, to evaluate the impact on the project, and possibly to assist the engineer in repair-
ing breaks). This work proposes a trace model (KARMA), as well as tools to handle and to
query traces.

Since the purpose of this thesis is to help database engineers perform their job, it is an
important issue to produce usable tools. Lessons can be learned from [CATARCI,00]
which relates the story of a database research team who already had to deal with similar
problems of user acceptance of specific tools it designed.

1.3. Database specifics
A lot of process modelling projects were already conducted all over the world, as shown
previously. They concern a very broad range of application domain: software engineering,
requirements engineering, business processes, electrical engineering, ecology,... Within the
framework of this thesis, we will concentrate on the database realm. Indeed, in a large
organisation, the management of employees, customers, products, finances and other
resources is nowadays always performed with one or several large information systems. All
these information systems are a set of applications using a central database which contain
all the memory of the organisation. Along the time, the applications evolve, sometimes
rather deeply, and can even be completely replaced several times along the life of the
organisation. The database management system may also evolve. But the data stored in the
database are one of the main resources of the organisation and must be kept in perfect state
without any loss along the whole life cycle of the organisation, even if their format and
structure evolve. So databases really deserve a particular attention in their treatment.

Since so many projects were already conducted and since so many (meta)CASE tools
already exist, one should wonder why we do not use one of these tools. The answer holds
in two main points. Firstly, this thesis is conducted in the framework of the DB-MAIN
project, so one prerequisite is to use the DB-MAIN CASE tool (see Section 1.6), either by
developing new functions in it, or by integrating it with other tools. Secondly, the database
realm has several specific aspects that cannot be handled by non-database-specific CASE
tools:

• Database engineering theory is much more advanced than software engineering theory.
Indeed, the transformation of a database schema compliant with one model to another
semantically equivalent schema compliant with another model (for instance, the trans-
formation of an ER schema into a relational schema) can be described very precisely
with a series of semantics preserving elementary transformations that are all published
and proved to be correct [HAINAUT,96c]. In the design of a program, the gap between
the requirements and the code is much larger. Some formal requirements expressed with
formal languages can be translated into source code of functional or logical languages,
but seldom in much more popular procedural source code. And non-functional require-
ments expressed with the natural language have a semantic that cannot be grasped by
machines. Nothing more than analysis tools (for instance searching, pattern matching
and program slicing tools), prototyping tools, and simple text editors can help the pro-
grammers, not even to prove that the result is the one expected. In other words, most
database engineering works can be performed through a set of dedicated elementary
tools which do not exist within other disciplines. The need to take into account the par-
ticularities of the actors needs is underlined in [NUSEIBEH,93].

• As a corollary of the first point, in most disciplines a text (a source file, a requirement
description, a scenario of a task,...) is often the smallest elementary concept that can be

1.3. Database specifics 9

handled by tools: a text can be edited, a source file compiled,... Within the database
engineering paradigm, a database schema can be decomposed in all its components and
transformations applied to some specific components directly. So a CASE tool that sup-
ports database engineering activities has to be able to handle a fine-grained decomposi-
tion of the products, which is seldom the case with other CASE tools.

• Elementary tools used in database engineering activities are often simpler than in soft-
ware engineering. Indeed, schema editing functions are often simpler to implement
than a compiler or a debugger. As a consequence, a software engineering CASE tool sel-
dom offers all the tools which are necessary to perform a complete project, it often
requires third party tools (such as an advanced text editor, a compiler,...). A database
engineering CASE tool can more easily integrate all the necessary tools or provide means
to easily add them (such as an advanced macro language or a 4GL like the Voyager lan-
guage included within the DB-MAIN CASE tool, as presented in Section 1.6). Hence
database engineering allows a better integration of tools.

The fact that database engineering is the target of this thesis does not mean that the model
and the language developed in this work must be confined to databases. Indeed, only a few
updates to the model should be necessary to extend it to other domains of interest. These
extensions will be presented in chapter 14. In a way, [DOWSON,94] summarises the con-
tent of Chapters 3, 4, 5, 6, 7, 9, 13 applied to software engineering.

1.4. Goals
This thesis will pursue one main goal which is to bring the most useful possible help to
database engineers. This goal has to be seen with various angles according to the different
aspects of the database engineer’s job:

• The way of working he or she should follow can be imposed to him or her, strongly or
loosely. And he or she can be guided to correctly follow this path.

• The job the database engineer actually performs can be recorded. The fact that database
engineering tools can be integrated can make the recorded history very useful for various
tasks. This usability will be proved by proposing a structure for history recording and
providing a series of operators to handle this structure.

A lot of research projects, some of them presented in Section 1.2, already tackled the guid-
ing problem. Most of them use either a declarative language, an object-oriented language,
or Petri net-like representations to define a method. Only a few projects use a functional
model (HFSP for example) or a more traditional procedural language (APPL/A for
instance).

About programming languages, it often appears that declarative languages, functional lan-
guages and Petri-net like representations are stuck in universities or research laboratories,
and are poorly adopted by industrials. Object oriented programming languages have a bet-
ter acceptance in the industrial world, but are often badly used, with a few objects encapsu-
lating large chunks of procedural code. Procedural languages are still the most widespread
languages.

Of course, as [OSTERWEIL,97] underlines, “Software Processes are Software too” is a false
assumption. So the choice of a programming paradigm cannot be extended to process
modelling as easily. According to [BOBILLIER,99], activities such as requirements engi-
neering, which is more decision centric and which has to deal with non-functional require-
ments, are mental activities. Indeed, the problem is loosely and badly defined from the
beginning and must be refined while solving it. It seems that declarative languages are bet-
ter suited for modelling such processes. But database problems are different. Indeed, along

1.4. Goals 10

the advancement of the project, the work is more and more technical, more and more
transformation oriented. When a design project begins, the database engineer receive
requirements which were already specified during a previous requirements engineering pro-
ject, and he or she draws a first conceptual schema using a graphical editor. Then he or she
goes forward by normalising the schema or optimising it, possibly integrating several sche-
mas. These operations can already be performed using some transformations, but some
decisions still need to be taken to apply the transformations correctly. In a later step, the
schema is transformed more automatically in order to produce the logical schema, the
physical schema, and finally to generate the code. A reverse engineering job begins with
legacy programs and data which are in use for a long time. The jobs mainly consist in ana-
lysing and transforming these sources. So these job are more technical ones, more transfor-
mation oriented. That is why this thesis supports the idea that a procedural language with
an algorithmic graphical representation of a method is the way of working that should be
preferred for this kind of database engineering activities. Advantages and disadvantages of
the different paradigms will be discussed and it will be proved that this choice naturally
leads to a real help for the database engineers.

This thesis does not only define one more framework and one more method description
language to the research community, but it shows its usefulness with the implementation
of the language and of a methodological engine in a CASE tool of professional quality.
This implementation does not simply show the feasibility of the theory presented in the
first chapter of the thesis, but it also shows that the technique is industrially viable,
although industrial users still need to be converted to it for a wider use.

1.5. Structure of the thesis
In this introduction, process modelling was described informally, related works and the
state of the art in this domain were examined in the large. Then the specificity of the data-
base realm was shown, the remaining of this thesis being concentrated in it. When the
framework was drawn, the goals of this work were stated. This chapter will be terminated
by a short description of the DB-MAIN CASE tool, which is the concrete framework for
the evaluation of the results of this work.

In the three following chapters, all the concepts and components that are necessary for
modelling database engineering processes are precisely defined: Chapter 2 gives a definition
of all the concepts, Chapter 3 gives a complete description of product models and product
types, and Chapter 4 is about the description of process types. A language (MDL) for cod-
ing all these concepts is defined in Chapter 5.

Chapter 6 is devoted to a full description of histories and Chapter 7 to their handling and
transformation.

The MDL language is procedural but aimed at being executed by human being rather than
by machines. Since human beings and machines act differently, a few methodological
guidelines deserve to be followed to correctly define a method. Chapter 8 is devoted to
these methodological aspects.

Chapters 9, 10 and 11 address experimentation. Chapter 9 studies the human-machine
interface aspects, while Chapter 10 is devoted to the internal architecture. Chapter 11 pres-
ents two case studies. Chapter 12 presents a few real projects using the implementation.

Chapter 13 underlines an important aspect of methods which is not taken into account
previously but which deserves a full attention (maybe another thesis): the problem of the
method evolution. Chapter 14 traces paths for future works and concludes this work.

1.6. DB-MAIN 11

1.6. DB-MAIN
DB-MAIN is a database oriented CASE environment developed at the university of
Namur, in the Database Engineering Laboratory (LIBD2). The purpose of this CASE envi-
ronment is to assist a database engineer in every database engineering activity he or she can
face, including database design, database reverse engineering, database evolution, database
re-engineering, databases integration,... In this section, we will describe its main character-
istics.

• It is based on the GER model presented in Chapter 3 which is general enough to allow
a database engineer to represent a very broad range of concepts from a very broad range
of data models at all abstraction levels.

• It is transformation-based. A database schema which is compliant with a given schema
model can be transformed into a semantically equivalent schema which is compliant
with another schema model. This transformation can be performed step by step with a
set of basic transformations by the analyst who can control the whole process and
understand what happens. This is rather different from most commercial CASE envi-
ronments where schema conversion from one model to another is just a black box.

• It allows different usage levels. Schema transformations can be performed in several
ways; step by step with full control by the engineer, in an automated way with an
advanced configurable assistant, in an automated way with a simple assistant working on
a problem-solution basis, or as a fully automated black box.

• It is methodology neutral. An engineer using this CASE environment is allowed to do
whatever he or she wants. He or she can either follow a well-known method, or his or
her own method, or simply use the CASE environment as a white board on which he or
she can draw freely. It is this aspect of the CASE environment that is addressed through-
out this thesis.

• Users can personalise the GER model by defining new meta-properties for its different
concepts. For example, it is possible to add an owner meta-property to the entity type
concept, so that the owners of each entity type can be specified.

• It embeds a 4GL (namely Voyager 2, [ENGLEBERT,99]) which allows database engi-
neers to develop their own schema transformations, or more complex tools such as
report generators or specific DBMS DDL generators.

• It allows data structure extraction and data structure generation for several DBMS and
computer languages. Some of the generators and extractors are written in the Voyager 2
language and their sources are provided to allow engineers to adapt them to their own
needs.

• It is repository-based. All the schemas and other texts are kept in a built-in object ori-
ented repository. The structure of this repository is described in the manuals [ENGLE-
BERT,99]. The repository is accessible through the Voyager 2 language, and through
C++ and Java classes.

The theoretical aspects of this thesis will be implemented in the DB-MAIN CASE environ-
ment for evaluation. The repository will be extended to store the new concepts we will
define in Chapter 2. And the user interface will have to be updated in order to help the
engineers to use all the new capabilities.

A more comprehensive description of the CASE tool can be found in [ENGLEBERT,95]
and in [DB-MAIN,02A].

2 Laboratoire d’Ingénierie de Bases de Données

Part 1Part 1Part 1Part 1

Models andModels andModels andModels and

MethodsMethodsMethodsMethods

Chapter 2

Basics

This chapter defines the building blocks that will be used throughout this
thesis. Firstly, it defines the basic concepts and terms on which we will
build our proposal: actor, analyst, database engineer, method engineer,
process, engineering process, primitive process, process type, strategy,
toolbox, product, schema, text, product type, product model, hypothesis,
decision, product version,... Secondly, the basic concepts will be
assembled in a three level engineering process model that will guide us all
along this thesis like a map.

2.1. Basic definitions 16

2.1. Basic definitions
This thesis aims to develop concepts, models and tools to help software engineers in their
database design projects. The processes we are considering are perceived as product trans-
formation activities. It is thus necessary to begin by defining more precisely the kind of
products we are talking about, as well as the transformation processes, and who will have to
do every job.

• Actors

An actoractoractoractor is a person, or a machine, that can perform actions and conduct processes. A
human actor is an intelligent being capable of thinking and taking decisions. He or she can
look for a non-predefined solution when facing a new problem. Human actors can also get
slow and lazy when facing repetitive and tedious works. Machines can only apply pre-
defined recipes, but they can do it quickly and without getting tired. In this thesis, we will
develop principles about transformation processes, from their design to their use. So we can
define two main classes of actors:

• The first class is made up of the people who design the transformation processes. They
are human beings only, because their job is mainly based on decision taking and
requires database engineering technical knowledge, as well as a good knowledge of the
organisation and the people working for it. We will call them the methodmethodmethodmethod engineersengineersengineersengineers.
They decide how the actors of the second class have to work, and how they will be
helped.

• The second class comprises the people and computer programs who will apply the
methods as a series of transformation processes. We will call the people databasedatabasedatabasedatabase engiengiengiengi----
neersneersneersneers, analystsanalystsanalystsanalysts, or simply usersusersusersusers. We will call the computer programs functionfunctionfunctionfunction, proceproceproceproce----
duredureduredure, operationoperationoperationoperation or assistantassistantassistantassistant depending on the context.

Though we will be interested in the distinction between human actors and machines, we
will not address some important project management problems, such as human resource
management (studying dependencies between people and machines, affecting particular
persons to particular tasks,...) which is a complex problem studied in [SUTCLIFFE,00]. In
particular, actors modelling will be ignored in this thesis.

• Products

A productproductproductproduct is a document used, modified or produced during the design life cycle of an
information system. As we focus specifically on database engineering, we will describe
mainly database schemasschemasschemasschemas and database-related textstextstextstexts. Database schemas can be any data
structure description that can be of interest during the whole life cycle of the database engi-
neering project, in any phase, at every abstraction level, ranging from conceptual entity-
relationship, object oriented or UML schemas, to physical Oracle or COBOL schemas. We
examine this in more detail in Chapter 3. A text is any relevant character-based document
that is not a schema. This concept encompasses program source files, SQL-DDL scripts,
help files, word processing files, forms, etc.

• Processes

A processprocessprocessprocess is an activity that is carried out by an actor in order to transform products. A
goal-driven process, i.e. a process that tries to make its output products comply with specific
design requirements [MYLOPOULOS,92], will be called an engineeringengineeringengineeringengineering processprocessprocessprocess. Most
generally, a process is made up of a series of operations, that are processes. Atomic proc-
esses, that is to say, processes that comprise a single operation, are called primitiveprimitiveprimitiveprimitive procprocprocproc----
essesessesessesesses. A primitive process is simple enough to be considered basic. It can be performed
automatically using the correct tool. A primitive process is a single step on the path towards
the goals of an engineering process. For instance, producing the SQL-DDL script of a data-

2.1. Basic definitions 17

base is an engineering process. During this process, defining the type and length of a single
column is a primitive process.

• Histories

For several reasons developed in Chapter 6, it is interesting to store a trace of every opera-
tion performed during each process. A historyhistoryhistoryhistory is the recording of everything that happens
during the life cycle of an engineering project. We will see later on that this trace needs to
be readable, formal, correct and complete. The history also includes all the products that
are used or produced during the whole project. Finally, all the rationales according to
which the processes have been carried out are part of the history too.

• Methods

When a process is performed, it follows a predefined commonly agreed upon way of work-
ing, called a methodmethodmethodmethod. From the seventies to the beginning of the nineties, a lot of method
were developed (Merise [COLLONGUES,89] for instance) and published in the literature.
More and more companies tried to adopt such methods, but a predefined method is gener-
ally perceived academic and not well adapted to the industrial world that often requires
customised methods. To adapt a company way-of-working, or culture, to a particular
method generally leads to failure. It is much better to attempt to adapt the method to the
specific needs of the company. This thesis will show how one can define or adapt a custom-
ised method. To define a method, we have to precisely define the properties of two catego-
ries of components: its products and its processes. More precisely, we will define a method
by an arrangement of product types and process types.

• Product type

A productproductproductproduct typetypetypetype describes a class of products that play a definite role in the system life
cycle. A product is an instance of a product type. For example, the Library Personnel Inter-
view Reports is a product type. Every single interview report is an instance of this type.

• Process type

A processprocessprocessprocess typetypetypetype will describe the general properties of a class of processes that have the same
purpose, and that use, update or generate products of the same types. These general prop-
erties will have to include the list of product types to transform and the list of expected
resulting product types, as well as a strategy to follow. A process is an instance of a process
type. Engineering processes will be described by engineeringengineeringengineeringengineering processprocessprocessprocess types,types,types,types, and primitive
processes will be described by primitiveprimitiveprimitiveprimitive processprocessprocessprocess typestypestypestypes. For instance, the SQL-DLL code
production for the library management database design is an instance of the general SQL
Script Design engineering process type which tells what type of product have to be gener-
ated and how. The specification of each column data type is an instance of the Column
Data Type Definition primitive process type which proposes a list of valid data types.

• Process strategies

The strategystrategystrategystrategy of an engineering process type specifies how any process of this type must be,
or can be, carried out in order to solve the problems it is intended to, and to make it pro-
duce output products that meet its requirements. In particular, a strategy mentions what
processes, in what order, are to be carried out, and following what reasoning. For example,
the strategy for our SQL Script Design process can state that the database engineer must
(1) create the database itself, (2) create all the tables, (3) declare all the columns in every
table, (4) specify each column’s data type, (5) declare primary identifiers, (6) declare for-
eign keys and (7) declare other constraints.

Primitive process types are basic types of operations that will be performed by the analyst,
or by a CASE tool. They have no associated strategy. They can be classified into four cate-
gories according to the level of automation and user involvement:

2.1. Basic definitions 18

1. BasicBasicBasicBasic automaticautomaticautomaticautomatic processprocessprocessprocess typestypestypestypes. Such a process is context-free and does not require any
parameters nor configuration settings. The new entry in the file menu of any application
is such a process type.

2. ConfigurableConfigurableConfigurableConfigurable automaticautomaticautomaticautomatic processprocessprocessprocess typestypestypestypes. The effect of such a process depends on general
settings defined at method definition time. It is specific to a definite design environ-
ment and can be considered a part of the culture of the organisation. For example, the
spelling checking facility of every word processor does its job automatically when the
right dictionaries are installed.

3. UserUserUserUser configurableconfigurableconfigurableconfigurable automaticautomaticautomaticautomatic processprocessprocessprocess typestypestypestypes. These automatic processes need to be user
configured before each activation. Process types that can still be executed automatically
but which needs to be configured before each use, by the user himself or herself. For
instance, each document photocopying session requires to manually set the correct
number of copies, the contrast, the zoom factor, and the paper size before proceeding.

4. ManualManualManualManual processprocessprocessprocess typestypestypestypes. A manual process is carried out by the user, possibly with some
ancillary help from the tool. The interpretation of interview reports when drawing a raw
conceptual schema is an example of such a process type. Most generally these processes
encompasses the knowledge-based user activities that cannot be carried out by tools.
However, in order to perform a manual process, the database engineer needs some basic
tools.

• Basic tools and toolboxes

A basicbasicbasicbasic tooltooltooltool is a primitive function of the supporting CASE tool. Tools can be grouped to
form a toolboxtoolboxtoolboxtoolbox. To each process type of the fourth group, a toolbox is associated by the
method engineer. To perform a process of one of these types, the database engineer can use
any tool from the associated toolbox. For instance, the drawing toolbox can contain a pen-
cil, a ruler and an eraser.

• Product models

We have defined the notion of product type which allows us to define a class of products
that plays a definite role in the current method. Two product types can appear in a method
though their model can be the same. In the Conceptual Analysis process, for instance, sev-
eral conceptual schema types can be identified: the partial raw conceptual sub-schemas, the
normalised conceptual sub-schemas, the integrated conceptual schema, the sub-system
views, etc. All of them are made up of the same set of building blocks and assembly rules,
namely some variant of the Entity-relationship model or of the UML class model (e.g.,
through a conceptual profile). Hence the concept of productproductproductproduct modelmodelmodelmodel. A model defines a gen-
eral class of products by stating the basic components they are allowed to be included and
the assembly constraints that must be satisfied. A product type is expressed into a product
model. For instance, all the interview reports of the Library Personnel Interview Reports
type have to be written using the same Interview Report Form model which states that
interview reports must have a date, references to the project, the interviewer, the inter-
viewee, and a series of sections having a subject and the comments of the interviewee about
the subject.

• Hypotheses, versions and decisions

User configurable and Manual process types need some human interaction to be per-
formed. This is generally due to the need for some intelligence or some knowledge that
supporting tools do not have. But, even database engineers can lack knowledge, so that
they may face a problem they cannot solve straight away with certainty. They have differ-
ent ideas of solution they want to explore. Each idea is developed into a design branch,
leading to a definite solution. These solutions can then be evaluated and compared, one of
them generally being chosen as the best fitted. Each solution results from a restriction of

2.1. Basic definitions 19

the problem domain through hypotheseshypotheseshypotheseshypotheses. By stating different hypotheses, an engineer can
define several contexts and solve the problem in each of them. Each resulting product is in
fact a different versionversionversionversion of the final product. By comparing all these versions, an engineer
can take the decisiondecisiondecisiondecision of keeping or rejecting each of them. The hypotheses, the product
versions obtained from these hypotheses and the final decisions all have to be kept in the
history. For example, an analyst trying to draw a conceptual schema on the basis of inter-
view reports can have problems with the interpretation of some sentences. It is not clear
whether the keywords characterising a document of the library have to be stored separately
or not. The analyst can make both hypotheses independently and solve the problem twice.
When the job is finished two schemas versions are produced: “library/several keywords”
and “library/one keyword line”. The analyst can see the interviewee again with both solu-
tions printed on paper to discuss of the best choice, then store in the history the decision to
keep the “library/several keywords” version and the rationale of this decision: “These key-
words will serve to search for the documents.” During the remaining of the project, the
other version of the schema will no longer be used, but it is not discarded and is kept in the
history.

Another kind of decisiondecisiondecisiondecision can be imposed by the strategy of a process type. This kind of
decision can be necessary to decide of doing one action or another, or to decide how many
times something has to be done, as it will be shown in Chapter 4.

2.2. Architecture
The concepts described in the previous section are shown in Figure 2.1, together with their
relationships. This concept architecture comprises three levels, namely: the instance level,
the type level and the model level.

Figure 2.1 The architecture

The instanceinstanceinstanceinstance levellevellevellevel contains the processes and the products used, generated and updated by
the processes. The level comprises the objects of the history. A process is either an engineer-
ing process or a primitive process. The products are used, generated, or modified by these
processes. To be performed, some processes required that other processes be performed.

In
st

an
ce

 o
f

required
using (...)

is a

requires
using (...) Generates

 Product model
Model level

Instance level
 Product

Updates

Uses

Is
 o

f

 Process type Product type

Generates

In
st

an
ce

 o
f

Updates

Uses

Type level

 Process

2.2. Architecture 20

These sub-processes use or update some products given by the calling process. The sub-
processes can also generate some products and give them back to the calling process. The
hypotheses formulated by an engineer are attached to the processes performed in the con-
text they define. All the processes leading to different versions of a same product use the
same input products. These different product versions form a series of products of a same
type; they are given the same name with different version names. A decision to reject to
product versions is a special kind of process: instead of generating or updating a product, it
merely designates products among a collection of input product (generally different versions
of a product). In standard terms, a decision “uses” the input products from which it will
select a subset. We consider that the process “updates” the selected products. A decision
imposed by the strategy of a process type is a special kind of process too, which only “uses“
some products to evaluate an expression whose result determines what processes will be
performed later.

The typetypetypetype levellevellevellevel describes process types and product types that form a method. The descrip-
tion of each process type comprises its interface and its strategy. The interface is made up
of the types of the products that are used, updated or generated by the processes of this
type. Each process of the instance level is an instance of a process type. In the same way,
each product is an instance of a product type. So, an integrity constraint of this architecture
is that each product that is used, updated or generated by a process is an instance of a prod-
uct type linked to the process type of which the process is an instance. This link must play
the same function (uses, updates or generates). The performance of a process of one type
often requires that some processes of other types are performed using some products of
specified types. This process type composition must be compliant with the process compo-
sition at the instance level. A decision imposed by the strategy is itself a special kind of
primitive process type that updates, or generates, no product type. Since a decision of keep-
ing or rejecting some product versions is taken whenever at performance time, these deci-
sions cannot be prescribed by the strategy, so they cannot appear at the type level.

Figure 2.2 shows the meta-model of the type level (using the ER model presented in Chap-
ter 3). It shows that a product type is either a global product type (its instances can be used
by any process) or declared locally to a process type. It also shows that some of the local
product types are the formal parameter of the process type. According to the “mode”
attribute, these are the product types used, updated or generated by the process type in Fig-
ure 2.1. When a process type requires that a process of another type is performed, some
parameters are transmitted. These parameter are product types (either local product types
or global ones) which must match two by two with the formal parameters of the required
process type.

Figure 2.2 The type level meta-model

1-10-N transmits

1-1

0-N

requires

1-1

0-N

required by

1-1

1-N

match

0-N

1-1

is-of 1-10-N declared in

Local product type Process type

Invocation

Formal parameter
mode

Product type

Global product type

Actual parameter

2.2. Architecture 21

The modelmodelmodelmodel levellevellevellevel describes product models. Each product type is of a product model, i.e.,
each product of that type, of that class, is built with components pertaining to its associated
product model and must be compliant with that model.

This architecture obviously is asymmetrical: there is no process model. Such a model could
have been defined and certainly would be useful. It would allow a method engineer to
define, e.g., a Logical design process model which could be specialised into Relational logical
design or Object logical design process types. We think that the effort would not be justified
by an increased productivity of the method engineer, at least in the database realm. There-
fore, in the limited context of this thesis, we have left it for further research. [JAMART,
94], [ROLLAND,95], [DOMINGUEZ,97] and [HARANI,98] present an architecture
with process models (called process meta-models) that allow the design of methods for vari-
ous domains of activities, the process (meta-)model allowing to define the concepts
(dependent on the domain of activities) that can be used by the process types.

The Figure 2.3 suggests an illustration of the this concept architecture. The C++ programs
model is a text model that specifies the syntax of C++ program files. Main and GUI are
particular types of C++ files. The first type contains the core source files of an application,
while GUI contains all the GUI-related source files of the same application. Manage-
ment/2.0 is a particular C++ program source file that contains the main procedure of a
management module. Management screen is a file including all the procedures required for
displaying the management module main screen. In the same way, General Ledger and Per-
sonnel are two instances of the Conceptual schema product type, which is expressed in the
ERA model product model.

In the same way, Figure 2.4 shows two process hierarchy examples. The C++ program
design process type has a strategy that was followed by the Management GUI functions
design. General Ledger schema design and Personnel schema design are two conceptual schema
designs performed with the same pattern described by the Conceptual schema design type.

Figure 2.5 shows an example of a very simple project combining the product and the proc-
ess hierarchies, compliant with the architecture shown in Figure 2.1.

Figure 2.3 Two examples of product hierarchies

in
st

an
ce

 o
f

ERA modelERA modelERA modelERA model

in
st

an
ce

 o
f

GUIGUIGUIGUI

is of

 instance of

Conceptual schemaConceptual schemaConceptual schemaConceptual schema

Management screen

Instance level

is
 o

f

Personnel

in
st

an
ce

 o
f

General LedgerManagement/v2.0

Model level

MainMainMainMain

is
 o

f

Type level

C++ programsC++ programsC++ programsC++ programs

2.2. Architecture 22

Figure 2.4 Examples of process hierarchies.

Figure 2.5 A complete example

Personnel
schema design

General Ledger
schema design

ConceptualConceptualConceptualConceptual
schema designschema designschema designschema design

 in
st

a n
ce

 o
f

Personnel

General Ledger

Type level

generates

generates

in
st

an
ce

 o
f

ConceptualConceptualConceptualConceptual
schema designschema designschema designschema design

C++ programC++ programC++ programC++ program
designdesigndesigndesign

in
st

an
ce

 o
f

Management GUI
functions design

 instance of

Personnel
schema design

is
 o

f

generates

Model level

 instance of

General Ledger
schema design

instance of Instance level

Instance level

in
st

an
ce

 o
f

Conceptual schemaConceptual schemaConceptual schemaConceptual schema

ERA modelERA modelERA modelERA model

Type level

Chapter 3

Product models

In this chapter, the notion of product model will be precisely detailed, as
well as a way to define some of them. The GER (generic entity
relationship schema) model will be presented as a reference schema model.
It will be used to define particular database schema models by renaming
its concepts and stating a series of constraints on these concepts. Text
models will also be defined with a regular grammar. Finally, an
inheritance mechanism to express product models as sub-models of other
product models will be developed.

3.1. Basic considerations 24

3.1. Basic considerations
An in-depth analysis of several database engineering methods exhibits both strong similari-
ties and many specific aspects. What makes them similar, among others, is that, at each
level of abstraction, they rely on some variant of popular specification models. However,
instead of adopting such models as off-the-shelves components, most methods redefine and
customise them according to the needs, culture and available technology of the business
environment. In some sense, there are as many ERA, NIAM and UML models as there are
organisations that use them. Product models are to be considered as a way to precisely
define what is exactly intended by each model used by the organisation. In particular, they
define the concepts, the names to denote them and the rules to be used to build any com-
pliant product.

In the context of database engineering, we define two main kinds of models, namely
schema models and text models.

A schemaschemaschemaschema modelmodelmodelmodel allows designers to specify data/information structures. The ER model
proposed by Bachman in the late sixties, inspired by the pioneer DBMS IDS [BACH-
MAN,69] and popularised by Chen [CHEN,76] is such a model. The general ER model
(GER) developed in the LIBD3 and implemented in the DB-MAIN CASE tool is an exten-
sion of the ER model. This wide-spectrum GER model is intended to describe data/infor-
mation structures at different abstraction levels and according to the most popular para-
digms [KIM,95] (Figure 3.1).

A personalised schema model will be defined as a specialisation of a the GER model. The
GER model will be described in detail in Section 3.2, and some tools to specialise it will be
built in Section 3.3.

Abstraction levels Representation paradigms

Conceptual ERA, Merise Merise-OO, Chen, NIAM, OMT, Booch,
Fusion, UML, etc.

Logical Relational, network, hierarchical, standard files, OO, XML
Schema, etc.

Physical ORACLE 9i, SYBASE, IMS, IDS2, O2, Microfocus
COBOL, Java, XML, etc.

Figure 3.1 The 2-dimension scope of the GER model

A texttexttexttext modelmodelmodelmodel allows designers to specify every other kinds of information. Indeed, text files
appear in many forms ranging from computer language source files with a very strict syntax
to filled forms, and to natural language texts. Some of these text can be rapidly examined in
order to analyse their structure:

• A C++ source file is made up of function declarations. A function is prefixed by a header
and an opening curly bracket, it is made of statements, and it is terminated by a closing
curly bracket. A header is made of a name and parameters, the parameters being put
between parentheses and separated by commas. A statement is made of keywords, vari-
ables, constants and other symbols, and is terminated by a semi-colon. Keywords, func-
tion names, variables, constants, punctuation marks and other symbols are all made of
characters which are classifiable in different sets: figures, letters, punctuation marks,
mathematical symbols,...

3 LIBD: Laboratoire d’ingénierie de bases de données, database engineering laboratory, computer science
department, university of Namur.

3.1. Basic considerations 25

• An XML file is a text containing mark-ups and character data. A mark-up is a string
enclosed between angle brackets <...>, and character data are the strings not surround by
< and >. An XML file is made up of elements. An element starts with a start tag which is
a mark-up and ends with an end tag which is another mark-up whose content is pre-
fixed by a slash /. An element has a name, which appears in both the start and the end
tag, and possibly attributes, which can be given a value in the start tag. All the character
data and elements between the start tag and the end tag is the content of the element.
XML being a kind of text descriptor, the result of the interpretation of an XML file is
itself a text file with any other syntax.

• A form is made of sections. A section has a title and is made of questions and answers. A
question and an answer are made of words, numbers or items, and punctuation marks.
Items are made of words and numbers, and are prefixed by check marks. Words are
made of letters.

• A text written in natural language is made of paragraphs. A paragraph is made of words
and punctuation marks. A word is made of letters.

There are obvious similarities among all these text variants. Their structures can be
described in a hierarchical way, each element being made of a sequence of sub-elements. In
fact, all these texts are written according to a particular grammar. So, a text model can be
described by describing the grammar with which it complies. As described above, XML
itself could be used to describe the grammar of all the texts.

In most computing environments such as DOS-based or Windows-based, file names have
an extension. This extension is content-based: it specifies the family of programs that are
allowed to process the file. In other words, each file extension is associated with a particu-
lar grammar and with the processors that understand it. For instance, the “RTF” extension
refers to word processors that understand the RTF grammar (e.g., Star Office, Frame-
Maker, MS Word, etc.)

Section 3.4 will show how a text model can be described by defining its grammar or simply
by giving a list of associated file extensions.

3.2. The GER model
The GER model is a Generic Entity/Object-Relationship model that has been defined in
[HAINAUT,89], and that has been implemented in the DB-MAIN repository. Its most
important components are presented in this section.

3.2.1. Schema

A schemaschemaschemaschema is a description of a collection of data or information structures. It is made up of
the specification of entity types, relationship types, attributes, roles, is-a relations, process-
ing units, collections and constraints. The full name of a schema comprises its name and its
version. The schemas of a project have distinct full names. The graphical representation of
a schema is shown in Figure 3.2: TRANSPORT/Conceptual is the full name of a conceptual
schema of a Transport management system. The name of the schema is “TRANSPORT”
while its version is “Conceptual”.

Figure 3.2 A schema

TRANSPORT/Conceptual

3.2. The GER model 26

3.2.2. Entity types

An entityentityentityentity typetypetypetype is used to denote objects in two different contexts:

• It can be the representation of a concept of the real world: a person, an invoice, a vehi-
cle,... Such an entity type should be characterised by some properties and links with
other entity types.

• It can be a technical data structure which has the same syntactical needs.

Figure 3.3 shows an example of an entity type named PERSON. The top compartment
contains the name. The second compartment contains some attributes that characterise the
entity type. The third compartment contains various constraints. The bottom compart-
ment contains some processing units applicable to the entity type. Only the first compart-
ment is mandatory, while the others are independently optional. These attributes, con-
straints and processing units are examined hereafter.

Figure 3.3 An example of entity type

3.2.3. Relationship types (rel-types)

A relationshiprelationshiprelationshiprelationship typetypetypetype, also called a relrelrelrel-typetypetypetype, is a link between two (binary rel-type) or more
(n-aryn-aryn-aryn-ary rel-type) entity types. An entity type plays a role in the rel-type as explained later.
For example, in Figure 3.4, owner is a rel-type that establishes a link of ownership between
a person and a vehicle. Like entity types, rel-types can have attributes, constraints and treat-
ments.

Figure 3.4 An example of rel-type

3.2.4. Attributes

AttributesAttributesAttributesAttributes are some properties that characterise an entity type or a rel-type. For instance,
in Figure 3.3, ID, name, first name, address and phone are attributes of entity type PER-
SON. Street, Number, Box, Zip code, Town, Country are all sub-attributes of the attribute
Address. In the same way, in Figure 3.4, Acquisition date is an attribute of rel-type owner.
Being made up of meaningful components, Address is a compoundcompoundcompoundcompound attributeattributeattributeattribute. All the other
attributes are called simplesimplesimplesimple or atomicatomicatomicatomic.

Each simple attribute has a typetypetypetype or domaindomaindomaindomain. There are three kinds of types, namely basic,
object and user-defined.

1-1
owned by

0-N
owns owner

Acquisition date
VEHICLE PERSON

PERSON
PersID
Name
First name
Address

Street
Number
Box[0-1]
Zip code
Town
Country

Phone[0-5]
id: PersID
Validate()

3.2. The GER model 27

A basic domain is any technical semantic-less value type that is available in most data man-
agement system. Some common examples: numeric, char, varchar, boolean, date, float, etc.

An object domain is defined as an entity type of the schema. An object attribute takes its
values from the instances of another entity type. For example, a SHAPE entity type can
have an object attribute, named Colour, the domain of which is COLOUR, itself an entity
type of the schema.

A user-defined domain (UDD) is given a meaningful name and a definition by the database
engineer. The definition of a UDD can be a basic domain, an object domain or even
another UDD. In addition a UDD can be compound, just like an attribute. In this case,
the list of its components has to be defined. In particular, a component of a compound
UDD can be multivalued or optional.

An attribute is given a cardinalitycardinalitycardinalitycardinality constraintconstraintconstraintconstraint. It is noted in the form [i..j], where 0 ≤ i <
NNNN, 1 ≤ j ≤ NNNN, i ≤ j, where the symbol NNNN stands for infinity. It means that each instance of
the parent (entity, rel-type or attribute) that contains this attribute must have at least i and
at most j different values of this attribute. For instance, in Figure 3.3, a PERSON should
have between 0 and 5 phone numbers. When i = 0, the attribute is optionaloptionaloptionaloptional, otherwise it is
mandatory.mandatory.mandatory.mandatory. When j > 1, the attribute is multivaluedmultivaluedmultivaluedmultivalued, otherwise it is single-valued. A mul-
tivalued attribute can be organised in several ways: set, bag, list, unique list, array, or unique
array.

In a set, elements are distinct and un-ordered. For instance, {a,b} = {b,a} is a set. {a,a} is not
a set.

In a bag, elements are un-ordered, but they can appear several times. {a,a,b} = {a,b,a} = {b,a,
a} is a bag.

In a list, elements are ordered. (a,b,a) is a list, (b,a,a) is another list.

A unique list is a list into which each element appears only once. (a,b) is a unique list, (a,b,
a) is not a unique list.

An array is a structure made of a given number of cells, each one possibly containing an

element, possibly none. a b b is an array.

A unique array is an array into which each element appears only once. For example,
a b is a unique array.

3.2.5. Roles

A rolerolerolerole is the partnership of an entity type in a relationship type. In Figure 3.4, the role
owns is played by the entity type PERSON in the rel-type owner.

The name of the role is optional. The default value is the name of the entity type playing
the role. The roles of a rel-type have distinct names. So, when an entity type plays several
roles in a rel-type, which is called a cycliccycliccycliccyclic rel-type, at most one of the roles can get the
default value, all others must be given an explicit name.

The roles have a cardinalitycardinalitycardinalitycardinality constraintconstraintconstraintconstraint4. It is noted on the form i-j, where 0 ≤ i < NNNN, 1 ≤ j
≤ NNNN, i ≤ j, where the symbol NNNN stands for infinity. The cardinality measures the number of
relationships in which an entity participates in this role: this number must be, for any
entity, between i and j. For instance, in Figure 3.4, a person may own any number of cars
(0-N: minimum 0, maximum an infinity), and a car is the property of exactly one person.

4 The GER uses the participation semantics of the cardinality constraint (Merise style), as opposed to the
look-accross semantics (UML style).

3.2. The GER model 28

A role can be played by several entity types. Figure 3.5 states that an employee can travel by
car, either with his or her own car or with a car of the society, never both. In the first case,
the information system only needs to have few information about the car and it does not
need to be identified. In the second case, all the cars of the society must be correctly identi-
fied, and registered with a series of information for their management.

Figure 3.5 A multi-ET-role example

3.2.6. Constraints

In most cases, a constraint is expressed as a relationship holding on a group of components
of the object (entity type, relationship type or attribute) on which it applies. A group com-
prises one or several attributes and roles. It is used either to declare a function played by its
component, to state constraints between its components or to describe constraints between
its components and the components of another group, possibly belonging to another
entity-type or rel-type.

A. Functions of a group

The most common functions of a single group are the following ones:

• PrimaryPrimaryPrimaryPrimary identifieridentifieridentifieridentifier. Any tuple of component values identifies an entity (or relationship)
among all entities (respectively relationships) of the same type. An entity type has at
most one primary identifier. It is made up of mandatory attributes and/or roles. In Fig-
ure 3.6, each entity type has a primary identifier group, tagged with “id” and composed
of a single attribute (PersID, VehiID and Name for entity types PERSON, VEHICLE
and BRAND respectively).

• SecondarySecondarySecondarySecondary identifieridentifieridentifieridentifier. Like primary identifiers, secondary identifiers identify an entity
(or a relationship) among all entities (respectively relationships) of the same type. An
entity type (relationship type) can have zero, one or many secondary identifiers. They
are made up of mandatory or optional attributes and/or roles. In Figure 3.6, the entity
type VEHICLE has a secondary identifier made up of the role played by the entity type
PERSON in the rel-type OWNER, and the attributes brand and model. It is tagged with
“id’ ”.

•••• AttributeAttributeAttributeAttribute identifieridentifieridentifieridentifier. In a compound multi-valued attribute, any tuple of sub-attribute
values identifies a value of the compound attribute among all its values for a single par-
ent (entity type, rel-type or compound attribute) value. In Figure 3.6, the attribute
Importer as a primary identifier made of its sub-attribute ImpID. It shows that each
Importer value of a BRAND value is identified among all Importer values for the same
BRAND value.

1-1
Car0-1 uses

SOCIETY_CAR
CarID
Brand
Model
Engine type
Chassis nb
...
id: CarID

PERSONAL_CAR
Brand
Model
Cost per kmEMPLOYEE

PersID
...
id: PersID

3.2. The GER model 29

Figure 3.6 Examples of constraints

• AtAtAtAt leastleastleastleast oneoneoneone. Holding in a group of optional attributes and roles only, this constraint
states that any entity must have a value in at least one of the components. In Figure 3.6,
the attributes power (kW) and power (HP) of entity type VEHICLE are both optional,
but the group tagged with “at-lst-1” shows that, for any vehicle, at least one of those two
attributes must have a value. It is nevertheless permitted to give a value to both attrib-
utes.

• ExclusiveExclusiveExclusiveExclusive. Holding in a group of optional attributes and roles only, this constraint
specifies that no more than one of the optional components can have a value.

• ExactlyExactlyExactlyExactly oneoneoneone. Holding in a group of optional attributes and roles only, this constraint
specifies that one and only one of the optional components must have a value.

• CoexistenceCoexistenceCoexistenceCoexistence. Holding in a group of optional attributes and roles only, this constraint
specifies that any entity must have a value for every components of the group, or for
none of them.

• AccessAccessAccessAccess keykeykeykey. Though it does not relate to integrity, this function simply expresses a tech-
nical property: an access key is a group that specifies that the tuple of components can be
used to get fast access to the entities with these values. Access keys are meaningful in
physical schemas, where they represent such constructs as indexes.

• Besides these predefined constraints, user-defined constraints can be defined as well. In
Figure 3.6, groups tagged “range” (user defined tag) define valid ranges of values.

• Any group that has been assigned no function (so far) is tagged with symbol “gr”.

B. Constraints between groups

The second class of constraints defines relationships between two groups that can belong to
different objects. The most common inter-group constraints are the following.

• ReferenceReferenceReferenceReference constraintconstraintconstraintconstraint. The referencing group references the referenced group. The ref-
erenced group (the target of the constraint) has to be an identifier (primary or secon-
dary) of its parent entity type. The referencing group (the origin of the constraint)
should have the same structure (same length and same type for all the corresponding
components) as the referenced group. The values of the components of the referencing
group in an entity identify an entity of the referenced entity type. In Figure 3.6, the
entity type VEHICLE contains a reference group, tagged with “ref”, made up of one
attribute which references the entity type BRAND. The attributes brand of VEHICLE
and name which identifies BRAND are both strings of the same length. The entity type

1-10-N owner

VEHICLE
VehiID
Brand
Model
Power-kW[0-1]
Power-HP[0-1]
...
id: VehiID
id': owner.PERSON

Brand
Model

ref: Brand
at-lst-1: Power-kW

Power-HP
range: Power-kW
range: Power-HP

PERSON
PersID
Name
First name
Address
Phone[0-5]
id: PersID

BRAND
Name
Importer[1-N]

ImpID
Name
Address

id: Name
id(Importer):

ImpID

3.2. The GER model 30

BRAND is a dictionary of all known vehicle brands with their importers, and each value
of the brand attribute must match an entry in that dictionary.

• EqualityEqualityEqualityEquality constraintconstraintconstraintconstraint It is a special kind of reference constraint in which every entity of
the referenced type must be referenced as well. In Figure 3.6, if the reference constraint
is replaced by an equality constraint, there must be at least one vehicle of every brand in
the database. Graphically, the sole difference is the tag that becomes “equ”.

• InclusionInclusionInclusionInclusion constraintconstraintconstraintconstraint. It is a generalisation of the reference constraint in which the tar-
get group does not need to be an identifier; it shows that every instance value of the ori-
gin group must be an instance value of the target group. For instance, Figure 3.7 shows
two entity types GEAR and VEHICLE which both have a Chassis type attribute. We can
note that several gears can exist for the same chassis type and that several vehicles can
have the same chassis type too. The inclusion constraint between the group of GEAR
tagged with “inc” and the group of VEHICLE tagged with “gr” shows that the stock can
only contain gears suitable for some of the vehicles of the company.

Figure 3.7 Examples of constraints between groups

• InverseInverseInverseInverse constraintconstraintconstraintconstraint. In an object oriented schema, if an entity type A (let us call it an
object type), has an object attribute of domain B, B being itself an object type contain-
ing an object attribute of domain A, then either:

− If both object attributes are single valued and identifiers of their respective object
type, then an inverse constraint between these attributes shows that if a is an object
of type A and if b is an object of type B such that the value of the object attribute of
a is b then the value of the object attribute of b must be a, and reciprocally. This is a
kind of one-to-one relationship between A and B.

− If the object attribute of A is single-valued and non-identifying, and the object attrib-
ute of B is multi-valued and identifier of B, then an inverse constraint between these
attributes shows that if a is an object of type A whose object attribute has the value b,
then b must be an object of type B whose object attribute has a set of values contain-
ing a. Moreover, if b is an object of type B, each value ai of its object attribute is an
object of type A whose object attribute has the value b. This is a kind of one-to-many
relationship between A and B.

− If both object attributes are multi-valued and non-identifying, then an inverse con-
straint between them shows that if a is an object of type A, each value bi of its object
attribute is an object of type B whose object attribute value is a set containing a, and
reciprocally. This is a kind of many-to-many relationship.

In Figure 3.8 two object types EMPLOYEE and OFFICE are referencing each other. An
EMPLOYEE has, among other attributes, an Office object attribute of domain OFFICE
which is single-valued. An OFFICE object has an Occupier multi-valued object attribute
of domain EMPLOYEE which is a secondary identifier of OFFICE, showing that an

VEHICLE
VehiID
...
Chassis type
Torque
...
id: VehiID
gr: Chassis type
gr: Torque

Chassis type

GEAR
Part no
...
Chassis type
Resistance
...
id: Part no
inc: Chassis type
check: Resistance

Chassis type

3.2. The GER model 31

employee occupies no more than one office. The inverse constraint (tagged in both
intervening groups with “inv”) shows that if two EMPLOYEE instances with PersID val-
ues of 522 and 635 have the same Office value CS,216, then the value of Occupier
attribute of the OFFICE instance CS,216 must be the set of EMPLOYEE instances
{522,635}, and no other OFFICE instance can have EMPLOYEE instances 522 or 635
as an Occupier value. And if an OFFICE instance identified by MD,312 has an Occupier
value of {128,265}, then both EMPLOYEE instances with PersID values of 128 and 265
must have EMPLOYEE instance MD,312 has their value of Office.

• GenericGenericGenericGeneric constraintconstraintconstraintconstraint. A user-defined inter-group constraint can be defined, bearing a
user-defined semantics. In Figure 3.7 a generic constraint tagged with symbol “check” is
intended to assert that the Resistance of a gear is sufficient for the Torque of at least one
of the vehicle which has the same Chassis type.

OFFICE
Building
Door number
Floor
Key number
Occupier[0-N]: *EMPLOYEE
id: Building

Door number
id': Occupier[*]

inv

EMPLOYEE
EmpID
Name
First name
Function
Office: *OFFICE
Phone
id: EmpID
inv: Office

Figure 3.8 An inverse constraint example

3.2.7. Is-a relations

An is-ais-ais-ais-a relationrelationrelationrelation is a direct generalisation/specialisation structure between entity types. In
Figure 3.9, the is-a relation between EMPLOYEE, CUSTOMER and PERSON expresses
the fact that an EMPLOYEE (or CUSTOMER) entity is also a PERSON entity; an
employee has an id, a name and a salary. Since the attribute id identifies a person, it also
identifies an employee or a customer. EMPLOYEE and CUSTOMER inheritinheritinheritinherit the properties
(attributes, groups and processing units) from PERSON. PERSON is called a super-typesuper-typesuper-typesuper-type of
EMPLOYEE and CUSTOMER, while EMPLOYEE and CUSTOMER are called the sub-sub-sub-sub-
typestypestypestypes of PERSON.

In Figure 3.9, there is no constraints on the is-a relation. So, a person can be either an
employee, or a customer, or both, or none of them. But some constraints can be stated; an
is-a relation can be:

 PERSON
PersID
Name
...
id: PersID

EMPLOYEE
Salary
...

CUSTOMER
Last purchase
...

Figure 3.9 An is-a relation

3.2. The GER model 32

• totaltotaltotaltotal, every person is at least an employee or a customer (possibly both). It is repre-
sented by the letter “T” in the triangle

• disjunctiondisjunctiondisjunctiondisjunction, a person can be an employee or can be a customer, but never both (possi-
bly none of them); a letter “D” will represent the disjunction

• partitionpartitionpartitionpartition, a person is either an employee or a customer, but not both of them; a parti-
tion is a total disjunction. It is represented with the letter “P”.

3.2.8. Processing units

A processingprocessingprocessingprocessing unitunitunitunit is anything that handles the data stored in entities, relationships, or in a
whole schema. It can be a function, a procedure, a method, a script, a “to do” list,... For
instance, it can be an SQL check that validates the data before inserting or updating a row
in a table. It can also be a reporting function that converts data to make them more read-
able: the ReportAuto function of the VEHICLE entity type can convert the value of the
boolean attribute Auto to the more readable string “Automatic gear” or “Manual gear”. In
the graphical representations, a processing unit appears in the fourth compartment of an
entity type or a rel-type, as in Figure 3.3. It can also be associated with a schema by adding
a rectangular compartment under the schema ellipse.

3.2.9. Collections

A collectioncollectioncollectioncollection is a structure that allows designers to group entity types together for whatever
reason he or she may want. For instance, at the physical level, a collection can represent the
notion of file. The designer can then use collections to dispatch SQL tables among files. In
Figure 3.10, two collections represent files in a library management system. The designer
chose to store the tables AUTHOR, BOOK, COPY, KEYWORD, REFERENCE and WRIT-
TEN which, altogether, represent the inventory of all the books in the single LIBRARY file,
and the remaining tables which represent the dynamic aspect of the book movements in a
second file named BORROWING.

LIBRARY

AUTHOR
BOOK
COPY
KEYWORD
REFERENCE
WRITTEN

BORROWING

BORROWER
BORROWING
CLOSED_BORROWING
PHONE
PROJECT

Figure 3.10 A collection

3.2.10. Dynamic properties

Each concept presented above has a series of properties, such as the cardinalities of an
attribute or a role, the total and disjoint property of an is-a relation, etc. A dynamicdynamicdynamicdynamic propproppropprop----
ertyertyertyerty is a user-defined property that can be appended to every concept in each project. This
property can be of various types: integer, character, boolean, real or string. It can also be
mono-valued or multi-valued.

For instance, one can add two dynamic properties to entity types: security-level and authori-
sation. The security-level property is an integer whose value can be 0 (accessible and
updatable by everybody), 1 (accessible by everybody in read-only mode), 2 (accessible and
updatable by authorised persons only), 3 (accessible by authorised persons only in read-
only mode) and 4 (accessible and updatable by system administrators only). Authorisation is

3.2. The GER model 33

a multi-valued string property whose values are the ids of the people who can access entities
of each type. In Figure 3.6, we can give values to these new properties for all entity types:

PERSON: security-level: 0, authorisation: ()
VEHICLE: security-level: 2, authorisation: (Smith,Johnson,Jones)
BRAND: security-level: 3, authorisation: (Jones)

3.3. Schema model
Let M be a schema model. M is a specific model used in a particular context, such as the
data model of a target DBMS or the proprietary conceptual model of a particular company.
In the same way as the GER model was described, M can be defined by a set of concepts
and their assembly rules. Since the GER has been designed to encompass the main con-
structs of the practical models used in data engineering, M can be defined as a subset of the
GER.

More precisely, M will be defined by:

1. Selecting the subset of the concepts of the GER that are relevant in the modelling
domain of M

2. Renaming the selected concept according to the modelling domain of M

3. Defining the specific assembling rules of M. In other words, some constraints can be
specified on the way the selected concepts can or cannot be used, by themselves or in
their association with other concepts.

For example, a logical relational schema comprises tables, columns, primary keys, foreign
keys and triggers. So, for expressing relational schemas, we define a Relational model as fol-
lows.

The most straightforward representation of a table is the GER entity type. A column will
be represented by an attribute, a primary key by a primary identifier, a foreign key by a ref-
erence group. A unique constraint is best expressed by a secondary identifier while a trigger
is a special kind of processing unit attached to the entity type of its table.

The following table describes these mapping rules: all the selected concepts of the GER in
the left column, and their relational name at right.

ConceptConceptConceptConcept NameNameNameName

entity type table

simple attribute column

primary identifier primary key

secondary identifier unique

reference constraint foreign key

processing unit trigger

Then we specify the assembling rules that define valid relational schemas, including the fol-
lowing:

• A schema includes at least one entity type.

• A schema includes no relationship types.

• A schema includes no is-a relations.

• An entity type comprises at least one attribute.

3.3. Schema model 34

• Attributes are simple (atomic).

• Attributes are single-valued.

• An entity type has at most one primary identifier.

• A primary identifier is made up of mandatory (i.e., with cardinality [1-1]) attributes
only.

• A reference group and its target identifier have the same composition (their components
have same type and length, considered pairwise).

It must be noted that these rules express restrictions, in that they state properties that can-
not be violated. In other words, any schema obeys model M if,

• it comprises no GER objects but those that have been explicitly selected

• it comprises all the possible GER assembly, but those that are prohibited by the rules.

Therefore, these rules will be called constraints from now on. In this section, a subset of
these constraints will be described, classified by object types. The constraint will be written
in a predicative form to define structuralstructuralstructuralstructural predicatespredicatespredicatespredicates. Each structural predicate will be
described with its name, its parameters and a short description. The complete set of struc-
tural predicates is proposed in Appendix A. Finally, the predicates will be assembled to
form more complex constraints.

A. Constraints on a schema

The first set of constraints concern the nature and the number of the components of the
current schema. The first constraints will be commented in detail. Many other constraints
are built on the same pattern, and have to be interpreted in the same way.

A first constraint concerns the number of entity types that can be used in a schema. In the
example above, every relational schema should have at least one entity type. But an upper
limit can also be set on the size of a schema, for example because a particular DBMS can-
not handle more than a given number of tables. So a constraint can be defined, let us call it
ET_per_SCHEMA, to specify the number of entity types that can/must appear in a
schema. It can be written in a predicative form:

ET_per_SCHEMA (min max) where min is an non-negative integer, and max
is either an integer not less than min or NNNN stand-
ing for infinity.

This first constraint must be read: The number of entity types (ET) per schema must fall in
the range [min-max].

In the same way, two additional constraints concerning the number of relationship types
and collections in a schema can be defined:

RT_per_SCHEMA (min max) The number of rel-type per schema must fall in
the range [min-max].

COLL_per_SCHEMA (min max) The number of collection per schema must fall
in the range [min-max].

For example, a relational schema must include at least one table but no relationship types.
In addition, the target DBMS imposes a limit of 1,000 tables. Therefore, the model
describing the valid schemas for this DBMS will include the constraints,

ET_per_SCHEMA(1 1000)

RT_per_SCHEMA(0 0)

3.3. Schema model 35

B. Constraints on an entity type

Similar constraints can be used to define valid entity types according to their components,
i.e., their attributes, their groups, their processing units and the roles they play in rel-types:

ATT_per_ET (min max) The number of attributes per entity type must
fall in the range [min-max].

GROUP_per_ET (min max) The number of groups per entity type must fall
in the range [min-max].

PROCUNIT_per_ET (min max) The number of processing units per entity type
must fall in the range [min-max].

ROLE_per_ET (min max) The number of roles per entity type must fall in
the range [min-max].

The richness of the concept of group requires some specialisation of the constraint
GROUP_per_ET. Hence the following constraints concerning, respectively, the primary
identifiers, all the identifiers, the access keys, the reference groups (foreign keys), the coexis-
tence groups, the exclusivity groups, the “at least one” groups, the inclusion constraints, the
inverse constraints, and the generic constraints.

ID_per_ET (min max) The number of identifiers per entity type must
fall in the range [min-max].

PID_per_ET (min max) The number of primary identifiers per entity
type must fall in the range [min-max].

KEY_per_ET (min max) The number of access keys per entity type must
fall in the range [min-max].

REF_per_ET (min max) The number of reference groups per entity type
must fall in the range [min-max].

COEXIST_per_ET (min max) The number of coexistence constraints per
entity type must fall in the range [min-max].

EXCLUSIVE_per_ET (min max) The number of exclusivity constraints per entity
type must fall in the range [min-max].

ATLEASTONE_per_ET (min max) The number of at-least-one constraints per
entity type must fall in the range [min-max].

INCLUDE_per_ET (min max) The number of inclusion constraints per entity
type must fall in the range [min-max].

INVERSE_per_ET (min max) The number of inverse constraints per entity
type must fall in the range [min-max].

GENERIC_per_ET (min max) The number of generic constraints per entity
type must fall in the range [min-max].

Roles played by an entity type can also be categorised into optional ([0-j]), mandatory ([1-
j]), “one” ([i-1]) and “many” ([i-j], j > 1). These categories induce specific constraints simi-
lar to those concerning groups.

For example, the definition of relational models could include the following constraints:

ATT_per_ET(1 N)

PID_per_ET(1 1)

INCLUDE_per_ET(0 0)

3.3. Schema model 36

INVERSE_per_ET(0 0)

GENERIC_per_ET(0 0)

C. Constraints on a relationship type

Like entity types, rel-types can be made of attributes, groups, processing units and roles. So
similar basic predicates can be defined:

ATT_per_RT (min max) The number of attributes per rel-type must fall
in the range [min-max].

GROUP_per_RT (min max) The number of groups per rel-type must fall in
the range [min-max].

PROCUNIT_per_RT (min max) The number of processing units per rel-type
must fall in the range [min-max].

ROLE_per_RT (min max) The number of roles per rel-type must fall in the
range [min-max].

For example, the last constraint applies on the degree of the rel-type, so rel-types can be
forced to be binary:

ROLE_per_RT (2 2)

Since rel-types can have groups too, constraints similar to those defined on entity types are
available as well:

ID_per_RT (min max) The number of identifiers per rel-type must fall
in the range [min-max].

PID_per_RT (min max) The number of primary identifiers per rel-type
must fall in the range [min-max].

KEY_per_RT (min max) The number of access keys per rel-type must fall
in the range [min-max].

COEXIST_per_RT (min max) The number of coexistence constraintss per rel-
type must fall in the range [min-max].

EXCLUSIVE_per_RT (min max) The number of exclusivity constraints per rel-
type must fall in the range [min-max].

ATLEASTONE_per_RT (min max) The number of at-least-one constraints per rel-
type must fall in the range [min-max].

INCLUDE_per_RT (min max) The number of inclusion constraints per rel-type
must fall in the range [min-max].

GENERIC_per_RT (min max) The number of generic constraints per rel-type
must fall in the range [min-max].

D. Constraints on an attribute

The constraints on the schema, entity types and rel-types concern the relations these con-
cepts have with their environment. These are relationship constraints. Before defining such
constraints on attributes, they can be examined for their intrinsic properties, namely their
cardinality and type:

MIN_CARD_of_ATT (min max) The minimum cardinality of an attribute must
fall in the range [min-max].

3.3. Schema model 37

MAX_CARD_of_ATT (min max) The maximum cardinality of an attribute must
fall in the range [min-max].

TYPES_ALLOWED_for_ATT (type-list)
The type of an attribute must belong to the list
type-list.

TYPES_NOT_ALLOWED_for_ATT (type-list)
The type of an attribute cannot appear in the list
type-list.

TYPE_DEF_for_ATT (CHAR min max)
The length of a character attribute must fall in
the range [min-max].

TYPE_DEF_for_ATT (NUMERIC min-len max-len min-dec max-dec)
The length of a numeric attribute and its deci-
mal part must fall in the ranges [minlen-maxlen]
and [mindec-maxdec].

The other constraints describe the relationships attributes have with their environment:

SUB_ATT_per_ATT (min max) The number of subattributes of the attribute
must fall in the range [min-max]. For example,
[2 N] means that compound attributes must
comprise at least 2 subattributes.

DEPTH_of_ATT (min max) The level (depth) of the attribute must fall in
the range [min-max]. Attributes directly
attached to their entity type or rel-type are of
level 1. For example, [1 2] means that only two-
level hierarchies of attributes are allowed.

Other constraints specify the groups an attribute can be part of: it can appear in a given
number of general groups, primary identifiers, reference groups, etc.

For example, the definition of relational models could include the following constraints:

MAX_CARD_of_ATT (1 1)

TYPES_ALLOWED_for_ATT ('CHAR','NUMERIC','FLOAT','DATE')

TYPE_DEF_for_ATT (CHAR 1 255)

TYPE_DEF_for_ATT (VARCHAR 1 65000)

DEPTH_of_ATT(1 1)

E. Constraints on a role

A role has an intrinsic property: its cardinalities. Both the minimum and the maximum
cardinality of the role can be constrained:

MIN_CARD_of_ROLE (min max) The minimum cardinality of a role must fall in
the range [min-max].

MAX_CARD_of_ROLE (min max) The maximum cardinality of a role must fall in
the range [min-max].

The number of entity types that can appear in a role is defined as follows:

ET_per_ROLE (min max) The number of entity types playing the role
must fall in the range [min-max].

3.3. Schema model 38

For example, the definition of the Bachman Data Structure Diagram model must include
the following constraints, that describe the valid rel-type patterns:

MIN_CARD_of_ROLE (0 1)

MAX_CARD_of_ROLE (1 N)

ET_per_ROLE(1 1)

F. Constraints on groups

The group is a complex and polymorph concept, so that it can be assigned a large set of
constraints. The groups will be analysed in their general form first, then all their specialisa-
tions will be examined as well.

The only intrinsic property of a group is the function(s) it is allowed to play. The parame-
ter yn takes two values, namely yesyesyesyes and nononono.

ID_in_GROUP (yn) A group can/cannot be an identifier.

PID_in_GROUP (yn) A group can/cannot be a primary identifier.

KEY_in_GROUP (yn) A group can/cannot be an access key.

REF_in_GROUP (yn) A group can/cannot be a reference group.

COEXIST_in_GROUP (yn) A group can/cannot be a coexistence group.

EXCLUSIVE_in_GROUP (yn) A group can/cannot be an exclusive group.

ATLEASTONE_in_GROUP (yn) A group can/cannot be an at-least-one group.

INCLUDE_in_GROUP (yn) A group can/cannot be the origin of an inclu-
sion constraint.

INVERSE_in_GROUP (yn) A group can/cannot be the origin of an inverse
constraint.

GENERIC_in_GROUP (yn) A group can/cannot be the origin of a generic
constraint.

The relationship properties of the groups that can be constrained concern their compo-
nents (relationship constraints with the owners of the groups are already defined for the
parents). So the global number of components or the number of components of each type
can be counted:

COMP_per_GROUP (min max) The number of component of a group must fall
in the range [min-max].

ATT_per_GROUP (min max) The number of attribute components of a group
must fall in the range [min-max].

ROLE_per_GROUP (min max) The number of role components of a group
must fall in the range [min-max].

For example, in a COBOL file, an index (unique or not) can contain only one field:

COMP_per_GROUP (1 1)

The group constraints can be specialised according to the roles the group plays. Identifiers
are among the groups deserving the greatest attention. Indeed, the identifier definition can
itself differ from one model to another. Furthermore, DBMSs may impose their own con-
straints on identifiers. For instance, one model could accept identifiers made of multi-val-
ued attributes, while another could refuse them; or one DBMS could refuse identifiers

3.3. Schema model 39

longer than 128 characters. In some models, the definition of identifiers can vary depend-
ing on their parents. For example, a model can accept that an entity type has an identifier
made up of compound attributes, while identifiers of multi-valued compound attributes
must be made of simple attributes only.

a. Constraints for entity type identifiers

COMP_per_EID (min max) The number of components of an ET identifier
must fall in the range [min-max].

ATT_per_EID (min max) The number of attribute components of an ET
identifier must fall in the range [min-max].

OPT_ATT_per_EID (min max) The number of optional attribute components
of an ET identifier must fall in the range [min-
max].

MAND_ATT_per_EID (min max) The number of mandatory attribute compo-
nents of an ET identifier must fall in the range
[min-max].

SINGLE_ATT_per_EID (min max) The number of single-valued attribute compo-
nents of an ET identifier must fall in the range
[min-max].

MULT_ATT_per_EID (min max) The number of multivalued attribute compo-
nents of an ET identifier must fall in the range
[min-max].

COMP_ATT_per_EID (min max) The number of compound attribute compo-
nents of an ET identifier must fall in the range
[min-max].

ROLE_per_EID (min max) The number of role components of an ET iden-
tifier must fall in the range [min-max].

OPT_ROLE_per_EID (min max) The number of optional role (minimum cardi-
nality is 0) components of an ET identifier must
fall in the range [min-max].

MAND_ROLE_per_EID (min max) The number of mandatory role (minimum car-
dinality is strictly positive) of the components of
an ET identifier must fall in the range [min-
max].

ONE_ROLE_per_EID (min max) The number of “one” role (maximum cardinal-
ity is 1) components of an ET identifier must
fall in the range [min-max].

N_ROLE_per_EID (min max) The number of “many” role (maximum cardi-
nality is strictly greater than 1) components of
an ET identifier must fall in the range [min-
max].

b. Constraints for relationship type identifiers

A similar list of constraints exists for rel-type groups. The constraint names are suffixed
with _RID.

3.3. Schema model 40

c. Constraints for attribute identifiers

The third list for groups defined on multi-valued compound attributes will be shorter
because they can never be made up of roles:

COMP_per_AID (min max) The number of components of an attribute
identifier must fall in the range [min-max].

ATT_per_AID (min max) The number of attribute components of an
identifier must fall in the range [min-max].

OPT_ATT_per_AID (min max) The number of optional attribute components
of an attribute identifier must fall in the range
[min-max].

MAND_ATT_per_AID (min max) The number of mandatory attribute compo-
nents of an attribute identifier must fall in the
range [min-max].

SINGLE_ATT_per_AID (min max) The number of single-valued attribute compo-
nents of an attribute identifier must fall in the
range [min-max].

MULT_ATT_per_AID (min max) The number of multivalued attribute compo-
nents of an attribute identifier must fall in the
range [min-max].

COMP_ATT_per_AID (min max) The number of compound attribute compo-
nents of an attribute identifier must fall in the
range [min-max].

d. Constraints for primary identifiers

Though primary identifiers form a subset of the identifiers, they may, in some models be
assigned specific constraints. For instance, a candidate key in a relational schema can be
made up of optional columns, but a primary key comprises mandatory columns only.

The constraints are similar to those described here above, with suffix _EPID for entity type
primary identifiers, _RPID for rel-type primary identifiers and _APID for attribute pri-
mary identifiers.

e. Constraints for reference groups

Reference groups reference identifiers. So it is logical to want to define reference keys in the
same way identifiers were defined. In fact, since reference keys can only be defined on
entity types and never on rel-types, nor on attributes, the new list of predicates for refer-
ence keys will be defined in the same way as for entity type identifiers:

COMP_per_REF (min max) The number of components of a reference group
must fall in the range [min-max].

ATT_per_REF (min max) The number of attribute components of a refer-
ence group must fall in the range [min-max].

OPT_ATT_per_REF (min max) The number of optional attribute components
of a reference group must fall in the range [min-
max].

MAND_ATT_per_REF (min max) The number of mandatory attribute compo-
nents of a reference group must fall in the range
[min-max].

3.3. Schema model 41

SINGLE_ATT_per_REF (min max) The number of single-valued attribute compo-
nents of a reference group must fall in the range
[min-max].

MULT_ATT_per_REF (min max) The number of multivalued attribute compo-
nents of a reference group must fall in the range
[min-max].

COMP_ATT_per_REF (min max) The number of compound attribute compo-
nents of a reference group must fall in the range
[min-max].

ROLE_per_REF (min max) The number of role components of a reference
group must fall in the range [min-max].

OPT_ROLE_per_REF (min max) The number of optional role (minimum cardi-
nality = 0) components of a reference group
must fall in the range [min-max].

MAND_ROLE_per_REF (min max) The number of mandatory role (minimum car-
dinality > 0) of the components of a reference
group must fall in the range [min-max].

ONE_ROLE_per_REF (min max) The number of “one” role (maximum cardinal-
ity = 1) components of a reference group must
fall in the range [min-max].

N_ROLE_per_REF (min max) The number of “many” role (maximum cardi-
nality > 1) components of a reference group
must fall in the range [min-max].

f. Constraints for access keys

An access key is a technical property often attached to identifiers and to reference groups,
so constraints similar to those in the previous groups can be defined with the suffix _KEY.

g. Constraints for existence constraints

Coexistence, exclusive and at-least-one groups are simpler properties. Their definition is con-
text independent, so they do not need special refinement.

h. Constraints for inverse groups and user-defined constraints

Inverse groups can only be made up of a single object attribute, so they need no specific
constraints. Generic constraints are user-defined. Since their semantics is user-defined as
well, and due to the variety of their interpretation, no specific constraints exist for them. A
personalised way to do it anyway will be presented later on.

G. Constraints on is-a relations

Is-a relation have two intrinsic properties, namely totality and disjunction:

TOTAL_in_ISA (yn) Totality property is allowed or not.

DISJOINT_in_ISA (yn) Disjoint property is allowed or not.

Relations between their members can be seen as generalisation or specialisation:

SUPER_TYPES_per_ISA (min max) The number of supertypes of an entity type
must fall in the range [min-max].

3.3. Schema model 42

SUB_TYPES_per_ISA (min max) The number of subtypes of an entity type must
fall in the range [min-max].

H. Constraints on names

The name of the components of a schema can be constrained by syntactic rules. This is
particularly true for physical schemas, where name formation rules of the DBMS must be
strictly enforced.

a. Valid characters and length

ALL_CHARS_in_LIST_NAMES (list) The names must comprise characters from the
list list.

NO_CHARS_in_LIST_NAMES (list) The names must comprise characters that do not
appear in the list list.

LENGTH_of_NAMES (min max) The length of a name must fall in the range
[min-max].

b. Reserved and valid words

DBMSs generally impose that special words of the DDL cannot be used to name schema
constructs (reserved words) and impose some naming conventions (restricted set of charac-
ters for instance).

NONE_in_LIST_NAMES (list) The name of a construct cannot belong in the
list of words list.

NONE_in_FILE_NAMES (file) The name of a construct cannot belong in the
list of words stored in the file file.

ALL_in_LIST_NAMES (list) The name of a construct must belong in the list
of words list.

ALL_in_FILE_NAMES (file) The name of a construct must belong in the list
of words stored in the file file.

The names in list and file can be constants (exact words) or expressions in the regular gram-
mar used by the name processing assistant of the supporting CASE tool [DB-MAIN,02b].
For example: “address”, or “?ddr*”. The last example will find all the names with a “d” in
second and third places and a “r” in fourth place, whatever the length of these strings.

I. User-defined constraints

Developing a complete predicate list would be unrealistic. Rather, this chapter proposed a
list of the main constraints that are relevant in the most widespread models, in legacy, cur-
rent and future (at least as foreseeable) systems. This pragmatic approach obviously cannot
meet all the requirements that could emerge in all possible situations. Hence the need for a
more general expression mean to define ad hoc constraints. For that reason the analyst
should be able to develop his/her own predicates in the form of functions of boolean type.

It is to be noted that user-defined concepts and user-defined constraints are closely linked
to a CASE tool. In the continuity of the predicative syntax used so far to describe the pre-
defined constraints, a logical language, such as OCL (Object Constraint language, part of
UML [OMG,01]), could be used to define the boolean functions. But since the use of the
DB-MAIN CASE tool is required as a foundation for this thesis, the tools it offers have to
be used, namely the Voyager 2 4GL (see Chapter 1), which has proved along the years to
be robust and efficient. So, The boolean functions are expressed in the procedural language

3.3. Schema model 43

Voyager 2. This approach strongly reduces the complexity of the method engine. The main
drawback is that no automatic reasoning, for instance about global consistency, can be
applied on a set of constraints that includes such functions.

Technically, a new generic constraint is added to each group of concepts:

V2_CONSTRAINT_on_SCHEMA (voyager-file voyager-function parameters...)
V2_CONSTRAINT_on_ET (voyager-file voyager-function parameters...)
V2_CONSTRAINT_on_RT (voyager-file voyager-function parameters...)

and so on with all suffixes: _ATT, _ROLE, _EID, _RID, _AID, _EPID, _RPID, _APID,
_REF, _KEY, _ISA, _NAMES. In these constraints, voyager-file is the name of the Voyager
2 executable file containing the function voyager-function to execute; parameters is a single
string containing all the parameters to pass to the function, its format being dependant on
the function. Since both the file and the function are passed as parameters, a database engi-
neer can build libraries of functions, and to use only the constraint(s) he or she needs for
the current model, possibly several for a same concept. The syntax of this constraint is
detailed in Appendix A.17 with an example.

For example, in an IMS hierarchical schema, relationship types cannot form cycles. This
cannot be expressed with the predefined constraints, but it can be checked by a Voyager 2
function, let us call it IsThereCycles, which can be placed in a library called IMS.OXO5. It
does not need a parameter. Moreover, the number of levels in a hierarchy can be measured
with a function HierarchyDepth, placed in the same library, with two parameters: min and
max to specify that the number of levels in a hierarchy must fall in the range [min-max].

V2_CONSTRAINT_on_RT (IMS.OXO IsThereCycles)

V2_CONSTRAINT_on_RT (IMS.OXO HierarchyDepth 1 8)

Furthermore, the user can extend the GER model by defining dynamic properties on every
concept. Another group of constraints has been defined on dynamic properties:

DYN_PROP_of_SCHEMA (dynamic-property parameters)

DYN_PROP_of_ET (dynamic-property parameters)

DYN_PROP_of_RT (dynamic-property parameters)

and so on with every other suffix. Dynamic-property is the name of a dynamic property
defined on the concept corresponding to the constraint suffix, and parameters are the
parameters whose syntax depends on the property definition. The syntax is detailed in
Appendix A.16 with several examples.

For example, let us suppose an integer dynamic property named security-level is defined on
entity types. We need a constraint to ensure that its value is comprised between 0 and 4
which are the only meaningful values:

DYN_PROP_of_ET (security-level 0 4)

J. Complex constraints

The structural predicates presented so far can be assembled to form complex constraints
through the use of the standard not, and and or logical operators. Such a logical expression
will be called a structuralstructuralstructuralstructural rulerulerulerule. In the same way a structural predicate is a constraint that
must be satisfied by each concerned component of a schema, the structural rule is also a
constraint that must be satisfied by each component of the schema. The two following
examples show two structural rules:

5 .OXO is the standard extension for Voyager executable files.

3.3. Schema model 44

COMP_per_EID (1 N)
 and ROLE_per_EID (0 0)
 or COMP_per_EID (2 N)
 and ROLE_per_EID (1 N)

for each entity type identifier ID:
either ID comprises one or several components and
comprises no roles,
or, if ID comprises roles, it must comprise two or
more components.

ROLE_per_RT (2 2)
 or ROLE_per_RT (3 4)
 and ATT_per_RT (1 N)
 or ROLE_per_RT (3 4)
 and ATT_per_RT (0 0)
 and ONE_ROLE_per_RT (0 0)

for each relationship type R:
either R comprises two roles,
or R is N-ary and has attributes
or R is N-ary, has no attributes and has no one (i.e.
[0-1] or [1-1]) roles

A complex constraint must satisfy the following rules:

1. all its predicates apply on the same concept. For example, the following rule is valid:

ATT_per_RT (0 0) and role_per_RT (2 N)

while the next one is not:

ATT_per_ET (1 N) and ATT_per_RT (0 0)

Guessing what the author probably meant, this constraint should be rewritten as:

ATT_per_ET (1 N)

ATT_per_RT (0 0)

2. The logical operators have their traditional priority rules. So, not operators are executed
first, then the and operators, and finally the or operators. Parenthesis are not supported
so every logical formula can be expressed in its disjunctive normal form [CHANG,73],
that is to say as a disjunction of conjunctions, with the use of distributive laws. For
instance, if P, Q and R are predicates,

P and (Q or R) = (P and Q) or (P and R) = P and Q or P and R

Now, a more comprehensive definition of the relational model can be build. In other
words, the set of constraints any RDBMS-compliant schema must meet is:

ET_per_SCHEMA (1 N) A schema includes at least one entity type.

RT_per_SCHEMA (0 0) A schema includes no relationship types.

SUB_TYPES_per_ISA(0 0) A schema includes no is-a relations.

ATT_per_ET (1 N) An entity type comprises at least one attribute.

SUB_ATT_per_ATT (0 0) Attributes are simple (atomic). In other words,
the number of sub-attribute per attribute is
exactly 0.

MAX_CARD_of_ATT (1 1) Attributes are single-valued. In other words,
their maximum cardinality is exactly 1.

PID_per_ET (0 1) An entity type has at most one primary identi-
fier.

OPT_ATT_per_EPID (0 0) A primary identifier is made up of mandatory
(i.e., with cardinality [1-1]) attributes only.

V2_CONSTRAINT_on_REF (REL.OXO RefConsistency)
A reference group and its target identifier have
the same composition (their components have

3.3. Schema model 45

same type and length, considered pairwise). This
complex constraint is checked by a user-defined
function RefConsistency.

ALL_CHARS_in_LIST_NAMES (ABCDEFGHIJKLMNOPQRSTUVWXYZ
 abcdefghijklmnopqrstuvwxyz0123456789$_)
and NONE_in_LIST_NAMES(_$,$$)
and LENGTH_of_NAMES(0 31)
and NONE_in_FILE_CI_NAMES
(ResWords.nam)

The names of the components of the schema
must be valid:
1. They must be made of letters and figures and
symbols $ and _ only
2. They cannot end by the symbols $ and _
3. They cannot be longer than 31 characters
4. They cannot be reserved words of the lan-
guage, the complete list of these words being in
the file ResWords.nam.

3.4. Text model
Like a schema model, a text model can be defined by a selection and renaming of concepts
form a general text model, and by a series of constraints on the selected concepts.

In the beginning of this chapter, four typical examples of texts were presented. Their hier-
archical structure can be described as follows: each element is made of sub-elements and so
on until the smallest elements which are always characters. On this basis, the following gen-
eral text model (GTM) can be build:

A text is a series of text elements. Each text element is either a character or itself a series of
text elements.

To define the structure of a text is to define its grammar. That is to say, each text element
has to be defined by specifying its name and its structure. For instance, most programming
languages (C, C++, COBOL, Pascal,...) can have their syntax described in BNF format,
like the MDL language in Appendix D of this thesis. Each line of a BNF description
defines a new element by giving it a name and its decomposition in sub-elements.

Since the most basic elements are characters, the grammar defines elements as a series of
characters. These definition are generally a restriction of the character set that can be used.
For instance, an integer is only made of figures (0, 1,..., 9). Assembling elements is assem-
bling series of characters. Everywhere an integer must appear, only series of figures can
appear. Hence, the grammar is a series of constraints on the use of characters.

Since the number and the structure of elements are dependant on the text format, it is not
possible to dissociate the naming conventions from the constraints as we did with schema
models. Hence, The whole definition of a text model holds in its grammar.

There are several well known ways to define a grammar. The most common are the BNF
notation, regular grammars [AHO,89], or XML [MARCHAL,01]. Since the scope of this
thesis is limited to database engineering and to the use of DB-MAIN, and since DB-MAIN
offers a pattern definition language (PDL) defined by Jean Henrard [HENRARD,98] for
text analysis and program slicing purposes that suits all the DB-MAIN text analysis needs,
this language can be used for the text modelling needs too. Indeed, choosing another gram-
mar definition language would force us to have a conversion tool from that language

3.4. Text model 46

towards PDL.

In PDL, a text element is named a pattern. The grammar is expressed by a series of patterns
close to a BNF notation with variables. A pattern is of the form:

pattern_name ::= expression

where pattern_name is any word beginning by a letter and made of no more than 100 let-
ters and figures, and expression describes the syntax of the pattern. The expression can be
made of strings, of other patterns, of variables, and of some operators.

OpeningSymbol ::= “begin”

The expression is a simple string.

Figure ::= range(0-9)

The expression is a string made of a single character whose ASCII code is com-
prised between the ASCII code of “0” and the ASCII code of “9”.

Space ::= \g“[\t\n]*”

The expression is string defined by a grep expression, grep being a well-known
unix originated tool aimed at searching for a string in a file.

Sequence ::= OpeningSymbol Instructions ClosingSymbol

The expression is made of a sequence of other pattern names.

Sequence ::= OpeningSymbol @Instructions ClosingSymbol

The second element of the expression is a variable. It is a pattern name prefixed
by “@”. A text element which matches this pattern during an analysis is stored
for future reuse by some functions of the CASE environment.

Sequence ::= OpeningSymbol [Instructions] ClosingSymbol

The second element of the expression is optional.

Instructions ::= Instruction*

The element of the expression can be repeated several times.

Instructions ::= (Instruction Space ”;” Space)*

The series of elements between parentheses can be repeated several times.

ArithmeticOperator ::= “+” | “-” | “*” | “/”

The expression offers an alternative between several sub-expressions.

The complete language syntax is presented in [DBMAIN,02b] and in Appendix B.

The following is a small complete example of a grammar for writing simple calculus:

Figure ::= range(0-9)
Number ::= Figure Figure*
Operator ::= “+” | “-” | “*” | “/”
Calculus ::= Number (Operator Number)* “=” @Number

This simple grammar expresses the syntax of a file containing a simple arithmetic calculus
with integer numbers. A file containing the following single line is correct with respect to
this grammar:

12*5+35=95

When the syntax of this file is checked with the grammar, the @Number variable is initial-

3.4. Text model 47

ised with the value 95, which can be used by the CASE environment.

On the contrary, the following files are not valid:

12*5+35=95
15/5+6=9 the grammar does not allow several calculus

1.2 * (5 + 35) = 48 floating numbers, parenthesis and spaces are not allowed

95=12*5+35 operators are only allowed at left side of =

But the following file is correct because only the syntax is checked, not the semantics:

1=2

In practice, a more realistic grammar is the one of SQL or Cobol. These are much more
complicated grammars which lead to much longer PDL descriptions. When reverse engi-
neering a Cobol application, it is necessary to write this grammar in order to allow the
CASE environment and engineers who use it to analyse correctly the source files. But, for
some different tasks, such as generating an SQL DDL from an SQL compliant schema,
which is done automatically by a generator, detailing this precisely the grammar is useless.
In fact, it suffices to express the fact that the generated file contains an SQL DDL. In the
DOS/Windows based environments, it suffices to know the extension of a file to loosely
know what it contains. So, in some circumstances, a text model grammar can be defined by
a list of possible file extensions. For instance, it is well known that a “.txt” file contains free
text, a “.cpp” file is a C++ file, and a “.sql” file contains an SQL DDL.

3.5. Product model hierarchies
Quite often, product models have concepts and constraints in common. If we consider the
class of products associated with each product model, we can define class inclusion rela-
tions, that can be modelled by inheritanceinheritanceinheritanceinheritance: the fact that any product of model B is also a
valid product of model A can be described by stating that model B inherits from model A.
If a product model B inherits from a product model A, then B includes all the concepts
and constraints of A plus its own concepts and constraints. It is also possible for B to rede-
fine a concept of A and to give it another name.

For instance, logical COBOL and logical SQL schema models have some common proper-
ties and can be defined with inheritance mechanism. For instance, they both belong to the
record-based family: all the information is represented by field values collected into records,
themselves stored into files or tables.

Onee can define a LOGICAL-RECORD-MODEL which specifies that entity types and
attributes will be used without renaming and that rel-types will be discarded. Every entity
type should have at least one attribute, and attributes can be decomposed up to 49 levels.
Then one can define the LOGICAL-COBOL-MODEL which inherits from the LOGICAL-
COMMON-MODEL and that simply renames entity types as record types and attributes as
fields, and which adds a constraint stating that all the records of the same type must be
stored in the same file. The LOGICAL-SQL-MODEL also inherits from the same model. It
renames entity types as tables and attributes as columns, and it redefines the inherited rule
about the number of attribute decomposition levels by limiting this number to 1 (i.e., a
column cannot be decomposed).

Practically, these models could be defined in the following way:

3.5. Product model hierarchies 48

LOGICAL-RECORD-MODELLOGICAL-RECORD-MODELLOGICAL-RECORD-MODELLOGICAL-RECORD-MODEL

entity type
attribute

entity type
attribute

RT_per_SCH (0 0) No rel-types allowed

ATT_per_ET (1 N) At least one attribute per entity type

DEPTH_of_ATT (1 49) Maximum 49 levels of attribute decomposi-
tion

LOGICAL-COBOL-MODELLOGICAL-COBOL-MODELLOGICAL-COBOL-MODELLOGICAL-COBOL-MODEL is-a LOGICAL-RECORD-MODEL

entity type
attribute

record
field

COLL_per_ET (1 1) All the records of the same type go entirely
in a single file

LOGICAL-SQL-MODELLOGICAL-SQL-MODELLOGICAL-SQL-MODELLOGICAL-SQL-MODEL is-a LOGICAL-RECORD-MODEL

entity type
attribute

table
column

DEPTH_of_ATT (1 1) No compound column allowed

In the database realm various kinds of schemas can be encountered:

• Purely data oriented schemas, such as the SQL model defined above, every relational
schemas, network schemas, or hierarchical schemas which all use data oriented concepts
only (entity types, rel-types, attributes, roles, is-a relations, groups) with their own con-
straints.

• Object-oriented database schemas, such as Java classes, which also include some treat-
ment aspects: each class having a series of methods for handling its attributes, entity
types and rel-types can receive processing units to represent the method descriptions (its
name and a few comments about its parameters, its pre- and post-conditions,...)

• If the object oriented schema naturally integrates the concept of treatment, this concept
can also be added to the more traditional models of the first kind (like the check concept
in an SQL model). To do so, the processing unit concept can be added to their models.
In this case, processing units can be attached to entity types, to a rel-type, or to the
schema (in order to represent global treatments that can concern several entity types and
rel-types).

Chapter 4

Product types and process types

This chapter will detail concepts of the type level: product types and
process types. Product types can be defined globally, at the method level,
or locally to each process type. In the latter case they can serve to interface
engineering process types with other process types. Engineering process
types have a strategy based on a procedural paradigm which includes
traditional constructs such as the sequence, loops or conditional action
selection, as well as unusual non-deterministic user-oriented constructs.
This chapter analyses the interfacing elements and the strategy building
elements in detail.

4.1. Defining product types 50

4.1. Defining product types
A product type describes a class of products that play a definite role in the system life cycle,
and that is expressed in a product model. This section shows how a product type can be
specified.

With this definition, a product type is the use of a product model in a given context. For
example, assuming the physical SQL schema model has already been described, the Oracle 9
physical schema product type can be defined on the basis of this model whenever this kind
of schema needs to be introduced in a definite methodology. Since product types are
defined in a particular context (either global to the whole method or local to a process
type), some practical information about the instances of this type in this context have to be
specified. In particular, the number of products of that type which are necessary and
allowed at a precise moment. This precise moment depends on the role (input, output,...)
played by the product type in the context. The various roles will be presented in Section
4.2.

Let us consider, for instance, the methodology fragment of Figure 4.1. It tells us that each
process Integrate (i.e, each execution of the process type Integrate) requires some input sche-
mas which are given the schema type to_integrate and produces some instances of the
schema type integrated. In other contexts (not during the execution of a process of type
Integration), these schemas can be of various other types, all compliant with the same prod-
uct model. The process can be activated only if it is provided with at least 2 schemas to
integrate (2 to N instances of product type to_integrate) and will produce exactly one inte-
grated schema (from 1 to 1 instance of schema type integrated). Of course, the constraint
on the number of products of the output type can only be checked when the process ends.
Quite naturally, both to_integrate and integrated schema types are expressed in the same
schema model ERA Model. Figure 4.2 shows the instance, type and model specifications.

Figure 4.1 A complete example

Hence, both product types can be defined in the following way:

Product type: to_integrate

Is of: ERA model

Minimum number of products: 2

Maximum number of products: N

Product type: integrated

Is of: ERA model

Minimum number of products: 1

Maximum number of products: 1

uses

integrated
[1-1]

generates

to_integrate
[2-N]

Integration

4.1. Defining product types 51

Figure 4.2 A complete example

4.2. Modelling engineering process types
Though a process type can describe a non-procedural behaviour, it is fairly close to the con-
cept of procedure in standard programming languages. In particular, a process type has an
external description, which states its activation condition and environment as well as its
effect (its specification in software engineering terms) and an internal description, which
states how the effect can be achieved. The external description of a process type will be
called its interface and its internal description will be called its strategy.

Only engineering process types are provided with an internal description. Indeed, primitive
process types being built-in functions of the supporting CASE tool, they have to be taken
them as they are, i.e., as black boxes with immutable specifications.

4.2.1. Engineering process type decomposition

An engineering process type is the description of a class of processes, which are themselves
activities performed in order to reach a given goal. The internal description is often simpli-
fied when expressed in terms of sub-process types, each of these sub-processes having its
own description. When working with large problems, it is generally recommended to
divide them into smaller sub-problems and to solve each of them independently. When
designing a method, each sub-problem will be solved by a process type. All these process
types will be assembled with control structures to solve the larger problem. Hence, a com-
plex engineering process type can be decomposed in a hierarchy of process types.

For instance, a simple forward engineering database design (FEDD) can be decomposed in
four main phases (a complete case study using this method is shown in Chapter 11):

1. Conceptual analysis.

2. Logical design.

3. Physical design.

Instance level

integrated

is
of

General Ledger

ERA modelERA modelERA modelERA model

Integrated schema

insta
nce

of

Integration

Pers-Ledg-Integration

 i
ns

ta
nc

e
of

generates [1-1]

to_integrate
 uses [2-N]

is
of

Personnel

in
sta

nc
e o

f

in
sta

nc
e o

fuses

Model level

Type level

 u
ses

generates

4.2. Modelling engineering process types 52

4. Coding.

Then each of these phases can also be decomposed in several steps:

1. Conceptual analysis: problem analysis – conceptual normalisation.

2. Logical design: relational design – name processing.

3. Physical design: index setting – storage allocation.

4. Coding: coding parameters setting – SQL generation.

To go further, the relational design process type can be refined in several simpler steps too:

Relational design: is-a relations transformation – non-functional rel-types transformation –
attributes flattening – resolving missing identifiers – transformation of rel-types into refer-
ence keys.

In this decomposition, FEDD, conceptual analysis, logical design, physical design, coding, and
relational design are engineering process types. Others are primitive process types.

We will say that the execution of a process requires the execution of sub-processes. Or that
a process type uses a sub-process type.

Each engineering process type in a decomposition defines its own context into which spe-
cific product types are defined. Some of them are defined in the interface, others are part of
the internal description. When a process p of type P requires the execution of a sub-process
q of type Q, products must be passed between them: a product x being of a given type T1 in
the context of P must be affected another type T2 in the context of Q. So, during the exe-
cution of q, the same product is of two different types at the same time, in two different
contexts, as it can be seen in Figure 4.3. Section 4.2.2 shows how the interface of Q can be
specified precisely and how P can use Q. Then Section 4.2.3 shows how the use of several
sub-processes can be organised by the strategy.

Figure 4.3 A product with two types
(compliant with the same model M)

in two different contexts

4.2.2. Engineering process type interface

The interface of an engineering process type is made up of:

• the name of the process type

• the formal parameters which are the product types used by the process type to exchange
products with its environment

• an informal description, generally in natural language, of the goal and the way of usage
of the instances of the process type.

Like in traditional programming languages, the name of a process type must identify it
among all others and the parameters must be declared precisely in order to avoid confu-
sion. But traditional programming languages are used (interpreted or compiled) entirely by
computers, at the contrary of the system defined in this work which is used by human

Q
T

1

q
p

P
T

2

x

MMMM

4.2. Modelling engineering process types 53

beings who will have to choose to execute one process among several of them. This is why
the informal description is an important new aspect.

A. Formal parameter declaration

Most generally, a process of a given type uses some products to produce and/or modify
other products. A product type can play three roles in the interface of a process type: input,
output and update.

• InputInputInputInput productproductproductproduct typetypetypetype: a class of products that can be used during the execution of a proc-
ess. These products can be referenced, consulted, analysed or copied, but cannot be
modified nor created. When a process starts, the class is initialised with a series of prod-
ucts. The number of these products must match the minimum and maximum con-
straints of the product type.

• OutputOutputOutputOutput productproductproductproduct typetypetypetype: a class of products generated by a process. When the process
starts the output type has no instances. They have to be created or copied from other
product types and modified. The number of products of that type has to match the
minimum and maximum constraints when the process ends.

• UpdateUpdateUpdateUpdate productproductproductproduct typetypetypetype: a class of products that can be modified during a process. When
a process starts, the class is initialised with a series of products. The number of these
products has to match the minimum and maximum constraints of the product type.
During the process, products can be referenced, copied, modified but cannot be created.

New products can also be added to a non-initially-empty class using these three roles only.
This will be shown later on.

Let P be an engineering process type and Q be a process type, such that Q is used by P. Let
us denote by I a product type declared as input of Q, O a product type declared as output
of Q and U a product type declared in update by Q. Let us examine what can be passed to
I, O and U. In other words, let us examine what product type T declared in the context of
P can have its products passed to I or U, or can receive products from O.

A product type T of P used in input of Q must be compatible with I. T is I-compatibleI-compatibleI-compatibleI-compatible
with I if and only if one of the following propositions holds:

• T and I are of the same model

• the model of T inherits from the model of I.

Indeed, since products of type T exist before the use of Q and since the product type I is
simply a product type aimed at seeing these products inside Q, the model of I has to be the
same or to be more general than the model of T; the model of T must be a sub-model of
the model of I in order to avoid unmanageable structures.

A product type T of P used in output of Q must be compatible with O. T is O-compatibleO-compatibleO-compatibleO-compatible
with O if and only if one of the following propositions holds:

• T and O are of the same model

• the model of O inherits from the model of T.

Indeed, since O is the type of new products inside Q and since these products have to be
mapped to type T, products of type O cannot contain structures that could not be valid in
type T. So O has to be of a more restrictive model than T, at best of the same model as T.

If there already exists some products of type T before P uses Q, none of these products will
be considered as instances of O, but all instances of type O will be mapped to T when Q
ends without affecting the pre-existing products of type T.

4.2. Modelling engineering process types 54

A product type T of P used in update by Q must be compatible with U. T is U-compatibleU-compatibleU-compatibleU-compatible
with U if and only if T and U are of the same model. Indeed, U cannot be of a more
restrictive model than the model of T for the mapping when the process starts, and U can-
not be of a more general model than the model of T since the products modified by the
instance of Q still have to be of type T in the context of P.

When a process type calls a sub-process type and passes a product type, it means all the
products of that type. This has to be possible according to the type cardinalities. Indeed,
when a product type T is passed by P to an input product type I of a Q or to an update
product type U of Q, the number of instances of T must fall in the range of the cardinali-
ties of I or U; when a product type T of P receives products from a product type O of Q,
the number of instances of O must fall in the range of the cardinalities of T. This con-
straint could be checked at method definition time by comparing the cardinalities of I, U,
or O with the cardinalities of T, but this can lead to unnecessarily too much constraining
situations, so it will actually be checked at execution time.

It may happen that just passing a subset of these products suffices. For this purpose, the
notion of product set must be introduced, as well as set operations and product selection
operations. But these are technical considerations which are relevant to the strategy. They
will be presented in Section 4.2.3.

B. Using parameters

Let P be a process type and Q be a sub-process type required by P. P uses a product type,
say T, whose instances will be passed to Q (for consultation or for modification) or pro-
duced by Q and passed back to P. Let us classify our possible needs along three independ-
ent axes:

1. Q can (1a) or cannot (1b) create (and modify) new products of type T.

2. Q can (2a) or cannot (2b) modify existing (before the use of Q) products of type T.

3. Q can (3a) or cannot (3b) access existing products of type T for consultation only.

This leads to eight parameter passing patterns (see Figure 4.4 for their illustration):

• 1b-2b-3a: existing products of type T are accessible, thought non modifiable, inside Q
and no new products can be created. It suffices to declare an input product type I in Q
and pass T to I.

• 1b-2a-3a: existing products of type T are accessible and modifiable inside Q, but new
products cannot be created. It suffices to declare an update product type U in Q and
pass T to U.

• 1a-2ab-3b: Q can create new products but cannot access old products of type T (note
that since old products are not accessible, cases 2a and 2b do not need to be distin-
guished). This is the role of an output product type O declared in Q to which product
type T can be passed.

• 1a-2b-3a: existing products of type T are accessible, thought not modifiable by Q and
new products of type T can be created. The solution is simply to declare two product
types I in input and O in output and to pass T to both of them.

• 1a-2a-3a: existing products of type T are accessible and modifiable inside Q and new
products of type T can be created. The solution is simply to declare two product types
U in update and O in output and to pass T to both of them.

• 1b-2ab-3b: existing products of type T are not accessible and none can be created. This
is absolutely useless and distinguishing cases 2a and 2b do not change the situation.

4.2. Modelling engineering process types 55

1b-2b-3a 1b-2a-3a

1a-2ab-3b 1a-2b-3a

1a-2a-3a

Figure 4.4 The various parameter usage patterns.

M is a product model, P and Q are process types, T, I, O, U are product types, p and q are processes, old and new
are products, old is a product that existed before q, new is a product generated by q.

Lines without arrows reflect the fact that any kind of arrow would fit.

4.2.3. Engineering process type strategy

The strategy of an engineering process type is the way of working an engineer has to follow
when performing a process of that type. This way of working will be expressed in a semi-
procedural formalism. As opposed to procedures in traditional procedural programming
languages, a way of working of a process type most often will be non deterministic, since it
describes how to solve a class of problems for which no procedural solution has been dis-
covered so far, and which be tackled by human beings with their non-deterministic behav-
iour, their education and their free will.

For better readability, strategies will be drawn graphically in an algorithmic way.

First, the graphical conventions will be defined, as well as some notations that will be used
to express strategies and their interpretation. Then, the concept of internal product type
will be defined too. In a third section, the various categories of deterministic and non
deterministic control structures will be described. Finally, the various kinds of sub-proc-
esses and primitive processes that can be used in a strategy will be examined.

A. Graphical conventions and notations

a. Graphical conventions

The basic elements of every strategy are the sub-process types that have to be performed
during the execution of instances of the process type, the product types that are used,

new

T

output

(no matter)

Q
U

O
P

p
q old

update

MMMM

q
p

P
I

old

input

T

MMMM

Q

(no matter) T

q
p

old

(no matter)

update

MMMM

U
P

Q

q
p

P
O

MMMM

T

new

Q

(no matter)

output

old

T

Q
output

(no matter)

MMMM

old

new

I
O

P

p
q

input

4.2. Modelling engineering process types 56

modified or generated, as well as the control flow (in what order the sub-processes are per-
formed) and the data flow (how the products are used by the sub-processes).

A process type will be shown by a rectangle enclosing its name. A product type will be
shown as an ellipse containing the product type name.

The control flow will be shown with bold arrows linking process types: an arrow from a
process type to another one means that an instance of the former must be completed before
an instance of the latter can start. The control flow starts with symbol and ends with
symbol .

The data flow will be shown with thin arrows linking process types and product types: an
arrow from a product type toward a process type means that the instances of the process
type use instances of the product type (input); an arrow in the reverse direction means that
the instances of the process type create instances of the product type (output); a double
headed arrow indicates that the instances of the process type both use and modify instances
of the product type (update).

The external description of the process type (its interface) is described within a grey box. It
shows graphically the name of the process type as well as the name and the role (input, out-
put and update) of its product types.

For the ease of understanding of the various control flows, their use will be illustrated with
a sample history6. These histories will be shown graphically too. Processes will be repre-
sented with rectangles, and products will be ellipses. Only the data flow will be represented,
with thin arrows. Indeed the processes will be drawn top down in the order of their
sequential execution (and from left to right on a same level if they are several versions of
the performance of a same process type), making the drawing of the instance control flow
useless. All the histories shown in this chapter will be easy to understand with these few tips
and are shown for illustration only. A more complete definition and description is given in
Chapter 6 which is entirely devoted to histories.

Figure 4.5 illustrate the interface and the strategy of a simple process type, as well as a sam-
ple history of a process following the strategy.

Forward engineering
Problem definition

SQL database definition script

Problem definition

Conceptual schema

Conceptual analysis

Conceptual schema

SQL database definition script

Database design

Engineering process

Conceptual Analysis

Personal.sql

Personal/conceptual

Personal.txt

Figure 4.5 A sample method and history

6 As defined in Chapter 2.

4.2. Modelling engineering process types 57

b. Notations

The following notations will be employed:

• process types will be denoted A, B

• product types and product sets (defined in Section B) will be denoted R, S, T

• processes of type A will be denoted a, a1, a2,...; processes of type B will be denoted b,
b1, b2,...

• products of type R will be denoted r, r1, r2,..., products of type S will be denoted s, s1,
s2,..., products of type T will be denoted t, t1, t2,...

• #R will denote the number of products of type R,...

Furthermore, each control structure will be presented more formally with process algebra
[BAETEN,95]. The alphabet is made of process types. The regular expression of a control
structure expresses all the possible sentences (process sequences) that can be generated with
this control structure, i.e. all the valid process sequences or histories.

The regular expression grammar is the following:

• A is the most simple expression, made of a single process type.

• E1.E2, or simply E1E2, is a sequence of sub-expressions, expression E2 has to be per-
formed after expression E1 is terminated.

• E1+E2 expresses the fact that either E1 or E2 has to be executed.

• En expresses that E must be repeated exactly n times. This is equivalent to EEE...E,
where E appears n times.

• E1//E2 expresses that both E1 and E2 have to be executed, in arbitrary order, and possibly
in parallel.

• In an expression, the pattern En has the greatest priority, then come the sequences, and
finally, E1+E2, and E1//E2. The four binary operators have to be evaluated from left to
right. These priority rules can be changed by using parentheses.

In any sentence that derives from an expression, each process type denotation represents
one instance of this process type. This constraint will be released in Chapter 6.

For example, expression (AB+BC)3 must be read E1
3 where E1 is (E2), E2 is E3+E4, E3 is E5E6,

E4 is E7E8, E5 is A, E6 and E7 are both B, and E8 is C. It expresses that three sequences have
to be performed, each sequence being either AB or BC. So, all possible sentences that can
be generated from that expression are: ABABAB, ABABBC, ABBCAB, ABBCBC, BCBAB,
BCABBC, BCBCAB, BCBCBC. So, valid histories are respectively the process sequences:
a1b1a2b2a3b3, a1b1a2b2b3c1, a1b1b2c1a2b3, a1b1b2c1b3c2, b1c1a1b2a2b3, b1c1a1b2b3c2, b1c1b2c2a1b3,
b1c1b2c2b3c3. Obviously, the expression A//B cannot be expressed as one or several such
sequences. To do so, it is necessary to distinguish the starting (denoted A or a) and the
ending (denoted A or a) of each process type A or process a. So, the expression A//B can be
interpreted as: AABB, ABBA, BBAA, ABAB, BABA, or BAAB, and valid histories are: aabb,
abba, bbaa, abab, baba, baab. With this notation, the sentences generated from expression
(AB+BC)3 become: AABBAABBAABB, AABBAABBBBCC, AABBBBCC AABB,
AABBBBCCBBCC, BBCCAABBAABB, BBCCAABBBBCC, BBCCBBCCAABB,
BBCCBBCCBBCC, and the corresponding valid histories: a1a1b1b1a2a2b2b2a3a3b3b3, a1a1

b1b1a2a2b2b2b3b3c1c1, a1a1b1b1b2b2c1c1a2a2b3b3, a1a1b1b1b2b2c1c1b3b3c2c2, b1b1c1c1a1a1b2b2a2a2b3b3,
b1b1c1c1a1a1b2b2b3b3c2c2, b1b1c1c1b2b2c2c2a1a1b3b3, b1b1c1c1b2b2c2c2b3b3c3c3.

4.2. Modelling engineering process types 58

B. Internal product types and product sets

An internalinternalinternalinternal productproductproductproduct typetypetypetype is a product type whose instances are temporarily created and
used during the execution of a process of this type, and that disappear at completion of the
process. It is declared locally to a process type and has no existence outside of it. When a
process starts, its internal product types have no instance. Some instances can be created
from scratch, can be copies of products of other types, or can be generated by a sub-proc-
ess. These internal products can then be modified. Before terminating the process in which
it has been created, an internal product, or part of it, can be copied into an output product.
Since there is no product of this type at the beginning of a process, the minimal cardinality
of the type cannot be checked permanently. But it can be checked when the process ends as
a control tool. The maximum cardinality can be checked permanently.

A productproductproductproduct setsetsetset is a container that can accommodate any number of products. It allows
products to be collected in order to be handled all at once. The products can be of different
types. Sets can be used in set operations (union, intersection,...). They can also be used eve-
rywhere a product type is needed in input or update; in that case, all products of the set
having the correct type are used, the others being simply left aside. For instance, an ORA-
CLE-SQL and a DB2-SQL schema types can be defined compliant with a SQL-MODEL,
and an integration process type can be defined with an SQL product type, compliant with
the SQL-MODEL, in input. To integrate all the schemas, a product set can be defined as
the union of the set of products of ORACLE-SQL type and the set of products of DB2-
SQL type. This new set can be passed to a new integration process. Since the set is empty
when a process starts and since the content of the set is always the result of a set operation
(like the union) or product selection (the user has to choose the products to put in the set),
the cardinality constraint of the set can be checked after each operation or selection.

From now on, for homogeneity and clarity reasons, product types will be considered spe-
cial product sets. Indeed, since a product type is a class of products that play a definite role
in the system life cycle, it can be considered to be a product set that cannot be modified by
set operations. Each time the word product set is used, the reader should understand product
type or product set, except when explicitly stated.

C. Control structures

A strategy has to specify how the different actions have to be performed. A control struc-
ture is a mechanism that is aimed at ordering actions. This section describes a series of con-
trol structures ranging from traditional sequence, alternatives or loops that can be found in
any procedural language to particular non-deterministic alternatives or loops which are
typical to human decisions.

a. Sequence

The sequence is the most traditional control structure that decomposes a task in simpler
tasks that have to be performed in the specified order, one after the other. In a traditional
programming language like Pascal, sequences are represented by a list of statements sepa-
rated by semi-colons. In software engineering, including database engineering, performing
sequences of actions is a common pattern.

Figure 4.6 defines a sequence of two process types: A and B. The history (right) complies
with this sequence: using a product r of type R, the process a of type A generated a product
s of type S, which was reused by the process b of type B, which, in its turn, generated the
product t of type T.

A sequence is a series of process types and control structures that have to be performed one
at a time in the specified order. Let E1, E2,...,En be n expressions (that can represent control

4.2. Modelling engineering process types 59

structures or process types), then a sequence of these n expressions is represented by the fol-
lowing expression: E = E1E2...En

sequence
R

T

R

S

 A

S

T

 B

b

a

t

s

r

Figure 4.6 A sequence

The grey rectangle is the process type interface with one input product type and one output product type.
The left graph is the strategy made of a simple sequence. The right graph is a small history of a process

performed according to the process type.

b. Standard alternatives

A standard alternative is a possibility to perform one action (possibly a sequence or another
control structure) or another depending on a given deterministic condition. In traditional
programming languages, it is the if...then...else structures; if the condition is true, then do a
first action, else, do another one; the condition is either true or false, never undefined.

Figure 4.7 shows an abstract example. The condition cond represented by the diamond has
to be evaluated. This condition is a boolean expression, it results in either true or false. If
the result is true, the control flow continues through the side branch and a process of type
A has to be executed. On the other hand, if the condition is evaluated to false, the control
flow goes on through the bottom branch and a process of type B has to be performed. The
history example shows that only one process a of type A was performed, the condition
being evaluated to true.

Let E1 and E2 represent two process expressions. Then, a standard alternative is the process
expression: E1+E2. In practice, the choice of one alternative or the other is guided by the
evaluation of a boolean expression. Let us note that one of the two expressions maybe an
empty structure, so E1+() may denote that E1 is an optional statement.

c. Standard loops

Traditionally, the loop is the third and last basic control structure. It allows an action (or
other control structure) to be performed several times while or until a deterministic condi-
tion is satisfied. The condition can be checked after or before the first loop, forcing it to be
performed at least once or not, respectively. In traditional programming languages, the for,

4.2. Modelling engineering process types 60

while, repeat, do...until structures are used for these loops. In database engineering, it is also
necessary to be able to perform some actions several times, for instance while or until some
products are in a specific state.

if...then...else
R S

T

R S

T

 A

R

T

 B
 a

t

sr

Figure 4.7 A standard alternative

If the cond condition is true, the execution follows the side branch and A must be
performed, else the bottom branch has to be followed and B is the next step.
The history, at right, shows that only a process a of type A was performed.

Figure 4.8 shows a simple loop: while the condition is evaluated to true, processes of type A
have to be performed. The history shows that two processes (a1 and a2) were actually per-
formed, each of them updating the same product r.

Let E1 denote a process expression, and R a product set containing #R products. Then a
deterministic loop can be represented by either of the following regular expressions:

• E = E1
n, n≥0 In practice, the evaluation of a boolean expression before each appearance

of E1 will indicate when to stop the repetition, as shown in Figure 4.8.

• E = E1
n, n≥1 In practice, the evaluation of a boolean expression after each appearance

of E1 will indicate when to stop the repetition, as shown in Figure 4.9.

• E = E1
i, 1 ≤ i ≤ #R In practice, each appearance of E1 should concern one different

product of R. This is done using a product set with cardinalities [1-1]. At each iteration,
the product set is filled with one different product of type R and the set itself is passed
to the sub-process type, as shown in Figure 4.10.

d. Non-deterministic alternatives

The deterministic condition of standard alternatives is necessary for procedural program-
ming languages designed for deterministic machines, but this can be a stronger constraint
for conducting processes in which human expertise is required, as it is usual in software
engineering in general, and in database engineering in particular. In such cases, process
types strategies must include non-deterministic alternatives. Five kinds of such non-deter-
ministic alternatives will be considered:

cond

4.2. Modelling engineering process types 61

while R

R

 A

a2

a1
r2

r1

Figure 4.8 A standard while loop

Processes of type A have to be performed while the
condition cond is true. The history shows that two

processes of type A were performed with every products
of type R.

repeat...until R

R

A

a2

a1
r2

r1

Figure 4.9 A standard repeat...until loop

Processes of type A have to be performed until the condition
cond is true. The history shows that two processes of type A

were performed with every products of type R.

for R

R

R'

FE

R'

A

a2

a1
r2

r1

Figure 4.10 A standard loop

Processes of type A have to be performed while products of type R have to be treated. The selection process
puts each product at its turn in the set R’ and that this set is passed to the process type. The letters FE show

that each product of type R will have its turn. Letters FS (for some) should allow the user to select a few
products only, and letters F1 would show that the user should select only one product to treat. The history

shows that two processes of type A were performed with every products of type R.

cond

cond

4.2. Modelling engineering process types 62

1. The informal alternativeinformal alternativeinformal alternativeinformal alternative: a two-case alternative with a non-deterministic condition; the
condition simply is a question that is asked to the engineer who will have to answer by
yes or no.

2. The weakweakweakweak alternativealternativealternativealternative: a two-case alternative with a weak deterministic condition; the
deterministic condition is evaluated and its result is shown to the engineer who can
accept the result or force another one.

3. The oneoneoneone alternativealternativealternativealternative: a multi-case alternative with no condition in which the engineer
has to choose one branch.

4. The somesomesomesome alternativealternativealternativealternative: a multi-case alternative with no condition in which the engineer
can choose at least one branch (possibly several) and perform them in any order.

5. The eacheacheacheach alternativealternativealternativealternative: a special multi-case alternative with no condition in which the
engineer must choose every branch, but he or she can choose in what order. This is in
fact also a special case of sequence with no pre-defined order on the actions.

Note that if a multi-case alternative can theoretically be easily replaced by a series of two-
cases alternatives for a computer, it cannot for human beings, independently of the deter-
ministic or non-deterministic characteristic of the conditions. Indeed, asking a human
being to “Choose a letter between ‘a’ and ‘j’.” cannot be expressed by the sequence “Do
you want to choose letter ‘a’?”, “Do you want to choose letter ‘b’?”, and so on until “Do
you want to choose letter ‘j’?”; forcing him or her to answer ten times a similar question
takes time and could make him or her feel nervous. So multi-cases alternatives are simply a
shortcut in traditional programming languages, but they take a real sense when dealing
with human beings.

Figure 4.11 shows a simple example of a one alternative. An analyst has to choose to per-
form either a process of type A or of type B. The history shows that a process b of type B
was performed, but no process of type A.

one
R

T

1

R

T

 A

R

T

 B

b

t

r

Figure 4.11 A non-deterministic multi-case alternative.

In this one alternative, the user has to choose to perform either A or B.
The history shows that a process b of type B was performed

4.2. Modelling engineering process types 63

Let E1, E2,..., En be n process expressions. Then non-deterministic alternatives of the five
types above can be defined as:

1. E = E1+E2 for the informal alternative.

2. E = E1+E2 for the weak alternative.

3. E = E1+E2+...+En for the one alternative.

4. E=E1+E2+...+En+E1//E2+E1//E3+...+E1//En+E2//E3+...+E2//En+...+En-1//En+...+E1//E2//...//En

for the some alternative.

5. E = E1//E2//...//En for the each alternative.

e. Non-deterministic loops

The reasons to define non-deterministic loops are the same as the reasons to define non-
deterministic alternatives. Three kinds of non-deterministic loops will be considered:

1. InformalInformalInformalInformal loopsloopsloopsloops: loops with a non-deterministic condition; a question is asked to the
engineer who can answer either by “yes, let us do the loop one more time”, or “no, let
us stop looping”; this question can be asked before or after the first loop.

2. WeakWeakWeakWeak loopsloopsloopsloops: loops with a weak deterministic condition; before or after each loop, the
condition is evaluated and shown to the engineer with its result; the engineer can either
accept or reject the result, forcing the looping process to stop or to go on.

3. FreeFreeFreeFree loopsloopsloopsloops: loops without condition at all; the engineer can do the loop as many times
as he or she wants, but at least once. A non-deterministic alternative can be added to
allow for no loop at all.

Figure 4.12 shows a free loop in which processes of type A can be performed as many times
as the user would like to, but at least once. The history is made up of two processes.

repeat R

R

 A

a2

a1

r

Figure 4.12 A non-deterministic loop.

This free loop can be performed as many times as the engineer wishes.
The history shows that he or she did it twice.

Let E1 be a regular expression. Then non-deterministic loops of the first and second kind
can be defined in the same way as the deterministic loops, since these are the same struc-
tures with only a difference in the condition. So, regular expressions denoting sentences
that can be generated by non-deterministic loops are:

• E = E1
n, n≥0 if the loop can be executed any number of times.

• E = E1
n, n≥1 if the loop has to be performed at least once.

4.2. Modelling engineering process types 64

Free loops can only be expressed as:

• E = E1
n, n≥1

D. Sub-processes

The decomposition of a large problem in smaller problems was presented in Section 4.2.1.
The smaller problems can be either engineering process types or primitive process types.
The way of calling an engineering process type was described in Section 4.2.2. Attention
will now be paid to the use of primitive processes. The concept of product transformation
will be introduced and the primitive process will be examined according to the four groups
defined in Chapter 2.

a. Product transformations

A transformationtransformationtransformationtransformation is a simple action that replaces a construct of a product by another con-
struct. By applying a series of transformations on a product, it is possible to make it evolve.
Most of the time, a product of a given type, which is compliant with a given product
model, has to evolve in order to be of another type, compliant with another product
model. For example, an ER conceptual schema can be transformed into a semantically
equivalent relational logical schema. Within the scope of database engineering and the DB-
MAIN CASE tool, the only products to transform are schemas. A more complete descrip-
tion of transformation theory will be presented in Chapter 6.

Transformations can be classified in three categories: semantics preserving, semantics aug-
menting, and semantics decreasing transformations.

A large set of database schema transformations was been studied in [HAINAUT,96c]. They
are implemented in the DB-MAIN CASE environment.

In database schemas a transformation generally has to be applied to all the constructs that
meet a definite condition. A globalglobalglobalglobal transformationtransformationtransformationtransformation is a couple <C,T> where C is a struc-
tural predicate on constructs of type O and T a transformation applicable to constructs of
type O (see Chapter 6).

A toolbox of useful general global transformations can be defined in the same way the
structural predicates were defined.

• The GER model includes compound attributes, but some models such as the SQL2
model reject them. So compound attributes have to be converted into equivalent con-
structs that are compliant with the SQL2 model. They could be disaggregated through a
DISAGGREGATE global transformation that replaces every compound single-valued
attribute by all its sub-attributes, whose name receive a prefix reminding the compound
attribute name. Figure 4.13 shows an example of such a transformation.

Figure 4.13 A disaggregation transformation

⇔

PERSON
PersID
Name
First name
Address

Street
Number
Zip code
Town

id: PersID

PERSON
PersID
Name
First name
Add_Street
Add_Number
Add_Zip code
Add_Town
id: PersID

4.2. Modelling engineering process types 65

• Most commercial logical and physical models require that relationships (or referential
constraints) being functional, i.e. many-to-one (possibly one-to-one) rel-types without
attributes. So, every rel-type with attributes, N-ary or many-to-many have to be trans-
formed into an entity type together with purely functional rel-types. So, a global trans-
formation that replaces all the non-functional rel-types with entity types can be defined.

More generally, a global transformation can transform all rel-types into entity types. It
can be controlled with a structural rule that filters only rel-types of interest. This global
transformation will be called RT_into_ET and the conversion of non-functional rel-
types will be expressed as follows (the concrete syntax T(C) is used to express the global
transformation <C,T>):

RT_into_ET(ROLE_per_RT(3 N)
or not ATT_per_RT(0 0)
or N_ROLE_per_RT(2 N))

• ISA_into_RT transforms all is-a relations into binary one-to-one rel-types.

• RT_into_REF transforms all functional rel-types into referential attributes when the
entity type at the “many” side of the rel-type has an all-attribute primary identifier.

• Multi-valued attributes can be transformed into entity types in two different ways:
ATT_into_ET_VAL do the transformation using the value representation of the attrib-
utes, i.e. by creating an entity type whose entities are unique and possibly in relation
with several entities of the entity type containing the original multi-valued attribute;
ATT_into_ET_INST do the transformation using the instance representation, i.e. by
creating an entity type whose instances are all the value instances of the original multi-
valued attributes and whose instances are identified by their value and the relation to the
entity originally containing the multi-valued attribute value.

• REMOVE_PREFIX_KEY removes access keys which are a prefix of another access key,
i.e. whose components are the first components of another access key, in the same
order.

The previous global transformation are useful for the transformation of a ER conceptual
schema into a logical relational schema as it will be shown in a case study in Chapter 11.

In order to reverse engineer a relational schema, the reverse of these global transformations
are also useful global transformations. Among them:

• ET_into_RT transforms all entity types which “look like” a rel-type, i.e. all entity types
that play at least two “one” roles in mandatory functional rel-types, that play no role in
other rel-types and whose instances are identified by all the roles they play, into rel-
types. It is the reverse of the RT_into_ET global transformation.

• REF_into_RT transforms reference groups into functional rel-types. This is the reverse
of the RT_into_REF transformation.

The complete listing of global transformations defined in DB-MAIN can be found in
Appendix C and in [DBMAIN,02b].

A globalglobalglobalglobal transformationtransformationtransformationtransformation scriptscriptscriptscript is a deterministic strategy made of a series of global trans-
formations, ordered with some particular adapted control structures. While the control
structures defined before concern the handling of products in a project, global transforma-
tions carry out a deterministic task with constructs of a single schema. Three elementary
control structures are proposed.

• In a sequence, all the global transformations are performed in the specified order. For
example, if <SC1,T1>,...,<SCn,Tn> are n transformations, a sequence looks like:

4.2. Modelling engineering process types 66

T1(SC1)
T2(SC2)
...
Tn(SCn)

• In a loop, the body of the loop is a global transformation script which is repeated while
some of its transformations actually fired on some constructs. It is always performed one
time more than necessary, the last time during which the structural rule of each global
transformation is evaluated to find out that nothing matches it. For instance, the follow-
ing loop:

looplooplooploop
T1(SC1)
T2(SC2)

endloopendloopendloopendloop

can be performed a first time during which SC1 will find a series of constructs that T1

will transform and SC2 will find another set of constructs that T2 will transform, then a
second time during which only SC1 will find some constructs that will be modified by
T1, and a third time during which neither SC1 nor SC2 is matched by constructs of the
schema and nothing happens. The loop will stop after that third run.

• The on(scope)...endon structure allows the analyst to restrict the scope of the body to a
particular set of constructs. The scope is a structural rule. For example, let us consider:

on on on on (scope)
T1(SC1)
T2(SC2)
...

endonendonendonendon

When the on(scope) line is encountered, the scope expression is evaluated and gives a set
of constructs, called S. SC1 is evaluated and T1 will transform constructs from SC1 ∩ S.
Then SC2 is evaluated and T2 will transform constructs from SC2 ∩ S. The interest of
this structure lies in the fact that the scope is evaluated just once before all transforma-
tions. This allows SC2 to select only constructs that already existed before T1 and to
exclude those created by T1. Note that T1 can also destroy some constructs of S; those
constructs will not be selected by SC2. During the following example:

on on on on (DEPTH_of_ATT(1 1))
DISAGGREGATE(ALL_ATT())
NAME_PROCESSING (P^;#;,ALL_ATT())

endonendonendonendon

all the level-1 attributes of the schema go in S. Then the disaggregation global transfor-
mation (T1) takes place. SC1 contains all the attributes of the schema, and S ∩ SC1 = S,
so only level-1 attributes are disaggregated. Then the name processing global transfor-
mation (T2) is executed, trying to prefix all attributes of the schema (SC2) with the sym-
bol #. But since T2 is in the on structure, only attributes in S ∩ SC2 are transformed, in
other words, attributes which were at the first level before the disaggregation, excluding
the level-2 attributes that became level-1 attributes through the disaggregation.

Note that the following script does not give the same result:

NAME_PROCESSING (P^;#;,DEPTH_of_ATT(1 1))
DISAGGREGATE(DEPTH_of_ATT(1 1))

Indeed, in this version, the level-1 compound attributes will get the symbol in the first

4.2. Modelling engineering process types 67

transformation and this symbol will be transferred to the sub-attributes with the prefix.

More complex control structures than those three ones could have been introduced as well,
such as a conditional structure (if-then-else), or loops with a condition (while, repeat-
until), but these scripts should remain simple enough to be able to solve most problems
without hassle. Several years of experience in using this CASE tool proved it works. In the
DB-MAIN CASE tool, new transformations can be written using the internal Voyager 2
language to solve more complicated problems. These Voyager 2 programs can be included
in a method as well.

b. Other primitive processes

The primitive process types are elementary actions that need not be given an explicit strat-
egy. This does not mean that a primitive process type always carries out a simple task. On
the contrary, some of them are highly complex, and are based on sophisticated strategies.
However, since the latter are deterministic, they can be ignored by the analyst, who can
execute these processes as if they were mere atomic actions.

An inventory of the primitive process types of the CASE tool and a classification in the
four categories defined in Chapter 2 has to be performed as follows:.

• Basic automatic process types are, among others, simple DDL7 script generators, DDL
script extractors, copying products, creating a new blank schema,... all actions that sim-
ply need to launch the correct tool, the execution demanding no configuration and no
interaction with the user.

• Configurable automatic process types are:

− Complex DDL generators (more generic generators that can be used for many
DBMS but that need to be configured properly, once for all, by the method engi-
neer) or extractors.

− External procedures. In some particular situations, the working environment may
not provide the needed tools. It is then necessary to use external tools. For this pur-
pose the method engineer will use the internal programming language of the work-
ing environment: Voyager 2 [ENGLEBERT,99] with DB-MAIN. This internal lan-
guage can be used either to write directly the missing tool, or simply to write an
interface with a third-party tool.

− The global transformation scripts defined above. Indeed, the method engineer can-
not simply specify that a global transformation script has to be executed, he or she
has to write the script.

• User configurable automatic process types are process types that can be configured by
the database engineer. This includes external procedures or complex DDL generators or
extractors that need some user interaction to be executed, i.e. programs that require that
the user answers a few questions or sets a few parameters in order to perform their job.
For instance, a COBOL data structure extractor may require that the user specifies
which COBOL syntax is used in the source files if the method engineer has designed a
method general enough for reverse engineering programs written with various COBOL
syntax.

• Manual process types are simply the use of a toolbox8, that is to say, the manual use of
the supporting CASE tool, limited to a subset of all its functions. The list of tools in the
toolbox has to be defined by the method engineer. But the way to use these tools is up
to the final user who can decide what to do only when the product to transform is in

7 DDL = data definition language, like SQL DDL, COBOL data definition section,...
8 The concept of toolbox was defined in Chapter 2 and will be described in detail in Chapter 5.

4.2. Modelling engineering process types 68

front of his or her eyes and with his or her knowledge of the problem. The list of tools
that can be put in a toolbox depends on the supporting CASE environment but should
include all editing facilities as well as the transformations defined above.

It is to be noted that the method engineer can decide to put some processes of the first
category (for instance an SQL DDL script generator) in a toolbox (fourth category). When
used alone, it is directly executed once when the method requires it. When inserted in a
toolbox, the method requires the use of the toolbox with a given set of products and makes
the tool available to the user. The user can himself or herself start the tool, possibly several
times, alternately with other tools of the toolbox.

E. Assembling elements

a. Assembling control structures

The basic control structures presented above can be assembled to build complex strategies.
To understand these assemblings, the process expressions can be written, and they can be
transformed using the BPA process algebra defined in [BAETEN,95].

Using the symbols w, x, y, z to represent processes, the basic properties of this BPA algebra
are (from [BAETEN,95],table 1):

x + y = y + x
(x + y) + z = x + (y + z)
x + x = x
(x + y)z = xz + yz
(xy)z = x(yz)

From these properties, the following expression transformations can be deduced:

(x + y)(w + z) = x(w + z) + y(w + z) = xw + xz + yw + yz
(x + y)2 = (x + y)(x + y) = xx + xy + yx + yy
(x + y)n = (x + y)(x + y)n-1 = x(x + y)n-1 + y(x + y)n-1 =

xx(x + y)n-2 + xy(x + y)n-2 + yx(x + y)n-2 + yy(x + y)n-2 = ... ∀ n ≥ 2

More generally, ∀ m ≥ 1:

(∑i=1..m xi)n = ∑j=1..m(xj(∑i=1..m xi)n-1), ∀ n ≥ 1

(∑i=1..m xi)1 =∑i=1..m xi

[BAETEN,95] also introduces the PA algebra for parallel processes. It uses a left merge sym-
bol . x  y means that x starts before y. It also uses a to symbolise an atomic process, that is
to say an automatic primitive process type in this thesis. PA algebra is based on the previous
axioms, as well as the following ones (from [BAETEN,95], table 42):

x // y = x  y + y  x
a  x = ax
ax  y = a(x // y)
(x + y)  z = x  z + y  z

For instance, Figure 4.14 shows an example of a complex strategy made of several control
structures and sub-process calls. It is an excerpt of the second case study in Chapter 11.
Using the process expressions, this example can be written in the following way:

E1 = COPY
E2 = Physical schema enrichment expert
E3 = ET-ID search
E4 = Long fields refinement

4.2. Modelling engineering process types 69

Figure 4.14 A complex strategy made of a sequence whose second element is a some structure. Its two components
are repeat loops. One of them contains a one structure. “Physical schema enrichment expert” is an engineering
process type, “COPY” is an automatic process type and the five elements of the one structure are toolboxes. This
strategy shows that the analyst can either do the schema enrichment job by himself or herself using the required

toolboxes, or use the guidelines offered by a more expert strategy, or combine both methods.

E5 = FK search
E6 = N-N multiplicity refinement
E7 = Field-ID search
E8 = E2

n, n≥1
E9 = E3+E4+E5+E6+E7

E10 = E9
n, n≥1

E11 = E8+E10+E8//E10

E12 = E1E11

By combining these expressions (and distinguishing the various n), we can write:

E1(E2
n1+(E3+E4+E5+E6+E7)n2+E2

n3//(E3+E4+E5+E6+E7)n4), n1,n2,n3,n4≥1

Using the process algebra, this expression can be transformed:

E1(E2
n1+(E3+E4+E5+E6+E7)n2+E2

n3//(E3+E4+E5+E6+E7)n4) =
E1E2

n1 + E1(E3+E4+E5+E6+E7)n2 + E1(E2
n3//(E3+E4+E5+E6+E7)n4), n1,n2,n3,n4≥1

The last expression is made of three terms, showing the three possible ways of using this
strategy:

1. After copying the schemas, the analyst uses the expert process as often as needed

2. After copying the schemas, the analyst can use all the toolboxes, as often as desired and
in any order. Indeed,

(E3+E4+E5+E6+E7)1 = E3+E4+E5+E6+E7

(E3+E4+E5+E6+E7)2 = E3E3+E3E4+E3E5+E3E6+E3E7+E4E3+E4E4+E4E5+E4E6+E4E7+
E5E3+E5E4+E5E5+E5E6+E5E7+E6E3+E6E4+E6E5+E6E6+E6E7+
E7E3+E7E4+E7E5+E7E6+E7E7

(E3+E4+E5+E6+E7)3 = E3E3E3+E3E3E4+E3E3E5+E3E3E6+E3E3E7+E3E4E3+...+E7E7E7

...

Physical schema enrichment
COBOL programs COBOL schema

Complete COBOL schema

COBOL schema

Complete COBOL schema

COPY

S

COBOL programs

Complete COBOL schema

Physical schema enrichment expert 1

COBOL programs

Complete COBOL schema

ET-ID search

COBOL programs

Complete COBOL schema

Long fields refinement

COBOL programs

Complete COBOL schema

FK search

COBOL programs

Complete COBOL schema

N-N multiplicity refinement

COBOL programs

Complete COBOL schema

Field-ID search

4.2. Modelling engineering process types 70

(E3+E4+E5+E6+E7)7 = ...+E5E3E4E5E7E6E5+... for example
...

3. After copying the schemas, the analyst can combine the two previous methods, perform-
ing them in parallel, starting by the one he or she prefers.

b. Performing processes in parallel

A question remains about starting two processes in parallel: Can they interfere with each
other? Several cases may appear:

• the two processes work with different products: no interference

• the two processes use the same products in input: no interference

• the two processes generate products of the same type: no interference

• the two processes must modify the same products: interferences occur

• one process uses a product in input and the second process updates the same product:
inteferences occur too.

In fact, interferences occur only when two processes use the same product at the same time
and at least one process has to update that product, whatever the types of the processes and
of the products. Three ways of working can be seen in this situation:

• The two processes work on the same product. This solution needs a concurrence mecha-
nism that works at the component level of the products.

• The two processes work on copies of the products, then an integration mechanism must
be used to produce a common result. The integration is not necessary if only one proc-
ess modifies the product.

• A process cannot update a product that is already in use by another process, either in
input or in update. The second process must wait the completion of the first one before
it can start.

The third solution is by far the most simple and is the one that will be chosen in this thesis.
It may seem to be a bit limitating to be forced to finish one process before the second one
can be started, but an operational technique that allows to cope with this limitation will be
presented in Chapter 9.

4.3. Comparison with other modelling techniques
In this section, the different process modelling techniques that can be found in the litera-
ture (see Chapter 1, Section 1.2) will be compared with respect to the process type descrip-
tion. Indeed, comparing the way to describe products (product types and product models)
is non-sense because products depend much more on the application domain than on the
technique itself; by example, a business object is not a database schema, nor a program.
They will be compared according to the criteria of interest in the scope of this thesis: the
ease of use for both the method engineer and for the database engineer.

Rule based and functional techniques are both declarative techniques that share a lot of
characteristics. The main one is certainly the fact that a method is a collection of process
type declarations, each one being independent from the others. The fact that the perform-
ance of a process type P can be followed by the execution of another process type Q can
only be known at run time. Indeed, let us denote Post(P) the postconditions of P and
Pre(Q) the preconditions of Q, supposing they concern the same product models. If Post(P)
and Pre(Q) are the same rules, then the possibility of a sequence is obvious. If Pre(Q) is a
set of rules which concerns the same concepts the set of rules Post(P) while being more

4.3. Comparison with other modelling techniques 71

restrictive, this “inclusion” has to be detected but the possibility of a sequence is still obvi-
ous. But, if Post(P) and Pre(Q) are made of rules concerning different aspects of a same
product model (for instance, Post(P) insures that every rel-type is binary and Pre(Q)
requests nothing special about rel-types), only the evaluation of the rules on an actual prod-
uct at run time can make the possibility of a sequence appear.

These declarative paradigms share a few properties:

• They allow the method engineer to concentrate on one process type at a time. There is
no need to update every other process type required or used by it when modifying it.

• They are build on firm mathematical foundations for the help of the method engineer.

• The validation of a method needs an inference engine that may be unable to give a
result in some particular cases as cited above.

• During a project using a method, the database engineer can only know at a precise time
what can or cannot be done, but a general view of the method is difficult, sometimes
impossible, to obtain, according to the same reasons.

• An important learning period may be required for both the method engineer and the
database engineer to correctly grasp all the mathematical concepts.

Petri nets and graph based models answer several of the problems cited above. Indeed, they
all allow a graphical representation of the process types. These modelling techniques share
the following properties:

• They are supported by firm mathematical foundations for the help of the method engi-
neer.

• The validation of a method can rather easily be done visually or with the use of a simu-
lation engine.

• The adjunction of a new node to a Petri net or to a graph can be a very complex task
which may require a transformation of the net or the graph.

• During the use of the method, the database engineer can easily both know what to do
next and have a global view of the method.

• An important learning period may be required for both the method engineer and the
database engineer to correctly grasp all the concepts.

Procedural (including most object oriented) methods can easily be presented graphically
too, either with algorithms, call graphs, sequence diagrams,... These procedural techniques
share the following properties:

• The validation of a method can rather easily be done visually on the graphical represen-
tations.

• The adjunction of a new process type (“procedure” or object) is rather heavy because all
the other process types from which the new one could be enacted must be modified too.

• During the use of the method, the database engineer can easily know what to do next
and have a global view of the method.

• Since most computer scientists or engineers learn procedural principles at the beginning
of their computing education, learning to use these methods is rather simple.

• Procedural languages are more based on experience of life (most actions we do in every
day life are described procedurally, like a cooking recipe) than on mathematical theories,
but even this category of languages has been thoroughly studied since its creation and
has now solid foundations.

4.3. Comparison with other modelling techniques 72

In conclusion, all the techniques are equally solid, and they all require more or less the
same amount of work in order to build a correct method (the techniques which need the
less work to build a method need the more work to validate the result). But procedural
techniques seem to be easier to use by non-scientists (personal background and graphical
presentation). That is why we can think that the algorithmic method description defined
in this chapter goes in the right way.

Chapter 13 will compare the techniques according to another criteria, namely the adapt-
ability of the method to the current project.

Chapter 5

The MDL language

In the previous chapters, a meta-model for designing database engineering
methods was defined. It is a complete set of concepts with a graphical
representation. The aim of this meta-model being to guide an analyst
during the use of a CASE environment, it is necessary to allow a method
engineer to implement his or her methods; it is necessary to have a means
of designing formally the method. For that purpose, this chapter will
define MDL, a Method Description Language.

In a first time, some requirements for the language will be enumerated.
Then, a complete definition of the language will be described. In a third
time, this language will be analysed a little bit in order to understand its
main characteristics and check the fulfilment of the requirements.

Chapter 5 The MDL language 74

This chapter will present MDL, a Method Description Language, to allow method engi-
neers to implement a method compliant with the two previous chapters in a CASE tool.

MEL [BRINKKEMPER,01] is such a kind of language too, although more oriented
towards software engineering.

5.1. Requirements
These are the main characteristics we would like to give to the language:

• Since product models and product types are defined in the meta-model in a declarative
fashion, the most natural way to declare them is in a declarative way too.

• Since the process types of the meta-model are defined in an algorithmic fashion, the
most natural language to declare them is traditionally a procedural language.

• Since we want to use this language to help an analyst, the methods designed with it have
to be easily readable and understandable, they have to use natural language to commu-
nicate with the database engineers.

• Since a method written with this language is to be followed by human beings, it is to be
clear, ambiguities should be avoided, even if they could easily be resolved with some pri-
ority rules; analysts should not have to learn such rules.

• The language has to handle all the concepts defined in Chapters 2, 3 and 4: product
models, product types, and process types.

5.2. Language definition
The language is built mainly as a transcription of the concepts presented in chapter 4. This
chapter simply details the syntax and the semantics of this new language. In a first time, the
main characteristics of the language will be defined. Secondly, the language will allow the
method engineer to give a description to the method. Then, successively, a way to define
product models, global product types, toolboxes and external functions will be presented.
Finally, process models will be defined altogether with their local product types and their
strategy. In this chapter, the language syntax and semantic are presented in a
“programmer’s manual” way. A full syntax description of the language is given with a BNF
grammar in Appendix D.

5.2.1. Generalities

The meta-model is made up of several concepts. To declare a method, a method engineer
needs to define elements of each kind of concepts: product models, products types, process
types. Since all these concepts are independent from each other (they just reference each
other) they will be defined in separate blocks:

• One block for the method itself.

• One block for each product model.

• One block for each global process type.

• One block for each engineering process type, with its own local product types.

• One block for each primitive process type that need a particular description.

In Chapter 2 product types were defined in the context of the process type into which they
are used. In other words, these product types are defined locally to process types. The con-
text of a product type can be the whole project too. For example, a product type whose
instances are special annotations may have to be available at any time during the project.

5.2. Language definition 75

At the most basic level, engineering process types use primitive process types. In Chapter 4,
the different kinds of primitive process types that can be encountered are enumerated. The
requirements for the four primitive process type categories are the following:

• Basic automatic process types are simple built-in functions of the CASE environment
that do not need any configuration, their name is sufficient to use them.

• Configurable automatic process types are of three categories. Firstly, global transforma-
tions have to be declared entirely. Secondly, external procedures simply need to be refer-
enced. To do so, they can be declared and given a name that identifies them inside the
whole process. Finally, configurable DDL generators can be referenced through their
own name and configured either by a few parameters or by their own means (setup
function if they have one).

• User configurable automatic process types can be referenced by their own name. Their
configuration should be performed by their own means directly before their actual use.

• Manual process types being the use of a toolbox, it is necessary to define these toolboxes
and to give them an identifying name.

So, special blocks are needed to declare external procedures and to define toolboxes before
they can be used. All other primitive process types will be declared directly when needed.

Finally, for the ease of reading a method and to avoid recursion, the language will not
accept forward references. In other words, a block can only reference a block which was
defined before. For instance, if the method looks like the following:

Block A

Block B

Block C

Then block C can make use of blocks A and B, while block B can only use block A, and
block A cannot use B nor C.

5.2.2. Method

The syntax of method identification block is the following:

methodmethodmethodmethod
title "title "title "title "title""""
version "version "version "version "version""""
[descriptiondescriptiondescriptiondescription

description-text
end-descriptionend-descriptionend-descriptionend-description]
author "author "author "author "author""""
datedatedatedate """"day----month----year""""
[help-filehelp-filehelp-filehelp-file """"help-file-name""""]
performperformperformperform process-type

end-methodend-methodend-methodend-method

where:

• title is the name of the method. It can be made of any character (max. 100).

• version is a version number. It can be made of any character (max. 16).

• description-text is an optional small description of the method that will appear in dia-
logue boxes in the supporting CASE environment. This text can hold on multiple lines.
The first character of a line will go far left. The left margin can be symbolised with “|”

5.2. Language definition 76

(ASCII code 124). In that case, this character will not appear in the dialogue boxes, but
spaces between it and the text will. For instance, the following description:

description description description description This is a
 | sample

description
end-descriptionend-descriptionend-descriptionend-description

will be shown as:

This is a
 sample
description

• author is the name of the author. It can be made of any character (max. 100).

• day-month-year is the release date of the method. day, month and year are three integer
numbers. The year must be coded with four digits.

• help-file-name is a filename containing on-line help about the method. This file should
be the detailed handbook of the method. It can be a *.hlp file in a Windows environ-
ment or a man page in a Unix environment, for instance.

• process-type is the identifier of the process type by which the method begins. This proc-
ess type must be already defined.

Example:

methodmethodmethodmethod
titletitletitletitle "Reverse engineering"
versionversionversionversion "1.2"
descriptiondescriptiondescriptiondescription

This method is aimed at reverse engineering COBOL files in order to retrieve
the conceptual schema of its data structures and the way they were designed.

end-descriptionend-descriptionend-descriptionend-description
authorauthorauthorauthor "John Smith"
datedatedatedate "28-07-2002"
helphelphelphelp "rev_eng_meth.hlp"
performperformperformperform REVERSE_ENG

end-methodend-methodend-methodend-method

Semantically, this block only indicates what help file must be used to guide the user and
what process type block is the main one.

5.2.3. Product Models

A. Schema model description

The definition of a schema model follows the following pattern:

schema-modelschema-modelschema-modelschema-model name [isisisis inherited-schema-model]
titletitletitletitle """"title""""
[descriptiondescriptiondescriptiondescription

description-text
end-descriptionend-descriptionend-descriptionend-description]
conceptsconceptsconceptsconcepts

concept-name """"local-name""""
concept-name """"local-name""""
...

5.2. Language definition 77

constraintsconstraintsconstraintsconstraints
rule
diagnosis "diagnosis "diagnosis "diagnosis "diagnosis-string""""
rule
diagnosis "diagnosis "diagnosis "diagnosis "diagnosis-string""""
...

end-modelend-modelend-modelend-model

where:

• name is an identifier that will be used to reference the model throughout the method
description. This name must be made of maximum 100 letters (lower case or upper
case, but no accents), figures, “-” or “_”.

• inherited-schema-model is another schema model from which the current schema model
can inherit its definition (concepts and constraints); this is optional.

• title is a more readable name of the model that will be used by the supporting CASE
environment user interface. It can be made of any character (max. 100). It does not
need to be identifying.

• description-text is an optional small description of the model that will appear in dialogue
boxes in the supporting CASE environment. The syntax is the same as for the method.

• concept-name is one of the concepts of the GER model the declared model is made up
of. For instance, a relational model has the concept of entity type (renamed table, see
below) but not the concept of relationship type. So entity_type will appear in the list, but
not rel_type. The allowed concept names are the following:

schema entity_type
is_a_relation is_a
sub_type super_type
rel_type attribute
atomic_attribute compound_attribute
referential_attribute object
processing_unit group
role collection
identifier primary_identifier
secondary_identifier access_key
coexistence_constraint exclusive_constraint
at_least_one_constraint exactly_one_constraint
user_constraint referential_constraint
inverse_constraint generic_constraint
in_out_relation call_relation
decomposition_relation

• local-name is the renaming of a concept into the local model. For instance, the GER
concept of entity type will be renamed in an OO model with name Object class and in a
relational model with name Table.

• rule is a constraint that each schema expressed into the new model must satisfy. A rule
applies on a class of GER concepts. It defined valid configurations. These are the rules
defined in Chapter 4. Since the notation and naming used in Chapter 4 is formal and
precise, the MDL language can use the same syntax.

• diagnosis-string is associated with a rule. It contains a message to be printed on screen
when the rule is violated. This message can be made of any character. It can contain the
special word ’&NAME’ to include the name of the object that violates the rule.

5.2. Language definition 78

The following example illustrates the MDL definition of a simple binary model close to the
historical Bachman model.

schema-modelschema-modelschema-modelschema-model BACHMAN-MODEL
titletitletitletitle "Bachman binary model"
descriptiondescriptiondescriptiondescription

|Simple Bachman model:
| no supertype/subtypes structures,
| binary one-to-many rel-types without attributes,
| no compound attributes,
| no multivalued attributes,

end-descriptionend-descriptionend-descriptionend-description
conceptsconceptsconceptsconcepts

project "project"
schema "schema"
entity_type "record type"
rel_type "set type"
role "role"
attribute "field"

constraintsconstraintsconstraintsconstraints
ISA_per_SCHEMA (0 0) % No is-a relations allowed

diagnosisdiagnosisdiagnosisdiagnosis "Is-a relations are not allowed. Transform them."
ROLE_per_RT (2 2) % Maximum degree of a rel-type = 2

diagnosisdiagnosisdiagnosisdiagnosis "Rel-type &NAME must be binary. Transform it."
ONE_ROLE_per_RT (1 1) % Only one "one" role (with card [i-1])

diagnosisdiagnosisdiagnosisdiagnosis "Rel-type &NAME must have one 1 role. Transform it."
ATT_per_RT (0 0) % Rel-types cannot have attributes

diagnosisdiagnosisdiagnosisdiagnosis "Rel-type &NAME cannot have attributes. Transform it."
SUB_ATT_per_ATT (0 0) % Attributes must be atomic

diagnosisdiagnosisdiagnosisdiagnosis "Attribute &NAME cannot have sub-att. Transform it."
MAX_CARD_of_ATT (1 1) % Attributes must be single-valued

diagnosisdiagnosisdiagnosisdiagnosis "Attribute &NAME must be single-valued. Transform it."
end-modelend-modelend-modelend-model

The semantics of such a schema model is depicted in details in Chapter 3.

B. Text model description

The specification of a texttexttexttext modelmodelmodelmodel can be simple when no syntax is enforced. Otherwise,
the file including the grammar of the contents of the texts is mentioned.

text-modeltext-modeltext-modeltext-model name isisisis [inherited-text-model]
titletitletitletitle """"title""""
[descriptiondescriptiondescriptiondescription

description-text
end-descriptionend-descriptionend-descriptionend-description]
extensionsextensionsextensionsextensions """"extension"""", """"extension"""",...
[grammargrammargrammargrammar """"grammar""""]

end-modelend-modelend-modelend-model

where:

• name is an identifier that will be used to reference the model throughout the method
description. This name must be made of maximum 100 letters (lower case or upper
case, but no accents), figures, “-” or “_”.

5.2. Language definition 79

• inherited-text-model is another text model from which the current text model can inherit
its definition extensions; this is optional.

• title is a more readable name of the model that will be used by the supporting CASE
environment user interface. It can be made of any character.

• description-text is an optional small description of the model that will appear in dialogue
boxes in the supporting CASE environment. See the method description-text for the syn-
tax.

• extension is a possible file extension for a file containing a text of this model. As file
extensions are usually associated with the same kind of files, they suffice for describing
the content of a file. For instance, extensionextensionextensionextension "cob" means that texts of this model are all
COBOL files, therefore they are texts with a COBOL syntax. An extension can be made
of any character (max. 100).

• grammar is the name of a file that contains the grammar description as presented in
Chapter 3, Section 3.4. This is optional.

Text models do not have a concept selection and renaming list like schema models. This is
due to the fact that the DB-MAIN CASE environment is mainly oriented towards schema
manipulation and only treats a text as a single indivisible element, except in some dedicated
process. DB-MAIN is not capable of distinguishing text parts like a word processor, mak-
ing text concept selection and naming useless.

The following are two examples of text models:

text-modeltext-modeltext-modeltext-model PLAIN-TEXT
titletitletitletitle "Plain ASCII text"
descriptiondescriptiondescriptiondescription

ASCII file that can be read by text editors
end-descriptionend-descriptionend-descriptionend-description
extensionsextensionsextensionsextensions "rpt", "txt"

end-modelend-modelend-modelend-model

text-modeltext-modeltext-modeltext-model COBOL-PROGS
titletitletitletitle "COBOL programs"
extensionsextensionsextensionsextensions "cob"
grammargrammargrammargrammar "COBOL.PDL"

end-modelend-modelend-modelend-model

The semantics of such a text model is depicted in details in Chapter 3.

5.2.4. Global product types

Global product types are defined in their own paragraph. products of these types are acces-
sible by all process types.

The syntax of global product type description is the following:

productproductproductproduct name
titletitletitletitle """"title""""
[descriptiondescriptiondescriptiondescription

description-text
end-descriptionend-descriptionend-descriptionend-description]
modelmodelmodelmodel [weakweakweakweak] model-name
[multiplicitymultiplicitymultiplicitymultiplicity [[[[min----max]]]]]

end-productend-productend-productend-product

where:

5.2. Language definition 80

• name identifies the product type throughout the method. This name must be made of
maximum 100 letters (lower case or upper case, but no accents), figures, “-” or “_”.

• title is a second name for representing the product type in the supporting CASE envi-
ronment in a more readable way then the identifier. It can be made of any character.

• description-text is an optional free text describing the product type in a natural language.
This description is to be used by the supporting CASE environment user interface. Its
syntax is the same as the description-text of the method.

• model-name is the name of the product model the current product type is a type of. It
must be the identifier of a previously defined product model (schema model or text
model). If the weakweakweakweak keyword is specified, products of this type should preferably respect
all the constraints declared in the product model, but some transgressions are bearable.

• min is the minimum number of products that must be defined with the type along the
life of the project. min is an integer value.

• max is the maximum number of products that can be defined with the type. It is an
integer value or NNNN to represent infinity.

Note that the multiplicitymultiplicitymultiplicitymultiplicity line is optional. When it is not specified, min is assumed to be
equal to 0 and max is assumed to be equal to NNNN.

Here is an example of a product type.

productproductproductproduct Optimized Schema
titletitletitletitle "Logical Optimized Schema"
descriptiondescriptiondescriptiondescription

 Logical binary schema including optimization constructs
end-descriptionend-descriptionend-descriptionend-description
modelmodelmodelmodel BACHMAN-MODEL
multiplicitymultiplicitymultiplicitymultiplicity [0-1]

end-productend-productend-productend-product

The semantics of such a product type is depicted in details in Chapter 4.

5.2.5. Toolboxes

A toolbox is a subset of the supporting CASE environment tool kit that can be used at a
particular time. It is aimed at being used by manual primitive process to let the analysts
work by themselves and to prevent them to do mistakes by allowing them to use some par-
ticular tools only. Several toolboxes can be defined by the language. The process types
defined afterward will allow the use of the toolboxes when needed. A toolbox has an identi-
fying name, a readable title, possibly a textual description and the list of tools. Toolboxes
can be defined hierarchically. If a toolbox is defined on the basis of another toolbox, it
inherits all its tools. The new toolbox is then defined by adding or removing tools from the
original toolbox. The syntax of a toolbox description is the following:

toolboxtoolboxtoolboxtoolbox name [isisisis inherited-toolbox]
titletitletitletitle """"title""""
[descriptiondescriptiondescriptiondescription

description-text
end-descriptionend-descriptionend-descriptionend-description]
addaddaddadd|removeremoveremoveremove tool-name
addaddaddadd|removeremoveremoveremove tool-name
...

end-toolboxend-toolboxend-toolboxend-toolbox

5.2. Language definition 81

where:

• name identifies the toolbox in the method. This name must be made of maximum 100
letters (lower case or upper case, but no accents), figures, “-” or “_”.

• inherited-toolbox is the name of another toolbox from which the new one inherits its
definition. This is optional.

• title is a second, more readable, name that will be used in the supporting CASE environ-
ment user-interface. It can be made of any character.

• description-text is an optional free text describing the toolbox in a natural language. This
description is to be used by the supporting CASE environment user interface. Its syntax
is the same as the description-text of the method.

• tool-name is the name of a tool to add to or to remove from the toolbox. This name is a
predefined name provided by the supporting CASE environment. Appendix D lists all
the tools provided by DB-MAIN. The number of tools that can be added is unlimited.

The following shows an example of a toolbox description.

toolboxtoolboxtoolboxtoolbox TB_BINARY_INTEGRATION
titletitletitletitle "Binary schema integration"
descriptiondescriptiondescriptiondescription

This toolbox allows you to integrate a slave schema into a master schema.
end-descriptionend-descriptionend-descriptionend-description
addaddaddadd SCHEMA_INTEGRATION

end-toolboxend-toolboxend-toolboxend-toolbox

Semantically, a toolbox definition is purely static, it only describes the content of the tool-
box. Information about its use will be given later, in process type definitions.

5.2.6. External function declarations

External functions are primitive process types that have to be performed by third-party
tools. In order for them to be accessible, they have to be declared with their signature.
These special functions will be developed in a 4GL. Voyager 2 is the 4GL of DB-MAIN
that can be used for that purpose. The syntax of such a declaration is:

externexternexternextern name """"voyager-file".".".".voyager-function((((param-type [param-name],,,,...))))

where:

• name is the name by which the function will be identified throughout the method.

• voyager-file is the compiled Voyager 2 file name (*.oxo) that contains the function.

• voyager-function is the name of a Voyager 2 function that is defined in voyager-file. It
must be declared exportable and return an integer value. The semantic of this integer
value depends on the intended use of the function:

− If the function is a boolean expression, a value of 0 means false and all other non-null
value means true.

− If the function is a primitive process type, it should return 1 if it performs correctly
and 0 if an error occurs; other values are undefined and cannot be returned. The
function has to handle error messages by itself.

• param-type is a formal parameter of the function. It can take various values according to
the actual function which has to be written with respect to the method requirements:

5.2. Language definition 82

− To pass an integer value in input of the actual function, it must be defined with an
integer parameter and param-type must be integerintegerintegerinteger.

− To pass a string in input of the actual function, it must be defined with a string
parameter and param-type must be stringstringstringstring.

− To pass a product type in input or in update of the actual function, it must be
defined with a parameter of type list and param-type must be listlistlistlist. When the function
is called, the list is initialised with all the products of the type passed. The function
cannot modify the list (add or remove products) but the products can be modified.

To pass a product type in output so that the function can create new products of the
passed type, the function has to be defined with a product type parameter and
param-type must be typetypetypetype. The Voyager 2 function has to create the new product with
the create instruction; for instance, to create a schema of type “st” (passed in
parameter), the Voyager 2 function should contain the following line:

create(SCHEMA,...,SCHEMA_TYPE:st)

• param-name is the name of the parameter. It is optional. This name is only used for
readability of the source code; it is simply skipped by the compiler.

For instance, a Voyager 2 function can be defined in file c:\functions\lib.oxo as:

export function integer F(list L, integer I, product_type T) {...}

So it needs to be declared with the following line:

externexternexternextern extf “c:\functions\lib.oxo”.F (listlistlistlist, integerintegerintegerinteger, typetypetypetype)

In the method, this function is known as extf and needs a product type whose instances will
be passed in input or update, an integer value, and a product type for the products that will
be generated in output.

An external function declaration is only a reference definition. Its use is defined later.

5.2.7. Process types

Besides general practical information (its name, its title, a short description, a help text), a
process type is defined by its input and output product types, its internal product types and
sets and by a strategy.

A. The process description

The MDL specification of a process type states the input/output flows of the process, as
well as the way it must be carried out. It has the following syntax:

processprocessprocessprocess name
titletitletitletitle """"title""""
[descriptiondescriptiondescriptiondescription

description-text
end-descriptionend-descriptionend-descriptionend-description]
[inputinputinputinput input-product-type, input-product-type,...]
[outputoutputoutputoutput output-product-type, output-product-type,...]
[updateupdateupdateupdate update-product-type, update-product-type,...]
[interninterninternintern intern-product-type, intern-product-type,...]
[setsetsetset product-set, product-set,...]
[explainexplainexplainexplain """"explain-section""""]
strategystrategystrategystrategy

strategy
end-processend-processend-processend-process

5.2. Language definition 83

where:

• name identifies the process type in the method. This name must be made of maximum
100 letters (lower case or upper case, but no accents), figures, “-” or “_”.

• title is a second, more readable, name of the process type that will be used in the sup-
porting CASE environment user-interface. It can be made of any character.

• description-text is an optional free text describing the toolbox in a natural language. This
description is to be used by the supporting CASE environment user interface. Its syntax
is the same as the description-text of the method.

• input-product-type is a local product type used as a formal parameter for input products.
Products of this type are renamed copies of actual arguments that are produced at the
enactment of a process of type name. Modifications done on these products are lost at
the end of the process.

• output-product-type is a local product type used as a formal parameter for output prod-
ucts. Products of this type must be created during a process of type name. At the end of
the process, products of this type are copied into the actual arguments.

• update-product-type is a local product type used as a formal parameter for updated prod-
ucts. Products of this type are the actual arguments themselves. Hence, every modifica-
tion done to a product of this type is done on the corresponding actual argument too.

• intern-product-type is a local product type which is not a formal parameter. Hence, prod-
ucts of this type have no existence outside processes of type name.

• product-set is a local product set that can be used for handling large quantities of prod-
ucts by using set operators. Product sets are described below.

• explain-section is the section of a help file that explains the goal and the way of working
of any process of type name. This section has a name that can be made of any character
allowed by the help system (help or man files).

• strategy is the way of carrying out the processes of type name, as described below.

B. Local product types

Global product type declaration was presented in 5.2.4. The semantics of global and local
product types is the same, the only difference is in the scope: global product types can be
used anywhere in the method, while local product types can only be referenced in the strat-
egy of the process type in which they are declared.

Properties of global and local product types are the same. They all have a name (identifier),
a title, a minimum and maximum multiplicity and they are all of a product model. But,
local product types do not have a description. Their definitions hold in a single line:

name [[[[[min----max]]]]] [""""title""""] :::: [weakweakweakweak] model-name

where:

• name identifies the product type inside de process type. This name must be made of
maximum 100 letters (lower case or upper case, but no accents), figures, “-” or “_”.

• min is the minimum number of products of this type that must be used (or created)
during a work that follows the method. It is an integer value.

• max is the maximum number of products of this type that can be used (or created) dur-
ing a work that follows the method. It is an integer value or NNNN to represent infinity.

• title is a second name that is aimed at representing the product type in the supporting

5.2. Language definition 84

CASE environment in a more readable way then the identifier. It can be made of any
character. It is optional. If omitted, it is assumed to be the same as name.

• model-name is the name of the product model the current product type is a type of. It
must be the identifier of a previously defined product model (schema or text model).

• If the weakweakweakweak keyword precedes the model-name, products of this type should preferably
respect all the constraints declared in the product model, but some transgressions are
bearable.

Note that the multiplicity is optional. By default, min = 1 and max = NNNN.

For instance, the declaration of a conceptual schema integration process may comprise two
input product types master and secondary both compliant with a conceptual model. The
first one, with multiplicity [1-1], represents the master schema, and the second one, with
multiplicity [1-N], represents all the secondary schemas that will be integrated into the first
one.

C. Product sets

Product sets have a name (identifier), a title and a minimum and maximum cardinality.
Their definitions hold in a single line:

name [[[[[min----max]]]]] [""""title""""]

where:

• name is a name for the product set, unique inside the process type. name must be made
of maximum 100 letters (lower case or upper case, but no accents), figures, “-” or “_”.

• min is the minimum number of products in this set. It is an integer value.

• max is the maximum number of products of this set. It is an integer value or NNNN to repre-
sent infinity.

• title is a second name that is aimed at representing the product set in the supporting
CASE environment in a more readable way then the identifier. It can be made of any
character (max. 100). It is optional. If omitted, it is assumed to be the same as name.

Note that the multiplicity is optional. By default, min = 1 and max = NNNN.

D. The explain section

It is very important for a database engineer to understand very well the ins and the outs of
the problem to be solved by an engineering process, to be aware of all the the related facts
and information,... The small description section sketches the main line to follow, but it is
sometimes necessary to be more precise. Furthermore, small drawings may greatly help to
improve explanations. Since the method already contains a link to the detailed handbook
of the method which can be written using all the capabilities offered by the supporting
operating system, this explain section is a simple link to a section in that help file.

E. The strategy

The strategy is declared in a procedural way with the control structures described in Chap-
ter 4. The syntax of their translation in MDL is defined here. Their semantics was
described precisely in Chapter 4 and will be presented in an operational way in Chapter 9.

a. The sequence

A sequence of process types means that all the process types must be done each at its turn,
in the specified order. The syntax of a sequence is the following:

5.2. Language definition 85

[sequencesequencesequencesequence]
sub-structure;;;;
sub-structure;;;;
...

[end-sequenceend-sequenceend-sequenceend-sequence]

where:

• sub-structure is one of the substructures or sub-process use defined in this chapter.

Note that the sequencesequencesequencesequence and end-sequenceend-sequenceend-sequenceend-sequence keywords are optional. They are normally not
used, except when necessary, for instance when a sequence is an alternative in a one, some or
each structure defined below.

The following example shows a sequence made of process types Conceptual_analysis and
Logical_design:

dodododo Conceptual_analysis(Interview_report,Conceptual_schema);
dodododo Logical_design(Conceptual_schema,Logical_schema)

b. The while structure

The while structure is a standard loop which indicates that the encompassed structure must
be done again and again while the condition is satisfied. If the condition is not satisfied the
first time it is evaluated, then the sub-structure will never have to be performed. It can also
be an informal loop or a weak loop, depending on the condition. The syntax of the struc-
ture is the following:

whilewhilewhilewhile condition repeatrepeatrepeatrepeat
sub-structure

end-repeatend-repeatend-repeatend-repeat

where:

• condition is an expression the syntax and semantics of which is discussed in Section j.

• sub-structure is any structure or sub-process use as described in this chapter.

In the following example, the structure show that a process of type Import can be done sev-
eral times until condition ask ”Do you want to import a source file?” is satisfied.

whilewhilewhilewhile (ask "Do you want to import a source file?") repeatrepeatrepeatrepeat
dodododo import(Source_file)

end-repeatend-repeatend-repeatend-repeat

c. The repeat...until structure

The repeat...until structure is a second kind of standard loop which indicates that the
encompassed structure must be done again and again until the condition is satisfied. The
sub-structure must be done at least once. It can also be an informal or a weak non-determi-
nistic loop. The syntax of the structure is the following:

repeatrepeatrepeatrepeat
sub-structure

end-repeat untilend-repeat untilend-repeat untilend-repeat until (condition)

where:

• condition is an expression the syntax and semantics of which is discussed in Section j.

• sub-structure is any structure or sub-process use as described in this chapter.

5.2. Language definition 86

The following example shows that processes of type Import should import products of type
Source_file until condition ask “One more source file?” is satisfied.

repeatrepeatrepeatrepeat
dodododo import(Source_file)

end-repeatend-repeatend-repeatend-repeat untiluntiluntiluntil (ask "One more source file?")

d. The repeat structure

The repeat structure is the informal non-deterministic loop. It looks similar to the
repeat...until structure except that no condition is specified. During a process, the analyst is
the one who decides if the sub-structure has to be performed one more time. The syntax is:

repeatrepeatrepeatrepeat
sub-structure

end-repeatend-repeatend-repeatend-repeat

where:

• sub-structure is any structure or sub-process use as described in this chapter.

The following example shows a sample repeat structure.

repeatrepeatrepeatrepeat
Import(source_file)

end-repeatend-repeatend-repeatend-repeat

e. The if...then...else structure

The standard alternative, the informal and the weak non-deterministic alternative can be
translated with an if...then...else structure. According to a specified condition the methodo-
logical engine or the analyst can decide whether an action has or has not (if...then) to be
performed, or which of two alternatives (if...then...else) comes next. The syntax is:

ifififif condition thenthenthenthen
sub-structure-1

[elseelseelseelse
sub-structure-2]

end-ifend-ifend-ifend-if

where:

• condition is an expression the syntax and semantics of which is discussed in Section j.

• sub-structure-1 is any structure or sub-process use as described in this chapter. It is exe-
cuted when condition is satisfied.

• sub-structure-2 is any other structure or sub-process use as described in this chapter. It is
optional. If it is present, it is executed when condition is not satisfied.

The following example shows the graphical representation of an if...then...else structure
where a process of type Two_schemas is executed if condition count-equal(SCH,2) is satis-
fied, and a sequence of processes of types Several_schemas and Selected_schemas otherwise.

ifififif (count-equalcount-equalcount-equalcount-equal(SCH,2))
dodododo Two_schemas(SCH)

elseelseelseelse
dodododo Several_schemas(SCH,SEL)
dodododo Selected_schemas(SEL)

end-ifend-ifend-ifend-if

5.2. Language definition 87

f. The one, some, each structures

The one, some and each structures are the non-deterministic one, some and each alterna-
tives. They are user driven structures. The one structure means that the user has to choose
one structure among all those that are presented and to execute it and no other one. The
some structure means that the user can choose several (or just one or none or all) sub-proc-
esses and execute them. He or she can do them in any order. Finally, the each structure
means that the user must execute each sub-structure but, on the contrary of a sequence, in
any order he or she wants. The syntax of those substructures is the following:

oneoneoneone
sub-structure;
sub-structure;
...

end-oneend-oneend-oneend-one

somesomesomesome
sub-structure;
sub-structure;
...

end-someend-someend-someend-some

eacheacheacheach
sub-structure;
sub-structure;
...

end-eachend-eachend-eachend-each

where:

• sub-structure is any other structure or sub-process use as described in this chapter.

The following example allows a database engineer to generate either an Oracle_script or a
DB2_script DDL, or both.

somesomesomesome
generategenerategenerategenerate Oracle_script(Physical_schema,DDL_file);
generategenerategenerategenerate DB2_script(Physical_schema,DDL_file);

end-someend-someend-someend-some

g. The for structure

A product type can have several instances. But some process types can need to work on one
product only. The for structure allows a process type to be executed once for every instance
of a product type or product set. The syntax of the for structure is the following:

forforforfor oneoneoneone product-set inininin product-type-or-set dodododo
sub-structure

end-forend-forend-forend-for

forforforfor somesomesomesome product-set inininin product-type-or-set dodododo
sub-structure

end-forend-forend-forend-for

forforforfor eacheacheacheach product-set inininin product-type-or-set dodododo
sub-structure

end-forend-forend-forend-for

where:

• product-set is a product set that must be declared with multiplicity [1-1]. At each itera-
tion, the set is filled with one element of the product-type-or-set. The element is the
product type whose instance is one, some or each instance or product-type-or-set at its
turn.

• product-type-or-set is the product type the instance of which have to be used one at a
time. In the forforforfor oneoneoneone form, one instance of product-type must be used. In the forforforfor somesomesomesome
form, the user has to choose a set of products of type product-type to use. Finally, in the
for eachfor eachfor eachfor each form, every product of product-type has to be used.

• sub-structure is any other structure or sub-process use as described in this chapter.

5.2. Language definition 88

In the following example, each instance of All_schemas at its turn is used as the only ele-
ment of the One_schema set and used as an input for Integrate.

for eachfor eachfor eachfor each One_schema inininin All-schemas dodododo
dodododo Integrate(One_schema, Integrated)

end-forend-forend-forend-for

h. Sub-process use

The previous sections showed how to specify a strategy, a way of combining several sub-
processes. But they do not show how to declare a sub-process. This section will have a look
to every available sub-process types.

i. To use a sub-process

A process-type can be refined into sub-process types, each one being a complete engineer-
ing process type with their product definitions and strategies. The dodododo keyword allows a
process to use its engineering sub-processes.

dodododo sub-process ((((parameter,,,, parameter,,,,...))))

where:

• sub-process is the identifier of the engineering process to use.

• parameter is an integer, a string, a product type or a product set (they will be distin-
guished in this paragraph) passed to the sub-process. The parameters must be in the
same order as declared in the sub-process. Product types and product sets need to be I-
compatible, O-compatible or U-compatible with the formal parameters declared in the
sub-process, as defined in Chapter 4. A product set can only be passed to a listlistlistlist argu-
ment. If a parameter is a product type passed to a listlistlistlist argument, all the products of that
type will be passed to the sub-process. If the parameter is a product set, the set itself will
be passed, but only the products it contains that are I-compatible or U-compatible with
the formal product type will be in the set inside the sub-process. But the product set
parameter can be prefixed by “content:content:content:content:” in order to pass only the products it contains
rather than itself. A Product type passed to a typetypetypetype argument will be used by sub-process
to build new products of that type.

The following example shows a process use example. Process Q uses process P passing W,
X, Y and Z in parameters. When the use is required, every products of type W are passed
and cast to product type A, the set Y is passed and all its products I-compatible with X are
cast to X, and every products of the set Z which are I-compatible with C are passed and
cast to type C. When process P ends, all products of type D are cast to type Z and the con-
trol is passed back to process Q that goes on.

processprocessprocessprocess P
...
inputinputinputinput A,B,C
outputoutputoutputoutput D
...

end-processend-processend-processend-process

processprocessprocessprocess Q
...
interninterninternintern W,X
setsetsetset Y,Z
strategystrategystrategystrategy

...

5.2. Language definition 89

P(W,X,content:content:content:content:Y,Z)
...

end-processend-processend-processend-process

ii. To allow the use of a toolbox

Toolboxes have already been defined previously. The strategy simply shows what toolbox
can be used and on what product types. The syntax is the following:

toolboxtoolboxtoolboxtoolbox toolbox[[log [log [log [log log-level]]]]]((((product-type-or-set,,,,product-type-or-set,,,,...))))

where:

• toolbox is the identifier of a previously defined toolbox.

• log-level is an optional configuration parameter which specifies how the actions per-
formed by the analyst should be performed. It can be one of the following values:

− off: turns off the logging facility

− replay: concise recording facility: the log will contain only the information that are
necessary to replay the actions performed. This includes only the identifier of the
components that are transformed, the transformations performed and the data
entered by the analyst.

− All: extended recording facility: the log file contains all the same information as in
the replay log plus the state before transformation of all the components that are
modified by the transformation. For instance, the transformation of an entity-type
into entity rel-type will log the name before transformation of the entity-type, and
the name of all rel-types connected to that entity-type, as well as the name of all roles
played in the rel-types. This is usefull to be able to reverse the transformation.

• If the [loglogloglog ...] configuration parameter is not present, the default log state of the sup-
porting CASE environment will be used.

• product-type is the identifier of a product type or of a product set. toolbox can work on
every instances of product-type-or-set. The number of product-type-or-set used as actual
parameters of a toolbox is unlimited.

The following example shows an example of a toolbox use: A can be updated freely by the
analyst using toolbox TB.

toolboxtoolboxtoolboxtoolbox TB
...

end-toolboxend-toolboxend-toolboxend-toolbox

process process process process P
...
updateupdateupdateupdate A
strategystrategystrategystrategy

...
toolboxtoolboxtoolboxtoolbox TB(A);
...

end-processend-processend-processend-process

iii. To perform a global transformation

The usage of global transformations, automatic configurable primitive process types, is the
following:

5.2. Language definition 90

glbtrsfglbtrsfglbtrsfglbtrsf [""""title""""][[log [log [log [log log-level]]]]] ((((schema-type-or-set,,,,
global-transfo[((((scope))))],,,,
global-transfo[((((scope))))],,,,...))))

where:

• title is an optional readable string to name the transformation on screen for the user.

• log-level is an optional configuration parameter which specifies how the actions per-
formed by the analyst should be performed. It can be one of the values defined in the
toolbox section. If the [loglogloglog ...] configuration parameter is not present, the default log
state of the supporting CASE environment will be used.

• schema-type-or-set is a group of schema to work on; all the schemas of that type or set
will be transformed.

• global-transfo is the identifier of a global transformation as defined in Chapter 4. All
these identifiers are listed in Appendix C.

• scope is a schema analysis structural rule (see Chapter 3) that defines the scope of the
transformation. It is optional. If it is not present, the default scope is used, according to
the transformation. If it is present the rule will reduce the default scope.

For instance, the following global transformation will transform all the rel-types of schema
S into entity types:

glbtrsf glbtrsf glbtrsf glbtrsf "All rel-types into entity types" (S,RT_into_ETRT_into_ETRT_into_ETRT_into_ET)

while the following one will only transform non-binary rel-types into entity types:

glbtrsfglbtrsfglbtrsfglbtrsf(S,RT_into_ETRT_into_ETRT_into_ETRT_into_ET(ROLE_per_RTROLE_per_RTROLE_per_RTROLE_per_RT(3 N)))

iv. To use an external function

The external functions declared previously can be used the in following way:

externalexternalexternalexternal extern-function [[log [log [log [log log-level]]]]] ((((parameter,,,,parameter,,,,...))))

where:

• extern-function is the name of a Voyager 2 function that was previously declared.

• log-level is an optional configuration parameter which specifies how the actions per-
formed by the analyst should be performed. It can be one of the values defined in the
toolbox section. If the [loglogloglog ...] configuration parameter is not present, the default log
state of the supporting CASE environment will be used.

• parameter is an actual argument to pass to the function. It must match the upper decla-
ration. A parameter declared as integerintegerintegerinteger must receive an integer number. A parameter
declared as stringstringstringstring must receive a double-quoted string. A parameter declared as listlistlistlist can
receive any product type or product set; all the products of a product type will be passed
in a list to the function that can use or modify them; a product set will be passed itself
and the external function has to handle the set; and all the products of a product set pre-
fixed by the content:content:content:content: keyword will be passed like the products of a product type.
Finally, a parameter declared as typetypetypetype can receive any output or intern product type.
Products of these types will not be accessible inside the function, but the function will
be able to create new products of that type. To allow an external function to both use
the existing products of a given type P and create new products of the same type P, the
function has to be defined with two parameters, one being a list and the other being a
product type, and P has to be passed to both parameters.

The following example shows an external function use: products of type A can be updated

5.2. Language definition 91

by function F using other parameters.

externexternexternextern F “c:\library\lib.oxo”.f(listlistlistlist,stringstringstringstring,integerintegerintegerinteger)
...
processprocessprocessprocess P

...
updateupdateupdateupdate A
strategystrategystrategystrategy

...
externalexternalexternalexternal F (A,"string",10);
...

end-processend-processend-processend-process

v. To use a data extractor

The supporting CASE environment should be able to import data structures from a text
into a schema (For example, COBOL data division into a COBOL compliant schema).
The procedure that allows this extraction is the following:

extractextractextractextract extractor((((source-text,,,,destination-schema))))

where:

• extractor is the identifier of the data extractor to use. It depends on the supporting
CASE environment (DB-MAIN recognise SQL, COBOL, IDS_II and IMS).

• source-text is a text-type or a set that should only contain texts. All the texts of this type
or set will be analysed.

• destination-schema is a schema type. All schemas generated by the process will be of this
type.

Example:

extractextractextractextract COBOL(COBOL_FILE,COBOL_SCHEMA)

allows the CASE environment to extract COBOL data structures from COBOL source
files into COBOL compliant schemas.

vi. To use a generator

The supporting CASE environment should be able to generate database creation scripts
from schemas. The following process does the job:

generategenerategenerategenerate generator((((source-schema,,,,destination-text))))

where:

• generator is the identifier of the generator. It depends upon the supporting CASE envi-
ronment (DB-MAIN versions 3 and more recognise STD_SQL, VAX_SQL,
ACA_SQL, STD_SQL_CHK, VAX_SQL_CHK, ACA_SQL_CHK, COBOL, IDS).

• source-schema is a schema type or a set that should only contain schemas. All schemas of
this type or set will be used to generate the new text files.

• destination-text is a text type: the type of all the texts that will be generated.

Example:

generategenerategenerategenerate COBOL(COBOL_SCHEMA,COBOL_FILE)

allows the CASE environment to generate files containing COBOL data divisions from
COBOL-compliant schemas.

5.2. Language definition 92

i. Built-in procedures

The MDL language also contains a few built-in procedures that can be used in the same
ways as sub-processes. All these built-in functions are aimed at handling product sets.

Each built-in procedure will be applied to the following example. It shows two product
types and one product set: product type A has two instances (products a1 and a2), product
type B has one instance (product b1), and product set C contains the product b1.

Product t pes or sets Products

t pe A a1

t pe B a2

set C b1

i. To create a new product of a given type

When a process type has to produce an output product, it is sometimes necessary to build
it completely. The newnewnewnew keyword allows a process to generate a blank product, the name of
which will be asked to the analyst. This command needs one argument which is a product
type. The syntax of the command is the following:

new (new (new (new (product-type))))

where:

• product-type is the type of the new product to generate. At run-time, the product type
will have one more instance. If the product type is a schema type, the new instance will
be a blank schema; if the product type is a text type, the user will be prompted for the
name of an existing file, and the new instance will be a reference to that file.

In the example above, the command

newnewnewnew (A)

gives:

Product t pes or sets Products

t pe A a1

t pe B a2

set C a3

b1

ii. To import a schema from another project

When a schema already exists in another project, it is sometimes more interesting to
import it in the new project then to redraw it. Import can also be useful with big projects:
several analysts work on separate sub-projects, and, in a phase of importation and integra-
tion, all these sub-projects are assembled in a master one. This command needs one argu-
ment which is a product type. The syntax of the command is the following:

import (import (import (import (product-type))))

where:

• product-type is the type of the schema that will be imported. At run-time, the schema
type will have one more instance, which is the imported schema.

In the example of Figure 18, the command

importimportimportimport (A)

5.2. Language definition 93

gives:

Product t pes or sets Products

t pe A a1

t pe B a2

set C a3

b1

iii. To make a copy of a product

When a process type has to generate output products, it is sometimes possible to make a
copy of other products and to modify the copies. The copycopycopycopy procedure allows a process to
duplicate each product of a set and to cast it to the specified type. The new products have
the same name as the original ones, but they have a different version number which is
requested to the analyst. The syntax of the copycopycopycopy command is the following:

copycopycopycopy ((((source-product-type-or-set,,,,destination-product-type))))

where:

• source-product-type-or-set is the product set to copy.

• destination-product-type is the product type that will receive the copies.

Note that the source-product-type-or-set and the destination-product-type, if they are both
product types, must be of the same model, or the model of the source-product-type must be
a sub-model of the model of the destination-product-type.

If the source is a product type, all the products of that type will be copied. If the source is a
product set, all its products will be copied and the set will contain all the new products and
only them. If the source is a product set prefixed by “contentcontentcontentcontent::::”, all its products will be cop-
ied, but the set will not be modified, it will still contain the original products.

In the example above, the command

copycopycopycopy (A,B)

gives:

Product t pes or sets Products

t pe A a1

t pe B a2

set C a1’

a2’

b1

where a1 is identical to a1´ and a2 is identical to a2´.

iv. To define a product set as the result of a computation

A new set can be built on the basis of other sets or product types. For instance, standard set
operators (union, intersection, subtraction) can be used to combine sets. The syntax of the
definedefinedefinedefine command is the following:

definedefinedefinedefine ((((product-set,,,,set-expression))))

where:

• product-set is the new product set, result of the set-expression.

5.2. Language definition 94

• set-expression is one of those below. The first seven are deterministic, computer driven
and the two last are user driven. In these definitions, set is either a product type, a prod-
uct set or the result of another set expression.

− set, the set expression simply is a product set or a product type.

− unionunionunionunion ((((set-expr1,,,,set-expr2)))), the standard union operator (set1 ∪ set2) where set1 is
the result of set-expr1 and set2 is the result of set-expr2, two set expressions.

− interinterinterinter ((((set-expr1,,,,set-expr2)))), the standard intersection operator (set1 ∩ set2) where set1
is the result of set-expr1 and set2 is the result of set-expr2, two set expressions.

− minusminusminusminus ((((set-expr1,,,,set-expr2)))), the standard difference operator (set1 \ set2) where set1 is
the result of set-expr1 and set2 is the result of set-expr2, two set expressions.

− subsetsubsetsubsetsubset ((((set-expr,,,,rule)))) to extract a sub-set of products out of a product set (result of set
expression set-expr); the rule is a structural rule; the resulting subset is made up of all
the products of the set that satisfy the rule.

− originoriginoriginorigin ((((set-expr)))) defines a set of products made up of the origin of the products in
the result of set-expr. The origin of a product, according to the history, is the set of
products that were used to generated the given product.

− targettargettargettarget ((((set-expr)))) defines a set of products made up of the target of the products in the
result of set-expr. The target of a product, according to the history, is the set of the
products that are produced by using the given product.

− choose-onechoose-onechoose-onechoose-one ((((set-expr)))) asks the user to choose one product in the resulting set of set-
expr and defines a new set with it.

− choose-manychoose-manychoose-manychoose-many ((((set-expr)))) asks the user to choose one or many products in the resulting
set of set-expr and defines a new set with them.

− firstfirstfirstfirst ((((set-expr)))) defines a new set containing one product from set-expr. The product
that will be chosen is the first one in insertion order.

− lastlastlastlast ((((set-expr)))) defines a new set containing one product from set-expr. The product
that will be chosen is the last one in insertion order.

− remainingremainingremainingremaining ((((set-expr)))) defines a new set containing all elements from set-expr except
one. This one is the result of firstfirstfirstfirst(set-expr).

Hence, set-expr = unionunionunionunion(firstfirstfirstfirst(set-expr),remainingremainingremainingremaining(set-expr))
and interinterinterinter(firstfirstfirstfirst(set-expr),remainingremainingremainingremaining(set-expr)) is empty.

In the example above, the command

definedefinedefinedefine (C,unionunionunionunion(A,B))

gives:

Product t pes or sets Products

A a1

B a2

C b1

j. Expressions

Some control structures (ifififif...thenthenthenthen...elseelseelseelse, whilewhilewhilewhile, repeatrepeatrepeatrepeat...untiluntiluntiluntil) need an expression. This sec-
tion will examine every possible form of expression. They can be formal and strict, formal

5.2. Language definition 95

but not strict, or even not formal at all, making alternatives and loops to be standard, weak
or informal.

An expression is made of boolean functions which can be combined with standard boolean
operators (and, or, not). There are two kinds of functions: product evaluation functions
that concern the syntax or semantics of products and product set evaluation functions that
concern the content of a product set without looking at the products themselves.

i. The exists function

Does it exist some objects in the given schema for which the schema analysis constraints are
satisfied?

existsexistsexistsexists ((((schema-type-or-set,,,,schema-analysis-constraints))))

where:

• schema-type-or-set is the group of schemas to analyse. Every schema of this set or type is
analysed. The answer of the existexistexistexist function is yes if the result is yes for at least one
schema.

• schema-analysis-constraints is a list of comma-separated schema analysis constraints such
as presented in Chapter 3.

This is a strong condition which must be satisfied, except if the weakweakweakweak keyword is appended
in front of it:

weakweakweakweak existsexistsexistsexists ((((schema-type-or-set,,,,schema-analysis-assistant))))

This is a weak condition: it is better if it is satisfied, but it is not mandatory. At runtime,
the result of the evaluation will be presented to the user and he or she will be the one who
decides whether to keep the result (yes or no) or force the opposite.

ii. User oriented textual condition

A message in clear text can be printed on the screen for the user to take a decision:

ask "ask "ask "ask "string""""

This is always a weak condition, the user being the only actor who can take the decision.

iii. The model function

Are the products of the given set conform to the given model ?

modelmodelmodelmodel ((((product set,,,,product model))))

• product set is the set of products to analyse. Every product of this set is analysed. The
answer of the modelmodelmodelmodel function is yes if the result is yes for every product.

• product model is one of the product models defined in a schema-model or text-model sec-
tion of the method.

This is a strong condition. But, like for the existsexistsexistsexists function, the weakweakweakweak keyword can be
appended in front of it:

weak modelweak modelweak modelweak model ((((product set,,,,product model))))

iv. External Voyager 2 function

Schema analysis functions allow the user to specify formal expressions, but they are limited.
More complex functions can be written in the Voyager 2 language and used with the exterexterexterexter----
nalnalnalnal keyword:

5.2. Language definition 96

externalexternalexternalexternal function ((((parameter,parameter,...))))

where:

• function is the name of the Voyager 2 function declared previously.

• parameter is a parameter to be passed to the function. All the comments concerning the
parameters that were made above about external functions as primitive process types are
still valid.

This is a strong condition. But, like for the existsexistsexistsexists function, the weakweakweakweak keyword can be
appended in front of it:

weak external weak external weak external weak external function ((((parameter,parameter,...))))

v. Product set evaluation functions

Is the number of products in the given set greater, equal or less than the given number?

count-greatercount-greatercount-greatercount-greater ((((product-type-or-set,,,,nb))))

count-equalcount-equalcount-equalcount-equal ((((product-type-or-set,,,,nb))))

count-lesscount-lesscount-lesscount-less ((((product-type-or-set,,,,nb))))

count-greater-equalcount-greater-equalcount-greater-equalcount-greater-equal ((((product-type-or-set,,,,nb))))

count-less-equalcount-less-equalcount-less-equalcount-less-equal ((((product-type-or-set,,,,nb))))

count-differentcount-differentcount-differentcount-different ((((product-type-or-set,,,,nb))))

where:

• product-type-or-set is the group of products to be analysed.

• nb is the reference number, an integer value.

These are strong conditions. But, like for the existsexistsexistsexists function, the weakweakweakweak keyword can be
append in front of them:

vi. Operators

Complex conditions can be built by linking the simple expressions defined above by the
following operators:

• andandandand
This is the standard logical binary operator. Its result is yes when, and only when, both
its operands are yes.

• orororor
This is the standard logical binary operator. Its result is yes when, and only when, at
least one of its operands is yes.

• notnotnotnot
This is the standard logical unary operator. Its result is yes when its operand is no and no
when its operand is yes.

5.3. Language analysis
In order to be usable, the MDL language must satisfy a set of properties:

1. Its syntax must be unambiguous: each symbol must have its own function. If, in some
cases, the language permits some ambiguous situations, it must provide a means to
resolve the ambiguities.

5.3. Language analysis 97

2. It must be possible to write a program that reads and understands MDL methods, that
is to say a lexical analyser that is able to recognise each symbol of an MDL listing, that
can understand the precise function of each symbol, and that can translate a listing in a
format usable by a CASE environment.

3. Its semantic must be unambiguous.

4. It must be compliant with its requirements (Section 5.1).

The compiler principles presented in [AHO,89] will be used to verify these properties. So
the reader will refer to this book for a correct definition of the terms used in this section.

5.3.1. The syntax is unambiguous

In this chapter the syntax of the MDL language is described in a more or less formal way,
with a good description of the syntax and a rather good explanation of the semantics in
natural language. A full, formal description of the syntax of a language can be done with a
context-free grammar such as BNF. The full BNF description of the MDL language is
listed in Appendix D. The BNF language used there is rather rich and allows us to write
the full grammar rather shortly.

Using various techniques (BNF grammar transformation, BNF grammar analysis) pre-
sented in [AHO,89] only one ambiguity appears in this language. Let us examine the fol-
lowing strategy:

one
do P1(S);
do P2(S);
do P3(S)

end-one

According to the syntax, it could be interpreted either as in Figure 5.1 (interpretation Pa:
the three sub-processes play the same role), as in Figure 5.2 (interpretation Pb: the one
structure has only two components, the second one being a sequence) or as in Figure 5.3
(interpretation Pc: the one structure has two components, the first one being a sequence).

It was decided to solve the ambiguity in the most intuitive way: Pa ; all the components of
the oneoneoneone structure play the same role. To allow a method engineer to write strategy chunks
such as in Pb or in Pc, the keywords sequencesequencesequencesequence and end-sequenceend-sequenceend-sequenceend-sequence were added to the lan-
guage in order to encompass a sequence when needed. So, strategy chunks that express the
situations Pb and Pc can be written, respectively:

one
do P1(S);
sequence

do P2(S);
do P3(S)

end-sequence
end-one

and

one
sequence

do P1(S);
do P2(S)

end-sequence;
do P3(S)

end-one

5.3. Language analysis 98

Obviously, the same ambiguous situation exists with the somesomesomesome and eacheacheacheach control structures.

Figure 5.1 A one
structure with three

components

Figure 5.2 A one
structure with two

components

Figure 5.3 Another
one structure with
two components

5.3.2. Syntactical analysis

According to [AHO,89], the MDL language is both an LL(1) and an LR(1) language:

• It is an LL(1) language because it can be parsed and syntactically analysed in a top-down
fashion with at most one symbol (a word, a number, a string, a special character,...) read
in advance. In other words, at every moment, knowing what has already been read and
analysed, it is always possible to predict what symbol can come next. If several possibili-
ties exist, reading only one symbol will determine what possibility is the right one. If a
non-predicted symbol is read, then an error is detected. For instance, when the analysis
begins or when the analysis of a paragraph ends, what will be read next is known: if the
end of the listing is not reached, it is either a new paragraph beginning by “schema-
model”, “text-model”, “product”, “extern”, “process”, “method”. The simple fact of
reading this single symbol completely determines the type of the paragraph being read
and the symbol that must come afterward.

• It is an LR(1) language because it can be parsed and syntactically analysed in a bottom-
up fashion by reading at most one symbol in advance. That is to say that, knowing what
has been read and analysed, one or several rules of the grammar can be matched. When
the analysis has to cope with several possibilities, the only symbol read in advance suf-
fices to determine the right possibility. For example, the MDL grammar (in Appendix
D) contains the following rules:

<action-list> ::= <action>{;<action>}
which can be rewritten without repetitive part as two separate rules:

<action-list> ::= <action>
<action-list> ::= <action> ; <action-list>

Let us suppose the following characters have been read in an MDL source file:
... do conceptual_analysis ; do logical_design ; do physical_design

The analysis made “do conceptual_analysis”, “do logical_design” and “do

Pa S

1

S

P1

S

P2

S

P3

Pb S

1

S

P1

S

P2

S

P3

Pc S

1

S

P1

S

P2

S

P3

5.3. Language analysis 99

pysical_design” match with “<action>” through other rules. Should the <action> “do
physical_design>” be matched with the right member of the first rule or with the left
part of the right member of the second rule? Looking at the next symbol to be analysed
in the input source file will allow us to push the analysis forward. If it is not a semi-
colon, the analysed text cannot match with the right member of the second rule. So it
must match with the first rule. Hence, “do physical_design”, which is an <action>, is
also an <action-list> (left member of the first rule). Then, since “do logical_design” is an
action, since “;” matches with “;” and since “do physical_design” is an <action-list>, “do
logical_design ; do physical design” matches with the right member of the second rule.
It is an <action-list> too, and, in the same way, “do conceptual_analysis ; do
logical_design ; do physical_design” is also an <action-list>. If, at the contrary, the next
symbol is a semi-colon, then the reading of the source file has to be continued so that,
later, maybe, an <action-list> will be found and the right member of the second rule will
be matched. If this never happens, an error will be detected.

Hence it is possible to write a program that analyses an MDL source. A simple way to ana-
lyse an LR(1) language is to use the Lex and Yacc pair of tools. Within the scope of this
thesis another technique has been used in order to avoid licensing problems: a new LL(1)
analyser was designed from scratch. It reads an MDL source file and produces a syntactic
tree of the analysed method which is stored in the repository presented in Chapter 10.

5.3.3. The semantics is unambiguous

A formal analysis of the semantics of a language is much more complex than its syntactical
analysis. Several techniques exist, such as the operational and denotational semantics. Since
programming languages exist, are designed and implemented, very few of them have been
semantically analysed with such formal techniques. And most of the analysis performed are
done with languages existing for a long time. In fact, it is the use of the language and prag-
matic observations that let people think that a language is semantically unambiguous.

In the MDL language, each keyword, each construct has only one meaning which is not
context dependent. During the design of various methods, either debugging tests, exam-
ples, cases studies or real methods, no ambiguity ever appeared. So we believe, without for-
mal proof, that the semantic of the language is indeed exempt of ambiguity.

Nevertheless, the MDL language is not exempt of redundant constructs, that is to say dif-
ferent constructs which have the same meaning. They will be studied in Chapter 8.

5.3.4. Compliance with the requirements

In the beginning of this chapter, a few requirements that the MDL language should fulfil
were stated. Their fulfilment can be checked.

• The language has to be procedural.

It was conceived that way. It definitely is.

• Methods designed with the MDL language have to be easily readable and understand-
able, they have to use natural language to communicate with the database engineers.

An MDL listing, like a Pascal listing or a C listing is only readable by specialists. But, once
read by the syntactical analyser and stored in the repository (see Chapter 10), the method
can be shown graphically, in an algorithmic way, as presented in Chapter 4. The reading of
these algorithms still requires some learning, but this typically requires a few minutes (prag-
matically observed).

The use of natural language to communicate with the database engineer is omnipresent:

− a readable title is attached to each component (product model, product type, process

5.3. Language analysis 100

type or toolbox) of the method in addition to the identifying name for the readability

− diagnosis messages, in the product model description, allow the method engine to show
clear messages to the database engineers instead of complex schema analysis formulas

− a description in natural language can be (and should be) added to each component that
can be shown to a database engineer upon request, that should give a few explanations
about the component (for example, preconditions, postconditions and goals of a process
type in free language, a brief translation of the algorithm in free text, a brief description
of the constraints of a product model in free text,...)

− a help file with a more global description of the whole method, possibly a tutorial, can
also be added to the method

− the only exceptions are the glbtrsfglbtrsfglbtrsfglbtrsf command and the existsexistsexistsexists function which use some
structural rules as parameters; but they are automatically evaluated by the methodologi-
cal engine, and an explanation can be included in the description of the engineering
process type whose strategy encompass the glbtrsfglbtrsfglbtrsfglbtrsf command or existexistexistexist function.

In other words, with a correctly documented method (all the necessary tools are provided
for it), a database engineer should not face an unreadable acronym or complex formula
without explanation in natural language.

• Since a method written with the MDL language is to be followed by human beings, it is
to be clear, ambiguities should be avoided, even if they could easily be resolved with
some priority rules; analysts should not have to learn such rules.

The only place in the language where priority rules could not be avoided is in the writing
of schema analysis expressions (used in product model descriptions, in conditions for some
control structures in strategies, or in glbtrsfglbtrsfglbtrsfglbtrsf parameters). Indeed, these expressions use the
traditional boolean operators andandandand, orororor, notnotnotnot which already have a well-known semantic
which must obviously be kept. The method engineer has to master these operators. When
such expressions are presented to the database engineers, the methodological engine will
format them with indentations which make the priorities appear. For instance, in the fol-
lowing expression, the indentation shows that the correct reading is (P1 or(P2 and P3)):

P1
orororor P2

andandandand P3

• The MDL language has to handle all the concepts defined in Chapters 2, 3 and 4: prod-
uct models, product types, and process types.

Definitely.

Part 2Part 2Part 2Part 2

HistoriesHistoriesHistoriesHistories

Chapter 6

Histories

The history of a database engineering process contains the trace of all the
activities that were performed, all the products involved, all the
hypotheses that were made, all the versions of the products resulting of
these hypotheses as well as all the decisions taken. Naturally, the result is a
complex graph. This chapter examines more precisely what is in this
graph, how it can be displayed and how it can be constructed. But first of
all, the usefulness of the histories is presented through a few scenarios of
use.

Chapter 6 Histories 104

The goal of this chapter is to define precisely histories. They can be obtained by following a
method defined in the MDL language, but they can also be the result of a well-organised
methodology-free work. So this chapter will not refer to methodologies.

6.1. Usefulness of histories
A history can be reused in a great variety of ways, for different purposes. The main applica-
tions that can be performed on their basis will now be examined.

6.1.1. Documentation

The simplest use of a history surely is for documentation. It is always interesting to be able
to remember what was done during the conception of a project. A history allows a database
engineer to answer such questions as:

• What is the meaning of the PVBFR column?

• Why are there two tables, product1 and product2?

• Why did we choose to use two fields to store telephone numbers, the prefix and the
number fields, rather than a single field?

• Why does the account table include a phone field ?

Basically, the documentation will be processed in two ways:

• An analyst can simply look at it, statically.

• It can be replayed, like a movie, so that the analyst can see what happened in a more
dynamic way.

In order to improve the usefulness of the history as a documentation, it can be cleaned.
Cleaning a history means that all actions that do not participate directly in the develop-
ment of the project are removed. This comprises processes performed according to some
hypotheses that were rejected in later decisions, some simple tests (just to see what it would
give), some actions followed by their inverse due to backtracking,... This cleaning can be
useful in order to generate examples or tutorials to teach new analysts how to proceed.

Documentation is the most common use of histories in most projects [POTTS,88],
[ZAMFIROIU,98], and most of the projects presented in Chapter 1.

6.1.2. Undo

A lot of computer applications possess an undo function. One way to implement it is to
store the state of the product before each operation. This technique, due to the large mem-
ory consumption it requires, often limits the undo function to one or a few steps. Another
way to implement it is to use a history of the performed actions. To undo the last opera-
tion, it suffices to perform one or several operations that do the reverse of the last operation
in the history.

6.1.3. Database design recovery

The history of a reverse engineering job can be inverted in order to generate a possible for-
ward engineering process that could have been followed at design time. Inverting a history
means replacing each transformation with its reverse, that is one or several transformations
that undo the original one, and to store these transformations in the new history in the
opposite order. The new history can be reused for reengineering [HAINAUT 96b].

6.1. Usefulness of histories 105

6.1.4. Database evolution

The history can be used to make the database project evolve. Traditionally, a database
design is made up of three main phases: the conceptual analysis yields to a conceptual
schema showing an abstract representation of the real world, the logical design transforms
the conceptual schema into a semantically equivalent logical schema showing an imple-
mentation-suitable interpretation of the problem, and the physical design transforms the
logical schema into a physical schema that is specifically oriented toward a given DBMS.
Recording the history of the design insures the traceability of the constructs from the begin
to the end of the design. Later on, when modifications are needed, the database engineer
could be tempted, when dealing with small alterations, to work directly on the logical or
even the physical level and going down. This results in breaking the traceability: the
semantic equivalence between the physical and the conceptual schemas is lost, hence, the
correctness of the conceptual schema as an interpretation of the database in the real world
is lost too.

Using the history, the CASE environment can automatically (at least in a great part) update
each schema when one of them is modified, as shown in [HAINAUT,94]. For instance, if
the database engineer updates the logical schema, the CASE tool can replay the stored his-
tory on the new schema in order to propagate the modification to the physical schema. It
can also propagate the modification backward to the conceptual schema by inverting the
history.

6.1.5. History analysis

A history can be analysed in order to evaluate the underlying method and to improve it.
Indeed, by analysing the history, for instance by finding places where the analyst had to
make hypotheses, or places where the analyst had too much freedom and did things that
should not have been done, or even places where the analyst was too much constrained and
could not perform a task that should have been done, the method engineer can make the
method evolve for a future project. By analysing histories coming from several analysts, it is
also possible to understand how the method is interpreted by each one and to see where it
could be refined in order to obtain a more uniform interpretation.

The history can also be analysed in order to evaluate the quality of the work. This can be
useful to the project manager in order to distribute the work among the analysts according
to their skills.

[ZAMIFIROIU,98] also supports this history analysis need by providing a history querying
tools.

6.1.6. Method induction

A particular analysis of the history of a method-free project is the induction of an underly-
ing method. Indeed, even if there was no explicit method to configure the CASE environ-
ment when a project was conducted, the engineer followed an implicit strategy. With an
in-depth analysis of the history, it is possible to find some transformation patterns that give
tips about the behaviour of the engineer. By assembling all the patterns we hope to discover
the strategy implicitly followed by the engineer. This technique can be used as a method
design technique, either on a learn-by-example basis, or as a way to conserve the traditional
way of working while adopting new technology (it is better to adapt technology to human
beings rather then human beings to technology).

[VANDERAALST,02] studies workflow mining, also a method induction by analyses of
the workflow during software engineering projects.

6.2. Expectations for histories 106

6.2. Expectations for histories
Since histories are aimed at being reused, both by analysts and by the CASE environment
itself, each history has to be:

• ReadableReadableReadableReadable: a human being should be able to read and understand it easily, even if he or
she needs some training. This precludes binary coding, but textual keyword based cod-
ing or graphical coding is acceptable.

• FormalFormalFormalFormal: every entry of the history must have a unique unambiguous interpretation.

• CorrectCorrectCorrectCorrect: each entry of the history must represent a valid action in its context; the conconconcon----
texttexttexttext of an action is the state of the product obtained by applying all the preceding
actions in the history to the product in the state it was when the recording of the history
began. For instance, an entry cannot show an action on an object that does not exist;
the object had to exist in the original state of the product, or it had to be created by a
previous entry of the history.

• CompleteCompleteCompleteComplete: All information that can be useful for reuse have to be stored. This defini-
tion is context-dependent because it depends on the intended reuse of the history as it
will be shown later.

Such criteria as Readability, correctness and completeness, are widely recognised for a long
time [POTTS,88],[LACAZE,02]. [ZAMFIROIU,98] goes further in the study by detect-
ing breaks in the continuity.

6.3. Structure of histories
Histories are aimed at containing any kind of information used and produced during a
project. So it is necessary to define a data structure that is able to keep all that information.
This structure will now be defined, and every component of the history, namely products,
primitive and engineering processes, hypotheses and decisions, will be examined.

6.3.1. Products

The first basic elements of a history are the products. At this level all kinds of products will
be treated in the same way. For instance, schemas will not be distinguished from texts.

A product is identified by its name and its version ID. Since an analyst can generate differ-
ent versions of a product when trying different hypotheses, the version ID has to be part of
the product identifier. It must be noted that a product name has to be unique throughout
the project, and not only in the scope of the current engineering process. Indeed:

• Histories can be handled and shown in different views, as presented in section 6.4,
among which some global views show the flattened project structure.

• As it will be seen in section 6.3.6, the same product can be passed from process to proc-
ess and so appears several times in a history; therefore it needs to be identifiable in any
context without being renamed.

In order to document the work, an analyst will always have the possibility to add some
descriptions or comments to products.

A product will evolve along its lifetime. It is generated by a process. Then it can be updated
by several other processes. At some definite time, the product is finished. It has to be
declared as such. From that moment, the product is locked. It cannot be modified any-
more. Hence, each product must have a locked-unlocked state. Each product is created in
the unlocked state, and it has to be put in the locked state manually by the analyst or auto-
matically by a process (some automatic primitive processes) when its processing is finished.

6.3. Structure of histories 107

From that moment, it cannot be set back in the unlocked state anymore (except to undo
the locking while no other action is performed).

The symbol P will denote the set of all possible products.

6.3.2. Processes

A history should contain all the processes that are performed during an engineering activ-
ity. The method being specified in a semi-procedural language, the resulting history is a
tree of process calls. The root of the tree is the project which is performed by executing
processes, each process performance being described by a branch. Each process is made up
of sub-processes and so on. It is useful to know in what order the sub-processes have been
performed, e.g., serially or in parallel, so each process will be stamped by its beginning date
and time (mandatory) and end date and time (available only when the process ends). They
will be identified by a name and the begin time stamp. In order to document his or her
work, the analyst can add a description (some free text) to each process. This description
can be used, among others, to store the hypotheses that have been stated to begin the proc-
ess. In Chapter 2, two kinds of processes were defined: primitive processes at the opera-
tional level (these processes can be performed in a mechanical way, just by following a pre-
cise way-of-working) and engineering processes at the decisional level (some knowledge
and decision taking are required in order to perform sub-processes). History structures for
storing these processes will be defined in the two following sections.

6.3.3. Primitive processes

A primitive process is performed using only primitives, that is built-in functions of the
CASE environment or external functions written in the built-in language of the CASE
environment. During a method-driven project, a primitive process can be performed by an
analyst when the method allows him or her to use a toolbox or by the CASE environment
itself when the method uses built-in or external functions directly. During a method-free
project, the analyst can use any tool of the CASE environment at any moment. The execu-
tion of primitives can be recorded in a primitiveprimitiveprimitiveprimitive processprocessprocessprocess historyhistoryhistoryhistory. The built-in functions of
the CASE environment, which are product transformations, will be examined. Secondly, a
way to formally represent their signature will be defined. In a third time external functions
will be studied in the same way. Finally, log files will be used to record primitive process
histories.

A. Transformations

In order to be able to keep a good trace of the built-in functions of the CASE environ-
ment, it is necessary to understand them. This section is dedicated to their formal analysis.

All the built-in functions of a CASE environment, which are basic product transforma-
tions, can be defined9 formally, with their signature, their preconditions, and their post-
conditions.

A transformationtransformationtransformationtransformation Σ consists of two mappings T and t:

• T is the structural mapping that applies source construct C in product S (construct C in
S is a collection of components of S) to construct C’. C’ is the target of C through T,
and is noted C’ = T(C). In fact, C and C’ are classes of constructs that can be defined by
structural predicates. T is therefore defined by a minimal precondition Pre that any con-
struct C must satisfy in order to be transformed by T, and a maximal postcondition Post
that T(C) satisfies. T specifies the syntax of the transformation.

9 In [HAINAUT,96c], one can find more about database schema transformations, about their formal defi-
nition and their reversibility.

6.3. Structure of histories 108

• t is the instance mapping that states how to produce the T(C) instance that corresponds
to any instance of C. If c is an instance of C, then c’ = t(c) is the corresponding instance
of T(C). t specifies the semantics of the transformation. Its expression is through any
algebraic, logic or procedural language.

According to the context, Σ can be noted either <T,t> or <Pre,Post,t>. In the following, Σ
and T will be mixed up, and T will generally be used instead of Σ.

The construct C is part of product S in its initial state. The transformation replaces the
construct C with construct C’, to yield a new state of the product: S’. The effect of trans-
formation can be clarified as follows. Let us consider the structural functions ∆-, ∆+ and ∆0:

∆-(T) = S – S’ returns the set of components of S that have disappeared.

∆+(T) = S’ – S returns the set of new components that appear in state S’.

∆0(T) returns the set of components of S that are concerned by T,
but that are preserved from S to S’.

We also have:

C = ∆0(T) ∪ ∆-(T)

C’ = ∆0(T) ∪ ∆+(T)

S’ = (S – ∆-(T)) ∪ ∆+(T)

These concepts are illustrated in the scenario of Figure 6.1: the product S is a database
schema in which an instance of the rel-type into entity type transformation is applied on rel-
type R, and in which every object has been given a denotation.

The structural functions evaluate as follows:

S = {A,B,A1,B1,Q,qA,qB,R,rA,rB}

S’ = {A,B,A1,B1,Q,qA,qB,R’,RA,RB,rRA,rAR,rRB,rBR,id(R’)}

C = {A,B,R,rA,rB}

C’ = {A,B,R’,RA,RB,rRA,rAR,rRB,rBR,id(R’)}

∆-(T) = {R,rA,rB}

∆+(T) = {R’,RA,RB,rRA,rAR,rRB,rBR,id(R’)}

∆0(T) = {A,B}

T

→

Figure 6.1 A basic transformation example

B. Transformation signature

In a primitive process history, a transformation will be specified through its signaturesignaturesignaturesignature, that
states the name of the transformation, the name of the source product, the names of the
concerned objects in the source product, the name of the target product (generally the

0-N
qA

1-1
qBQ

1-1
qB

0-N
qA Q

0-N
rB

0-N
rA R

1-1
rBR

0-N
rRB

RB1-1
rAR

0-N
rRA

RA
R'

id: RA.rRA
RB.rRB

B

B

A

A

6.3. Structure of histories 109

same as the source product) and the names of the new objects in the target product. For
example, the following is the signature10 of the schema transformation in Figure 6.1:

T : (S’,R’,{(A,RA),(B,RB)}) ← RT-to-ET(S,R)

It is interpreted as “when applying RT-to-ET to rel-type R in schema S, the new entity type is
called R’ in the resulting schema state S’, the rel-type involving A is called RA and the one
involving B is called RB”.

A signature alone does not hold the ∆-, ∆+ and ∆0 structural components, but it brings suf-
ficient information to identify them in the source and target schemas. In addition, the for-
mat of a signature is not unique, it depends, among others, on the default naming conven-
tions. For instance, the roles are given default names in transformation T described above.

In a CASE environment, every built-in transformation has such a signature. When it is
used, it is instantiated. For example, transformation T above could be instantiated, in the
actual schema shown in Figure 6.2, into

T:(S’,WRITING,{(BOOK,written_by),(AUTHOR,writes)}) ← RT-to-ET(S,written)

1-N0-N written AUTHORBOOK

T ↓

1-10-N written_by 1-1 1-Nwrites
WRITING

id: writes.AUTHOR
written_by.BOOK

AUTHORBOOK

Figure 6.2 An instanciated transformation

An essential property of some signatures is their reversibility. Being provided with the right-
side schema and the signature of T, the signature of a transformation T’ which is the
reverse of T, i.e. T’(T(C)) = C, can be defined:

T’: (S’,order) ← ET-to-RT(S,ORDER)

In other words, the signature provides enough information, not only for redoing the opera-
tion, but also to undo it. This property is less obvious for some non-reversible-transforma-
tions. Let us consider the example of the del-ET operator, which removes an entity type
from a schema. It can be illustrated as shown in Figure 6.3.

 del-ET

 →

Figure 6.3The del-ET transformation

At first glance, it seems that the following signature could be quite right:

(S’) ← del-ET(S,B)

Unfortunately, though the transformation can be performed again, it cannot be undone.
The fact that entity type B was removed is kept, but information about its structure has
been lost: what were its attributes, its roles, its constraints, etc ?

In this case, the signature must be augmented with those of the derived operations. In fact,

10 Fixed-length lists are enclosed into parentheses, while variable-length lists are enclosed into curly brackets.

1-10-N R A

B
B1
B2
id: B1

A

6.3. Structure of histories 110

removing B consists in removing its constraints (e.g. identifiers), then its attributes and its
roles, then the inconsistent relationship types, and finally B itself. So the above signature
has to be replaced by the following one:

(S1) ← del-ID(S,B,{B1},δ)
(S2) ← del-Att(S1,B,B1,δ)
(S3) ← del-Att(S2,B,B2,δ)
(S4) ← del-Role(S3,R,B,δ)
(S5) ← del-Role(S4,R,A,δ)
(S6) ← del-RT(S5,R,δ)
(S’) ← del-ET(S6,B,δ)

In these signatures, the symbol δ stands for any kind of additional information needed to
create the object (value type and length, cardinality constraint, narrative description, etc).

Now, the complete signature of del-ET is reversible, though the operation itself is not.

C. External functions

External functions written in the built-in language of the CASE environment are simply
complex functions that use the built-in functions described in the previous section. So the
signature of such an external function is the concatenation of the signatures of the per-
formed built-in functions.

D. Primitive process histories and log files

A primitive process history L is a list of instances of transformation signatures:

L = (P,{S1,...,Sm),(T1,T2,...,Tn))

where P is the performed primitive process, S1,...,Sm are the used and modified products,
and each T1,...,Tn are the signatures of the transformations performed in P.

The symbol L will denote the set of all possible primitive process histories (L ∈ L).

In practice, a log file, that is a text file listing sequentially the signatures of all the transfor-
mations performed, with a well defined syntax and the possibility to add comments and
bookmarks, seems to be a good implementation. Indeed, the expectations for histories
stated in section 6.2 are satisfied:

• The choice of the syntax (keywords, traditional notation conventions, structure, inden-
tation,...) makes the history readable; the adjunction of comments can also improve this
readability; the adjunction of bookmarks can help to mark some turning points or
important steps.

• Since the history is made up of the formal signatures of the performed transformations
stored sequentially in the exact order of performance, the history is formal.

• The fact that the history stores only the signatures of transformations that are actually
performed correctly suffices for the history to be correct.

• The fact that Pre is minimum and that Post is maximum for each transformation, the
fact that all transformation instances are stored, and the fact that they are ordered the
same way they were performed make the history complete for replay.

A complete log syntax has been developed in the DB-MAIN CASE environment. Note
that this syntax is not of mathematical nature as above; rather, it uses text based keywords.
A DB-MAIN log file can be generated in either of two detail levels, concise or extended,
according to the user needs:

6.3. Structure of histories 111

*TRF rt_to_et Rel-type into entity type transformation
%BEG Beginning of the transformation signature

%NAM "written" The rel-type to transform is “written” from schema “LIBRARY/Conceptual”
%OWN "LIBRARY"/"Conceptual"
*CRE ENT Firstly, a new entity type, named “WRITING” is created
%BEG

%NAM "WRITING"
%OWN "LIBRARY"/"Conceptual"

%END
*CRE REL Secondly, two new rel-types are created: “written by”...
%BEG

%NAM "written_by"
%OWN "LIBRARY"/"Conceptual"

%END
*CRE REL ... and “writes”
%BEG

%NAM "writes"
%OWN "LIBRARY"/"Conceptual"

%END
&CRE ROL A new role is created to link the new entity type with the first new rel-type
%BEG

%OWN "LIBRARY"/"Conceptual"."written_by"
%ETR "LIBRARY"/"Conceptual"."WRITING"
%CAR 1-1

%END
&MOD ROL The old role linking “BOOK” to “written” is moved to link
%BEG “BOOK” to “written_by”

*OLD ROL
%BEG

%OWN "LIBRARY"/"Conceptual"."written"
%ETR "LIBRARY"/"Conceptual"."BOOK"

%END
%OWN "LIBRARY"/"Conceptual"."written_by"
%ETR "LIBRARY"/"Conceptual"."BOOK"

%END
&CRE ROL A new role is created to link the new entity type with the second new rel-type
%BEG

%OWN "LIBRARY"/"Conceptual"."writes"
%ETR "LIBRARY"/"Conceptual"."WRITING"
%CAR 1-1

%END
&MOD ROL The old role linking “AUTHOR” to “written” is moved to link
%BEG “AUTHOR” to “writes”

*OLD ROL
%BEG

%OWN "LIBRARY"/"Conceptual"."written"
%ETR "LIBRARY"/"Conceptual"."AUTHOR"

%END
%OWN "LIBRARY"/"Conceptual"."writes"
%ETR "LIBRARY"/"Conceptual"."AUTHOR"

%END
&CRE GRP A new group is added to the new entity type to define its primary
%BEG identifier, made of roles “writes.AUTHOR” and “written_by.BOOK”.

%NAM "IDWRITING"
%OWN "LIBRARY"/"Conceptual"."WRITING"
%COM "LIBRARY"/"Conceptual"."writes"."AUTHOR"
%COM "LIBRARY"/"Conceptual"."written_by"."BOOK"
%FLA "P"

%END
&DEL REL Finally, the old rel-type is deleted
%BEG

%NAM "written"
%OWN "LIBRARY"/"Conceptual"

%END
%END End of the transformation signature

Figure 6.4 A log fragment of a primitive process: transformation of the written rel-type into an entity type.

Text in italics are added comments which are not part of the log file.

6.3. Structure of histories 112

• the conciseconciseconciseconcise loglogloglog filefilefilefile is the strictly minimum log file which contains the minimum signa-
ture instances as defined above;

• the extendedextendedextendedextended loglogloglog filefilefilefile is the concise one completed with all the information that can be
needed for all the purposes of the CASE environment.

The complete syntax depends on the needs of the supporting CASE environment, so it will
not be detailed precisely here. A short example of log file produced in the DB-MAIN
CASE environment is presented in Figure 6.4. It shows how the rel-type written in schema
LIBRARY/Conceptual is transformed into an entity type as shown graphically in Figure 6.2.

6.3.4. Engineering processes

An engineering process follows a strategy, either given by the current method or in the ana-
lyst’s mind. As the analyst can make hypotheses, try various solutions and decide to aban-
don some of them, it is no longer possible to record actions in a linear way like in the
primitive process history. The history of an engineering process has to be a graph G=(P,V,
E) where P is the engineering process, V is a set of nodes, and E a set of edges. The symbol
G will denote the set of all engineering process graphs (G ∈ G). The nodes of the graph G
are products, primitive process histories, engineering sub-process graphs and decisions: V ⊆
P ∪ L ∪ G ∪ D (D will be defined later as a set of decisions). The edges, possibly ori-
ented, show the use of products in processes:

• an edge directed from a product to a process history shows that the product is used by
the process as an input

• an edge directed from a process history to a product shows that the process generates the
product and returns it in output

• a non-oriented edge between a process history and a product shows that the process
modifies the product.

A node will be represented by the name of the process or the product it concerns. An edge
will be represented by a pair of nodes (i,j) where i is the origin of the edge, and j is the tar-
get. In a non-oriented edge, the order of the elements does not matter (i,j) = (j,i). To dis-
tinguish non-oriented edges, they will be underlined: (i,j) is oriented, (i,j) is non-oriented,
(i,j)=(j,i).

For example, Figure 6.5 shows a graph in which a process (A) generates two products (R,
S), each of them being used by another process (B,C) that generates a new product (B gen-
erates T, C generates U), and these latter products being used by a fourth process (D) that
generates a last product (V). So,

V = {A,B,C,D,R,S,T,U,V}
E = {(A,R),(R,B),(B,T),(T,D),(A,S),(S,C),(C,U),(U,D),(D,V)}

Figure 6.5 An example of engineering process graph

An engineering process graph is submitted to a few restrictions:

• It is finite because it includes a finite number of products and performs a finite number
of transformations on them.

D

C

B

A V

U

TR

S

6.3. Structure of histories 113

• There will never be parallel edges, i.e. two edges between the two same nodes.

• There will never be any self-loops since edges only go from product nodes to process
nodes and from process nodes to product nodes.

• Since a product cannot be generated after being used, cycles cannot arise without non-
oriented edges.

The engineering process histories satisfy the expectations stated in section 6.2:

• Graphs are readable; the adjunction of comments can also improve this readability.

• Graphs are formal.

• Graph theory is proved to be correct.

• Since every possible component of a history (products, primitive processes, engineering
processes, decisions) appears in a graph and since all their possible links are represented
by edges, the graphs are complete, and the engineering process histories too.

6.3.5. Decisions

The third basic elements of a history are the decisions. A decision is a special kind of proc-
ess that does not alter nor generate products. It only adds a node to the graph and edges
directed from the products in the scope of the decision to the decision itself, and edges
directed from the decision to selected products, if any. There are two kinds of decisions:

• Decisions that must be taken according to the method followed. For instance, when the
condition of an if or a while statement needs a response from the analyst. For instance:

if ask("Do you want to optimise the relational schema ?")...)

These decisions need a yes/no answer. They are only the target of oriented edges, no edge
is directed from them to selected products. These edges show which products were con-
sulted to take the decision. The description of the decision will contain the choice and a
possible added comment. Figure 6.6 shows a simple graph with a decision.

Figure 6.6 A yes/no decision

• Decisions that follow hypotheses, reflecting the choice of one or several product versions
among all those obtained by performing the same process several times with different
hypotheses in mind. The description of a decision process contains the rationales that
lead to the analyst’s choice. This second kind of decision is not linked to the method
followed, and it can be made at any moment. Figure 6.7 shows such a decision.

Figure 6.7 A best product version decision

The symbol D will denote the set of all possible decisions. A decision D ∈ D is either:

• a pair (S,b) where S is the set of products consulted for taking the decision and b is the
boolean result

Decision: Optimize ? Yes.LIBRARY/Relational

Decision

LIBRARY/Rel - version 2

LIBRARY/Rel - version 1

6.3. Structure of histories 114

• a pair (S,C) where S is the scope of the decision and C is the set of selected products,
C ⊆ S.

The expectations from section 6.2 are fulfilled with respect to decisions:

• A decision is readable because it is part of a readable graph and its description is readable
free text.

• Since a decision of the first kind has a boolean answer, and since decisions of the two
kinds are included in a graph with meaningful oriented edges, a decision is formal.

• While edges are correctly oriented and while its description correctly stores the yes/no
choices, a decision is correct.

• Since the semantics of a decision is in its edges and yes/no choice, a decision is complete.

6.3.6. The history of a project

A project is an engineering process. It is generally decomposed into several phases which
are themselves engineering processes. Each phase is, at its turn, decomposed into several
steps, which are engineering processes too or simply primitive processes. The engineering
processes can be further decomposed... It appears that the process histories can be organised
in a tree structure: non-leaf nodes are engineering processes histories, and leaf nodes are
either primitive process histories or unfinished engineering process histories; oriented edges
show that the target node is used by the origin node.

Since a history tree (H) is a special kind of graph, it can be represented by H=(V,E) where
V is a set of nodes and E is a set of edges between nodes of V. The symbol H will denote
the set of all possible histories.

A history tree can be generated from the process histories. In a given database engineering
project, let Li ∈ L , 1≤i≤nL, be the primitive process histories of a project, and Gi ∈ G ,
1≤i≤nG, the engineering process histories of the same project. The tree of the history of the
project can be defined by defining V and E as:

VL = {Li|1≤i≤nL} ⊆ L
VG = {Gi|1≤i≤nG} ⊆ G
V = VL ∪ VG

E = {(vi,vj)| vi=(Pi,Vi,Ei) ∈ VG ∧ vj ∈ V ∧ vj ∈ Vi}

The fact that a tree has no cycle (even if the orientation of the edges is removed), the fact
that every node of a tree is connected to all others by a path, and the fact that our graphs
are finite allow us to use a more appropriate notation. Let us classify all the nodes in levels:

• The root node, origin of one or several edges and target of none, is at level 1.

• All the nodes that are target of edges originating from level n (n≥1) are at level n+1.

A tree H=(V,E) can now be represented as a n-uple of couples made up of the nodes of V
and their level:

H = ((vi1,li1),(vi2,li2),...,(vin,lin))

where (i1,i2,...,in) is a permutation of (1,2,...,n) and lij is the level of node vij, 1≤j≤n.

The pairs of the n-uple H are ordered in a depth-first way on their node: the node of the
first pair is the root of the tree, and each pair is immediately followed by the pairs the
nodes of which are all the descendants of its node, then by the pairs the nodes of which are
its brothers with their descendants. All the son nodes of a same father appear in the
chronological order of their creation time.

6.3. Structure of histories 115

Since the project history, like an engineering process history, is a graph, the verification
that a project history satisfies the expectations stated in section 6.2 is straightforward.

Figure 6.8 shows the history of a library database design project. The main phase is the root
of the tree. That graph shows that the project was conducted as a sequence of processes:
conceptual analysis, logical design, physical design and coding. These are four engineering pro-
cesses the graphs of which are the nodes of the second level of the tree. The logical design
process itself was refined with one engineering sub-process: the relational design. All other
sub-processes that can be found in all the graphs of the tree are primitive processes (new
schema, analysis, conceptual normalisation, schema copy, name conversion, ISA relations, non-
functional rel-types, attributes, identifiers, references, setting indexes, storage allocation, setting
coding parameters, generate SQL); their histories are the leaves of the tree (they should have
been drawn in this figure too, but it would take a lot of place). The tree will be noted:

Figure 6.8 An engineering process tree

Note that non-oriented edges are represented with two arrows rather than with none because it makes the
input/output role of these edges appear better. This representation will be adopted more formally later.

Conceptual normalisation

Analysis
New schema

Library/Conceptual

library.txt/IR

Conceptual analysis

Name conversion

Schema copy

Relational design

Schema copy

Library/Logical

Library/First logical

Library/Conceptual

Logical design

Storage allocation

Setting indexes

Schema copy

Library/Physical

Library/Logical

Physical design

References

Identifiers

Attributes

Non-functional rel-types

Is-a relations

Library/First logical

Relational design

Generate SQL

Setting coding parameters

Schema copy

library.ddl/1

Library/Implemented

Library/Physical

Coding

Coding

Physical design

Logical design

Conceptual analysis

library.ddl/1

Library/Physical

Library/Logical

Library/Conceptual

library.txt/IR

Library

6.3. Structure of histories 116

H = ((LIBRARY,1), (Conceptual Analysis,2), (New schema,3), (Analysis,3),
(Conceptual normalisation,3), (Logical Design,2), (Schema copy,3), (Relational
Design,3), (Is-a relations,4), (Non functional rel-types,4), (Attributes,4), (Identifiers,
4), (References,4), (Schema copy,3), (Name Conversion,3), (Physical Design,2),
(Schema Copy,3), (Setting indexes,3), (Storage allocation,3), (Coding,2), (Schema
copy,3), (Setting coding parameters,3), (Generate SQL,3)).

Commonly, in software process or business process modelling tools, engineering process
histories are recorded, but they often use third party tools (editors, text processors, compil-
ers, debuggers,...) for primitive processes which have their own logging facilities, and all the
logs are generally independent one from the others. In this thesis we integrate them all
together to reuse them as a whole.

6.4. History representation
A project history is a tree of process histories. This tree is a kind of table of contents of the
project, the process histories being the real material. Different ways of representing these
various histories will be examined in different situations, with different purposes in mind.

6.4.1. Representation of the tree structure

The simplest way of showing a table of contents is in a textual fashion, like in a book: the
name of every process at the top most level are listed in the order the processes were per-
formed. Under each of them, the list of sub-processes they are made up of, also sorted in
performance order, and so on. To each process name in the list, a reference (an hyperlink)
to the process history is added. Drawing this table of content from the tree notation is
straightforward, each node in the n-uple being a line in the table of content. Figure 6.9
shows the table of content associated to the tree shown in Figure 6.8.

Figure 6.9 An example of history tree

Bold characters show engineering processes and regular characters show primitive processes. A “-” character
before an engineering process indicates that its content is shown, a “+” character indicates the content is hidden.

6.4.2. Representation of primitive process histories

Since a primitive process history is stored as a log file in a readable text file, it can be dis-
played and examined with a plain text editor. But such a file can be very long and tedious
to read. Since those log files are also built with a formal syntax in order to be easily reused

6.4. History representation 117

by tools, the supporting CASE environment has to include such tools, and other tools can
be written by analysts for their own special purposes too. For example, the person who
browses through a history is not always interested by the very small details of the process
execution. The log file syntax can include bookmarks and comments. So, if the analyst
takes care at bookmarking and commenting correctly his or her job, a tool that only shows
these bookmarks and comments can be of great help.

6.4.3. Representation of engineering process graphs

Engineering processes are the most interesting parts of a history. They not only show in
what order processes were performed, as in the tree, but also what products were used,
modified or produced, what hypotheses were made, what decisions were taken. Engineer-
ing processes contain all the intelligence of the project, all the information that is sufficient
to understand how the project was conducted (without the technical details that are in the
log files) and why it was that way. For greater readability, these engineering processes will
be represented in a graphical way. Processes will be shown as rectangles, products as ellip-
ses, sets as greyed ellipses, and decisions as pentagons such as . The products member-
ship of their sets is shown with dashed lines. The main links, shown with arrows, describe
the input/output flows. Other kinds of links can be deduced. This will provide database
engineers with various views of a same engineering process history, each view allowing him
or her to examine a different aspect of the history. Each view that will now be described
shows different links between the components.

A. Basic view

The basic view of an engineering process graph G=(V,E) is the exact representation of its
content: all its components (the nodes vi ∈ V) with all the stored links between these com-
ponents (the edges ej ∈ E):

• an input link is shown with an arrow directed from a product to a process

• an output link is shown with an arrow directed from a process to a product

• an update link is shown with a double-headed arrow between a process and a product

• a product in the scope of a decision is linked to it with a single-headed arrow

• a product selected in a decision is linked to the decision with a double-headed arrow.

Figure 6.8 shows six examples of engineering process basic views. Figure 6.10 shows a
much more complex example extracted from the second case study in chapter 11. It
describes a reverse engineering process. ORDER/Extracted is a database schema generated by
an SQL DDL extractor. This schema is member of the cobsch set of COBOL schemas. The
file Order.cob is an application program that uses the data structures of the schema. The
engineering process is aimed at enriching the COBOL schemas with information found in
the COBOL programs. During the process, the N-N refinement sub-process was performed
twice with different hypotheses, resulting in two versions of the schema: ORDER/draft-2
and ORDER/draft-3. Later on, after the performance of the Field-ID sub-process, the deci-
sion to keep the second version was made, and the engineering process continued with it.
ORDER/completed is the resulting product of the engineering process.

B. Dependency view

The basic view is ideal for working, but, for some reasons (specially the readability of bigger
projects), simplified views could be prefered. A dependency view showing only products
and their dependencies is one of them. Figure 6.11 shows the dependency view of the Con-
ceptual analysis engineering process of Figure 6.8. The arrow show the dependencies

6.4. History representation 118

between products: Library/Conceptual is made on the basis of library.txt/IR. Figure 6.12
shows the dependency view of the more complex engineering process of Figure 6.10.

More formally, the dependency view of an engineering process is defined as follows.

Let p be an engineering process, and G=(p,V,E) be the graph of its history where:

V = Vpd ∪ Vpc ∪ Vd,
Vpd = {v1,v2,...,vn1} ⊆ P , 0 ≤ n1, be the set of products involved in p.
Vpc = {vn1+1,vn1+2,...,vn2} ⊆ L ∪ G , n1 ≤ n2, be the set of sub-processes of p.
Vd = {vn2+1,vn2+2,...,vn3} ⊆ D , n2 ≤ n3, be the set of decisions taken in p.
E is the set of edges in the graph G.

The dependency view of p is the graph G’ = (p,Vpd,E’) where E’ is calculated from E by
applying the following rules:

• if ∃ vi, vj ∈ Vpd and ∃ vk ∈ Vpc such that (vi,vk) ∈ E and (vk,vj) ∈ E, then (vi,vj) ∈ E’

• if ∃ vi, vj ∈ Vpd and ∃ vk ∈ Vpc such that (vi,vk) ∈ E and either (vk,vj) ∈ E or (vj,vk) ∈ E,
then (vi,vj) ∈ E’

• if ∃ vi, vj ∈ Vpd and ∃ vk ∈ Vpc such that either (vi,vk) ∈ E or (vk,vi) ∈ E, and (vk,vj) ∈ E,
then (vi,vj) ∈ E’

Figure 6.10 An example of engineering process basic view

Library/Conceptual

library.txt/IR

Conceptual analysis

Figure 6.11 An example of dependency view

ORDER/completed

ORDER/draft-3ORDER/draft-2

ORDER/draft-1 Order.cob

ORDER/extracted
cobsch/1

Physical schema enrichment

Figure 6.12 A second example of dependency view

FK search

Field-ID search

N-N refinement

Long fields refinement

Schema copy

Decision

Field-ID search

N-N refinement - CUS-set

Field-ID search

N-N refinement - CUS-list

Schema copySchema copy

Long fields refinement - CUS

Schema copy

ORDER/completed

ORDER/draft-3ORDER/draft-2

ORDER/draft-1

Order.cobORDER/extracted

cobsch/1

Physical schema enrichment

6.4. History representation 119

• if ∃ vi, vj ∈ Vpd and ∃ vk ∈Vpc such that either (vi,vk) ∈ E or (vk,vi) ∈ E, and either
(vk,vj) ∈ E or (vj,vk) ∈ E, then either (vi,vj) ∈ E’ or (vj,vi) ∈ E’ exclusively

• if ∃ vi, vj ∈ Vpd such that (vi,vj) ∈ E’, and either (vi,vj) ∈ E’ or (vj,vi) ∈ E’, then
(vi,vj) ∉ E’.

Note that decisions and edges connected to them do not give rise to dependency edges
because decisions do not alter the products.

In more natural terms, a single-headed arrow between product R and product S means that
S directly depends on R, i.e. there exists at least one primitive or engineering process for
which either R is an input and S is an output, or R is an input and S is an update, or R is an
update and S is an output. A double-headed arrow between two products means that they
directly depend on each other, i.e. both products are updated by at least one process. In a
special case where both kinds of arrows should be drawn, the double headed-arrow prevails.
For instance if product R is updated by two processes A and B, and product S is an output
of A and is updated by B, a single-headed arrow should be drawn because of A and a dou-
ble-headed arrow should be drawn because of B. Only the second one will be drawn.

C. Global dependency view

Figure 6.11 shows a derived view of the current process. The whole tree of graphs can also
be summarised in a single product dependency graph. For instance, Figure 6.13 shows the
dependencies between all the products in the LIBRARY forward engineering project shown
in Figure 6.8. To obtain this graph, the tree is flattened. The complete flattening process
will be detailed in chapter 7. In summary, in the graph of the root process of the tree, all
the engineering process nodes are replaced by their graphs, and so on recursively until there
are no more engineering processes in the graph. The result is the graph of a pseudo engi-
neering process doing the same job as the whole project. Calculating the dependency view
of the resulting graph will give the result.

In formal and short terms, the global dependency view of a project is the dependency view
of the flattened history as defined in chapter 7.

library.ddl/1

Library/Implemented

Library/Physical

Library/Logical

Library/First logical

Library/Conceptual

library.txt/IR

Figure 6.13 An example of summarised derived view

6.5. History construction 120

6.5. History construction
This section describes the way the supporting CASE environment builds a history. When a
new project begins, a method must be chosen and followed. The CASE environment has
to build the history automatically, documenting the job in a precise way, according to the
actions of the engineer; these actions generally occur according to the method. This section
examines how every action proposed by a method or self-decided by the engineer is
recorded.

6.5.1. Primitive processes

When a primitive process is performed, two kinds of information need to be stored: the
fact that the primitive process is performed and how it is performed.

Since a primitive process is always performed as a part of an engineering process, its execu-
tion is recorded by adding a node in the graph of the engineering process. Each time a
primitive process is performed, a new node is created in this graph, and appears in the
global tree of the history. This node is labelled with a name. It also has to be annotated
with a reference to its primitive process type. Furthermore, the edges connecting the primi-
tive process with the products it uses, modifies, or generates are created.

The recording of the way the primitive process was performed depends on the objective of
the history (see section 6.3) and on the type of the process type (see Chapter 2). Let us now
examine what to record in the history for primitive processes according to these two
dimensions.

A. Concise history for replay only

1. A basic automatic process type is always performed in the same way, so a simple reference
to it suffices to replay it.

2. A configurable automatic process type is stored in the method with its configuration
parameters that do not evolve. So a reference to this definition in the method suffices to
replay it.

3. A user configurable automatic process type needs to be configured at each execution. A
simple log file with a reference to the process type and all the parameter values decided
at runtime, and a reference to this log file suffices to replay the process.

4. A manual process type must be entirely performed by an analyst. So the primitive proc-
esses must be reflected by a history containing all the actions performed by the analyst,
as depicted above. The node representing the primitive process in the graph has to have
a reference to the log file of this history.

B. Extended history for more complex tasks

On the contrary, to build a history aimed at being reused for more complex tasks, such as
reverse engineering, it can be useful to record every single action in a log file. Indeed,
primitive processes of any kind that modifies a product will do it in several little steps
which can all be recorded. It can also be useful to record the parts of the products that will
be transformed just before the transformation, in particular before non semantic preserving
transformations (see section 6.3).

6.5.2. Engineering processes

Like a primitive process, an engineering process needs to record two kinds of information,
the fact it is performed and the way it is performed.

6.5. History construction 121

When the project begins, the history is created. A new engineering process is created with a
blank graph that will grow all along the life cycle of the project, and the main tree of the
history is initialised with that engineering process as the root and only node.

During the project, when an instance of an engineering process is performed, a new node
has to be added in the graph of the current engineering process. In the same time, a new
blank graph is created that will grow in size during the performance of the new engineering
process. In the graph of the current engineering process, edges are created between the new
node and all the products it uses or modifies.

When an engineering process ends, the product it generates must be added to the graph of
the calling engineering process as well as an edge between the new products and the termi-
nated sub-process.

For instance, in Figure 6.8, it is possible to continue the project with a new report genera-
tion phase: in the LIBRARY process, a new engineering process labelled Report generation
can be added, to which the library.txt and the library.dll products should be linked in
input. In the tree, an empty graph would appear, also labelled Report generation. When the
process is over, the graph contains a node for the generated report. Another node represent-
ing this report is also added to the father process graph as an output of Report generation.

In the strategy of an engineering process, sub-process types appear within control struc-
tures. A control structure is a programming concept which has no equivalence at the
instance level. In the history, only the effects of the control structures are stored, possibly
with the decisions that have to be taken:

• The execution of a sequence of process types is translated into a sequence of processes in
the history. An example is shown in Figure 4.6.

• When an if structure is encountered in the strategy, its condition has to be evaluated.
The result of this evaluation, a decision, is stored in the history: a node is appended to
the graph with edges linking the products on which the decision is based to the new
node. Then one branch of the if structure is followed, and its trace is recorded in the
history. Since the other branch has been ignored, it leaves no trace in the history. Fig-
ure 4.7 shows that only a process a of type A was performed.

• A repeat, a while or an until structure will lead to the fact that some sub-process types
(possibly one or several organised with another control structure) will have to be per-
formed several times. It will result in the appearance of several processes of the same
type in the history. If a condition (while and until structures) has to be evaluated at each
iteration of the loop, each decision will be stored in the history too. Figure 4.8 shows
that two processes a1 and a2 of type A are performed.

• The one, some and each structures, like the if structure, will also make some branches
only to be performed, and only these branches will leave a trace in the history. If the
engineer wants to store the rationales that conducted him or her to choose those
branches, he or she can add, voluntarily, a decision to the history. In Figure 4.11, only
the branch of process type B is performed, which makes process b appear in the history,
the branch of A being ignored.

• A for structure works like a repeat structure with the difference that the user has to
choose a new product in a given set at each iteration. This choice will be stored in the
history through the edges which link the processes of each iteration.

6.5.3. Hypotheses, versions and decisions

Sometimes engineers face particular problems they cannot solve in a straightforward way:

6.5. History construction 122

• Time consuming tasks for which the engineer considers several ways of working but
does not know which one will take the less efforts. It can be useful to start and perform
a bit of the work in each way, to make an estimation of the effort, and to pursue in the
best way.

• A complex problem for which several solutions are possible but one should be better
than the others. It cannot be guessed a priori. In that case, it is necessary to develop
these solutions and to compare them afterwards.

• A complex problem that has only one solution. Several ways of starting the reasoning
exist but only one of them leads to the result. This is like in a labyrinth. The engineer
has to try several ways until he or she finds the good one.

• A problem for which the requirements are not clear. The engineer sketches several ideas
of solution as a basis for discussion with other people.

In such cases, the solution-finding pattern is always the same: trying different solutions,
then choosing the best one. So, different processes of the same type are performed on the
basis of the same products, but with different ideas and different hypotheses. The result of
all these processes are various product versions. Then the engineer has to take a decision:
choosing the best versions of the products.

If one or several versions of the products are given up, it is important to keep them in the
history with the hypotheses and the reasoning that lead to them. Indeed, it may be useful,
later on, to know why the final solution was chosen and, maybe more important, why the
other solutions where rejected.

This situation is shown in the history by as many nodes as processes performed, each one
annotated with its hypothesis, and one more for the decision, annotated with the (or the
list of) chosen product and the rationales of the choice. Oriented edges are created from the
different versions of the product to the decision for showing which versions have been
taken into account in the decision process. The chosen versions are marked as such.

For instance, the short history sample in Figure 6.14 shows that a process was performed
twice with different hypotheses Hyp 1 and Hyp 2. Each execution (Proc/Hyp1 and
Proc/Hyp2) returned a different version of a product: Output/1 and Output/2. Then both
versions have been evaluated and the second one has been kept: the arrow going from Out-
put/1 to Decision shows that Output/1 entered in the decision process but was not kept, the
double headed arrow between Output/2 and Decision shows that Output/2 also entered in
the decision process and was selected. Then the work went on with Next process using only
the chosen version of the product.

Figure 6.14 A decision example

Next process

Decision

Proc / Hyp 2Proc / Hyp 1

Output/2Output/1

Input

6.5. History construction 123

It must be noted that making various hypotheses and performing several instances of the
same process type can only be made without updating products. Indeed, an updated prod-
uct is updated once and for all. In Figure 6.15, Proc 1 updates the product, then Proc 2
updates it again; it is clear that the result can only be a single schema that includes all the
modifications, and that there cannot exist two different versions of the resulting schema.
To solve this problem, it is necessary to copy the product to update and to perform each
instance of the process type with the different copies. When the decision is taken, the his-
tory of the modifications of the selected copy should be replayed on the original product in
order for it to be correctly updated.

Figure 6.15 Two processes update the same product. These
processes cannot be two instances of the same process type.

Proc 2Proc 1

Update

Chapter 7

History processing

In this chapter, histories will be used and transformed in order to fulfil the
goals listed in the beginning of Chapter 6. Firstly, tools will be developed
for replaying histories. Secondly, this chapter will show how histories can
evolve while the database the design of which it represents evolves. Then a
series of basic transformations that can be applied to histories will be
examined. Finally, These basic transformations will be applied to clean
and to revert histories.

7.1. Basic hypotheses 126

7.1. Basic hypotheses
In this chapter, histories previously recorded will be reused. In order to simplify the reason-
ing, everything not directly concerned by this topic is supposed to be unchanged. That is
to say the CASE environment, the method, and the external tools are unchanged since the
history was recorded. At the end of this thesis, tracks towards a release of these limitations
will be opened without bypassing the scope of this thesis.

7.2. History replay
To replay a history, in short, consists in doing again all the actions that were performed
when it was recorded. A history can be replayed for several reasons. One of them is for
documentation. This is a simple task. It suffices to take a copy of all the products that
where used during the construction of the history, in the state they were when the record-
ing of the history began, then to look at the history and redo every action, exactly in the
same way, in the same order, and with the same parameters. This will be described in more
details below.

A history can also be replayed in order to do a job twice, possibly with different (slightly or
strongly) products. This is a more complicated job as shown below too.

7.2.1. Replaying primitive processes of automatic basic type

Replaying primitive processes of an automatic basic type is a very simple task since it suf-
fices to apply the selected tool one more time. Processes of this type automatically work
with all the constructs of a product within a defined range rather than on specifically speci-
fied constructs. This range is defined within the tools themselves. So, the fact that the
products that are passed to the tools are the same or not than when the history was built
does not matter since the list of constructs within the range will be automatically re-evalu-
ated.

For example, if the history contains a COBOL data structure extraction process applied to
all the texts of type COBOL_programs, replaying the same history will redo the data
extraction to all the current texts of type COBOL_programs, no matter whether these texts
are the same as during the recording of the history (replay for documentation) or if they are
new ones (replay for doing a job twice).

7.2.2. Replaying primitive processes of automatic configurable type

The configuration of automatic configurable primitive process types being made at
method-definition time, and being immutable, replaying a process of that type is similar to
replaying a process of an automatic basic type.

7.2.3. Replaying primitive processes of automatic user configurable type

To replay a process of an automatic user configurable primitive type, it is necessary to
know how the process type was configured when the process was recorded in the history.
This configuration was stored in a log file. So it suffices to extract the parameters from this
log file to configure the process type before replaying the process.

Here again, since the process is performed automatically, the fact that the input and update
products are the same or not does not matter.

7.2.4. Replaying primitive processes of manual type

Replaying a process of a manual type can be very different if the input and update products
are the same as when the history was built or not.

7.2. History replay 127

A. Same products

When the history was built, the process was performed by an analyst who had a toolbox at
his or her disposal and who had to decide what tool to use, on what part of the product
and in what order. All these actions where recorded sequentially in the history. It suffices to
read it, entry by entry, and to treat them in the same order. Each entry identifies the con-
structs of the product that are concerned and the tools to use. replaying consists in identify-
ing these constructs and in applying the tools on them.

It must be noted that when the process was first performed, only a human being could
decide what action to perform and on what part of the product but, when replaying, since
it suffices to read a log file and do the same again, there is no more decision to take; this
can be done automatically by the CASE environment.

B. Different products

If the product on which the log file was recorded and the product on which we want to
replay this log file are different, the process is much more complex. Let us suppose that
these products are very similar with just one little difference. Let us examine different situa-
tions:

• Actions that were performed on parts of the product that are not concerned with this
difference can still be redone in the same way.

• If an action involves a part of the product that has disappeared, the action cannot be
performed anymore, so it is discarded.

• If an action involves a part of the product that is just slightly modified, the difference
may either have no real impact on the transformation, or impeach the transformation.
For instance, in a database schema, the transformation of a compound attribute to
which a sub-attribute has been appended into an entity type will automatically trans-
form this sub-attribute into one more attribute of the new entity type, without bother-
ing about it (Figure 7.1). But the transformation into a foreign key of a functional rel-
type to which an attribute has been appended is no longer possible (Figure 7.2).

→ →

Figure 7.1 An attribute-into-entity-type transformation stored in the history (left) and replayed after a small
modification (right, the "row" sub-attribute has been added)

↓ ↓

 ?

Figure 7.2 A rel-type-into-foreign-key transformation (left) cannot be replayed after an attribute has been added to
the rel-type (right)

1-11-N of1-11-N of

COPIES
Date-Acquired
Store
Shelf
Row
id: of.BOOK

Date-Acquired
Store
Shelf
Row

COPIES
Date-Acquired
Store
Shelf
id: of.BOOK

Date-Acquired
Store
Shelf

BOOK
Book-ID
Title
Publisher
Date-Published
Nbr-of-Volumes
id: Book-ID

BOOK
Book-ID
Title
Publisher
Date-Published
Nbr-of-Volumes
id: Book-ID

BOOK
Book-ID
Title
Publisher
Date-Published
Nbr-of-Volumes
Copies[1-N]

Date-Acquired
Store
Shelf
Row

id: Book-ID

BOOK
Book-ID
Title
Publisher
Date-Published
Nbr-of-Volumes
Copies[1-N]

Date-Acquired
Store
Shelf

id: Book-ID

0-N1-1 borrowing
Date

1-1 0-Nborrowing

BORROWER
Borrower-ID
Name
...
id: Borrower-ID

BORROWER
Borrower-ID
Name
...
id: Borrower-ID

BORROWER
Borrower-ID
Name
...
id: Borrower-ID

BOOK
Book-ID
...
id: Book-ID

BOOK
Book-ID
...
Borrower
id: Book-ID
ref: Borrower

BOOK
Book-ID
...
id: Book-ID

7.2. History replay 128

It is to be noted in this last example that since the rel-type cannot be transformed, the
new foreign key is not created and other problems can arise in cascade.

Worse, let us imagine that the small difference is simply the renaming of an entity type,
in that case, the transformation is still possible in theory, but in practice, since its identi-
fier was changed, the entity type cannot be found anymore, even if it is still there.

A solution to these problems is the following: when a transformation is read from the
history, its preconditions are verified; if they are fulfilled, the transformation can be exe-
cuted, else, the replay engine stops and asks the user what to do, such as discarding the
transformation, replacing it by another one (for instance, by the same transformation of
a construct having another name), or performing one or more other transformations
before executing the first one. But this is a manual job that cannot be automated.

7.2.5. Replaying every primitive processes

The previous four paragraphs showed how to replay every kind of primitive process. But it
was done with a strong hypothesis not mentioned for simplicity. It is now time to remove
this hypothesis. It was assumed that the products that where used during the construction
of the history can be copied in the state they were when the recording of the history began,
and that these products are effectively available. But it may happen that they are not.

For instance, the Relational design process type shown in Figure 7.311 specifies that a single
product, of Relational logical schema type, has to be transformed by five consecutive primi-
tive processes. In the history, the state of the product is stored before the first primitive
process. All the five primitive processes are stored too. The third process cannot be replayed
directly since the product is not stored in the history in the state it was after the second
process. This problem can be solved in two ways:

• The first two primitive processes can be replayed before replaying the third one. More
generally, this solution requires that an engineering process, or at least a part of it, is
replayed before the process of interest can be replayed too.

Figure 7.3 A simple process example

11 This example is an extract of the first case study in Chapter 11.

Relational design Relational logical schema

Relational logical schema

Process is-a relations

Relational logical schema

Process non-functional rel-types

Relational logical schema

Process attributes

Relational logical schema

Process identifiers

Relational logical schema

Process references

7.2. History replay 129

• When performing the engineering process the first time, the analyst can manually do a
copy of the product after each primitive process in order to keep all these states in the
history, even if it is not required by the method. The replay can then start with these
copies. This solution is simpler than the first one, but can only be applied if the analyst
foresees this replay scenario. However, recording more product states makes the history
bigger.

7.2.6. Replaying engineering processes

Before trying to replay engineering processes, it is necessary to answer the question: what
does replaying an engineering process mean? The technique used with primitive processes
of automatic type cannot be applied. Indeed, reusing the input and update products and
replaying the strategy of the engineering process type is impossible since decisions have to
be taken, and it is necessary to remember what decisions were taken the first time. So we
could imagine to replay an engineering process as primitive processes of manual type are
replayed, by taking every sub-process in sequence and replaying them, taking the same
decisions. But this raises a series of questions:

• What if the products are no longer the same?

• Can a sub-processes that can no longer be replayed be just skipped?

• Can any sub-process be skipped?

• If a sub-process is skipped, is it still possible to replay the remaining of the process?

• Can a sub-process be replaced by another sub-process? Or several?

• If the replay ends in a deadlock, can the strategy be used to put the replay back on track,
possibly by performing some new intermediate sub-processes? Or is it better to acknowl-
edge the failure?

• If several hypotheses were made and if some parts of the engineering process were per-
formed several times with the hypotheses, do all the hypotheses need to be replayed
again? Or just the ones the resulting products of which were selected in a decision?

It appears that the meaning of replaying an engineering process may vary according to the
needs of the user. So, a universal replay method cannot be provided. It is better to provide
a series of tools that allow the user to replay according to his or her needs. Section 7.4 will
provide some tools. The implementation of a CASE environment may also provide other
tools.

7.3. History evolution
The life of a database can span several decades. However, the world it represents evolves, so
the database has to evolve too. Possible reasons of evolution are numerous:

• users’ needs change

• the enterprise owning the database evolves in size, it expands geographically, it offers
new products, new kinds of products, new services,...

• enterprises merge or buy other ones

• the economic world evolve with the internet, or with the arrival of new products, new
competitors,...

• laws evolve

• ...

7.3. History evolution 130

So a database has to evolve continuously along its lifetime. If it was originally designed
with a CASE environment, the same CASE environment can be used to make it evolve.
[HAINAUT,94] and [HICK,98] present the approach followed by the DB-MAIN CASE
environment. And if the complete history of the original design is still available, it can be
reused. The basic ideas that underlie the concept of database evolution will now be summa-
rised. A complete study can be found in [HICK,01].

Let us start a new information system project for a company. In the first phase, which is
not in the scope of this work, the requirements of the industry are collected and organised.
Let us call R0 the resulting functional requirements. Then the database engineers start their
job and, on the basis of these requirements, draw a conceptual schema12 for the database
that will support the new information system. Let us call this schema CS0. The database
engineers go on with their job and transform CS0 into an equivalent logical schema which
is compliant with the chosen DBMS. Let us call R0’ the logical requirements which are
partly imposed by the DBMS. And let us call the logical schema LS0. The whole complex
history of the transformation job is recorded. Let us call this history H0. Finally, the LS0
schema is passed to programmers that will generate application programs and data struc-
tures (P0) that will be used by the employees of the company. This usage will fill the data-
base with data (D0). The left half of Figure 7.4 shows the starting situation.

Figure 7.4 A simple project evolution example
with an update of the requirements

Some time after the database was created, the database is naturally bound to evolve in order
to meet new requirements: R1. R1 are supposed to be just slightly different from R013. The
history built during the creation, H0, will be reused. In fact, the history, or its compo-
nents, cannot be modified anymore because the memory of the past should not be altered.
So, when an engineer wants to make a project evolve, he or she has to start a new engineer-
ing branch in the history, called H1. The whole history is then made up of two branches:
H0 and H1 (Figure 7.4). To start the new branch, the engineer will make a copy of CS0
and apply all the changes required by the changes (R0→R1). The result, CS1, is a new ver-

12 This example uses only one schema for simplicity, but this is done without loss of generality since several
schemas could either be treated separately, as a single set, or even as several sets separately.

13 Slightly different means that just a few points of the requirements have changed. This definition does not
affect the complexity of the changes. If the requirements are substantially changed, it is generally advised
to treat different problems separately, to view all the changes as several sets of a few (possibly only one)
changes and to treat each set at once. So, this limitation is recommended for the ease of use only and can
be made without loss of generality. Note that the use of the knowledge acquired during the design of an
information system to help to solve a new problem (no common point between R0 and R1) cannot be
seen as an evolution problem.

D1P1

LS1

co
nv

.
m

od
.

ge
n.

P0 D0

LS0

CS1CS0

H0 H1

R0→R1

7.3. History evolution 131

sion of CS0. The major part of the work that has been done from that point in H0 to pro-
duce LS0 should be redone. To do so, the analyst will replay H0 as presented in the previ-
ous section: every action performed from that point in H0 will be performed again and
recorded in H1, except for the constructs that have been updated or deleted. In the latter
case, the analyst has to manually process the new components, which is recorded in H1
too. Moreover, the replayed history can be simplified. If, in H0, the analyst had to try sev-
eral hypotheses, now that the best ones are known, he or she can discard the others. The
result of this updated replay is a logical schema LS1 which is a new version of LS0. From
there, application programs have to be modified (P1) and the data stored in the database
have to be converted (D1) in order to be consistent with the new database definition. This
last phase is beyond the scope of this thesis (see [HICK,01]).

If changes can appear in the functional requirements R0, they can also appear in the logical
requirements R0’. For instance, if the company wants to upgrade its DBMS, the logical
schema may have to be updated in order to fulfil the requirements of the new DBMS. In
that case, database engineers will make a new version of the logical schema (LS2) and
update it, as shown on Figure 7.5. The modification of the programs (P2) and the conver-
sion of the data (D2) have to be done as above.

Figure 7.5 A second project evolution example
with a modification at the logical level

Since the logical schema has changed (LS0→LS2) but not the conceptual schema (CS0),
the history of the logical design (H0) is no more valid. It must be updated too. This can be
done by replaying H0 with some exceptions: transformations that concern constructs of
LS0 which are modified in LS2 are discarded. Constructs of CS0 which are not treated by
the replay, are transformed with other tools in order to obtain LS2. The replay and the new
transformations are recorded in the history, named H2 in its new state.

Let us examine a more concrete example. Figure 7.6 shows the state H2 of a history result-
ing from the evolution of the project in Chapter 6, Figure 6.14 (H0). With the new
requirements in mind, he or she performed the process Proc a third time. Since all the
hypotheses, the processes, the different resulting product versions, and the decision are still
in the history, the engineer directly knew he or she had to perform the process with the
new requirements in the same way as with the second hypothesis. In fact, the engineer
replayed the Proc / Hyp 2 process with just a few alterations due to the new requirements.
This gave birth to a third version of the product: Output/2’. Then the work continued like
during the first execution with the Next process / New req by replaying Next process.

CS0

H2H0

D2P2

R0’→R1’ LS2

co
nv

.
m

od
.

ge
n.

P0 D0

LS0

7.3. History evolution 132

 Figure 7.6 A project evolution example

7.4. History transformation
The previous sections sketched two possible uses of the history: replay and database evolu-
tion. But the history can be used for other tasks too. For some of them, the history has to
be modified, transformed, before being usable; for instance, to recover a database design
during a re-engineering activity as presented in [HAINAUT,96b]. In order to transform
histories, some tools need to be defined. The structure of histories was already described.
Histories can be handled as a whole, but, very often, an intermediate degree of granularity
may be more appropriate. A few simple functions will be defined in order to better identify
some parts of the histories. Then the notion of excerpt will be introduced. This section will
end by showing how these excerpts can be organised and what relationships can be defined
between them.

7.4.1. History characteristics

This section gives basic definitions which allow to identify some components of histories.

A. The scope of a history

Each history shows the transformation of products. They define the scope of the history:

• The scopescopescopescope ofofofof aaaa primitiveprimitiveprimitiveprimitive processprocessprocessprocess historyhistoryhistoryhistory L=(P,{S1,...,Sm},(T1,T2,...,Tn)) ∈ L is the set
of all the products it uses, modifies or creates. It will be written Prod(L). More formally,

Prod(L) = {S1,...,Sm}

• The scopescopescopescope ofofofof anananan engineeringengineeringengineeringengineering processprocessprocessprocess historyhistoryhistoryhistory G=(P,V,E) ∈ G is the set of all the prod-
ucts it uses, modifies or creates. It will be written Prod(G). More formally,

Prod(G) = {r | r ∈ V ∧ r ∈ P}

• The scopescopescopescope ofofofof aaaa decisiondecisiondecisiondecision D=(S,C) ∈ D , or a decision D=(S,b) ∈ D , that is to say the set
of products on the basis of which the decision is taken, is part of its definition:

Prod(D) = S

• The scopescopescopescope ofofofof aaaa projectprojectprojectproject historyhistoryhistoryhistory H=(V,E) ∈ H is the set of the products it uses, modifies
or creates:

Prod(H) = (∪L ∈ V∩L Prod(L)) ∪ (∪G ∈ V∩G Prod(G)) ∪ (∪D ∈ V∩D Prod(D))

Next process / New req

Proc / New req

Next process

Decision

Proc / Hyp 2Proc / Hyp 1

Output/2'Output/2Output/1

Input

7.4. History transformation 133

Applied to the LIBRARY design example in Chapter 6, Figure 6.8, these definitions give:

• Analysis ∈ L , Prod(Analysis) = {Library/Conceptual, library.txt/IR}

• Logical Design ∈ G . Prod(Logical Design) = {Library/Conceptual, Library/First Logical,
Library/Logical}

• The history contains no decision.

• H = Library, Prod(Library) = {library.txt/IR, Library/Conceptual, Library/First Logical,
Library/Logical, Library/Physical, library.ddl/1}

B. Identifying histories

Since a project history is made up of several smaller histories, it is necessary to be able to
identify all of them:

• A primitive process history L ∈ L , L=(P,{S1,...,Sm},(T1,T2,...,Tn)) can be identified by
the process to which it is attached: Id(L) = P.

• An engineering process history G ∈ G , G=(P,E,V) can be identified in the same way:
Id(G) = P.

• A decision D ∈ D , D=(S,C) can be identified by its scope: Id(D) = S. Indeed, the fact
that two decisions are taken about the same products can be forbidden: two decisions
with the same result is useless and two decisions with different results is a contradiction.

C. Finer grained scope of a history

Due to the transformational interpretation of histories, they can be considered transforma-
tions. In chapter 6, the structural functions ∆-(T), ∆+(T) and ∆0(T) were defined to express
the changes due to transformation T on a single product. In order to state that the con-
cerned product is r, an extended notation can be defined for these functions:

∆-(T,r) gives the set of components of product r destroyed by transformation T

∆+(T,r) gives the set of components created by transformation T in product r

∆0(T,r) gives the set of components of product r concerned but preserved by T

A primitive process history L=(P,{S1,...,Sm},(T1,T2,...,Ti,...,Tn)) ∈ L is a sequence of trans-
formations on various products. For each r ∈ Prod(L), we can define:

Cr,L,pre the set of all the constructs in r before execution of P.

Cr,L,post the set of all the constructs in r after execution of P.

∆-(L,r) = ∪1≤i≤n∆-(Ti,r) ∩ Cr,L,pre = Cr,L,pre \ Cr,L,post

the set of constructs in product r destroyed by the process P whose history is L.

∆+(L,r) = ∪1≤i≤n∆+(Ti,r) \ ∪1≤i≤n∆-(Ti,r) = Cr,L,post \ Cr,L,pre

the set of constructs in product r created by the process P whose history is L.
The set substraction in the second member is due to the fact that one transfor-
mation Tj can delete some constructs created by a previous transformation Ti.

∆0(L,r) = ∩1≤i≤n∆0(Ti,r), ∆0(L,r) ⊆ Cr,L,pre ∩ Cr,L,post

the set of constructs in product r concerned and preserved by process P.

Let us note that if one construct is destroyed, then created again, the second one is sup-
posed to be another construct, no matter what its characteristics are, being the same or not.
This simplifies expressions and it can be done with no loss of generality.

7.4. History transformation 134

At the end of chapter 6, in a concise history, it was decided to record the signature of every
single transformation (every Ti) for processes of manual types only. For processes of auto-
matic types, these basic transformations exist but they are hidden, so the second member of
these expressions can hardly be evaluated in practice. This can be a problem in the last
expression because the third member is only an approximation of the true result. It can
then be best to use only extended primitive process histories when such calculus will be
needed. From a theoretical point of view, since the hidden actions exist anyway, the follow-
ing reasoning remains valid whatever the type of primitive process history.

More globally, the following expressions can also be defined on L:

CL,pre = ∪ri∈Prod(L)Cri,L,pre

CL,post = ∪ri∈Prod(L)Cri,L,post

∆-(L) = ∪ri∈Prod(L)∆-(L,ri)

∆+(L) = ∪ri∈Prod(L)∆+(L,ri)

∆0(L) = ∪ri∈Prod(L)∆0(L,ri)

An engineering process history G=(P,V,E) ∈ G is a graph whose nodes are either:

• primitive processes for which the previous expressions can be evaluated

• other engineering processes

• decisions that do not alter products

• products used, created, or modified by sub-processes; let us define

S1 = {r | (∃ L∈V, L∈L , r∈prod(L)) ∨ (∃ G∈V, G∈G , r∈prod(G)) }

• unused products:

S2 = {r | r∈V ∧ p∈P} \ S1

The previous definitions can be extended to engineering process histories in the following
recursive way:

∀ r ∈ Prod(G), Cr,G,pre the set of all the constructs in r before execution of P.

∀ r ∈ Prod(G), Cr,G,post the set of all the constructs in r after execution of P.

∀ r ∈ S1, ∆-(G,r) = ∪pi∈V,pi∈L∪G∆-(pi,r) ∩ Cpre = Cr,G,pre \ Cr,G,post

the set of constructs in product r destroyed by the process P whose history is L.

∀ r ∈ S1, ∆+(G,r) = ∪pi∈V,pi∈L∪G∆+(pi,r) \ ∪pi∈V,pi∈L∪G∆-(pi,r) = Cr,L,post \ Cr,L,pre

the set of constructs in product r created by the process P whose history is L.
The set substraction in the second member is due to the fact that one
sub-process pi can delete some constructs created by a previous sub-process.

∀ r ∈ S1, ∆0(G,r) = ∩pi∈V,pi∈L∪G∆0(pi,r) = Cr,G,pre ∩ Cr,G,post

the set of constructs in product r concerned and preserved by process P.

CG,pre(G) = ∪ri∈Prod(G)Cri,G,pre

CG,post(G) = ∪ri∈Prod(G)Cri,G,post

∆-(G) = ∪ri∈S1∆-(G,ri)

∆+(G) = ∪ri∈S1∆+(G,ri)

7.4. History transformation 135

∆0(G) = (∪ri∈S1∆0(G,ri)) ∪ (∪ri∈S2Cri,G,pre)

Since the effect of the complete history H=(V,E) ∈ H on its products is the same as the
effect of its root engineering process, Groot (Groot ∈ V, H=((Groot,1),...) in its representation
by levels), the following can be written:

∆-(H) = ∆-(Groot)

∆+(H) = ∆+(Groot)

∆0(H) = ∆0(Groot)

In fact, since the history of a project contains no products when it begins, CGroot,pre = ∅, and
∆-(Groot) = ∆-(H) = ∅.

7.4.2. Excerpts

A historyhistoryhistoryhistory excerptexcerptexcerptexcerpt is a part of the history that can be isolated in order to concentrate on it
only. Excerpts can be extracted from each kind of history:

• Le=(P,{S1,...,Sme},(Ti1
,Ti2,...,Tie)) ∈ L is an excerpt of the primitive process history L=(P,

{S1,...,Sm},(T1,T2,...,Tn)) ∈ L if, and only if, {S1,...,Sme}⊆{S1,...,Sm} and 1≤i1≤i2≤...≤ie≤n,
i.e. all the transformation signatures of Le appear in L in the same order, not necessarily
consecutively. This is denoted by the expression Le ⊆ L. For instance, the following is
an excerpt of the log file shown in Chapter 6, Figure 6.4:

&MOD ROL
%BEG

*OLD ROL
%BEG

%OWN "LIBRARY"/"Conceptual"."written"
%ETR "LIBRARY"/"Conceptual"."BOOK"

%END
%OWN "LIBRARY"/"Conceptual"."written_by"
%ETR "LIBRARY"/"Conceptual"."BOOK"

%END

• Ge=(P,Ve,Ee) ∈ G is an excerpt of the engineering process history G=(P,V,E) ∈ G if, and
only if, Ve ⊆ V and Ee ⊆ E, i.e. all the nodes of Ge are excerpts of some nodes of G and
edges of Ge are edges of G. This is denoted by the expression Ge ⊆ G. The following is
an example of graph excerpt of the graph shown in Chapter 6, Figure 6.5:

 B T R

• The graph He=(Ve,Ee) is an excerpt of the project history H=(V,E) ∈ H if, and only if,
Ve ⊆ V and Ee ⊆ E, i.e. all the nodes of He are excerpts of some nodes of H, and all
nodes of He are edges of H. This is denoted by the expression He ⊆ H. He is not neces-
sarily a tree, it can be a forest. So, a history excerpt is not necessarily a history.

Let us assume H=(V,E) ∈ H , L ∈ L and L ∈ V, G ∈ G and G∈V; it is straightforward that
({L},∅) ⊆ H and ({G},∅) ⊆ H. For the simplicity of notations, ({L},∅) and L can be
assimilated, as well as ({G},∅) and G. The following simplified notations can be defined
too: L ⊆ H and G ⊆ H, meaning that both L and G are excerpts of H.

The notion of scope of the history can be extended to history excerpts: Prod(Le), Prod(Ge),
Prod(He) denote the sets of all the products used, modified or created by Le, Ge and He

respectively. It is straightforward that Prod(Le) ⊆ Prod(L), Prod(Ge) ⊆ Prod(G), and
Prod(He) ⊆ Prod(H).

7.4. History transformation 136

Let He be history excerpt, He ⊆ H, H ∈ H which starts at a time point where a product
p1∈Prod(He) is known to be available. He can be seen as the history of a possibly fictive
transformation process which produces product p2 ∈ Prod(He). We can write: p2 = He(p1).

The structural functions C-(H), C+(H) and C0(H) can be applied to history excerpts too, if
they are made of a single tree. If an excerpt He is a forest, it contains several root processes.
Since engineering processes are just seen as a way to encapsulate products in the expression
of the structural functions, a fictive engineering process graph Gfic whose sub-processes are
the root processes of the forest can be added in order to transform the forest in a single
tree, and the structural functions can be evaluated on this new fictive history excerpt:

C-(He) = C-(Gfic)

C+(He) = C+(Gfic)

C0(He) = C0(Gfic)

7.4.3. Independent history excerpts

Let us consider a history H and two excerpts H1 ⊆ H, H2 ⊆ H. Does the execution of H1

depend on the execution of H2 or are they independent? If they are independent, replaying
H1 then H2, or H2 then H1, or even both in parallel will give the same results.

Let us define a partial order relationpartial order relationpartial order relationpartial order relation:

H1<H2 ⇔ C0(H1) ∩ C-(H2) ≠ ∅ ∨ C+(H1) ∩ C0(H2) ≠ ∅ ∨ C+(H1) ∩ C-(H2) ≠ ∅

In other words, H1<H2 (H1 must be performed before H2) if, and only if, either H2 deletes
constructs concerned by H1 or H1 creates constructs concerned by H2.

H1 and H2 are said to be independentindependentindependentindependent if, and only if,

¬(H1<H2) ∧ ¬(H2<H1)

Figure 7.7 Two schemas to transform into relational schemas. In the first one, the rel-type "of" can only be
transformed into a reference group of attributes if the rel-type "taught by" is transformed first. In the second schema,

the transformation of each rel-type is independent from the transformation of the other.

For instance, Figure 7.7 shows two conceptual schemas bound to be transformed towards a
relational model. The conversion process includes the transformation of the rel-types into
reference groups of attributes. In the upper schema, since the primary identifier of
“COURSE” includes a role, the rel-type “of” cannot be transformed directly (reference
groups with roles are not permitted). But the rel-type “taught-by” can be transformed. This
transformation modifies the primary identifier of “COURSE” which is then made up of
the new reference attribute and of “Title”. So that “of” can now be transformed too. In the
lower schema, both rel-types can be transformed directly. Doing the transformations in any

0-N1-1 taught by0-N1-1 of

1-1 0-Nof 1-1 0-Ntaught by

PROFESSOR
Name
First Name
id: Name

First Name

PRESENTATION
Date
Location

Building
Room

id: of.COURSE
Date

COURSE
CourseID
Title
Description
id: CourseID

PROFESSOR
Name
First Name
id: Name

First Name

COURSE
Title
Description
id: taught by.PROFESSOR

Title

PRESENTATION
Date
Location

Building
Room

id: of.COURSE
Date

7.4. History transformation 137

order always lead to the same result. If H11 is the excerpt containing the transformation of
“taught by” in the upper schema, if H12 is the excerpt containing the transformation of “of”
in the same schema, and if H21 and H22 are respectively the excerpts containing the trans-
formations of the same rel-types in the lower schema, then H21 and H22 are independent,
but H11 and H12 are not.

7.4.4. Equivalent history excerpts

Assuming H ∈ H , let H1 ⊆ H and H2 ⊆ H be two excerpts.

The two history excerpts H1 and H2 will be said equivalentequivalentequivalentequivalent withwithwithwith respectrespectrespectrespect totototo aaaa productproductproductproduct p ∈
Prod(H1) ∩ Prod(H2):

H1 ≡p H2 ⇔ H1(p) = H2(p).

Note that if p ∈ Prod(H1) and p ∉ Prod(H2) (respectively p ∉ Prod(H1) and p ∈ Prod(H2)),
then H1(p) = (E1,V1), E1 ≠ ∅ and H2(p) = (∅,∅) (respectively H1(p) = (∅,∅) and H2(p) =
(E2,V2), E2 ≠ ∅), and the non-equivalence is straightforward. If p ∉ Prod(H1) ∪ Prod(H2),
then H1(p) = (∅,∅) = H2(p) and the equivalence is straightforward, but is of no interest.

The two history excerpts H1 and H2 are said equivalentequivalentequivalentequivalent:

H1 ≡ H2 ⇔ (Prod(H1) = Prod(H2)) ∧ (∀ p ∈ Prod(H1), H1 ≡p H2)

For instance, to disaggregate a compound attribute, or to delete it after having created new
simple attributes with the same characteristics as the compound attribute components, are
different but equivalent processes.

7.4.5. Minimal history excerpts

Let H ∈ H and Hm ⊆ H.

Hm is minimal with respect to productminimal with respect to productminimal with respect to productminimal with respect to product p ∈ Prod(Hm) if, and only if,
∀ H’ ⊂ Hm, H’(p) ≠ Hm(p).

Hm is a minimal excerptminimal excerptminimal excerptminimal excerpt if, and only if, ∀ p ∈ Prod(Hm), Hm is minimal with respect to p.

7.4.6. Operations on history excerpts

A. On primitive process history excerpts

Let us assume L, L1, L2, L3, L4 ∈ L and L1 ⊆ L, L2 ⊆ L, L3 ⊆ L, L4 ⊆ L.

DeleteDeleteDeleteDelete: L1 – L2 is a new primitive process history excerpt obtained by copying from L1 all
the transformations that do not appear in L2. L1 – L2 ∈ L .

ConcatenationConcatenationConcatenationConcatenation: L1 + L2 is the concatenation of both excerpts L1 and L2. In other words, L1

+ L2 is a new primitive process history excerpt on the same product as L1 and L2 made up of
all the transformations of L1 followed by all the transformations of L2. L1 + L2 ∈ L , but L1 +
L2 ⊈ L because the transformations in L1 + L2 does not necessarily appear in the same order
as in L.

If L can be decomposed into L1, L2, L3, L4 such that L ≝ L1 + L2 + L3 + L4, L1 and L4 being
possibly empty, and if L2 and L3 are independent, then L2 and L3 can be swapped and L ≡
L1 + L3 + L2 + L4.

ReplaceReplaceReplaceReplace: If L can be decomposed as L1 + L2 + L3, L1, L2 or L3 being possibly empty,
L|L2→L5, where L5 ∈ L and Prod(L5) ⊆ Prod(L), is the transformation of the primitive pro-

7.4. History transformation 138

cess history into a new one which is L1+L5+L3. Furthermore, L2 ≡ L5 ⇒ L ≡ L|L2→L5. The
reverse is not true. It can easily be proved by a counter-example in which L1 creates an
entity type A, L3 deletes A, L2 do several transformations that does not concern A, and L5 is
exactly the same as L2, except that it contains one more transformation adding an attribute
to A.

B. On engineering process history excerpts

Let us assume G, G1, G2 ∈ G and G=(P,V,E), G1=(P,V1,E1) ⊆ G, G2=(P,V2,E2) ⊆ G.

DeleteDeleteDeleteDelete: G1 – G2 is a new engineering process history excerpt obtained by copying all the
components from G1 that do not appear in G2; G1 – G2 = (P,V3, E3) where:

V3 = {v | (v ∈ V1 ∧ v ∉ V2) ∨ (∃ v1 ∈ V1 ∧ ∃ v2 ∈ V2, Id(v1) = Id(v2), v = v1–v2)}

E3 = E1 \ E2

For G1 – G2 to be a graph, that is to say for G1 – G2 to be valid, the extremities of edges in
E3 must be in V3. In other words,

G1 – G2 ∈ G ⇔ ∀ vi ∈ V2, ∀ vj ∈ V1: ((vi,vj) ∈ E1 ⇒ (vi,vj) ∈ E2)
∧ ((vj,vi) ∈ E1 ⇒ (vj,vi) ∈ E2)
∧ ((vi,vj) ∈ E1 ⇒ (vi,vj) ∈ E2)
∧ ((vj,vi) ∈ E1 ⇒ (vj,vi) ∈ E2).

ReplaceReplaceReplaceReplace: Let N, N’ ∈ L ∪ G such that Prod(N’) = Prod(N) and let us assume N ∈ V.
G|N→N’ is an engineering process history excerpt obtained by copying the graph G,
except the node N which is replaced by the node N’.

MergeMergeMergeMerge: Let G’=(P’,V’,E’) ∈ G be a node of G: G’ ∈ V. G ⊕ G’ will denote the merging of
the graph G’ into the graph G, an operation that replaces a single engineering process node
of G by its content:

G ⊕ G’ = (P, (V \ {G’}) ∪ V’, (E \ {(vi,vj)|(vi,vj) ∈ E ∧ (vi=G’ ∨ vj=G’)}) ∪ E’)

This expression shows that the set of nodes of the result is the set of nodes of G in which
the node G’ itself is replaced by all the nodes of G’. It also shows that the set of edges of
the result is the original set of edges from which all the links with G’ in G are removed and
to which all the links of G’ are added. Indeed, V ∩ V’ is the set of all products of G that
are input, update or output of G’. So, V ∩ V’ is the set of all the nodes that are connected
to G’ in G, and all these connections have to disappear when G’ disappears. Furthermore,
V ∩ V’ are all the products to which the content of G’ is connected by links in E’ and
these links are not altered by the removal of the links above.

An interesting property is that G ⊕ G’ ≡ G. Indeed, the merge operator only changes the
structure of the history, not its content, all the recorded transformations are still performed
in the same order.

C. On project history excerpts

Let H=(E,V) be a history and H1=(E1,V1) ⊆ H, H2=(E2,V2) ⊆ H be two excerpts.

DeleteDeleteDeleteDelete: H1 – H2 is the new history excerpt obtained by copying all the components from
H1 that do not appear in H2. H1 – H2 = (V3,E3) where:

V3 = {v | (v ∈ V1 ∧ v ∉ V2) ∨ (∃ v1 ∈ V1 ∧ ∃ v2 ∈ V2, Id(v1) = Id(v2), v = v1–v2)}

E3 = E1 \ E2

7.4. History transformation 139

For H1 – H2 to be a forest, the extremities of edges in E3 must be in V3. In other words,
H1 – H2 is a forest if, and only if:

∀ vi ∈ V2, ∀ vj ∈ V1: ((vi,vj) ∈ E1 ⇒ (vi,vj) ∈ E2) ∧ ((vj,vi) ∈ E1 ⇒ (vj,vi) ∈ E2).

ReplaceReplaceReplaceReplace: Let N, N’ ∈ L ∪ G such that Prod(N’) = Prod(N) and let us assume N ∈ V.
H|N→N’ is a history excerpt obtained by copying the graph H, except the node N which
is replaced by the node N’, and except the engineering process history G=(P,VG,EG) ∈ V
such that N ∈ VG which must be replaced by G|N→N’.

7.4.7. History transformation

If N1, N2,..., Nn ∈ H ∪ L ∪ G , and if f is a function that transforms N1, N2,..., Nn into N
∈ H ∪ L ∪ G , this history transformation will be written in the following way:

N ← f(N1, N2,..., Nn)

Typically, f is a composition of the operators defined above. For instance,

H ← (H1|L1→L2) – H2

7.5. History cleaning
The idea of recording a trace for every single action, possibly completed with extra infor-
mation, is interesting to keep a complete trace of a whole project, but it may lead to enor-
mous data files. The fact is that all these data are not always relevant. For several reasons,
the absolute completeness of the data is not always necessary. Data could be summarised so
that they still look complete (even if they are not), without loss of precision or correctness,
and often with a gain of readability. Let us examine a few situations:

• We are human, we make errors. When drawing a database schema, an analyst may select
a wrong tool and draw an entity type instead of a rel-type. He simply deletes the faulty
rel-type, and selects the right tool to draw the intended entity type. Globally, the
schema has not changed, but the log file contains both actions. The log file is complete.
But it would still look complete if the two above actions were not in it: their presence
does not add nor remove some precision to the history. And, the context for the other
actions of the history does not change according to their presence or absence. Those two
entries are some noise that reduces the history readability.

• Some actions can sometimes be performed in several steps. For instance, the readability
of a database schema can often be improved by re-arranging its components during a
primitive process. During the process, an analyst can move a particular entity type sev-
eral times: at the beginning of the process she moves it next to another entity type to
which it is connected; two minutes later, she aligns it horizontally with the entity type
placed above; finally, she aligns it vertically with the entity type at its right. Before the
positioning process, the entity type was at one place, and after it is at another place; this
single fact is important. So the three real moves can be replaced by a single one from the
origin of the first real one to the destination of the third real one. The history does not
lose or gain precision, moving an object only once is as correct as doing the same move
in several steps, and the summary makes the history eventually gain in readability.

• When an information system evolves, some requirements become obsolete. So the ana-
lyst evolves the information system in order to remove the parts of the database that deal
with the obsolete requirements. The history shows everything from the first analysis of
the requirements to their evolution, and to their obsolescence and removal. If it is sure
that all this will never be useful again, it can be discarded.

7.5. History cleaning 140

• When a computer program is used, doubts concerning the use of a particular functions
may arise. So users usually browse through the help files, and make a little test in the
margin of the schema thay are working on. It is surely not interesting to keep the trace
of this test.

All these cases are good examples among a lot of possible situations that can arise daily in
which cleaning the history can be interesting.

CleaningCleaningCleaningCleaning aaaa historyhistoryhistoryhistory means removing the trace of all the actions we do not want to see any-
more while preserving the correctness and the global content of the history.

7.5.1. History cleaning

The result of an engineering process is a history H. Most generally, H is not minimal. The
goal of history cleaning is to suppress some uninteresting constructs (possibly all of them)
in order to find an excerpt Hclean ⊆ H (possibly a minimal excerpt) which is equivalent to H
with respect to some products of interest (generally all the sources of information such as
requirement analysis reports,...).

This process can be performed in three steps:

1. cleaning primitive process histories

2. cleaning engineering process histories

3. compute the new project history as explained in Chapter 6, Section 6.3.6.

Cleaning a history must be performed by removing or modifying its components with
respect to the four basic properties of histories (see chapter 6):

• A history has to keep its readability. But this is not a problem since the goal of the
cleaning is to improve readability.

• A history has to remain formal. When some components are simply removed of the his-
tory, and if no other component is modified, the history surely remains formal. But if
some components are modified, some attention is worth to be drawn to them.

• A history has to keep its correctness. This is the point that deserves the more attention.

• A history has to keep its completeness. In fact, this can hardly been achieved in the strict
sense of the term since some action traces are removed, but the cleaned history must
look complete in the sense that every possible reuse of the original history can still be
performed with the new one with no difference in the final result; a log file H1 is
replaced by an equivalent one, H2, with respect to the products of interest: H1≡p1,...,pnH2.

7.5.2. Primitive process history cleaning

Attention must be paid to the correctness property. The correctness of a primitive process
history entry was defined above in its context, and the context was defined with the preced-
ing entries of the history. So, when an entry is removed or modified, the context of all the
subsequent entries is modified. In order to keep the correctness of the whole history, it is
necessary to check that all these subsequent entries are still valid in their new context. If it
is not the case, either the removal or the modification cannot be performed or other ones
must be performed too in order to recover a correct context for all entries.

Let L1 = (P,{S1,...,Sm1},(T1,T2,...,Tt1)) ∈ L be a primitive process history, let Ti1,Ti2,...,Tin,
1≤ik≤t1, 1≤k≤n be history entries from L1 to be modified or deleted, and let L2 = (P,{S1,...,
Sm2},(T1,T2,...,Tt2)) be the result from the modifications and deletions. L2 is a cleaning of L1

if, and only if:

7.5. History cleaning 141

• L2 ∈ L

• ∀ j, 1<j≤t2, the preconditions Prej of the transformation Tj are satisfied

• ∀ p1 ∈ Prod(L1), ∃! p2 ∈ Prod(L2) : p1 and p2 are the same

These conditions can be checked by replaying L2. If the replay reaches its end, then the two
first conditions are satisfied. Comparing the resulting products will tell if the third condi-
tion is satisfied too.

In practice, a primitive process history can be cleaned in the following way:

If L = (P,{S1,...,Sm},(T1,T2,...,Tt)) ∈ L contains two entries, Ti and Tj, 1≤i<j≤t, such that
there exists T’=TjoTi, and such that for all Tk, i<k<j, Ti and Tk are independent, then L can
be modified by removing Ti and replacing Tj by T’.

Indeed, L = L1+L2+...+Lt where Li = (P,{S1,i,...,Sm,i},(Ti)), 1≤i≤t, Sj,i being the state of prod-
uct Sj before transformation Ti. Furthermore, ∀ Tk, i<k<j, Ti and Tk are independent ⇔ Li

and Lk are independent.

So, L = L1+...+Li+Li+1+...+Lj+...+Lt

= L1+...+Li+1+Li+...+Lj+...+Lt

= ...
= L1+...+Li+1+...+Lj-1+Li+Lj+...+Lt

= L1+...+Li+1+...+Lj-1+L’+...+Lt

where L’ = (P,{S1,i,...,Sm,i},(Ti,Tj)) = (P,{S1,i,...,Sm,i},(T’)).

For example, an entity type is created in a schema at a precise position, then it is moved a
first time, a second time, and finally suppressed. Globally these actions bring nothing but
noise to the history, so it can be cleaned. If the trace of the first move is deleted, different
actions may need to be performed according to the purpose of the history. In a concise his-
tory, only the new positions of the entity type need to be recorded with the creation and
movement actions: the entity type is created in position (x0,y0), then moved in position (x1,
y1), and moved again in position (x2,y2); in that case, the history is still valid after the
removal of the first move. In an extended history designed for undoing, more information
is needed, it is necessary to know what the original position of the object was before the
move to be able to put it back in that position, so the log file contains the creation at posi-
tion (x0,y0), a move from (x0,y0) to (x1,y1), and a move from (x1,y1) to (x2,y2). In that case,
the removal of the trace of the first move makes the log file invalid since the object placed
in (x0,y0) is suddenly supposed to be placed in (x1,y1). To make it valid again, the trace of
the creation must be modified in either of the following ways:

• merge the creation and the first move and suppose the entity type is created in (x1,y1)

• merge the first and the second moves, resulting in a single move from (x0,y0) to (x2,y2).

A particular case arise often where T’ is the identical function (T’=TjoTi =id). That is to say
that Tj undoes Ti. Since the identical function is neutral and useless, it can be suppressed.

More generally, the method above can be extended to the replacement of more than two
functions by a single one:

If L = (P,{S1,...,Sm},(T1,T2,...,Tt)) ∈ L contains several entries, Ti1 , Ti2,..., Tij, 1≤i1<i2<...
<ij≤t, such that there exists T’=Tijo...oTi2oTi1, and such that for all Tk, i1<k<ij, k≠i1,i2,...,ij,
Ti1 and Tk, Ti2 and Tk,..., Tij and Tk are independent, then L can be modified by remov-
ing Ti1, Ti2,..., Tij-1 and replacing Tij by T’.

The particular case where T’=Tijo...oTi2oTi1=id may happen as well.

7.5. History cleaning 142

7.5.3. Engineering process history cleaning

Removing products, processes, decisions and input/output/update relationships, is the way
to clean engineering process histories. But it has to be done in a way that preserves the
coherency of the remaining of the history. In other words, cleaning the history G of an
engineering process means identifying a graph excerpt G’ which is useless and calculating
G – G’ when the conditions of validity for this operation are satisfied.

Practically, what can be easily removed from an engineering process graph can be deter-
mined with the following algorithm:

1. Initialisation. Let G=(P,V,E) be the graph to clean and let G’=(P,V’,E’)=(P,∅,∅) be an
empty graph excerpt. Let us define I ⊆ V the set of input products of G, O ⊆ V the set
of output products of G, U ⊆ V the set of products updated by G, and N = (V ∩ P) \ (I
∪ O ∪ U) the set of internal products of G.

2. Dead branches. A deaddeaddeaddead branchbranchbranchbranch is a branch of the graph that ends up in products of N
that are neither used in input by another sub-process, nor rejected by a decision. they
are useless and can be suppressed. So, all the processes, the products of N, the decisions,
the edges between them all forming a dead branch, and the edges that link the branch to
the remaining of the graph form a graph excerpt that can be copied to G’. To find a
minimal history, all the dead branches are copied into G’.

The detection of dead branches can be performed by applying the following rules:

Removing unused products:

∀ r∈N\G’ such that (¬∃ p∈L∪G , p∉G’: (r,p)∈E)∧(¬∃ d∈D , d∉G’: (d,r)∈E):
V’ ← V’∪{r},
∀ p∈L∪G∪D such that (p,r)∈E: E’ ← E’∪{(p,r)},

∀ p∈L∪G∪D such that (p,r)∈E: E’ ← E’∪{(p,r)},
∀ d∈D such that (r,d)∈E: E’ ← E’∪{(r,d)}

Removing processes that generate no products and modify no products used afterward:

∀ p∈V\G’, p∈L∪G such that ∀ r∈Prod(p), r∉G’ either (1) r∉V, (2) r∈V∧(r,p)∈E,
(3) r∈N ∧ (r,p)∈E:

V’ ← V’∪{p},
∀ r∈V, r∈P such that (p,r)∈E, E’ ← E’∪{(p,r)},
∀ r∈V, r∈P such that (r,p)∈E: E’ ← E’∪{(r,p)},
∀ r∈V, r∈P such that (r,p)∈E: E’ ← E’∪{(r,p)}

Removing decisions with no selected product:

∀ d∈V\G’, d∈D such that ¬∃ r∈V, r∈P , (d,r)∈E:
V’ ← V’∪{d},
∀ r∈V, r∈P such that (r,d)∈E, E’ ← E’∪{(r,d)}

Do these three steps again until no constructs are added to G’.

In practice, if some dead branches contain interesting information that should not be
lost, some of the previous rules can be bypassed.

3. Decisions. Along the paths that were not copied into G’, decisions can still be found. All
the dead branches or some of them are copied into G’. Since these decisions simply
show that all products remaining in the scope are selected, there is no use to keep them.

7.5. History cleaning 143

∀d∈V, d∈D , ∀r∈V, r∈P , (d,r)∈E:
V’ ← V’∪{d},
E’ ← E’∪{(r,d)},
E’ ← E’∪{(d,r)}

1. Termination. The cleaned engineering process graph may be obtained by computing
 G ← G – G’

7.6. History flattening
A flatflatflatflat historyhistoryhistoryhistory, by opposition to the structured histories studied so far, is made up of a sin-
gle engineering process history whose graph only contains primitive process histories, deci-
sions and products, all the other engineering processes being discarded. Flat histories are
very interesting for several reasons:

• They are methodology neutral: they do not reflect any structured method, they are sim-
ply a series of elementary actions with no strategical structure.

• They are the simplest kind of histories, every CASE environment, even the simplest, can
work with this kind of histories.

• Their reuse is much simpler than the reuse of a structured history because primitive pro-
cess history transformations suffice to do the job.

Let us consider a structured history tree H = (VH,EH) ∈ H . The root node of H is an engi-
neering process graph Groot = (Proot,Vroot,Eroot). Let us assume H also contains n other engi-
neering processes. The goal of the flattening transformation is to find a history

HF = (VF,EF)

such that

1. HF ≡ H

2. VF = {Gflat} ∪ (VH ∩ L) where Gflat is the root node of HF

3. EF = {(Gflat,vj)| vj ∈ VH ∩ L ∧ ∃ k, 1 ≤ k ≤ n, (Gk,vj) ∈ EH}

The principle is simple: initialise Gflat=(Vflat,Eflat) as a copy of Groot, choose a graph node Gi

in Gflat, merge Gflat and Gi, and do that again with all graph nodes in Gflat.

Gflat = Groot

while Vflat ∩ G ≠ ∅ do
choose one node G=(P,V,E) ∈ Vflat ∩ G
Gflat ← Gflat ⊕ G

compute HF as in Chapter 6, Section 6.3.6 with VL = Vflat ∩ L and VG = {Gflat}

It can be proven that this algorithm generates a history that fulfils the goals above:

Let G1, G2,..., Gn denote the n engineering process graph nodes treated by the above algo-
rithm in the order they are chosen, defined as Gi=(Pi,Vi,Ei), 1≤i≤n. Let G0 = (V0,E0) denote
the initial state of Gflat=(Vflat,Eflat).

Before the first execution of the loop body,

Gflat = G0, Vflat = V0, Eflat = E0

If we suppose that, after the kth execution of the loop body,

Gflat = G0 ⊕ G1 ⊕ ... ⊕ Gk

7.6. History flattening 144

Vflat = ∪0≤i≤k Vi \ {G1,G2,...,Gk}

Eflat = ∪1≤i≤k Ei \ {(vi,vj)| vi ∈ {G1,G2,...,Gk} ∨ vj ∈ {G1,G2,...,Gk}}

then, after the (k+1)th execution of the loop body,

Gflat = G0 ⊕ G1 ⊕ ... ⊕ Gk+1

Vflat = (∪ 0≤i≤k Vi \ {G1,G2,...,Gk}) ∪ Vk+1 \ {Gk+1} = ∪ 0≤i≤k+1 Vi \ {G1,G2,...,Gk+1}

Eflat = (∪ 1≤i≤k Ei \ {(vi,vj)| vi ∈ {G1,G2,...,Gk} ∨ vj ∈ {G1,G2,...,Gk}})
 \ {(vi,vj)|(vi,vj) ∈ Eflat ∧ (vi=Gk+1 ∨ vj=Gk+1)}) ∪ Ek+1

= ∪ 1≤i≤k+1 Ei \ {(vi,vj)| vi ∈ {G1,G2,...,Gk+1} ∨ vj ∈ {G1,G2,...,Gk+1}}

So, at the end of the loop,

Gflat = G0 ⊕ G1 ⊕ ... ⊕ Gn

Vflat = ∪ 0≤i≤n Vi \ {G1,G2,...,Gn}

Eflat = ∪1≤i≤n Ei \ {(vi,vj)| vi ∈ {G1,G2,...,Gn} ∨ vj ∈ {G1,G2,...,Gn}}

and Vflat ∩ G = ∅

By a property of the ⊕ operator,

Groot = G0 ≡ G0 ⊕G1 ≡ ... ≡ G0 ⊕ G1 ⊕ ... ⊕ Gn = Gflat.

Since a history can be assimilated to its root engineering process,

H ≡ Groot ≡ Gflat ≡ HF ⇒ (1) is proved.

When HF is computed as in Chapter 6, Section 6.3.6 with VL = Vflat ∩ L and VG = {Gflat},

VF = VL ∪ VG = (Vflat ∩ L) ∪ {Gflat}
= ((∪i0≤i≤n Vi \ {G1,G2,...,Gn}) ∩ L) ∪ {Gflat}
= ((∪ 0≤i≤n Vi) ∩ L) ∪ {Gflat}

Since, by definition, VH = {G0} ∪ ((∪ 0≤i≤n Vi) ∩ (L ∪ G)), or, in other words, VH contains
the root engineering process node and all the nodes of all the engineering process graphs,

VH ∩ L = ({G0} ∩ L) ∪ ((∪ 0≤i≤n Vi) ∩ (L ∪ G) ∩ L) = ∅ ∪ ((∪ 0≤i≤n Vi) ∩ L)

and VF = (VH ∩ L) ∪ {Gflat}. ⇒ (2) is proved.

Moreover,

EF = {(vi,vj)| vi=(Pi,Vi,Ei) ∈ VG ∧ vj ∈ VF ∧ vj ∈ Vi}
= {(vi,vj)| vi=(Pi,Vi,Ei) ∈ {Gflat} ∧ vj ∈ ((VH ∩ L) ∪ {Gflat}) ∧ vj ∈ Vi}
= {(Gflat,vj)| vj ∈VH ∩ L ∧ vj ∈ Vflat}

because there are no self-loops in a graph, hence vj ≠ Gflat.

Since Vflat = ∪ 0≤i≤n Vi \ {G1,G2,...,Gn}, if vj ∈ Vflat, then ∃ k, 0 ≤ k ≤ n such that vj ∈ Vk.

So, there is a graph Gk=(Pk,Vk,Ek) in H for which vj ∈ Vk. During the construction of H,
Gk and vj gave rise to a couple (Gk,vj) in EH. So,

EF = {(Gflat,vj)| vj ∈ VH ∩ L ∧ ∃ k, 1 ≤ k ≤ n, (Gk,vj) ∈ EH} ⇒ (3) is proved.

Finally, this algorithm surely ends because n is finite.

The algorithm is then proved to be correct.

7.6. History flattening 145

For instance, Figure 7.8 results from flattening the history of Figure 6.8.

Figure 7.8 The flattening of the Library project

7.7. History inversion
Inverting a history H of a process P (whatever its kind) is generating a new history H’ of a
pseudo process that can be replayed in order to undo P. This is useful for many reasons,
including undo, design process recovery,...

Chapter 6 showed how a product transformation can be inverted, assuming sufficient
information are available in the history. This section shows how a primitive process history
can be inverted using this principle. Inverting an engineering process history is a much
more complex task. Indeed, it implies reverting strategical decisions. If this is only possible,
it is out of the scope of this thesis. So, without loss of generality because a history can be
flattened, this section only deals with extended primitive process histories.

Let L=(P,{S1,...,Sm},(T1,...,Tn)} ∈ L be the extended primitive process history to invert, and
let {S1’,...,Sm’’} be the set of products resulting from the execution of P.

In order to simplify expressions, the following simplified notation will be adopted to show
that each Ti, 1≤i≤n, is applied to some constructs of one of the products S1,...,Sm:

Ti(S1,...,Sm) = Ti(C), C∈Sj, 1≤j≤m, 1≤i≤n

Schema copy

Storage allocation

Generate SQL

Coding parameters setting

Setting indexes

Schema copy

Name Conversion

Schema copy

References

Identifiers

Attributes

Non-functional rel-types

ISA Relations

Schema copy

Conceptual normalisation

Analysis

New schema

Library/Implemented

library.ddl/1

Library/Physical

Library/Logical

Library/First logical

Library/Conceptual

library.TXT/1

7.7. History inversion 146

Since the extended history was constructed in order for each Ti, 1≤i≤n, to be reversible,

∀ i, 1≤i≤n, ∃ Ti
-1 such that Ti

-1(Ti(C))=C

So,

T1
-1(T2

-1(...Tn-1
-1(Tn

-1(Tn(Tn-1(...T2(T1(S1,...,Sm))..))))...)) = Id(S1,...,Sm)

where Id(...) is the identical function.

The history of this process is:

LId = (Id,{S1,...,Sm},(T1,...,Tn,Tn
-1,...,T1

-1))
= (P,{S1,...,Sm},(T1,...,Tn)) + (P’,{S1’,...,Sm’’},(Tn

-1,...,T1
-1))

= L + L’

where L’ is the history of a pseudo-process P’ (that is to say a process that could exist but
which was never really performed).

This new history L’ is in fact the invert of history L. So, in practice, inverting a history is
simply building a new history with the reverse of the transformations of the original history
inserted in reverse order.

An example of history inversion is shown in the second case study in chapter 11, and in
appendix F.

[HAINAUT,96b] shows in more detail how history inversion is applied in design recovery.

Part 3Part 3Part 3Part 3

In practiceIn practiceIn practiceIn practice

Chapter 8

Method design: basic elements

MDL is a procedural, non-deterministic, language. Consequently, the
traditional deterministic methodology for writing procedural programs
does not apply to MDL. This chapter will introduce the main differences
between deterministic and non-deterministic paradigms and present a few
basic methodological elements for the new technology.

Chapter 8 Method design: basic elements 150

Writing a traditional imperative computer program is a complex task that requires a lot of
knowledge, not only of the syntax and semantics of the chosen computer language, but also
of algorithmic notions and programming paradigms. If a program is not well written, it
might not provide the correct results, or it can simply end prematurely in a blocked state
(endless loops for instance). To design a good method is even more complicated. Not only
the result is important, but the way to reach it is important too. Of course, well-structured
and clean traditional programs are preferable to dirty programs for the ease of maintenance,
but the computer itself does not care about the programming style. At the contrary, a
method is designed to be followed by human beings who need clear directives. If a method
does not suit analysts way of working, it will simply be abandoned. So the method engineer
must have one more goal in mind during his or her designs: the acceptability of the
method, not only for the quality of its results and for the ease of use of its interface, but
also for the ease of understanding and following the algorithms.

To write a good method is such a complex task that the subject deserves a separate thesis.
This chapter will just examine a few basic elements and raise some problems that have to be
taken into account by every method designer, focusing attention on the fact that a method
is mainly non-deterministic.

In a first part, basic elements about how to structure product models will be presented. In a
second time, a few facts about product types will be stated. Finally, process types will be
studied, underlying what makes a method intrinsically different from a computer program.

8.1. Product model declarations
Product models are very important because the whole method is based on them. A good
identification of the required product models and a correct declaration of them are the key-
stone of the method.

The very first step the method engineer who designs a new method should perform is to
model the products the database engineer will receive and the products that will have to be
generated. All the intermediate products that will be useful during the project, even if they
are not aimed at being divulged, also need some precise models for the help of database
engineers. But these intermediate product models will only show their usefulness during
the definition of the process types, so they can be defined only at that moment, during the
definition of the needs for a sub-process definition.

System requirement reports, COBOL programs, Java programs, forms, screenshots and all
other texts can be modelled very easily with a simple file extension.

A database schema model is made of two parts: the concepts and the constraints. The con-
cepts, as defined in Chapter 3, is a simple glossary that establishes a correspondence
between the terms used in the GER model and the terms which are particular to the model
the method engineer is defining; this is a rather simple task. The definition of the con-
straints is more complex and deserves a good understanding of the model to define, a good
understanding of the predicative constraint language, and the awareness of the level of help
the method engineer wants to provide to the database engineer. The understanding of the
model to define and of the predicative constraint language sounds natural, but the aware-
ness of the database engineer needs is easily underestimated, leading to unusable model
definitions.

The usability of a validation constraint lies in the fact that it can often be expressed in sev-
eral ways:

• A same constraint can sometimes be expressed on different concepts. For instance, the
constraint “MIN_CARD_of_ROLE(1 N)” stating that every role should be mandatory

8.1. Product model declarations 151

means the same as the constraint “OPT_ROLE_per_ET(0 0)” that states that no entity
type should play an optional role. They are equivalent in the sense that each time a role
invalidates the first one, it also invalidates the second one and conversely. But, once they
are violated, they report different information: the first rule provides the culprit role,
while the second one only reports the name of the entity type that plays the incorrect
role; if this entity type plays several roles, this information is less precise.

• Several constraints can be grouped in a single rule or they can remain separated in sev-
eral rules. For example, to state that all attributes of a schema have to be atomic and sin-
gle-valued, like in an SQL table, either the two simple constraints “SUB_ATT_per_
ATT(0 0)” and “MAX_CARD_of_ATT(1 1)” can be used, or a combination of them in
a single rule “SUB_ATT_per_ATT(0 0) and MAX_CARD_of_ATT(1 1)”. The first
solution has the advantage that each rule returns its own list of problematic attributes,
so it is clear that the attributes in the first list are compound and that attributes in the
second list are multi-valued. The second solution returns a single list of problematic
attributes without distinction. But the second solution can also be useful since the inte-
grated list enumerates each problematic attribute only once, even those that cumulate
both problems.

• The content of the diagnosis message is of great importance too. Indeed, if the rule itself
is rather easily readable by the method engineer, it may prove to be hardly understand-
able by a database engineer not trained to it. The diagnosis messages should translate
clearly the meaning of the rule in a human native language. It may also suggest a solu-
tion to solve the problem. For instance, the message “The attribute &NAME is com-
pound, it should be disaggregated” is preferable to the message “rule SUB_ATT_per_
ATT(0 0) violated by &NAME.”

8.2. Product type declarations
Product types can be declared locally to a process type or globally to all process types. Simi-
larly, in traditional programming languages like Pascal, C or Fortran, variables can also be
declared globally to the whole program or locally to a procedure14. But the comparison
does not hold further.

In imperative programming languages, variables can either be of a given type or be a
pointer (or a reference) to a memory location of a given type. When a procedure ends, its
local variables are destroyed. This means that, if not copied to output parameters, the con-
tent of the non-pointer variables is lost and pointers to memory locations are lost too; non-
freed memory locations become unreachable and unavailable.

When using an MDL method, the memory of the system is the history. Since the history
keeps everything, products of the local types cannot be destroyed when a process ends.
They simply will not be available anymore for the following processes of other types
(except if they are of an output type) but they will still be accessible to who wants to read
the history.

With imperative programming languages, it is often recommended to declare as much vari-
ables as possible locally, passing them from procedure to procedure using parameters, and
to use global declarations for variables that are used by all procedures or which are so big,
such as large arrays, that passing them in parameters costs too much in processing time or
memory use. When using an MDL method, since only references to products in the history
are passed, the problem of size does not exist, so global product types should only be used
for products that must be accessible throughout the whole projects.

14 Or to a function.

8.2. Product type declarations 152

When using local product types, the method engineer should pay great attention to the
cardinality constraints. Indeed, a problematic situation can arise where product types can-
not match, even if they are of the same model. Let us examine the pattern shown in Figure
8.1. In this method chunk, process type B requires the use of process type A with product
of type Q. But according to the declaration, there can be 1, 2 or more products of type Q,
while process type A only accepts one product in input. If the strategy of process type Q is
designed so that only one product of type Q can exist at the time of performing a process
of type P, there is no problem (the [1-N] cardinality constraint being justified by the fact
that new products of type Q can be created later during B). But if several products of type
Q exist when a process of type A has to be performed, no process of type A can be started.
If this sub-process use is in the body of a one, a some or an each structure, the database engi-
neer can simply follow another branch of the structure. But if there is no alternative to this
sub-process, the performance of the process of type B simply ends in a deadlock. The
method has to be corrected.

process A
...
input P[1-1] : T
...

end-process

process B
...
intern Q[1-N] : T
...
strategy

...
do A(Q)
...

end-process

Figure 8.1 A problematic sub-process use

8.3. Process type declarations
To write a process type could be seen as similar to writing a procedure in an imperative
programming language since the MDL language is based on the same basic control struc-
tures. This should be true if a method was not aimed at being used by a human being
because computers just execute what is ordered to them without trying to understand what
they are doing, and without complaining that they would prefer to do the same thing
another way that would need less efforts or that they already did the exactly same action
several times before.

Without willing to be exhaustive, we will now examine several situations that should be
seen with a different point of view by a traditional imperative language programmer and by
a method engineer.

8.3.1. Loops

To design a strategy that begins by the collect of interview reports, using what was learned
from traditional imperative languages programming, one would surely write one of the two
following MDL strategy chunks containing a while and a repeat-until structures (graphi-
cally shown in Figure 8.2 and Figure 8.3 respectively):

8.3. Process type declarations 153

1. while (ask “Do you want to collect a new interview report?”) repeat
new (InterviewReport)

end-repeat

2. repeat
new (InterviewReport)

end-repeat until (ask “Have you finished collecting interview reports?”)

1 Interview report

Interview report

NEW

Figure 8.2 History chunk 1

2 Interview report

Interview report

NEW

Figure 8.3 Strategy chunk 2

They both allow the users to collect as many interview reports as they want. In fact, the
first one allows users not to collect any report at all, while the second one forces the users
to collect at least one report. For them to be really equivalent, the first one can be modified
as the chunk 1’ below (see Figure 8.4) to force that at least one report is collected.

1’. while (count-less(InterviewReport,1) or
 ask “Do you want to collect a new interview report?”) repeat

new (InterviewReport)
end-repeat

Or the second one can be changed as follows (strategy chunk 2’, shown in Figure 8.5) for
the users to be able not to collect a single report.

2’. if (ask “Do you want to read interview reports?”) then
repeat

new (InterviewReport)
end-repeat until (ask “Have you finished collecting interview reports?”)

end-if

But these strategy chunks are not aimed at being used by computers, but rather by human
beings, which implies several differences:

• Human beings are able to have a glance at an algorithm before executing it. So they are
able to understand what they have to do and what they need before doing it. Computers
are only capable of starting to execute directly, step by step, and to stop when a problem
occurs. Human beings are able to forecast, computers are not.

• Human beings are lazy, they do not like to work when it is not necessary, so they will
not start a process if they can foresee a problem by looking at the algorithm. Computers
do not care and will do the job until they reach the problem they could not foresee.

8.3. Process type declarations 154

Figure 8.4 History chunk 1’

It looks like History chunk 1, only the
condition of the loop differs.

2' Interview report

Interview report

NEW

Figure 8.5 History chunk 2’

• Human beings like simplicity, computers do not care about that. Humans prefer sim-
pler structures such as 1 and 2 above, rather than 1’ or 2’. 1 and 2 are more readable,
therefore easier to understand.

• Human beings are able to think and to take intelligent decisions by themselves.

So, if an analyst encounters a strategy containing the chunk 1, he or she will see that it will
not be possible to go further than the collecting loop if no interview report is collected and
he or she will certainly not begin to follow the strategy. So, in practice, even if it is not
mathematically correct, it can be said that chunks 1 and 2 are equivalent. But, among
them, it is difficult to tell which one is the best. In fact, some people will prefer the first
one where the question is asked before collecting each report, others will prefer the second
one where the question is asked after each report is collected. But, since human beings are
lazy, They will find annoying, when a lot of interview reports have to be collected, to
answer the same question again and again until the last report is collected. So, finally, the
strategy chunk most people will prefer is the third one (shown in Figure 8.6):

3. repeat
new (InterviewReport)

end-repeat

3 Interview report

Interview report

NEW

Figure 8.6 History chunk 3

1' Interview report

Interview report

NEW

8.3. Process type declarations 155

It allows people to do exactly the same: to collect at least one interview report, and to stop
whenever they want without the need to answer the same question several times.

8.3.2. Sequences and each structures

Computer programs as well as methods often require several actions to be performed just
one time. Let A1 and A2 be either two program instructions or two process types. If A1
and A2 both modify the same resources (variables, memory location, products,...), or if
only one of them modifies a resource used by the other, they have to be performed in the
correct order, namely within a sequence. But both A1 and A2 may have to use or modify
different resources. In this case, A1 and A2 will be said independent. They can still be used
within a sequence, but they can be swapped without impact on the final result. Computers
need a precise description of what they have to do. So it is the role of the programmer to
decide which of A1 or A2 will come first in the sequence. But human beings are able to
decide by themselves what they prefer to do first, so the method designer should leave to
the final user the freedom of the choice. The each keyword can be used to force the analysts
to perform all the processes in the order of their choice.

More generally, when processes of several types have to be performed, they can be grouped,
all the non-independent process types in the same group, two non-independent process
types in the same group. All the process types within each group can be ordered in
sequence and all the sequences can be presented in parallel to the end-user within an each
control structure. For example, if P1, P2, P3 and P4 are four process types, P1 generating a
product of a type used in input by P2, P3 and P4 updating a same product type, and P1,
P2 being individually independent from P3 and P4, the following strategy chunk, graphi-
cally shown in Figure 8.7, is certainly the best way to model the situation:

each
sequence

P1;
P2

end-sequence;
sequence

P3;
P4

end-sequence
end-each

With a traditional programming language, one of the six following sequences would have
been chosen for the exemple: P1-P2-P3-P4 (Figure 8.8), P1-P3-P2-P4, P1-P3-P4-P2, P3-
P4-P1-P2, P3-P1-P4-P2, or P3-P1-P2-P4. They give the same results, but the algorithm is
less readable and they impose more constraints to the final database engineer.

8.3.3. Sub-process use

Figure 8.915 shows a strategy chunk that creates a new blank schema and that uses a sub-
process, Update, which updates the new product, which fills it. In Figure 8.10, it is the out-
put sub-process itself that creates the new product before filling it. The two situations, on a
strictly theoretical point of view, will provide the same results. A machine would execute
them indifferently. But they both bring a different perception of the problem to a human
being: the first method gives a greater importance to the New primitive process, the fact of
creating a new schema is strategically as important as filling it, while the New primitive
process is a simple technical act in the second method.

15 An expanded style of drawing shows both a process and a sub-process on the same view.

8.3. Process type declarations 156

Each-Sequence

R

T

V

E

R

U

P1

U

V

P2

R T

P3

T

P4

Figure 8.7 A combination of each and sequences

Simple sequence

R

T

V

R

U

P1

U

V

P2

R

T

P3

T

P4

Figure 8.8 A simple sequence

Update new

R

NEW

R

Update

R

Sub-process

R

Sub-process

Figure 8.9 A method chunk
updating a blank product

Output new

R

Output

R

NEW

R

Sub-process

R

Sub-process

Figure 8.10 A method chunk
creating a new product

8.3. Process type declarations 157

When programming with traditional imperative languages, a similar situation is the initiali-
sation of a pointer variable by allocating memory and the initialisation of the allocated
memory. The choice between splitting both operations in a procedure and a sub-procedure
or grouping both of them in a same procedure will generally be induced by the number of
times they have to be performed, and the diversity of situations in which they have to be
performed: if five procedures need to create exactly the same data structure, a situation
similar to the second one is certainly the best choice; if the five procedures need similar
data structures of personal size, a situation similar to the first one will certainly be a better
choice. But this is simply a technical choice which has no impact on the final result, the
persons who will use the program will not know and will even not bother to know how the
program works.

When developing a method, technical details similar to those above can have to be taken
into account, but the perception problem that does not exist with programming will gener-
ally have a great importance.

By writing two different strategies to obtain a same final result16, the method engineer can
also allow or disallow some possibilities. In Figure 8.11, the engineer can update the prod-
ucts of type R by performing the sub-process. In Figure 8.12, the engineer has to copy the
products of R before updating the copies. In the second case, the engineer has the possibil-
ity to make several copies of each product before updating them according to various
hypotheses, then to choose the best solution. In the first case, it is more complicated: the
engineer can make several draft copies of the products by himself and update each draft
copy according to an hypothesis, but, when he or she has taken the decision of the best
solution, the updates must be performed again to the original products, possibly by replay-
ing the history of the best draft.

Another difference between the two situations is the possibility, when browsing through
the history for documentation, to watch at the original schema more easily in the second
case since it appears unmodified in the history.

Update R

R

Sub-process

Figure 8.11 A method
chunk updating a product

Input-Output
R

T

R

T

COPY

T

Sub-process

Figure 8.12 A method chunk
generating a new product

16 Since the parameters are different in both situations, the process types that use these two ones have to be
different, but they can be easily adapted for one or the other to reach the same result.

8.3. Process type declarations 158

8.3.4. Degrees of freedom

One of the greatest differences between computers and human beings, as it already
appeared above, is the ability for the human being to take decisions, to act freely. Without
methodological help, a well-trained human being is capable to do a database engineering
job entirely by himself or herself while a computer needs much more than a methodologi-
cal help, it needs to be precisely guided step by step. Between these two extremes, a meth-
odological help is aimed at guiding human beings while restraining their freedom of doing
whatever they want. This section will show that the degree of freedom a method engineer
can leave to database engineers is left to his or her own will; the MDL language contains a
series of concepts that allow a great flexibility.

The same concern about freedom of action is also approached by [FAUSTMANN,99].

A. Primitive processes

Chapter 2 classifies primitive processes in four groups. The basic automatic process types are
fully automated and leave absolutely no control to the method engineer nor to the analysts.
The configurable automatic process types can only be configured by the method engineer
developing a method. In fact, the first two kinds of primitive processes give no freedom of
action to the database engineers because they are fully computer-oriented. The user config-
urable automatic process types allow the database engineers to act with a little bit more free-
dom at the initialisation of the process, but these engineers will still undergo its actual exe-
cution. Finally, the manual process types offer much more freedom to their users. When pro-
cesses of this last kind are supported by a toolbox, the degree of freedom can even be regu-
lated by the choice of the tools in the toolbox.

For instance, the following process of the second group automatically transforms all the
functional rel-types of a schema S into referential attributes:

glbtrsf (S, RT_into_REF (ATT_per_RT (0 0)
and ROLE_per_RT (2 2)
and N_ROLE_per_RT (0 1))

Database engineers can also be allowed to do the same job manually, possibly leaving a few
rel-types unchanged. By using the following toolbox, the database engineers have the free-
dom of choosing what they think needs to be transformed:

toolbox RT-to-REF
title “RT-to-REF”
add tf-RT-into-att

end-toolbox

Finally, the following extended toolbox also allows database engineers to perform the same
transformations, but also to edit a little bit the schema in order to prepare it for the trans-
formation when needed:

toolbox RT-to-REF
title “RT-to-REF”
add tf-RT-into-att
add delete-attribute
add delete-role
add tf-RT-into-ET

end-toolbox

These three primitive process types allow database engineers to perform the same job, but
give them different levels of responsibility and of freedom in their actions.

8.3. Process type declarations 159

B. Sequence, each, one, some structures

It was shown above how the each structure can be used instead of a sequence, with inde-
pendent sub-processes, to give more freedom to the user. The one structure has the same
degree of freedom as the each structure since it imposes that one sub-process has to be per-
formed too. But more freedom can be added to the one structure by adding an empty
sequence alternative to allow the database engineer to choose one process or none:

one
sub-process 1;
sub-process 2;
...
sequence end-sequence

end-one

The some structure gives still more freedom to the database engineer who has the possibility
to execute sub-processes of any number of enumerated types, from one to all, without
regard to the selection order. By the adjunction of an empty sequence, the database engi-
neer can be given the possibility to perform sub-processes from none to all enumerated
types.

Finally, if the method engineer combines a one, a some or an each structure with a
repeat...end-repeat loop, the database engineer will even be able to perform several processes
of each type. For instance,

one
repeat sub-process1 end-repeat;
repeat sub-process2 end-repeat;
...

end-one

allows the database engineer to perform several times the same process, and

repeat
one

sub-process1;
sub-process2;
...
sequence end-sequence

end-one
end-repeat

allows him or her to perform processes of any number of types, any number of times
(including none), in any order. The freedom of action is almost total in this last case.

C. Sets

When the method shown in Figure 8.7 is used, several products of type R can be passed to
P1 at the same time, the number of these products being in a range defined in the product
type definition. By default, when a new process of a given type starts, all the products of
the required types are passed to the new process. During the sub-process, the database engi-
neer is allowed to actually work with all the products or with only some of them. The free-
dom of action is large. For example, let us suppose a database engineer has five text files of
type InterviewReport, named ir1,...,ir5, and let us assume Conceptual is a schema type. If the
engineer encounters the following strategy chunk he or she can perform a first analysis pro-
cess with ir1 to generate a first conceptual schema, then perform a second analysis process
with ir3, ir4 and ir5 to generate a second conceptual schema:

8.3. Process type declarations 160

do Analysis(InterviewReport,Conceptual)

The method engineer can reduce this freedom with the for control structure. A first restric-
tion lies in the use of the for some structure which forces the user to perform actions on
some products one by one. For instance, if a user has to follow the following strategy
chunk in the same context as above, he or she can decide to perform four processes of type
Analysis, the first time with ir1, the second time with ir3, the third time with ir5 and the
fourth time with ir4, giving a total of four conceptual schemas:

for some IR in InterviewReport do
do Analysis(IR,Conceptual)

end-for

A further restriction is imposed by the for one and the for each structures because they
impose that, respectively, exactly one of the products or all the products must be used one
by one. For instance, still in the context above, the following strategy chunk forces the user
to choose exactly one of the five interview reports and to treat this one only:

for one IR in InterviewReport do
do Analysis(IR,Conceptual)

end-for

And the strategy chunk below makes mandatory the treatment of every interview report,
one at a time:

for each IR in InterviewReport do
do Analysis(IR,Conceptual)

end-for

D. Weak conditions

Even when using more standard structures, like if...then...else, while, repeat...until, a method
engineer can give several degrees of freedom to the final user of the method. Those three
control structures all need a condition. A condition is an expression as defined in Chapter
5. Three types of expressions were presented: formal and strict, formal non-strict, and non-
formal.

Formal and strict expressions are the kind of expressions that can be found in every tradi-
tional procedural programming language. These expressions are expressed correctly and
without ambiguities with a well-defined syntax and semantics and they can be evaluated in
a deterministic way by a computer. Formal and strict conditions of the MDL language are
formal expression based conditions that can be computed by the supporting CASE envi-
ronment. Users of methods containing such conditions have no choice but to accept their
result. They have no freedom.

Formal non-strict conditions are formal expressions too, so they can be computed by the
supporting CASE environment, but the database engineers who are confronted to them
have the possibility to accept the results or to refute them. In this case, the supporting
CASE environment can be seen as a well-advised help that should wisely be followed. The
freedom of the engineers to eventually accept or reject the advice is total.

Finally, non-formal conditions cannot be understood by the supporting CASE environ-
ment; only the engineers meeting them have the possibility and the total freedom to
choose an answer. But they must answer anyway.

Chapter 9

CASE tool usage

In the previous chapters, the Method Description Language was presented
as a means to bring methodological control to a CASE environment and a
way of recording every action performed in the CASE environment was
presented. This chapter will examine what is necessary and helpful to the
method engineers to design methods and to database engineers to use the
CASE environment using the method. Some requirements for the
extension of the CASE tool will be presented, according to the GUI
(graphical user interface) aspect, and a proposition of functions and
dialogues will be suggested.

9.1. Requirements 162

9.1. Requirements
The methodological engine intended to support method control in an existing CASE envi-
ronment has to improve the usability of that CASE environment. To do this correctly, a
good understanding of the requirements is necessary. Developing a method is itself a com-
plex task that deserves its own environment, which must be specified and implemented
too.

9.1.1. Method development environment requirements

The MDL language is an ASCII text based language. An MDL source has to be parsed and
converted in a formalised proprietary file format to be reused by the supporting CASE tool.

Traditional procedural programming languages development environments can be classi-
fied in three main classes of tools that appeared along the computing history17, with the
idea of simplifying the developers’ job:

• The simple command line interpreter tools. The programmer starts a text editor, types
his or her program, saves it to a disk, quits the editor, starts a command line compiler, if
errors occur, restarts the editor,...

• The integrated environments. A single tool contains the editor, the compiler, an error
message window and a series of other helpful functions. A few mouse clicks suffice to
perform most of the tasks instead of typing long commands at the terminal prompt as
previously.

• The RAD (rapid application development) tools. These are integrated environments
into which “intelligent” assistants are added. These assistants use easy-to-use dialogue
boxes or graphical interfaces to help developers design some parts of their program by
generating automatically tedious and error-prone chunks of program that correspond to
the expressed desires of the developer.

To develop a method in the MDL language, a simple text editor and a simple MDL-to-
CASE proprietary format translator, as in the first of the three cases above, suffice. But, for
the ease of use of the method engineer, an integrated environment is much more interest-
ing, specially for working with modern operating systems which are based on graphical
interfaces.

The following main functions must be present in the development environment:

• a text editor for editing the MDL source texts

• an MDL-to-CASE environment proprietary format translator

• an error message window to help the engineer to “debug” the method

• a graphical browser to show the method designer the same algorithms as those that will
be presented to the database engineer inside the CASE environment.

To make this environment evolve towards a RAD environment, the following functions
can be added:

• an assistant to prepare the skeleton of a method

• an assistant to help the method engineer to design product models

• an assistant for the design of toolboxes

• a graphical assistant for the design of process types.

17 Without going back to the very first days of the computer age when programming was performed by sol-
dering wires or by punching cards.

9.1. Requirements 163

Method design surely deserves a RAD environment. Indeed, product models are lists of
concepts and of constraints that can easily be chosen in a predefined list, and algorithms
could easily be drawn graphically. But method design is a complex job that will only be
performed by a few specialists rather than by as large a public as traditional programming.
Even these specialists will only design a few methods, each method containing no more
than a few tens of product models and process models. Designing such a complex tool is a
costly activity for a rather small use. Moreover, it is of little interest in the framework of
this thesis. So this direction will not be investigated any further.

Anyway, other traditional secondary functions can prove to be useful, either within a RAD
or within a simple development environment:

• printing facilities for the MDL source and the graphical presentation of the method

• report generation

• copy function to the Windows clipboard or to other applications

• ...

9.1.2. CASE environment requirements

A method defined in the MDL language is aimed at supporting a CASE environment. Any
methodology neutral database oriented CASE environment could be updated to support
MDL methods. We will try to be general enough to cover any such existing or imaginable
CASE environment, but we will particularly focus our attention to the DB-MAIN CASE
environment presented in Chapter 1.

The improvement of the CASE environment is in fact a three parts goal:

• the CASE tool has to keep all its functions and their usability has to be unchanged

• database engineers using the CASE tool must not feel disappointed with the modified
interface, so the methodological engine has to be the most transparent possible

• the methodological engine has to bring some help and some guidelines to database engi-
neers.

To fulfil these goals, a few elements can be added to the CASE environment, some ele-
ments can be slightly updated, but nothing can be removed.

A. Method visualisation and browse

The first element to add to the CASE environment is the possibility to choose a method to
follow in the project creation dialogue box. This possibility has to be optional because the
user cannot be forced to follow a method, for small projects for instance.

When a new project is started, it is necessary for the database engineer to be able to see the
method. A dedicated window will be added to the CASE environment. From now on, it
will be called the methodmethodmethodmethod windowwindowwindowwindow. It will show engineering process strategies with the
algorithmic presentation described in Chapter 4. This window will have to be dynamic, the
user will be able to use it to browse through the whole method, and he or she will be able
to select any element of the shown algorithm to examine it in more details. It must be pos-
sible to:

• see the properties of a product type, the model it is expressed in and the properties of
this product model

• see the definition of a primitive process type; it can be a toolbox with the list of all its
tools, a global transformation with its complete definition, the use of a built-in func-
tion, the use of an external process,...

9.1. Requirements 164

• show the graphical representation of an engineering sub-process type

• go back to the previous view.

In all the cases, the descriptions that were included in the method definition should be eas-
ily readable.

B. Method driven activities

When a method is loaded into the CASE environment, it has to be used to guide database
engineers and to allow them to do their job:

• The new method window should contain some distinctive signs that should clearly pres-
ent the current state of the project to the user:

– all process types which have instances currently running should be distinguishable

– all process types which were already run should be distinguishable in another way

– all process types that are ready to be performed should be signalled in a third way.

• The other parts of the CASE tool also have to be updated slightly to guide engineers:

– product edition functions should only be enabled when they are part of a toolbox
referenced by a primitive process type an instance of which is currently running, and
with products concerned by this primitive process

– when no primitive process is active, no product edition tool should be available

– when a product is being edited, all the CASE environment interface elements
(menus, dialogue boxes, messages,...) should use the correct terminology according to
the concepts part of the model on which the product is based

– products have to be validated when a process ends. Let us note that the products only
need to be validated at the end of a process rather than in real time during the proc-
ess, because the second solution could make the CASE environment unusable: for
instance, if a schema model contains the constraint “ATT_per_ET (1 N)”18; the sim-
ple fact of creating an entity type will invalidate the schema, which will be valid again
when attributes will be created, later.

On the contrary, when no method is selected during the project creation, the CASE tool
should not be affected by the methodological engine which should be completely invisible.
The CASE environment has to keep its methodology-neutral capability.

C. Several levels of constriction

It was shown in Chapter 8 that a method can be made very constricting, or, at the con-
trary, it can allow the database engineers a large degree of freedom of action. But a method
engineer can make errors and produce a problematic method. This may lead to a blocked
state during the use of the method. Database engineers cannot accept to be blocked in their
work because of the bad method, they have to continue by themselves anyway. So the
CASE environment itself needs several levels of constriction to the method:

• Strict use of the method. This is the preferred mode. By default, the CASE environment
should automatically be in that mode when a new project is created using a method.
The users should always use this mode and leave it only in case of problem.

• Permissive use of the method. This mode can be used to bypass some constraints
imposed by a method, specially if these are blocking constraints. In this mode, the
CASE environment will operate as if the method engineer had designed the method

18 This is a realistic constraint used in the first case study in Chapter 11.

9.1. Requirements 165

with weak conditions only and every product types defined with a weak respect of their
product model.

• No use of the method. The methodological engine is inactivated. Database engineers
can still view the method in its window, but for documentation only. They are left to
themselves to do the job and to organise the history manually. This mode should only
be used in case of major problem in a method.

D. History recording

Recording the history is a major activity. It must be available either with or without a
method and in all the constriction modes. So this function has to be designed independ-
ently of the methodological engine. Both the user interface and the methodological engine
have to be adapted to be able to control the recording of histories.

The recording of primitive process log files should have the following characteristics:

• It can be enabled or disabled. Once enabled, the database engineers should be able to
work without noticing the recording of every action they perform, or the methodologi-
cal engine performs, on any product. This recording has to be automatic, complete and
transparent.

• The recording has to be possible at different levels as defined in Chapter 6 (concise
recording for replay, extended recording for undo or reverse engineering,...) according
to the foreseen usage.

• Both the users and the methodological engine should be allowed to add bookmarks to
facilitate the reuse.

Since there is no way, independently of the methodological engine, to record an engineer-
ing process graph automatically (taking design decisions is a manual activity), this task
involves other requirements:

• It should offer the possibility to create new primitive processes and new engineering
processes, to terminate these processes, and to take decisions, either conditions in con-
trol structures of the method or product version selections

• For the ease of use, the CASE environment can also allow the users to continue a proc-
ess that would have been terminated prematurely.

• Since the whole intelligence of the project should be present in the engineering process
graphs, it is important for the users to be able to browse through all the graphs, and it is
important for them to be able to make a parallel with the method if one is present. So a
history browser that works the same way as the method browser is a strong requirement.

Finally, the tree of all processes that can be computed automatically will be shown in its
own read-only window.

E. History replay

The replay of a primitive process log file is a simple task database engineers like to perform
in several ways:

• To replay a complete log file automatically on the provided schema.

• To replay in the same way a part of a log file comprised between two bookmarks.

• To replay step by step, in a controlled way, a log file or a part of it.

The replay of an engineering process is a much more difficult task since its meaning is user-
dependent as explained in Chapter 7. So the CASE environment can only provide the tools

9.1. Requirements 166

for recording and reading these process graphs. The user (either the method engineer or the
database engineer) is the one who will have to design his or her own tools. The use of the
built-in macro language or 4GL of the CASE environment (the Voyager 2 language in DB-
MAIN) will be required. History evolution is such a task requiring some replay; the Ph. D.
thesis [HICK,01] gives one vision of the problem and brings its own solution.

F. History transformation

In Chapter 6 a series of basic history transformations and some possible applications were
defined. Database engineers can be interested at some times in some punctual transforma-
tions for a few improvements of the history, but they will surely be more interested by
some particular applications that correspond to their particular needs.

The basic primitive process log file transformations (the delete, the concatenation and the
replace operations) can easily be carried out by a simple text editor. But, since they involve
the verification of several conditions which are tedious to check manually, an intelligent
text editor or, better, a specific log file editor would be a better choice. This tool should:

• have basic edition functions

• recognise the log file syntax

• be able to recognise and to treat complete log file entries as atomic elements

• be able to automatically validate operations and ensure that the resulting log file is syn-
tactically correct.

The delete, replace and merge operations on engineering process graphs are simple func-
tions that can be implemented directly in the history window. The delete and the replace
operations on history excerpts are more complex operations since a history excerpt can be a
mix of log files and graphs, but these operations can be decomposed into simpler delete or
replace operations on the components of the history excerpts, and be carried out as a series
of delete and replace operations on log files and graphs.

The problem engineers will face when they try to use transformation operations on log files
is their size. Indeed, a log file can be made up of several thousands of entries. So, applica-
tions such as history cleaning are not always as simple to perform as described in Chapter
6. For instance, two log entries which can be combined or removed can easily be detected
if they are one next to the other among a few tenths of entries, but it will be much more
arduous if they are separated by several tenths of other entries. Such applications really
need some complex search and ordering assistants. But these assistants are application
dependent and they would deserve a complete study which is out of the scope of this thesis.

9.2. HMI proposals
According to the requirements presented in the first part of this chapter a proposition of
graphical user interface (GUI) for supporting the design and the use of a method can be
examined. The design of a method being something new, a development environment
needs to be build from scratch as presented in a first time. The method being parsed, it can
be shown graphically and browsed by the users both in the method development environ-
ment and in the CASE environment, as shown in a second time. For the use of a method,
since it was decided to adapt an existing CASE environment, a way to update the DB-
MAIN CASE environment interface will be studied: tools to follow a method will be pre-
sented in third time and tools for recording the history will be shown in the fourth time. A
few complementary tools for helping the analysts to use the CASE environment will then
be presented, followed by tools to configure the CASE environment. Finally, tools for
browsing and handling histories will be presented as well.

9.2. HMI proposals 167

9.2.1. Method development environment

A method development environment, to respond to the requirements above, can be as sim-
ple as an elementary text editor with a compile function and a graphical viewer, or as com-
plex as a complete RAD environment. A tool with an extensible architecture is surely the
best solution. At the very first release, it will contain all the required basic functions. Along
the time, it will be possible to add new functions as they become available.

Figure 9.1 shows a simple prototype of a basic environment. Two kinds of windows
appear: the text editor window and the method viewer window. The main menu contains
standard File, Edit, Window and Help menus plus a Search menu to help editing text files, a
View menu for configuring the graphical viewer and an MDL menu with the compilation
tool. This last tool parses the MDL text in the editor window, stores the method it repre-
sents in the internal repository19, and opens a viewer window to show the graphical repre-
sentation of the method. The File menu contains commands for loading and saving MDL
texts, as well as a command for exporting the content of the internal repository to a DB-
MAIN proprietary file format. The small toolbar contains standard shortcuts for loading
and saving MDL texts, editing these texts and printing, as well as an icon (third from right)
for executing the compiler. When compiling a method, if errors occur, a third kind of win-
dow should appear with the error messages.

To implement new functions in this basic environment, it suffices to create new windows
or dialogue boxes for them and to add new menu items or even new sub-menus, possibly
new shortcuts in the toolbar or new toolbars.

The editor window is a classical text editor. It can be the most simple one with just the few
basic functions such as insert, delete, cut and paste. It can also be a more elaborated pro-
gramming oriented editor with functions such as auto-indent or parenthesis match check-
ing. It can even be a fully MDL-oriented editor with syntax highlighting.

The graphical viewer has to be specifically developed for the method algorithms described
in Chapter 4. The following section is devoted to it.

The way of working of the MDL source parsing function will be presented in chapter 10
which is devoted to the internal aspects of the environments.

Figure 9.1 A simple method development environment

19 The internal repository will be presented in Chapter 10.

9.2. HMI proposals 168

9.2.2. Method visualisation and browsing

The method visualisation window will contain the graphical representation of a method, or
more precisely of one engineering process type strategy of the method, with hyperlink
towards other engineering process strategies. This window can be implemented both in the
method development environment for viewing the result of compilations and in the CASE
environment itself for showing the current method.

When the window is created, it shows the strategy of the main process type of the method,
that is the process type declared in the perform line of the method paragraph of the MDL
method description. The strategy is presented with the algorithmic graphical formalism
presented in Chapter 4, showing the sub-process types, products types, control structures,
the control flow, the data flow, and the title, as in the example shown in Figure 9.1.

This window is active. Each element in it (process type, product type and diamond) is asso-
ciated with a contextual menu which becomes visible when the element is clicked on with
the right mouse button. These menus contain the following entries:

• A properties entry associated with a product type shows a dialogue box (Figure 9.2) with
the name of the product type, the model it is based on, its strong/weak status, and its
multiplicity. A model button allows the engineer to open a second dialogue box contain-
ing the properties of the product model: text model properties show the name, the list
of associated file extensions, the grammar file, and the description as in the example
shown in Figure 9.3; schema model properties show the name and list the concepts, the
constraints and the description, as in Figure 9.4.

• A properties entry associated with a primitive process type opens a dialogue box as the
one shown in Figure 9.5 when the primitive process type is of the manual type and
guided by a toolbox. It shows the name and the list of all the tools included in the tool-
box, as well as the toolbox description. A dialogue box like the one shown in Figure 9.6
is opened for all other kinds of primitive process types. The large text zone lists the
complete primitive process type definition. This example shows a complete transforma-
tion script, a primitive process of a configurable automatic process type.

Figure 9.2 A product type properties dialogue box

Figure 9.3 A text model properties dialogue box

9.2. HMI proposals 169

Figure 9.4 A schema model properties dialogue box

Figure 9.5 A toolbox dialogue box

Figure 9.6 A primitive process type properties dialogue box

• A properties entry associated with an engineering process type, or with the title, opens a
dialogue box like in Figure 9.7 showing the process type name, the lists of all product
types in input, in output, in update, and the internal product types. It also shows the
short process type description and a help button that can open the method help file to
the engineering process section that can contain a detailed description of the strategy to
follow.

• A properties entry associated with a diamond opens a dialogue box similar to the one for
general primitive process types as shown in Figure 9.6, the difference being in the con-

9.2. HMI proposals 170

tent of the large text zone which now contains the whole definition of the condition in
clear text, as it appears in the MDL source listing.

• An open entry associated with an engineering process type is the first of two functions
for navigating trough the method. When selected, this function replaces the content of
the method window by the representation of the selected engineering process type strat-
egy. In other words, this function goes down in the hierarchy of process types.

• A back entry associated with the title is the reverse of the open function. When selected,
the content of the method window is replaced by the previous one, the strategy of the
engineering process using the current one. This function goes upward in the hierarchy
of process types towards the root one.

Figure 9.7 An engineering process type dialogue box

9.2.3. Following a method

In the CASE environment itself, the method window will not only be used to show the
current method to database engineers, but also to guide them during their projects. This
guiding must be compliant with the semantics presented in Chapter 4. It will be done by
showing the following process type states with colour codes, as it can be seen in the method
window in the left side of Figure 9.8 showing the CASE environment:

• the allowed state concerns the process types that can be performed at a given time; they
are shown in a first colour, green borders by default, grey for the “Logical design” proc-
ess type in the example

• the running state is for the process types for which some instances are being executed;
they are shown in a second colour, red by default (none in the example)

• the done state is for already executed process types; they are in a third colour, white with
black borders by default, like the “New” and “Conceptual analysis” process types

• the unused state is the original one, process types which have not yet been performed,
and which still cannot be performed at the moment, are in that state; they are shown
with a fourth colour, grey by default, white with grey borders for the “Physical design”
process type in the example.

The CASE environment will also receive a new menu called Engineering (see Figure 9.8
and Figure 9.9) which will show a series a functions, that will be defined below and in the
next section, to allow database engineers to follow the method and record histories.

9.2. HMI proposals 171

Figure 9.8 Different colours for different process type states and Engineering menu

Figure 9.9 The engineering menu

To every process types in the method window, new contextual menu items will be
appended too, depending on their state:

• an execute item is appended to all allowed process types

• a terminate item is added to all executing process types for which all the instances are fin-
ished, as explained below

• an execute again item is also appended to all executing process types and to all done proc-
ess types. This function has many purposes:

– A product type decalred in input or in update of a process type can have many
instances when a process of that type starts. The analyst can either start the process
with all the products of that type, or start a first process with only a few products,
then start new processes with the other products, to make the history more readable.

– As presented in Chapter 4, two processes cannot be executed in parallel if at least one
of them updates at least one product used or modified by the other process. This can
be a limitation that can be bypassed with this execute again function. Indeed, the ana-
lyst can do one process in part and terminate it, do the second process in part and
terminate it, then execute again a process of the same type as the first one to do a sec-
ond part of the job and terminate it again, and so on.

– It is useful to allow versioning as it is explained later.

9.2. HMI proposals 172

The following pages show how all this can be combined, firstly in a step by step execution,
secondly in a more automated way.

A. Step by step method execution

When an engineering process is started, the method window shows the strategy of its type
with all the sub-process types drawn in the unused state, except the one – or the ones – by
which the engineering process must – respectively can – start which is – respectively are –
drawn in the allowed state. The user can select one of them with the right mouse button to
make its contextual menu appear. The following depends on the kind of the sub-process
type: one of the four kinds of primitive process types or an engineering process type.

a. Automatic primitive process types

The contextual menu of an automatic – possibly configurable – primitive process type con-
tains the properties and the execute items. The user can select properties to examine the full
process type definition before executing the process. Since the process is automatic, when
the user clicks on execute, he or she has nothing to do but to wait. During the execution,
the content of the method window evolves. When the execution begins, the state of the
type of the process is changed to running and other types that were in the allowed state are
passed either to the unused state or to the done state, as they were before being put in the
allowed state according to the semantics of the control structure that encompasses them as
defined later in this chapter. When the execution ends, the primitive process type is put in
the done state then, according to the control structures of the strategy, all the process types
that can be performed after the current one are put in the allowed state, and the CASE tool
gives the control back to the user.

An automatic user configurable primitive process type has the same behaviour, except, that
one or more dialogue boxes are presented to the user to allow him or her to specify the
value of a few parameters before the CASE tool does the job. These dialogue boxes will
always appear while the process type is in the running state.

b. Manual primitive process types

In the DB-MAIN CASE environment, with the MDL language, the only manual primitive
process types are toolbox uses. When the engineer wants to use a toolbox, the methodo-
logical engine only changes the toolbox state, as well as the state of other sub-process types
as for automatic types, updates the CASE environment by enabling all the tools in the tool-
box, then suspends itself. The user is then the one who has to work. During that time, the
method window is updated with the colours associated to the new states. If the user selects
again the same primitive process with the right mouse button, the contextual menu still
appears, but it is different: the execute item has disappeared. But, according to the progress
of the user’s job, a terminate item and a execute again item can be present or not. When
selected, the execute again item allows the user to perform several processes of the same type
with various hypotheses. The terminate entry gives the control back to the methodological
engine. It disables all the functions enabled earlier and ends the primitive process. This way
of working seems to be simple, but the three main points are left unexplained: the meaning
of enabling or disabling tools, the meaning of working for a user, and the way the CASE
environment can judge of the user’s job progress.

i. Enabling and disabling tools

In a graphical environment, every application has functions that can be executed by several
events: clicks in menus, clicks on buttons in toolbars or buttons in dialogue boxes, clicks
with the different mouse buttons in some parts of a window, even shortcut keys pressed. By
default, if the CASE environment is used without a method, all the tools must be enabled

9.2. HMI proposals 173

to allow users to do whatever they want. When the CASE environment is used with a
method, all the tools must be disabled when not explicitly enabled by a toolbox. To disable
a tool, all the above events have to be trapped. For menu items and buttons, both in tool-
bars and in dialogue boxes, it is even better to show to the user that they are disabled. This
can be done by showing them in grey or by not showing them at all. In the DB-MAIN
CASE environment, they will be shown in grey. To enable a tool is to show its menu entry
and its buttons in their original colours, and to make all the events responsive again.

At some times, several manual primitive processes of various types, that is to say using dif-
ferent toolboxes, can be performed at the same time on different products. One toolbox
does not have to interfere with the others. Since each product can only be modified by one
process at a time, and since the Windows environment or most other graphical environ-
ments only have one active window at a time, it can be decided that the active toolbox is
the one of the type of the process that modifies the product in the current window. Switch-
ing from one window to another implies switching toolboxes as well. This can be done by
attaching the suitable toolbox to each window. A default toolbox containing all the tools of
the CASE environment will always be available for this purpose during the performance of
methodology neutral processes or projects.

ii. Database engineer’s work

To work in a toolbox constrained environment, database engineers have to be aware of
what they have to do because they are left to themselves; only the description and the help
file section associated to the engineering process type using the toolbox can contain
descriptions of what to do.

When the toolbox is used, at least one product type is passed to it in input or in update. All
the products of the types passed in update can be modified. So a user can start modifying
them with the enabled functions of the CASE environment only. This is the default behav-
iour of the CASE environment which corresponds to the most common hope of modifying
all the concerned products. But, sometimes, some engineers may only want to modify a
few products, or, for history presentation reasons, they may want to separate the modifica-
tions of several groups of products. So the same primitive process type can have several
instances. A way to do this will be presented in the following section about recording the
history.

When the user finishes the job, he or she has to indicate it to the CASE environment using
the End use of primitives item in the Engineering menu for each process of the same manual
primitive type.

iii. Job progress

As a consequence of the way of doing described above, a very simple means for the CASE
environment to judge of the user’s job progress is to look at all the processes of the same
type. If they are all finished, then the CASE environment can present the terminate item in
the process type contextual menu; if at least one instance is not declared finished by the
engineer, the item cannot be shown.

The execute again item being aimed at allowing the engineer to start one more process of
the process type, it has to be present in the contextual menu while the process type is in the
running state.

c. Engineering process types

The execution of an engineering process type is a bit similar to the execution of a manual
primitive process type: the database engineer has the responsibility to perform it and to
decide on its termination. When the engineer decides to start the new engineering sub-pro-

9.2. HMI proposals 174

cess, the current one is suspended, the content of the method window is automatically
replaced by the strategy of the new engineering process type and all its sub-processes by
which it can begin are put in the allowed state. The user can now perform the new process
in the same way he or she was performing the suspended process.

When the engineering process comes to an end (when the end of the algorithm in the
method window is reached, or can be reached, if a first branch of a some structure just
ended for instance), the methodological engine will propose to the engineer to select out-
put products and to definitely end it or to continue it. If the engineer confirms the termi-
nation, the method engine automatically validates the output products. If one of the prod-
uct is not valid, the engineering process does not stop, a message pops up on screen to sig-
nal the problem (Figure 9.10 for instance), specifying what rule of what product model is
violated by what product, and the method window does not change. The engineer will
have to continue the process, and maybe some of its sub-processes, to correct the products
and to try to terminate the engineering process again later.

During the whole execution of an engineering process, the contextual menu of the process
type title only shows the properties and the back items. When the process is over, the termi-
nate item appears. To draw the user’s attention to this, the title is simply drawn in black
during the whole execution, then in the same colour as the running state when the termi-
nate item appears in the contextual menu. When the engineer selects this menu item, the
methodological engine goes back to the last suspended engineering process and puts the
terminated process type in the done state.

Engineering process executions, like toolbox uses, can be cancelled to allow database engi-
neers to change their mind.

Figure 9.10A pop-up message signals that a component
of the schema violates a rule of the schema model.

d. Synthesis about process types and state transition diagram

To summarise, a process type state transition diagram can be drawn, as shown in Figure
9.13. Each process type of the method is associated with such a diagram. When the project
starts, each process type is in the unused state. When the turn of a given process type comes
according to the project advancement, it is put in the allowed state. Then it can be put back
in the unused state if a process of another type is performed (for instance if both process
types are in two branches of a one structure), or it can be executed and be put in the run-
ning state. If the execution is cancelled (the arrow is drawn with a discontinued line to
show that it is a correct but abnormal behaviour), the process type goes back to the allowed
state, but, if the execution goes correctly to its end, the process type passes to the done state.
If its turn comes again, the process type can be put in the allowed state again and the same
scenario is followed.

This state chart has been constructed on the basis of the semantics of the process type
strategies defined in Chapter 4. Indeed, a process type can be placed in any control struc-
ture defined in that Chapter:

• In a sequence, an unused process type is put in the allowed state when its turn comes,
then in the running state when the analyst executes it, and finally in the done state when
the analyst terminates it. If the sequence is followed a second time, whatever the reason,
the process type can go from the done state to the allowed state again. See Figure 9.11.

9.2. HMI proposals 175

Figure 9.11 Process type state transition diagram in a sequence

• In a standard alternative, the process type can be put in the allowed state according to
the result of the evaluation of the expression. Then the process state follows the same
evolution as in a sequence. The state transition chart of a process in a standard alterna-
tive is the same as for a sequence in Figure 9.11.

• In a some or in a each structure, the process type is put in the allowed state at the same
time as all the branches made of a single process type (for branches made of a control
structure, see later). Then the process state follows the same evolution as in a sequence.
It’s state chart is thus the same as in Figure 9.11.

• In a one structure, the process type is put in the allowed state at the same time as all the
branches made of a single process type (for branches made of a control structure, see
later). It the process type is selected by the analyst for execution, its state passes to run-
ning, then later to done. It another branch of the one structure is selected, the process
type goes back to the allowed state. If the one structure is executed a second time, the
process type has to be put back to the allowed state again, and back to its previous state
if it is not selected. The resulting state chart is shown in Figure 9.12.

Figure 9.12 Process type state transition diagram in a one structure.

• In a loop, the process state follows the same evolution as if it was in a sequence followed
several times. No matter whether the loop is a standard or non-standard one. So its state
chart is the one shown in Figure 9.11.

Finally, the execute again function that allows a database engineer to perform several proc-
ess of the same type is added to the state transition chart too. As well as the cancel function
which is added to the CASE tool to allow analysts to undo a mistaken choice.

The complete state transition chart of a process type can be build by assembling the state
charts from Figure 9.11 and from Figure 9.12 together, and by adding the execute again
and cancel transitions. The result is shown in Figure 9.13.

e. Control structures

Control structures are driven by a state transition diagram too. Unlike process types, some
control structures are made up of several parts: a condition and at least one body. Since
these two kinds of parts are never performed at the same time, it is necessary to introduce
two new states to follow them:

 Terminate

unused allowed

done

start
running

Allow Execute

Reallow

unused

 Terminate Redisallow
Reallow

Disallow

ExecuteAllow

running
start

done

allowed

9.2. HMI proposals 176

Figure 9.13 Process type state transition diagram

• The expr-eval state shows that the control structure expression is being evaluated; it will
be shown on screen like the running state for process types (same colour).

• The body-running state shows that one body is pending. That is to say either a process
type or a control structure of one body is in the allowed, running, or body-running state,
or neither the engineer nor the methodological engine has decided to end the control
structure. Since the body of a control structure is only materialised by its components,
the body-running state is not visible on screen, it is not associated with a colour.

Each control structure has its own state transition diagram which is built according to the
same principles as those used to build the process type state chart.

• Sequences do not have an expression. The database engineers do not have to explicitly
start or stop them. When a sequence has to be started, the first component of its body
has to be started, so the sequence itself is put in the body-running state, and the first
component of its body has quit its unused state (to reach the allowed state for an engi-
neering process, the body-running state for another sequence, or something else for the
control structures examined hereafter). When the sequence ends, that is to say when
what follows the sequence is performed or when the current engineering process strategy
ends, the sequence state can be put in the done state. A state chart summarising this is
shown in Figure 9.14.

Figure 9.14 Sequence, one, some, each state transition diagram

• A repeat structure starts in the same way as a sequence: it is put in the body-running state
and its body is put either in the allowed or in the body-running state. When the body
ends, the repeat structure remains in the body-running state, and its body is put back in
the allowed or in the body-running state again. At the same time, the upper structure
(either the structure or the engineering process that contains this repeat structure) has to
advance one step as if the repeat structure was really terminated and what follows the it
has to be put in the allowed or body-running state too. It is only when something outside
of the repeat structure is executed that the repeat structure must be put in the done state.
The repeat structure follows the same state chart as the sequence in Figure 9.14.

• One, some and each structures are like sequences: they have no expression. The database
engineers will not have to explicitly start or stop them. When a one/some/each structure
has to be started, all the components of its body have to be started, so its state is set to
body-running and all the branches of its body have to advance from their unused state. In
a one structure, when a branch is executed, all other branches must be disabled and put
back in their previous state. When this branch ends, the one structure must be put in
the done state. In a some and a each structure, the execution of a branch does not modify

donebody-
runningunused

start

Execute
again

unused allowed

done

start
running

Allow

 Cancel

Execute

Disallow

Reallow Terminate Redisallow

9.2. HMI proposals 177

the state of the other branches. When a first branch of a some structure ends, the same
principle as for the repeat structure must be applied, and it is only when a further proc-
ess is executed that the some structure must be put in the done state. An each structure is
put in the done state when all its branches are terminated. The one/some/each structures
follow the same state chart as sequences in Figure 9.14.

• If structures have an expression that must be evaluated before the body can be run.
When the method execution permits the evaluation of this expression, the control struc-
tures are put in the allowed state. When the engineer decides to evaluate the expression,
the control structure is put in the expr-eval state, then to the body-running state when
the expression is evaluated and one of the two bodies (then part or else part) can start
(the first component of the body advances from its unused state). When the body ends,
the if control structure is put in the done state. This is shown in Figure 9.15.

Figure 9.15 If, while, for state transition diagram

• The which and the for control structures follow the same path as the if structure up to
the execution of the body. But, when the body is over, the state of the control structure
is set back to allowed so that the engineer can evaluate the expression again. This is
shown in Figure 9.16.

Figure 9.16 If, while, for state transition diagram

• The until control structure is different from the previous ones because the condition is
evaluated after the performance of the body. The performance of the body is similar to
the performance of a sequence. However, when the body ends, the state of the control
structure is set to allowed in order to allow the engineer to evaluate the expression.
According to the result, the state then passes either to body-running to perform the body
again or to done to go on with the strategy. The state chart is shown in Figure 9.17.

Figure 9.17 Until state transition diagram

Disallow

Expression
evaluated

unused
start

expr-eval

Cancel

body-
running allowed expr-eval

Evaluate

 Cancel

done

unused
start

 Reallow

Allow

B
od

u
te

rm
in

at
ed

allowed body-
running

Evaluate

done

Evaluate

done

body-
running

Body terminated

start
allowed

Reallow

Allow

 Terminate

 Cancel

unused

Disallow

expr-eval

9.2. HMI proposals 178

B. Automated method execution

The step by step use of the method presented above is useful with small methods and with
complex ones using a lot of non-deterministic control structures involving a lot of expertise
from the database engineer. But some methods can be rather long and simple to follow,
made mainly of traditional sequences and automatic primitive process types. In these cases,
a lot of mechanical actions are required: selecting the first process type of the sequence,
which is the only one in the allowed state, executing it, than the second one, than the third
one,... always selecting the only process type in the allowed state without having to think
about it. This is the case of the Relational design engineering process in Figure 6.8. This
kind of tedious tasks can be automated.

An auto-execute item is added to the contextual menu of engineering process types at the
same time as the execute item. The new engineering process will try to make the maximum
by itself, requiring the intervention of the database engineer only when necessary, when
decisions have to be taken: when more then one process type is in the allowed state, result-
ing of the presence of a non-deterministic control structure, and when a non-deterministic
condition has to be evaluated.

9.2.4. Recording a history

Basically, the history is independent of the method because the same history can result
from project supported or not by an MDL method. The CASE tool will receive a series of
functions for managing histories. They are accessible both to the methodological engine
that will use them automatically to make the history a reflect of the method, and to the
users through the engineering menu. These functions will be analysed in detail, firstly in a
method free project, secondly in a method supported project.

A. Recording a history in a method-free project

In a method-free project, database engineers can record histories in various ways:

• no recording at all

• recording a single log file containing everything

• recording a series of log files in sequence, one for each main phase of their project

• building manually a complete structured history

• building manually a complete structured history but only at the strategical level, without
recording any log file.

The CASE environment has to offer all the needed functions to cover all these possibilities.

a. Recording the beginning of a method-free project

When a new project is created, a root engineering process is automatically created. The
database engineers will have to decide whether they will use it as the root of a complex his-
tory, or just use it as a single workplace, without even paying attention to it.

b. Recording the execution of primitive processes during a method-free project

Automatic basic primitive processes will automatically leave their own trace in the current
engineering process.

Manual primitive processes have to be created voluntarily. For this purpose, the engineering
menu contains a use of primitives item. The database engineer has to select the products he
or she wants in input or in update, then use this menu entry to start the primitive process
and add it to the history. At that time, a dialogue box like the one in Figure 9.18 allows the

9.2. HMI proposals 179

engineer to specify whether the selected products are to be used in input or in update. It
forbids the use in update of a read-only product. The description button allows the user to
add comments or to specify a few hypotheses that will influence the process. When the
primitive process creation is confirmed, the engineer can open the products and modify
them with a default toolbox containing all the tools of the CASE environment. All the
actions performed by the engineer are automatically recorded in the log file of the current
primitive process history.

When the job is finished, the engineer has to select the primitive process in the history to
end it with the end use of primitives item of the engineering menu.

Figure 9.18 New process creation box with product use specification

c. Recording the execution of engineering processes in a method-free project

Engineering processes can be created in a similar way as primitive processes by selecting the
products to take in input or in update, selecting the new engineering process item in the
engineering menu and answering the same dialogue box (Figure 9.18). The new engineering
process is created as a sub-process of the current engineering process shown in the method
window. Then the new process becomes the new current engineering process. The database
engineer can then do his or her job, and build the process graph by performing, recursively,
new primitive processes and new engineering processes.

When the engineer wants to end the current engineering process, he or she uses the end
current process item of the engineering menu. The dialogue box shown in Figure 9.19
appears to select the output products. In order to improve to usability of the CASE envi-
ronment, the lists of the dialogue box are initialised with products selected in the graph
before using the end current process function. When the selection is confirmed with the OK
button, the graph is terminated and will not evolve anymore. The parent engineering proc-
ess (which contains the one that is just finished) becomes the current one again.

Figure 9.19 End of current process with output product selection

d. Recording a decision in a method-free project

When an engineer has terminated one (or many) process, he or she can decide to do it a

9.2. HMI proposals 180

second time with the same products, with new hypotheses in mind, as in Figure 6.14. This
results in the storage of several versions of a same product in the current engineering proc-
ess among which the engineer can choose the best before going on. To record the decision,
the engineer has to select all the products to take into account and to select the take deci-
sion item in the engineering menu. The dialogue box shown in Figure 9.20 appears with all
the selected products in the left list. He or she will have to transfer the chosen product ver-
sion(s) to the right list and to add a comment such as the rationales of the decision to com-
plete the process. Upon confirmation, the new decision is stored in the graph of the cur-
rent engineering process.

Figure 9.20 A decision taking dialogue box

B. Recording a history in a method supported project

When the project is supported by a method, the principles of history recording are fairly
the same as with a method-free project, the few differences being the following ones:

• The same functions are used, but they are executed by the method rather than by the
users with the menu.

• The use of the functions is accompanied by automatic change of current window to
draw users attention to what they have to do and to reduce the number of manipulation
they have to do.

• Each manual primitive process uses a specific toolbox rather than the default one.

• Decisions can still be taken by the engineers after having made several hypotheses, but
also by the methodological engine itself when they are deterministic and imposed by the
method.

When a database engineer selects the execute item in the contextual menu of a process type
in the allowed state, the methodological engine acts on the state of several process types as
described previously (the selected process type is put in the running state and all other proc-
ess types in the allowed state are put back in their previous state), and automatically creates
a process of the selected type and starts it. The action on the history depends on the kind
of process type that is executed.

a. Recording the execution of primitive processes

An automatic primitive process type leaves its trace in the history by itself, so the methodo-
logical engine has nothing to do.

When a manual process type is encountered, the methodological engine executes the use of

9.2. HMI proposals 181

primitives function. It does that more subtly than a database engineer would do by clicking
on the item in the engineering menu because it also selects the suitable toolbox, according
to the method, and it raises the history window to the front. This last action will generally
improve the database engineer’s ease of working because it shows the new process added to
the history, and because the engineer must then open the products to use or modify. All
the actions of the engineer are automatically stored in the log file of the process.

When the database engineer specifies the primitive process is finished by selecting the end
use of primitives item in the engineering menu – this is one of the two only functions that
cannot be performed by the methodological engine – the log file is closed and the method
window is made current again to allow the engineer to execute a new process of the same
type or to terminate the primitive process type with the respective entry in its contextual
menu.

b. Recording the execution of engineering processes

When an engineering process type is encountered, the methodological engine simply exe-
cutes the new engineering process function which acts the same way as if it was pressed by
the engineer in a method-free project. The new engineering process becomes the current
one so that forthcoming actions are stored in its history. The current window remains the
method window (updated with the new process) because the operation most often per-
formed next is the selection of the first sub-process type to execute.

When the strategy of the current engineering process type reaches its end, the control is
automatically passed to the history window in order to allow the database engineer to select
the output products and to put an end to the process, using the end current process item in
the engineering menu – the second of the two functions that cannot be performed by the
methodological engine. The history of the engineering process is closed and the parent
engineering process becomes the current one again. The method window is automatically
brought to the front for the engineer to terminate the strategy of the current process type
with the terminate item in the process type title contextual menu.

c. Recording decisions

Some control structures of a strategy – if...then...else, while, do...until – impose the meth-
odological engine to take decisions. These are not the same decisions as the one taken by
the user on the choice of a product version. The decisions imposed by the method are yes
or no decisions. They will have their own dialogue box with the yes and the no possibilities
clearly shown, possibly modifiable by the user for weak decisions, always with the possibil-
ity of a comment as it can be seen in Figure 9.21. The decision and its comments are auto-
matically stored in the history upon confirmation.

The first case study in Chapter 11 illustrates all this perfectly by showing the evolution step
by step of a small project.

9.2.5. Complementary tools

A few tools provided by the methodological engine can be useful even without a method.

A. Schema analysis assistant

In a method driven environment, products are analysed when a process ends. Without a
method, these analyses cannot be performed automatically since no product model is
defined. But this kind of analysis can be interesting anyway. The CASE environment has to
provide a mean to perform them. It is the aim of the analysis assistant shown in Figure 9.22.
It allows engineers to conceive an analysis script with the structural predicates.

9.2. HMI proposals 182

Figure 9.21 A forced decision

In this example, the exists part of the condition returned no, so the result of
the expression must be no to, and the yes/no choice is greyed.

Figure 9.22 The schema analysis assistant

The large list at the right of the assistant window contains the script to use. Each line of
this script can be selected, one at a time, using the mouse. The buttons next to this list
allow the analyst to edit this script: to Add line at the end of the script, to Insert a line
before the selected one, to Remove the selected line, to Edit the parameters of the selected
line, to Clear the script, to Save it to disk and to Load it again, to use a built-in Predefined
script20, and to Copy the script in the clipboard for reuse in other programs (in a word
processor for reporting, for instance).

The left column contains available components for building the script. From top to bot-
tom, the first list contains categories of constraints (the objects concerned by the con-
straints: on entity types, on rel-types,...). On selection of a category, the second list is filled
with constraints of this category. The analyst can select one of these constraints in order to
Add or to Insert a new line in the script with this constraint. When the Add or the Insert
button is pressed, a new dialogue box (Figure 9.23) appears on screen to edit the new line.
It allows the analyst to edit the parameters of the constraint (some help about the syntax

20 Predefined scripts are general purpose scripts of common use directly built inside the CASE environment.

9.2. HMI proposals 183

and the semantics of the constraint is available with the Help button), as well as to prefix
the constraint with boolean operators: “and”, “or”, “and not”, “or not”.

On selection of a category of constraint in the assistant window, the third list in the left
column is filled too, with predefined rules stored in a library. This library is a mean for the
engineer to store some usual script chunks under a meaningful name. The library can be
edited with the Edit library button which opens the dialogue box shown in Figure 9.24.
The top right list of this window is the library. New entries can be added and existing
entries can be deleted or renamed. When a new entry is created (see Figure 9.25), a cate-
gory of constraint must be chosen for it. On selection of one library entry in the list of the
library edition window, the bottom right list is filled with the definition of that library
entry, and the left list is filled with all the constraints of the category associated with that
library entry. This library entry can then be edited in the same way as the script in the
schema analysis assistant. The whole library can be saved to disk and reloaded. A default
library, which can be edited as well, is automatically loaded when the CASE tool is started.

Figure 9.23 Line edition dialogue box for setting the parameters of the constraint
and prefixing the line with and, or, not. The Help button opens a help window

with the syntax and semantics of parameters for that particular constraint.

Figure 9.24 The schema analysis library edition dialogue box

Figure 9.25 Creation of a new library entry

9.2. HMI proposals 184

A script of the schema analysis assistant can be used within two modes (selectable in the
topmost field of the window):

• used in validation (as shown in Figure 9.22), the script is used in the same way as with
the method, the script states what a good product should be, and all the product com-
ponents that violate these rules will be reported

• used in search mode, the rules describe what the engineer wants to find, and all the
product components that match these rules will be reported.

When the assistant is executed (button OK pressed), a report is shown to the analyst if
some rules are violated or found (according to the use mode), as shown in Figure 9.26.
This window shows the first rule which is violated or found with the components of the
schema which violates or satisfy the rule. The buttons Previous and Next allow the analyst
to browse through all the rules of the script. When a schema component is selected, the
Goto button is made available and allows the CASE environment to select the component
in the schema and to show the schema with that selected component in the middle of the
window. The Select all button allows the analyst to select all the components of the bottom
list in the schema, while the Mark all button allows to mark21 the same components in the
schema. The Report buttons allows the analyst to save the whole report in a textual file.

Let us note that this assistant can be used by method analysts to define product models.
Indeed, the analysts can use the assistant to write a script and to copy it to their MDL texts
using the Copy button to defined schema models more easily.

Figure 9.26 Schema analysis report

B. Global transformation assistant

Another facility provided by the MDL language that should be available anytime is the
transformation scripts used for the configurable automatic process types. The global trans-
formation assistant shown in Figure 9.27 responds to this need. Its structure is similar to
the one of the analysis assistant. The large right panel shows a script of global transforma-
tions, which can be edited in the same way as the schema analysis scripts. The left column
are the available components: from top to bottom, all the global transformations22, all the
control structures22 and a library of predefined script chunks.

When a new entry is added to the scripts, parameters, which are structural rules, need to be
specified. For that purpose, the schema analysis assistant is used in search mode, its top

21 Marking is a function of the DB-MAIN CASE environment that allows components to be marked in a
persistent way (saved with the project) until voluntary unmarking, the traditional selection being volatile.

22 See Chapter 4 and Appendix C for a detailed description.

9.2. HMI proposals 185

most panel being replaced to remind the global transformation, as shown in Figure 9.28,
and its list of categories of constraints being limited to the object category concerned by the
global transformation. In the example of Figure 9.28, the global transformation “GROUP_
into_KEY” is only concerned by analysis constraints on groups.

The library edition window is shown in Figure 9.29. It works in the same way as the
schema analysis library edition window.

The global transformation assistant can be used by method engineers to write more easily
global transformation scripts which can be copied to the MDL file using the Copy button.

Figure 9.27 The global transformation assistant

Figure 9.28 The analysis assistant used for global transformation parameter edition

C. Error correction

The CASE tool will have three functions to compensate for errors in method execution:

• An incorrectly started process can be deleted with the delete key when it is selected.

9.2. HMI proposals 186

Figure 9.29 Global transformation library edition window

• A process that was incorrectly stopped, can be continued by selecting it and using the
continue process item in the engineering menu.

These two functions have to be used directly after the mistake, preferably. Indeed, deleting
a process in which a lot of work has already been performed is something people do not
like. And continuing a process whose output products have already been reused by subse-
quent processes, and so modifying these products, is senseless. The third function is for
parsimonious use in those “too late” cases.

• The edit input/output/update products item of the engineering menu allows the engineer
to add input or update products to an already running process, or to add output prod-
ucts to an already terminated process.

9.2.6. Configuring the CASE environment

One of the requirements still not taken into account is the necessity of several levels of con-
striction of the CASE environment to the method. It is handled by a control item in the
engineering menu that opens the dialogue box shown in Figure 9.30 to select a constriction
mode. Four modes are proposed. The first mode, strict use of the methodology, and the sec-
ond one, Permissive use of the methodology, are the two first levels of constriction cited in the
requirements. The third and last required level of constriction was the possibility not to use
the method. The DB-MAIN CASE environment offers a bit more with its third and fourth
entries. The No use of a methodology, but history control mode allows the engineer to actually
do not use the method, but to accept the help of the methodological engine to check the
coherence of his or her actions when organising the history. The No use of a methodology,
no history control mode really leaves the engineer alone, without any control. This is the
mode of the CASE environment before the integration of the methodological engine.

Figure 9.30 CASE environment control configuration

9.2. HMI proposals 187

9.2.7. Browsing through a history

A. Browsing through a project history and its engineering process histories

Browsing through a history is the simplest way of using the history and certainly one of the
most common, so it has to be as natural as possible to the CASE environment user. Hyper-
links seem to be the right tool. The history window always shows the current engineering
process, with all its sub-processes symbolised by rectangles. When a project is started or
loaded, the current engineering process is the root one. To see one of its engineering sub-
processes, the user can simply double-click on it with the left mouse button. The content
of the history window is then replaced with the selected engineering process. Doing the
same again and again, the user can go deeper in the history hierarchy. To go back one
upper level, the user can use the close function of the history window, by whatever mean
provided by the operating system (close item in the window menu, window close icon, or
keyboard shortcut). Closing the root engineering process window closes the project.

For the ease of browsing through the engineering process graphs, the history tree, as shown
in Chapter 6, with an example in Figure 6.9, can be presented in another window, the pro-
cess hierarchy window. Each entry of the tree, if it corresponds to an engineering process,
which is shown with bold characters, will be an hyperlink to the process; selecting a bold
tree entry will show the corresponding engineering process graph in the history window.

B. Browsing through primitive process histories

Primitive process log files can be very long and are, even if readable, rather difficult to
understand, so people generally want to look at them much less often than engineering
processes. Consequently, a fast access through a mouse click or a shortcut key combination
is needless and a simple menu entry suffices.

A primitive process can modify several products and a product can be modified by several
primitive processes. But every transformation, or log file entry, only modifies one product.
Indeed, a product can be modified according to the content of one or several other prod-
ucts (in an integration process for instance), but each basic transformation is always applied
to a single product. So a log file can be cut into several slices, each slice being made up of all
the log file entries concerning the same product [WEISER,84]. Putting together all the
slices concerning a given product gives its complete evolution. It is thus more interesting to
record all these slices separately and to reassemble them according to the needs. A menu
entry in the Log menu – this menu is supposed to be part of the supporting CASE environ-
ment – opens a dialogue box proposing to view log file slices by process or by product and
finally shows the requested information in a simple text browser.

9.2.8. History replay and transformation

The replay of a primitive process is a simple task as shown in Chapter 7. Two menu entries
allow a log file slice, or several ones, to be replayed either step by step or automatically.

History transformation is a personal task, as explained in Chapter 7. Indeed, each use of an
history requires some particular tools which are specifically dedicated. These tools need to
be programmed in Voyager 2 within the DB-MAIN CASE environment. The Voyager 2
language offers a series of facilities for these tasks:

• text file parsing that permits to read the log files easily

• string and list handling functions for managing the information buried in the histories

• access to the CASE environment repository for the management and transformation of
the products

9.2. HMI proposals 188

• GUI basic capabilities for human-machine dialogues

• traditional procedural language structure for easy learning and use.

Chapter 10

Architectural issues

After the presentation of the integration of the methodological engine in
the CASE environment with the user’s point of view in Chapter 9, it will
be presented with the CASE environment developer’s point of view. In a
first time, the general architecture of the CASE environment and, grossly,
the position of the methodological engine will be sketched. Secondly the
DB-MAIN repository will be described with the enhancements to store
the methods and the histories. The chapter will end with the update of the
kernel and of the graphical user interface (GUI) for supporting the new
requirements.

10.1. General architecture 190

10.1. General architecture
The general architecture of the DB-MAIN CASE environment is sketched in Figure 10.1.

The kernel contains all the basic functions of the CASE environment. It uses a repository,
which will be described in this chapter, to store permanent data such as all the database
schemas and references to texts. The texts are stored independently of the repository but
they have to be accessible by the CASE environment too. So the kernel includes a series of
repository access and management functions, as well as functions for transforming and ana-
lysing the products and their components. Some analysis functions, mainly text analysis
functions, use some patterns. These patterns are stored in libraries that can be used by sev-
eral projects. The kernel also contains a series of all-purposes basic functions and is open to
future developments.

At the top of the schema, the GUI is the link between the users and the kernel of the
CASE tool. It shows all the products textually or graphically, in different ways, in a multi-
windowed environment. It allows the users to handle these windows, to select and to act
on some parts of the content of the window and to use the tools of the kernel. Its role is
both to present all the data to the user and to control his or her actions.

Figure 10.1 The general DB-MAIN architecture

Control

Project

Method
History

Scripts

Functions

Patterns

Repository

 Data flow

Transfo.

Management

KernelKernelKernelKernel

AnalysisGlob. transfo.

Presentation

Voyager 2 abstract machineVoyager 2 abstract machineVoyager 2 abstract machineVoyager 2 abstract machine

Analysis

Access

Reverse eng.
AssistantsAssistantsAssistantsAssistants

Methodological engineMethodological engineMethodological engineMethodological engine

Texts

...

 Control flow

...

GUIGUIGUIGUI

10.1. General architecture 191

Between those two levels, the assistants are complex components with a GUI interface that
is aimed at automating some tedious and repetitive tasks that can be performed with the
kernel. Some of these assistants (global transformations, schema analysis) can be driven by a
script which can be stored independently.

Still between the GUI and the kernel, the Voyager 2 abstract machine is the component
than can run Voyager 2 programs and functions which have already been compiled by the
independent compiler. Voyager 2 functions can access and modify the repository through
the kernel. Voyager 2 programs can be run directly by users through the GUI and Voyager
2 functions can be called by the assistants, in global transformation or product analysis
scripts, as well as in response to the discovery by the reverse engineering assistant of some
structures compliant with given patterns.

In this thesis the methodological engine component is added. It is incorporated under-
neath the GUI so that:

• users can dialogue with it through the GUI

• it can influence the control performed by the GUI by restricting the access to a series of
functions that would normally be reachable in a method-free environment but which
are forbidden in a particular context imposed by a method

• it can use the GUI to show the method it follows and the state of each process type

• it can launch some operations in the kernel, in an assistant, or a Voyager 2 function

• it can access the repository through the kernel in order to consult the method to follow
and organise the history of the project.

The method and the history are stored in the repository. About the history, this seems
natural since it is intimately linked to the project. Concerning the method, the reasons to
store it in the repository may seem less straightforward, but a project can be very long, it
may last several months. If the method evolves during that time to comply with the needs
of newer projects, it cannot evolve for the current project, so it is necessary to make a copy
of the method when the project starts. Indeed, if the part of the method which has already
been used is modified, the history obtained with the original version of the method may
not match the new version anymore and become obsolete. Moreover, it is easier to main-
tain strong links between the project history and the method when they are stored in the
same place.

In conclusion, the implementation of the methodological engine must result in a brand
new module, an extension of the repository, an extension of the kernel with new functions
to access and manage the repository extension, and a thorough modification of the GUI.
No modification of the existing functions of the kernel, of the Voyager 2 abstract machine
and of the assistants are needed. The thorough modifications of the GUI are due to the fact
that every component of the GUI has to be aware of the presence of the methodological
engine when it shows itself: buttons and menu entries have to show differently if they are
enabled or disabled by the method, and dialogue boxes and messages have to use the cor-
rect terminology according to the current product models.

10.2. The repository
The DB-MAIN repository is a C++ object base. It is stored into main memory, except
texts, log files, descriptions and annotations which are stored in files. The kernel contains
procedures for unloading/loading the repository in a file. This choice is relevant for the
performance factor and because of the relatively small size of a project – the largest database
schemas being made up of no more than a few tens of thousand components.

10.2. The repository 192

The original repository is designed to store a single project with all its schemas, references
to its texts, and very basic semantic-free links between all the products. In this work, only
the extension made to this original repository are presented: the new parts of the repository
for storing the method to follow during the project and the history of the project.

10.2.1. Notations

The repository will be shown graphically, cut in several views, as a series of ERA schemas23.
The following product model can be used to read these schemas:

schema-model CplusplusObjectBase
title “C++ object base”
description

This C++ object base model is designed specifically for the representation
of the DB-MAIN repository

end-description
concepts

schema “object base”
entity_type “class”
is_a_relation “inheritance”
is_a “inherits”
sub_type “sub-class”
super-type “super class”
rel-type “rel-type”
attribute “property”
atomic_attribute “property”
compound_attribute “struct”
object “class”
processing_unit “method”
group “group”
role “role”
identifier “identifier”
primary_identifier “identifier”
secondary_identifier “identifier”
coexistence_constraint “coexistence constraint”
exclusive_constraint “exclusive constraint”
at_least_one_constraint “at-least-one constraint”
exactly_one_constraint “exactly-one constraint”

constraints
% This is a static model for schema reading, not requiring constraints

end-model

10.2.2. The original repository of the DB-MAIN CASE environment

The original repository of the DB-MAIN CASE environment is shown in Figure 10.2. A
project is an object of the System class. A project is made of several products which are either
texts, schemas or prod_sets. A text is a reference to an external file. A schema is a GER schema
according to the model presented in Chapter 3. Most classes of this repository (entity_type,
rel_type, si_attribute, co_attribute, role, group, constraint, collection, proc_unit,...) represent
the concepts of this model. The generic_object class is a special class which is inherited by
almost all other classes. It contains a global technical identifier, a class identifier, graphical
positions, other presentation attributes, and a series of flags for runtime use. The following
pages will present extensions of this repository.

23 As described in Chapter 3.

10.2. The repository 193

Figure 10.2 The original repository of the DB-MAIN CASE environment

10.2.3. The repository extension

The repository extension will be presented in two parts: the first one is aimed at the
method and the second one at the history. The first part is sufficient in itself for some tasks
like compiling a MDL source file. The second part can also be used independently of the
first one like during the performance of a method-free project. The link between these two
parts is straightforward and will be sketched in a third time.

Classes which are part of the original repository are drawn with a shadow.

A. The repository section concerning methods

This section of the repository is shown in Figure 10.3. In the bottom of the drawing, the
System class is the System class of the original part of the DB-MAIN repository. Only the
title of the class is shown because its properties and methods are not relevant here.

0-N 1-1sys_prod

1-N

1-1

special

0-N

1-1

sch_do

0-N 1-1

sch_col

0-N

1-1

rt_type

0-N
made_of

0-1
part_of

p_sub_expression

1-1

0-N

p_part_of

0-1

0-N

p_parameter
1-1

0-N

p_made_of

0-1

0-N

p_invokes

0-1

0-N

p_fct_call

1-1

0-N

p_decl

0-N

0-1

p_body

1-1

0-N

owner_pu

0-N1-1 owner_group

0-N
parent

1-1

owner_att

1-1

0-N
member_gr

1-1 1-Nmbr_cst

1-1

0-N
is_in

1-1

0-N
gr_comp

1-1 0-Ngo_note

0-N

1-1

go_env
0-N

1-1

general

1-11-N et_role2

0-N

1-1

et_role1

0-1
of

0-N

domain

0-N 1-1decomp

1-1

0-N

contains

0-N

1-1

col_do2

0-N

1-1

col_do1

0-N1-1 at_ro_gr

0-N

0-1

act_arg

P

P

P

P

P

P

P

P

text
path
type_of_file

System

System
name
short_name[0-1]
creation_date
object_id_val
txt_file
semantics_desc[0-1]
technical_desc[0-1]
id: name

sub_type

sub_type
value[0-1]

si_attribute
type
length
decim[0-1]
stable[0-1]
recyclable[0-1]

schema
short_name[0-1]
updated
logg

role

role
name[0-1]
min_con
max_con
semantics_desc[0-1]
technical_desc[0-1]

rel_type

real_component

p_statement
type
description[0-1]

p_expression
operator
constant[0-1]
description[0-1]

p_environment
type
mode[0-1]
id: p_decl.proc_unit

go_env.generic_object

p_component
type[0-1]
mode[0-1]
id: p_part_of.p_statement

p_made_of.p_statement

prod_set_elem

prod_set_elem
id: contains.prod_set

is_in.product

prod_set

product

product
name
version
creation_date
last_update
txt_file
semantics_desc[0-1]
technical_desc[0-1]
log
id: name

version
sys_prod.System

proc_unit

proc_unit
type[0-1]
mode[0-1]

owner_of_proc_unit

owner_of_att

meta_propertymeta_object

member_cst

member_cst
mem_role[0-1]

group

group
name
type[0-1]
funct
min_rep
max_rep
semantics_desc[0-1]
technical_desc[0-1]
id: name

owner_group.data_object

generic_object
object_id
object_type
flag
id: object_id

et_role

et_role
id: et_role2.role

et_role1.entity_type

ent_rel_type

entity_type

dbm_note
description

data_object

data_object
name
short_name[0-1]
semantics_desc[0-1]
technical_desc[0-1]

co_attribute

constraint

constraint
type

component

component
id: gr_comp.group

at_ro_gr.real_component

col_et

col_do
id: col_do1.collection

col_do2.data_object

collection

collection
name
short_name
semantics_desc[0-1]
technical_desc[0-1]
id: name

cluster

cluster
cluster_id
type
criterion[0-1]
id: cluster_id

decomp.entity_type

attribute
min_rep
max_rep
set_type

10.2. The repository 194

Figure 10.3 The repository part for storing the method

a. The method

A method class is attached to the system. The roles of the link show that every project has to
follow exactly one method. In fact, even method-free project will have a default permissive
method. This will permit several constraints to be defined and checked more easily. The
method class is defined by the data declared in the method section of an MDL listing.

b. Process types and product types

Every method is made up of several process types which are stored as instances of the proc-
ess_type class. Among all these instances, exactly one is the root process type of the method,
as indicated by the perform rel-type. All others are process types used by this root process
type or other sub-process types as declared in an MDL source. Every process type has some
local product_types and a strategy. Both the process types and the product types are identi-
fied by their formal name and are characterised by their readable title and an optional

0-N

0-1

uses

0-N

1-1

text_conform

0-1
part_of

0-N
made_up_of sub_stmt

0-1
part_of

0-N
made_up_of

sub_expression

0-1
1-1

strategy

0-N

1-1

schema_conform

1-1

0-1
perform

1-1

0-N

owner_param

0-1
0-N

model_expr

1-1

1-1

link

0-N
specialization

0-1
generalization

is_a

0-1 0-N
invokes

0-N

1-1

have_concept

0-N

0-1

form_arg

0-1 0-1
condition

0-N

0-1

concept_mo

0-1

0-N
act_arg

P

P

P

toolbox
name
title
nb_fct
functions[0-N]
description[0-1]
id: name

text_type

text_model
default_ext
nb_ext
grammar[0-1]

System

statement
type
glbtrsf[0-1]
state
(ord)
excl: sub_stmt.made_up_of

strategy.process_type
excl: glbtrsf

condition.expression
uses.toolbox
invokes.process_type

schema_type

schema_model
constraints

prod_set_type

product_type
name
title
weak
min_mul
max_mul
usage
description[0-1]

process_type
name
title
explain[0-1]
description[0-1]
id: name

parameter
integer[0-1]
string[0-1]
analysis_expr[0-1]
usage
type
mode
(ord)
id: owner_param.owner_of_parameter

(ord)
exact-1: model_expr.model

act_arg.product_type
string
integer
analysis_expr

owner_of_parameter

mod_concept
contextual_name
id: have_concept.schema_model

concept_mo.meta_object

model
name
title
description[0-1]
id: name

method
title
version
date
author
help_file[0-1]
description[0-1]
txt_file

meta_object

expression
not
weak
type
(ord)
exact-1: sub_expression.made_up_of

condition.statement

ADDITIONAL CONSTRAINTS

id(product_type):
 if(usage=global)
 name
 else
 name, form_arg.process_type
id(statement):
 if(strategy.process_type)
 strategy.process_type
 else
 (ord),sub_statement.made_of
id(expression)
 if(condition.statement)
 condition.statement
 else
 (ord),sub_statement.made_of

10.2. The repository 195

description. The process type class can also contain the declaration of a section (explain) in
the method help_file. Each product_type is also characterised by a weak property specifying
the degree of respect of products of this type to its model, by the min_mul and max_mul
properties specifying the number of instances this class should have, as described in Chap-
ters 4 and 5, and by its usage. This last property gives an interpretation to the form_arg rel-
type: if a product type is declared as global, the usage property identifies this fact and no
process type is linked through the form_arg relationship; if a product type is declared input,
output, update, intern or set locally to a process type, the usage property reminds the declara-
tion and a form_arg relation links the product type to the process type. Every product_type
instance is either a schema_type, a text_type or a prod_set_type instance.

c. Product models

Every text_type must be of a text_model and every schema_type must be of a schema_model.
Schema_model and text_model are both product models. As defined in Chapter 3, product
models can inherit their characteristics from other product models through the is-a rel-
type. Texts models are identified by their name, and they have a more readable title, an
optional description as well as a list of characteristic file extensions (default_ext, nb_ext) and
an optional grammar description file. Schema models have the same identifier, title and
description, plus a list of constraints and a series of concepts. The instances of the
meta_object class, which is part of the original repository, are a representation of all the pos-
sible product elements. The mod_concept class links some of these elements to schema
models while giving them their contextual_name.

d. Process type strategy

The strategy of a process type is made up of statements which are themselves control struc-
tures, transformation scripts, toolbox uses and sub-process uses. The type property specifies
this and indicates which of the optional glbtrsf property (transformation script), or the
optional condition.expression, uses.toolbox or invokes.process_type roles have an instance. The
state property is used during the performance of a project as explained in Chapter 9. Some
control structures (if, while, until) need some expressions as a condition. These expressions
can be very complex and made of several sub-expressions. Both statements and expressions
sometimes need parameters. A parameter is either a product model, a product type, a
string, an integer or a product analysis expression. The ord property in the statement,
expression and parameter classes is put between parentheses to show that it is not a real
property. It has been added to represent the fact that all the sub-statements of a statement,
all sub-expressions of an expression, and all parameters of a statement or an expression are
ordered. But this order is already kept by the fact that many-to-one rel-types are stored as
lists in our C++ object base, as explained later in this chapter.

In fact, the strategy is itself a single statement which can be a control structure with sub-
statements through the sub_stmt rel-type. All the strategy elements presented in Chapter 4
can be stored in this repository as follows.

• sequencesequencesequencesequence A;B end-sequenceend-sequenceend-sequenceend-sequence: A statement with a type property set to sequence is linked
through sub_stmt to two other statements, the first, A, with ord equal to 1, and the sec-
ond, B, with ord equal to 2. But the ord property is simply kept by the fact that the rela-
tion between the sequence and the A statement is the first in the made_up_of list, and the
relation between the sequence and the B statement is the second. The instances of the
repository classes representing this simple sequence are sketched in Figure 10.4.

• somesomesomesome A;B end-someend-someend-someend-some; oneoneoneone A;B end-oneend-oneend-oneend-one; eacheacheacheach A;B end-eachend-eachend-eachend-each: These structures are stored
in the same way as sequences, only the main statement type property differs, being some,
one or each respectively.

10.2. The repository 196

Figure 10.4 A sequence stored in the repository

• ifififif cond thenthenthenthen A;B elseelseelseelse C endifendifendifendif: The storage of this structure is a bit more complex
because the sub-statements have to be classified in two lists, when A and B are executed,
C cannot be executed and conversely. To solve this problem, this statement is stored as
the following one:

ifififif cond then sequencethen sequencethen sequencethen sequence A;B end-sequence elseend-sequence elseend-sequence elseend-sequence else C end-ifend-ifend-ifend-if

More precisely, each of both lists of sub-statements containing more than one statement
will be replaced by a sequence. Eventually, the if-then-else statements always have two
sub-statements, or only one when there is no else part.

Moreover, if statements have a condition. It will be stored as an expression. The storage
of an expression has the form of its evaluation tree: the root node (the one linked to a
statement, others are not) is the operator with the greatest priority (the type property
specifies the operator, except the not and weak declarations represented by the not and
the weak boolean properties), the operands being sub-expressions ordered as they have
to be evaluated.

Figure 10.5 shows the storage of the above statement.

Figure 10.5 An if-then-else structure stored in the repository

pa
rt

_o
f

sub_stmt 2

statement 1
type: if

glbtrsf: N/A
state: unused

statement 2
type: sequence
glbtrsf: N/A
state: unused

m
ad

e_
up

_o
f

expression
type: cond-type
not: cond-not

weak: cond-weak

condition

pa
rt

_o
f

statement 5
type: C-type
glbtrsf: N/A
state: unused

sub_stmt 2

pa
rt

_o
f

sub_stmt 1

statement 3
type: B-type
glbtrsf: N/A
state: unused

statement 2
type: A-type
glbtrsf: N/A
state: unused

statement 1
type: sequence
glbtrsf: N/A
state: unused

made_up_of

pa
rt

_o
f

pa
rt

_o
f

made_up_of

statement 4
type: B-type
glbtrsf: N/A
state: unused

sub_stmt 3

sub_stmt 1

sub_stmt 4

statement 3
type: A-type
glbtrsf: N/A
state: unused

pa
rt

_o
f

10.2. The repository 197

• repeatrepeatrepeatrepeat A;B end-repeatend-repeatend-repeatend-repeat; whilewhilewhilewhile cond repeatrepeatrepeatrepeat A;B end-repeatend-repeatend-repeatend-repeat; repeatrepeatrepeatrepeat A;B end-repeat untilend-repeat untilend-repeat untilend-repeat until
cond: These structures can be stored in a way similar to the if-then-else structure. When
the body of the loop is made up of several statements, repeat parts of these structures can
be replaced by:

repeat sequencerepeat sequencerepeat sequencerepeat sequence A;B end-sequence end-repeatend-sequence end-repeatend-sequence end-repeatend-sequence end-repeat

That way, repeat, while and until structure always have exactly one sub-statement. The
difference between the three structures lays in the value of the type property and in the
presence of a condition for the while and the until structures.

Let us note that confusion between the sub-statements cannot arise with the until and
the while structures as with the if-then-else structure because the body holds in a single
group, so the storage space can be optimised by not adding the sequence structure and
storing the repeat structure as the sequence structure.

• forforforfor (oneoneoneone|somesomesomesome|eacheacheacheach) S inininin P dodododo A;B end-forend-forend-forend-for: The body of the loop (the sequence) is
similar to the body of a repeat loop and can be stored in the same way. The main par-
ticularity of a for loop is the presence of two parameters: S and P. They are stored as
instances of the parameter class and linked to the statement through the inheritance
mechanism (statement is-a owner_of_parameter) and the owner_param rel-type. Both
instances of parameter have the type property set to product-type. Parameter S is the first
in the owner_param list (ord=1), its usage property is set to output and it is linked
through the act_arg (actual argument) rel-type to the declared product set type. Parame-
ter P comes next (ord=2), its usage is set to input and it is linked through the act_arg rel-
type to the declared product type.

• dodododo A(P1,P2): This statement, as well as all the following ones, is no more a control
structure, there are no more sub-statements. The statement instance has a type value of
do and a relation to the process_type instance A. According to the definition of A, the
statement may need to have some parameters. In fact, the statement must be in relation
with the same amount of parameters through the rel-type owner_param as A is in rela-
tion with product types via the form_arg rel-type, and they have to correspond two by
two: if the first product_type instance in relation with A as a usage set to input (respec-
tively outout and update), than the first parameter instance in relation with the statement
must be I-compatible (respectively O-compatible and U-compatible) with it.

• toolboxtoolboxtoolboxtoolbox T(P): A relation to the toolbox T through the uses rel-type is what characterises
this statement in addition to the relation via owner_param with a parameter, itself in
relation with the product_type P through the act_arg rel-type.

• glbtrsfglbtrsfglbtrsfglbtrsf (P,T1,T2,...): This is the only construct for which the statement instance has a
value for the glbtrsf property, set to (T1,T2,...). The statement just has a relation with a
parameter (possibly several) itself in relation with the product type P.

• externexternexternextern F “file”.function (typeP1,...) ... externalexternalexternalexternal F(P1,...): this two parts statement is
actually stored as if it was declared in a single part, as a pseudo-statement of the form:

externalexternalexternalexternal “file”.function (P1,...)

The first part being present only for the compile-time type checking, it does not need to
be stored. Hence the statement instance has its type property set to external and it has a
lot of relations with parameters. The first parameter instance has its type property set to
string and its string property contains file. The second parameter instance has a similar
form with its string property containing function. All other parameter instances are the
parameters of the function in the order they are declared. They can be of any type: inte-
ger, string, analysis_expr, product_type or product_model.

10.2. The repository 198

• extractextractextractextract Ext(source,dest); generategenerategenerategenerate Gen(source,dest): Both These two structures are simple
statements with three parameters: a string with the name of the extractor or the generator
(Ext or Gen), the source product_type, and the destination product_type.

• definedefinedefinedefine(P1,fct(P2,...)): This simple statement is in relation with a single parameter – the
set type (prod_set_type is-a product_type) – and with a single expression, the type of which
is fct, having a series of relations with parameters to store P2,...

B. The repository section concerning histories

The new part of the repository for storing the complex histories is shown in Figure 10.6.
Most non-shaded classes reduced to their title (method, statement, expression, text_type,
schema_type, prod_set_type) are those of the method part described above.

a. Processes

The process class is the kernel of all the process definitions. It is identified by its name, its
start_date and start_time altogether. The end-date and end_time are optional fields because
they cannot have a value while the process is not finished. The boolean property in_progress
is initialised to true when a process is created and is changed to false when the process fin-
ishes. It can be set back to true if an analyst decides to continue the process. Hence, the fact
that in_progress is true, and that end_date and end_time have a value shows the process was
stopped and is now continuing.

Figure 10.6 The repository section for storing histories

0-N

0-1

ttext_inst

0-1

0-N

tset_inst

0-N

0-1

tschema_inst

0-N

1-1

text_inst

0-1

0-1

start

1-1

0-N

set_inst

0-N

1-1

schema_inst

0-N

1-1

pp_inst

0-N

0-1

made_up_of

1-1

0-N

is_in

0-N 1-1io_proc

0-N

0-1

ep_inst

1-1

0-N
contains

0-1

0-N

cond_dec

P

P

P

text_type

text_instance

text

statement

schema_type

schema_instance

schema

prod_set_type

prod_set_instance

prod_set_elem
id: contains.prod_set

is_in.product

prod_set

product_instance
usage
label[0-1]

product
log
rejected

process
name
start_date
start_time
end_date[0-1]
end_time[0-1]
in_progress
description[0-1]
id: name

start_date
start_time

primitive_process

methodexpression

engineering_process
exact-1: ep_inst.statement

start.method

decision
yes_no[0-1]
coex: yes_no

cond_dec.expression

ADDITIONAL CONSTRAINTS

id(product_instance):
 if(type_of_object==TEXT_INSTANCE)
 io_proc.process, text_inst.text
 else if(type_of_object==SCHEMA_INSTANCE)
 io_proc.process, schema_inst.schema
 else if(type_of_object==PROD_SET_INSTANCE)
 io_proc.process, prod_set_inst.prod_set

10.2. The repository 199

b. Primitive processes

An instance of the primitive_process class is always in relation with a statement in order to
determine its characteristics. For instance, a schema copy primitive process must be in rela-
tion with a statement whose type is copy. During a project supported by a method, each exe-
cution of a primitive process type gives birth to a primitive_process instance. For the execu-
tion of a method-free project, in which there is no declared statement, two solutions can be
implemented.

• A few classical statement instances (with type new, copy, generate,...) can be created by
default at project start and all primitive processes can be connected to them. That way,
all the copy primitive processes are connected to a single copy statement, and so on for
all other primitive processes.

• A new statement is created automatically when a new primitive_process is created.

The first implementation has the advantage that the method part of the repository does not
evolve during the project life. But it has the disadvantage that the loading of the project in
a newer version of the CASE environment may make its functions unavailable since they
have no corresponding statement. The second solution has the advantages of the ease of
programming and of the independence of the project from the CASE environment release,
but the inconvenience of the evolution of the method part of the repository. It can also be
noted that the first solution has a fixed number of statement instances while this number
will grow in the second solution, but the number of primitive_instance will always keep
rather small, so this fact does not need to be taken into account.

c. Engineering processes

An engineering_process is an ep_inst instance of a do statement, except the root process of
the history which is directly linked to the method itself by the start rel-type. Indeed, every
engineering process type is used by a (possibly several) do statement, which is part of the
strategy of another engineering process type, except the root process type which is never
used by another engineering process type and which is declared as such in the method block
of the MDL method description. An engineering_process is also linked to all its sub-proc-
esses through the made_up_of rel-type.

d. Decisions

A decision can be of two different kinds:

• The condition of an if...then...else, a while, or an until statement, when evaluated, gives
a result (true/false, yes/no) which is the first kind of decision. In this case, the decision is
linked through the cond_dec rel-type to the expression of the condition and the yes_no
field stores the result of the expression evaluation.

• The decision to keep the best version(s) of a schema after several hypotheses had been
made are totally independent of the method. They will never play a role in the cond_dec
rel-type, and the yes_no attribute is useless. The decision is indicated by the products
linked to the decision. The boolean property rejected of each product instance, which is
initialised to false, is set to true for all the rejected product versions. Furthermore, the
rejected product versions are stored as input products of the decision process, as
explained below, and selected products are stored as update products of the decision
process.

e. Products

Products are the main elements of the CASE tool. They are part of the original DB-MAIN
repository. A product can be specialised as a schema, a text, or a product_set. The product_sets

10.2. The repository 200

can contain several products and a product can be in several product_sets. So, the
prod_set_elem class is simply an implementation of a many-to-many rel-type.

In a method driven project, a product is created with a certain type by a process, then it
can be passed to another process and be of another local type for this second process, and
so on with several processes. This leads to a many-to-many-to-many ternary rel-type
between a process, a product_type and a product. In a method-free project, no product type is
defined and the rel-types are only between a process and a product. The two kinds of rel-
types are implemented with the product_instance class, which must be either a
schema_instance, a text_instance or a prod_set_instance class. The usage property specifies
how the product is used by the process: in input, in update, in output, in intern, or as a set-
element in a set passed in input or in update. The last usage is explained by the fact that if a
process P passes a set S in input to another process P’, then S itself is the input product,
and all its elements I-compatible with the input product type must be accessible too with-
out being real input products. If S is passed in update, the reasoning is the same.

As explained in Chapter 9, Section 9.2.7, the log file of a primitive process can be sliced so
that all log entries modifying the same product are put together in their own slice. In the
repository, all the slices concerning a same product are stored in a single log file, each slice
being prefixed by an identifying label. This log file is a property of the product itself. The
labels are used to initialise the product_instance property label. Indeed, a process can modify
several products at the same time, but a product cannot be modified by several processes at
the same time. So, if the log file is attached to the process, the extraction of the slice con-
cerning a given product is rather complicated since it is necessary to browse all the log file,
to examine every entry and to extract only entries concerning the right product. When the
log file is attached to the product, extracting a slice is as simple as extracting a chunk
enclosed between two labels.

For example, the “LIBRARY/Conceptual” product in Figure 6.824 will be stored in the
repository as shown in Figure 10.7: it has an instance in each process in which it is gener-
ated or used, and each instance has its own type with a particular usage. Each schema_inst
object has a label value. The “LIBRARY/Conceptual” product log file must look like this:

*POT “L1”
*POT “L2”
... (Schema analysis and design actions)
*POT “L3”
... (Schema normalisation transformations)
*POT “L4”
*POT “L5”

where POT is the reserved keyword to indicate a label (a POinT in the log file). The first
one, “L1”, is appended when the product is created by the “New schema” primitive proc-
ess. The label “L2” begins the section dedicated to the primitive process “Analysis”. In fact,
the full “Analysis” log file is made of this section, plus all the sections attached to other
products modified by the same process, but “library.txt” is the only other product used by
the process, in input, so read-only. Then comes the “L3” label indicating both the end of
the “Analysis” section and the beginning of the new one, for the “Normalisation” process.
When the “Conceptual Analysis” engineering process ends, a schema_inst object is created
to use “LIBRARY/Conceptual” as the output product of “Conceptual Analysis”, and
another schema_inst object is created to make the product an internal product of the
“LIBRARY” engineering process. These schema_inst objects have no label because they are
created only at the beginning of a process. When the “Logical Process” begins, the label
“L4” is added in the same way. “L4” is immediately followed by “L5” marking the “Schema

24 see Chapter 6.

10.2. The repository 201

copy” process. Note that the schema copy being an automatic process type, no entry is
appended to the log file during its execution.

C. The whole repository extension

The assembling of the two parts of the repository presented above is straightforward since
the classes that have the same name in both schemas are the same classes: statement,
text_type, schema_type, prod_set_type, expression and method classes.

When a project supported by a method starts, the method is stored in the repository as
explained above and the history which follows this method is attached to it. For a method-
free project, a simple default method built in the CASE environment is automatically used.
This allows all the constraints (for instance, the 1-1 role played by primitive_process in
pp_inst, and the exact-1 constraint in engineering_process) to be satisfied. This default
method is shown in Figure 10.8. Its storage in the repository is shown in Figure 10.9.

When the extension is appended to the full repository, all the classes actually inherit of the
generic_object class. This common class, which is part of the original repository, is not
shown on the drawings to avoid to overload them without adding useful information.

Figure 10.7 A schema in the repository

m
ad

e_
up

_o
f

m
ad

e_
up

_o
f

 m
ade_

up_of

m
ad

e_
up

_o
f

m
ad

e_
up

_o
f

m
ade_up_of

LIBRARY/
Conceptual

engineering process
Logical Design

schema_inst
usage: intern

label:

schema_type
Conceptual

schema_type
ERA

engineering process
Conceptual Analysis

schema_inst
usage: output

label: L1

primitive process
New schema

schema_inst
usage: input

label: L5

schema_inst
usage: update

label: L3

primitive process
Normalisation

schema_inst
usage: input

label: L4

schema_inst
usage: output

label:

engineering process
LIBRARY

primitive process
Schema copy

schema_inst
usage: update

label: L2

schema_type
Normal ERA

primitive process
Analysis

10.2. The repository 202

No method

Do whatever you want

Figure 10.8 Default method for method-free projects

Figure 10.9 Default method storage in the repository

10.3. Parsing an MDL source file
An MDL source file is parsed with an LL(1) parser which uses a simple lexical analyser.

The lexical analyser reads one token in the source file each time it is called. A token is the
largest sequence of characters which form a basic unit of the language. They can be:

• an identifier, beginning by a letter or symbol “_”, and made of letters, figures and sym-
bols “-” and “_”

• a number, made of figures only

• a string, made of any character enclosed between double quotes; to avoid confusion, a
double quote inside a string must be prefixed by symbol “\”, and this symbol itself must
be doubled

• any other character.

Spaces, end-of-lines and comments (starting with symbol “%” and running to the end of
the line) are simply ignored.

The parser works in a top-down fashion. The source file is read sequentially, token by
token, one time. At every moment, the file has a treated first part and a non-treated second
part. The first token of the second part is always read in advance and can be used to decide
of the path the analysis has to follow. For instance, if the treated part of the file is the fol-
lowing:

... if (ask “Do you want an Oracle DDL?”) then do GenerateOracle

the parser hopes to find either the end of the if...then structure or the second part of the
if...then...else structure. Since the first token of the non-treated part is known, the parser
can work in the following way:

st
ra

te
gy

uses

performlinkSystem

toolbox
title: Do whatever you want

statement
type: toolbox

process_type
title: No method

method
title: No method

10.3. Parsing an MDL source file 203

if first-token=“end-if” then
do generate-if-then-structure-in-repository

else if first-token=“else” then
begin

do parse-else-part
go generate-if-then-else-structure-in-repository

end
else

error-message “syntax error”

The result of the parsing is stored in the repository.

For a more complete explanation about parsing texts written with LL(1) languages, [AHO,
89] is recommended.

10.4. The GUI
The DB-MAIN CASE environment is a C++ program designed for operating systems with
a graphical user interface. In other words, it is build with an object oriented architecture
and its GUI interface is event based. An eventeventeventevent is anything that can happen outside an
application that forces the application to react. For instance: a click on a mouse button, a
mouse move, a press on a keyboard key, a move of a window which forces other windows
to be redrawn,... Every window (product, history or dialogue box) is an object inheriting
from objects of the programming environment libraries. All these objects have methods
which are associated with events in order to be automatically executed when one event
occurs. For instance, most dialogue boxes have an “OK” button. Such a dialogue box is
managed by an object that contains an OK method. This method is associated with two
events: a click with the mouse on the button or a press on the ENTER key.

This GUI will be modified in several steps:

1. The CASE tool must be able to load a method and to display it.

2. The history window must be extended in order to handle the complex histories.

3. The methodological engine must be implemented.

4. The GUI has to reflect the current state of the project.

10.4.1. Loading a method

The CASE environment must be able to load a method and to display it. The dialogue box
associated to the File/New project menu entry must have a new field that allows the user to
select a file generated by the MDL translator. When the method is loaded in the repository
extension, a new window, the method window, must be created to show the method as
presented in Chapter 4 and to allow users to browse it as presented in Chapter 9. The new
method window can be created in the same way as other history and product windows. Its
associated object can inherit of the same objects from the programming environment
libraries as those windows. It must have its own methods for:

• drawing the method algorithms

• browsing through the method

• reporting functions (print and copy to clipboard).

10.4.2. History window extension

The history window must be extended in order to be able to show and to manage the com-

10.4. The GUI 204

plex histories with all their views as presented in Chapter 6. The DB-MAIN CASE envi-
ronment history window originally contains only products, no processes. These products
already have a log file. The extension of this window consists in:

• expanding the history window to draw the processes stored in the repository extension
and all the links between processes and products

• improving all existing methods of the history window associated object in order to take
into account the processes

• expanding the history window to show the various views of the history

• adding all the methods needed to create, stop and continue processes

• adding all the methods that allow the analyst to take decisions

• adding all the methods needed to browse through the history

Furthermore, the engineering menu presented in Chapter 9 (Figure 9.9), which is aimed at
starting the methods needed to create the complex history, can be implemented too.

10.4.3. The methodological engine

When both the method window and the history window are ready, the basic elements of
the methodological engine can be implemented. A methodological_engine class has to be
designed. When the CASE environment is started, one object of this class is created; it will
be destroyed when the CASE environment is stopped, and there will never be a second
instance. This class is responsible of the following activities:

• following of the method by managing the state property of all the statements in the
method and calling the new methods of the history window for the creation and the ter-
mination of processes

• evaluating the conditions encountered in the control structures of the method

• checking the product validity when engineering process starts and when a primitive or
an engineering process stops

So the methodological engine does not really have a direct impact on the GUI: it is hidden,
only its actions can be seen. The methodological engine will be studied more precisely in
Section 10.5.

10.4.4. The GUI look and feel

Finally, the GUI has to be updated in order to reflect the current state of the project. Two
aspects have to be covered: the availability of the tools in the CASE environment, and the
naming of every element of the GUI.

A. Availability of the tools

The availability of the tools in the CASE environment has to depend on the project prog-
ress. During a method-free project, every tool must be available at any moment25. During a
method supported project, the availability of the tools has to depend on the use of the tool-
boxes: every product modification tool has to be disabled when no manual primitive proc-
ess type instance is active, and only tools in the toolbox associated to such a process type
must be available when one instance is pending. To do so, a complete list of the tools avail-
able in the CASE environment must be established, each tool must be to uniquely named,
and this list must be made available to the MDL translator.

25 except when their own preconditions are not satisfied, but this is due to their intrinsic properties, not to
the method, and this was already true in the original version of the CASE tool.

10.4. The GUI 205

a. Menu entries

Each GUI element can be associated with one or several events and each event can be asso-
ciated with at least one GUI element. Each event is associated with one method and a
method can be associated with several events. In particular, each menu entry is associated
with a draw event among others. This event occurs when the menu is shown. The class of
the object associated with the windows containing that menu can contain a method which
is executed in response to the event to specify how the menu entry has to be shown; this
method can enable or disable the menu entry. So such a method has to be defined for every
menu entry. This method must be aware of the current state of the project.

b. Tools in toolbars

The icons in toolbars can be linked to the same events as the menu items. So the methods
designed for the management of the menus are automatically reused for the management
of the toolbars too. The toolbars simply need to receive a draw event to be displayed cor-
rectly.

c. Keyboard shortcuts

Some keyboard shortcuts, as well as some clicks on a mouse button when the mouse points
at some specific places can also be linked to the same events. To ease the use of the mouse,
the CASE environment can be put in some special modes; for instance the new entity-type
mode can be activated/disactivated in a schema graphical view when the new entity menu
entry is selected, a new entity type being created each time the mouse button is pressed
while this mode is active. These modes have to be taken into account too.

d. Dialogue boxes

Some dialogue boxes have to behave according to the project too: property boxes for prod-
uct elements (for instance, an entity type property box) can have to allow analysts to mod-
ify the properties when the toolbox of an active manual process permits it, and not the
remaining of the time. To do so, every property box associated class have to handle a read-
only parameter which must be passed to them at opening time and which is used to initial-
ise and to draw each dialogue element (edition zone, button,...).

e. Other events

Without responding to an event, a Voyager 2 program, some MDL primitive processes and
the history replay function can also execute directly some functions of the CASE environ-
ment.

f. Tools inventory

To enable or disable the use of every function of the CASE environment by all the activa-
tion means presented above (menu, tool bar, keyboard shortcut, mouse click, dialogue box,
Voyager 2 program, MDL method, replay function), a complete inventory of these func-
tions must be prepared. This inventory has been made for the version 6.0 of DB-MAIN. It
is shown below as a table, each line representing a function, each column representing an
activation mean, each cell containing more information about the use of the activation
mean of the column by the function of the line. A cell is left blank when the function can-
not be used with the activation mean. Let us analyse a few functions and draw the inven-
tory in the table below.

When DB-MAIN is started for the first time, the engineer selects the file/new project menu
entry or the corresponding button in the standard tool bar. Both these events are connected
to the New project dialogue function which opens the Project properties dialogue box. When

10.4. The GUI 206

the engineer has entered some data, he or she clicks on the OK button, this starts the Cre-
ate project function; Create project can also be started from the Open project dialogue box or
by the create(SYSTEM,...) Voyager 2 function. When the engineer edits a schema, the stan-
dard Copy and Paste edition functions can be called with the Edit menu or with keyboard
key combinations. In textual view, the engineer can draw a new entity type using the
New/New entity type menu entry, using its corresponding button in the standard tool bar,
or using the New button in the property box of another entity type. In a graphical view,
the same three events simply put the CASE environment in the New Entity Type Mode
(NETM), until one of the three is used again. While the NETM mode is active, each click
of the mouse button in the middle of the schema window creates an entity type at the posi-
tion pointed by the mouse by calling the create entity type function. It can also be called, in
any mode, by selecting the Edit/paste menu entry, by its keyboard shortcut (CTRL+V), by
the integration function, by a Voyager 2 program, or by the history replay function. The
DB-MAIN CASE environment is transformation based; an example of transformation is
the entity type into rel-type transformation which can be executed by several means too.

The New project dialogue functions just opens a dialogue box. The create project function
cannot be performed from a toolbox, since it must be done only once before the toolboxes
are available. The Copy function does not modify the product and so does not need to be
disabled. But the Paste function can modify products by creating new elements, so it is
worth to consider it as a tool that can be used or not in a toolbox, it will be named: create.
This name is written in the right-most column of the table. Since the create tool works for
any kind of product element, more restrictive tools can be defined as well: create-entity-type,
create-rel-type, create-attribute,... In the same way, the creation of entity types in textual
view or the entry in NETM mode in graphical view can be linked to the same create-entity-
type tool or the more general create tool. Finally, the global transformation is itself a tool.

The same analysis has to be performed for all the functions available in the CASE environ-
ment. The result of the complete analysis is presented in Appendix E, while the reduced
analysis above is summarised in the table in Figure 10.10.

Functions Menu Tool bar KS Mouse Dialogue boxes V2 Meth Repl Name

New project dialogue File Standard

Create project Project properties
Open project

√

Copy to clipboard Edit Ctrl+C

Paste from clipboard Edit Ctrl+V create
create-entity-type
create-rel-type
create-attribute
create-processing-
unit
create-role
create-group
create-collection

New entity type dialogue New (TV) Standard
 (TV)

ET properties (TV) create-entity-type
create

New entity type mode
(=NETM)

New (GV) Standard
 (GV)

ET properties (GV) create-entity-type
create

End new entity type
mode

New
Text standard
Text compact
Text extended
Text sorted
(NETM)

Standard
 (NETM)

ET properties (GV)
 (NETM)

Create entity type Edit/Paste Ctrl+V Left
(NETM)

Schema integrate √ √

Entity type -> rel-type Transform Transfo Global transfo.
Adv. global transfo.

√ tf-ET-into-RT

Figure 10.10 An excerpt of the functions inventory

10.4. The GUI 207

The naming of every element of the GUI has to be function of the project advancement. In
a method-free project, as in the original methodology neutral version of the DB-MAIN
CASE environment, every schema component has its GER-compliant name and every text
component has its traditional text edition name. When a method supported project is
active, all the concept names used in the GUI have to be the names defined in the model
associated with the currently edited product. So, when a schema compliant with a rela-
tional model is being edited, the words “entity type” should appear nowhere and the word
“table” should be used instead. The concerned GUI elements are: the menus, the status
bar, the graphical tool bars, the dialogue boxes and every other window.

10.5. The methodological engine
The methodological engine is the new part of the CASE tool that guides database engineers
during the whole performance of a project. It must:

• follow the method, that is to say:

− manage the state of the statements in the method

− execute automatic primitive process types

− help the engineer in the use of manual primitive process types

− automatically start new engineering processes and terminate them to help the engi-
neer by doing tedious actions.

• evaluate expressions in conditional control structures (alternatives and loops)

• evaluate the conformity of products with their models.

This is why the engine naturally takes its place in the architecture where shown in Figure
10.1, just below the GUI to be able to control it entirely, with a direct link to the kernel to
manage the state of the statements and to manage the history, and with direct links to the
assistants and to the Voyager 2 abstract machine to execute automatic primitive processes
and to check product validity.

10.5.1. Following a method

A. Management of the state of process types and control structures

Chapter 9 showed that every process type and control structure in a method can have sev-
eral states according to the state charts in Figure 9.13, Figure 9.14, Figure 9.15, Figure
9.16, and Figure 9.17. The methodological engine has the responsibility of managing all
the state charts individually and altogether. Indeed, a global coherence must be preserved.
For example, a process type cannot be in the done state if some of its sub-process types are
in the running state. The methodological engine will have to check the following rules
whenever it has to perform an action:

• a process type or a control structure can only be put in the allowed, running or body-run-
ning state if its father (the process type or control structure that encompasses it) is in the
running state or in the body-running state respectively

• the interrelations between a control structure and the components of its bodies should
follow the requirements described in Chapter 9, Section 9.2.3.

Hence, the methodological engine needs:

• a function that checks the current state of the project in order to validate a transition in
the state chart of a process type or a control structure according to the state of its father,
according to its nature, and according to the state of some of its siblings

10.5. The methodological engine 208

• a procedure that manages the transitions in various state charts according to the control
structures in use.

B. Performing automatic process type

When a database engineer decides of the performance of an automatic primitive process
type in the allowed state, not only the methodological engine has to change the state of the
process type to running according to its state chart, but it can also order the correct tool to
perform the job by simulating the actions (objects selection in project window and menu
entries selection) the engineer should normally do to start the same job.

For example, when a “generate STD_SQL(PhysLibrary,LibraryScript)” primitive process
type is ordered through the method window, the methodological engine will:

• put this generate process type in the running state

• select one product of type PhysLibrary in the project window

• select the File/Generate/Standard SQL menu entry that will perform the generation proc-
ess on the selected product

• perform the two last operations again with each other product of type PhysLibrary.

• put the generate process type in the done state.

Each automatic primitive process type (see Chapter 5 for the complete list) has its own way
of working, as depicted above for the generate process type. Doing the same analysis in
detail for each of them is rather long and not of great interest here because it is very techni-
cal and dependent on the implementation of the CASE tool. It is a simple interfacing
problem between the methodological engine and the CASE tool functions.

C. Performing manual process types

When a manual primitive process type state is set to running, a first process must always be
created. Other instances are only created when a database engineer decides to perform sev-
eral versions of the process. So the creation of the first process of a given type is a manda-
tory action, while the creation of the others is subject to the decision of the database engi-
neers. To minimise the handling, the methodological engine can start the first new process
by itself: it will emulate the selection of the Engineering/Use primitives menu entry.

When the manual primitive process is performed, the database engineer is the only one
who can decide of its end. The methodological engine has to leave him or her the responsi-
bility of terminating the use of the primitive process type, so it can do nothing.

The most important effect of starting a new manual primitive process is the availability of
the tools to the engineer according to the method. But, as explained in Chapter 9, section
9.2.3, the GUI can manage this without the need of the methodological engine since all
the necessary information are directly accessible in the repository.

D. Starting and ending engineering processes

Similarly to the treatment of manual primitive process types, a first engineering process can
be started automatically by the methodological engine when an engineering process type
state chart transit from allowed to running. Other processes of the same type can be started
manually when needed only.

When the strategy of the the engineering process type reaches its end, the process should be
ended too. The methodological engine can do it by emulating the selection of the End
engineering process entry in the Engineering menu.

10.5. The methodological engine 209

10.5.2. Product and expression evaluation

A strategy can contain some control structures that require the evaluation of an expression:
if...then, while, until, for. These expressions can be of several types:

• A simple question asked to the database engineer: askaskaskask "question". A dialogue box show-
ing the question and two buttons labelled “yes” and “no” suffices to wait for the engi-
neer’s answer.

• An external function evaluation: externalexternalexternalexternal function(parameters,...). A simple call to the
module executing external functions will do the job.

• A product set evaluation functions: count-greatercount-greatercount-greatercount-greater (product-set, nb) for example. To
evaluate such functions, the methodological engine requires a function that counts the
numbers of elements in a set. The use of a traditional mathematical comparison opera-
tor (> in the example above) will do the remaining.

• A schema analysis function: existsexistsexistsexists (schema-type-or-set, schema-analysis-rule). This func-
tions looks a schema for constructs that satisfy a structural rule. The methodological
engine requires a complete schema analysis expression evaluation engine that must be
able to evaluate all the predicates listed in Appendix A, possibly more, as well as more
complex expressions (using and, or, not operators) made of these predicates. Such an
evaluation engine is rather long to write (a lot of predicates) but rather simple: it con-
sists in browsing through the CASE tool repository.

• A model evaluation function: modelmodelmodelmodel (peroduct-set, product-model). A model being made
of several structural rules, this function has to look a schema for constructs that violate
one or more of the structural rules. The methodological engine can use the same schema
analysis expression evaluation engine as above to do so. The only two differences in the
use of this engine are the following: (1) only one rule to evaluate with the exists func-
tion, several rules to evaluate with the model function, a schema being compliant with
the model if and only if all the rules are satisfied; (2) the exists function looks for con-
structs that satisfy a rule, while the model function looks for constructs that violate a
rule, one result being the negation of the other.

The product compliance evaluation that is required when a process ends (see Chapter 4,
Section 4.2.2) is similar to the model evaluation function.

Chapter 11

Case studies

This chapter presents two case studies:

• The first one concerns a simple forward engineering process applied to
a small library information system. This elementary case study shows
how to define a simple method and to use the DB-MAIN CASE
environment with the method step by step. This is a straightforward
and imperative method without subtleties and difficult decisions to be
taken by engineers.

• The second one is an excerpt of a complex reverse engineering process.
Its aim is to show how a method can be used only to help and guide an
engineer while giving him maximum freedom. The engineer has to
make hypotheses and to take decisions.

11.1. First case study: a simple forward engineering project 212

11.1. First case study: a simple forward engineering project
The small case study concerns a library. It contains books that can be borrowed. The data-
base is aimed at registering the books of the library, the borrowers and their borrowings. Its
complete definition was given during an interview. The interview report will be used to
start the project. During the design, this schema will be transformed into a relational
schema and an SQL DDL script will be generated. In a first time, Madam method engi-
neer defines a method to help engineers to conduct this kind of project. In a second time,
Mister database engineer uses this method to perform the project.

11.1.1. Defining the method

The MDL development environment is started. The method engineer starts a new method
using the New item in the File menu. A new blank text editor window appears on the
screen and the engineer can start designing the new method. The whole method is listed in
Appendix F.

A. Defining the product models

In a first step the method engineer makes an inventory of the products the database engi-
neers will have at their disposal and what they will have to produce:

• The requirements of the projects database engineers will have to use as the starting point
of their work are texts stored in .txt files.

• Database engineers will have to produce a conceptual schema which is a formal image of
the requirements they will receive, a relational schema which is a semantically equivalent
translation of the conceptual schema, a physical schema which expresses the relational
structures according to a particular RDBMS, and an SQL DDL script for creating the
database within the DBMS.

She can now define product models to represent all these products. She defines the
“TEXT_FILE” model with a “.txt” extension for the requirements and the SQL_FILE
model with a “.ddl” extension for the SQL DDL scripts. Then she defines the “CON-
CEPT_SCHEMA” model. She first gives the model the more readable name “Conceptual
schema model”. She adds a small description telling the purpose of the model that will
appear on the users’ screen when they need some help. Then she decides what concepts of
the GER model have to be present in the conceptual model and what name they will have;
she decides to keep every concepts but those that have a physical or navigational aspect –
collection, referential constraint, inverse constraint, access key – as well as those that are
process oriented – object, processing units, call, decomposition or in-out relations – and to
keep their names. Finally, she declares a series (25) of constraints on the model: for
instance, a conceptual schema must have at least one entity-type, each of them must have
at least one attribute.

In the same way, she defines the “LOG_SQL_SCHEMA” and the “PHYS_SQL_
SCHEMA” models, intended to specify relational logical schemas and physical SQL sche-
mas respectively. The complete product models are in the listing in Appendix F.

B. Declaring process types

When the product models are defined, the method engineer can describe how to transform
them through the process types. Since she knows what products will be available to data-
base engineers and what products they will have to produce, she will work in a top-down
fashion: she will begin by describing the root process, whose strategy decomposes the whole
work in several main phases; then she will describe these phases by decomposing them into
smaller tasks and so on.

11.1. First case study: a simple forward engineering project 213

a. The main process type

The main process type, named “FORWARD_ENGINEERING”, is a simple sequence of
main phases showing how to produce all the required products: after collecting all the
interview reports at his disposal, the database engineer will have to analyse and translate
them in a conceptual schema, then he will have to transform the conceptual schema into a
logical one, to update it into a physical schema, and finally code the SQL DDL script. Its
listing is in Appendix F and its graphical representation is shown in Figure 11.1.

Figure 11.1 The main process of the method

b. The conceptual analysis phase

The conceptual analysis phase uses the interview reports as an input product and has to
provide an output conceptual schema. It can be realised in three steps: preparing a blank
working sheet, drawing a raw conceptual schema, and refining the conceptual schema. The
first step is a standard one build in every CASE environment. The second step is a human
task: the interview reports must be analysed and translated into a schema. To let human
engineers work, the CASE environment has to provide them with tools in a toolbox. This
toolbox, named “TB_ANALYSIS” contains tools for creating, modifying and deleting
entity types, rel-types, attributes, roles and groups. Finally, the third step of the conceptual
analysis phase is manual too. It uses the toolbox “TB_CONCEPTUAL_NORMALISA-
TION” which provides tools for modifying and transforming the components of the
schema drawn in the second step. It can be noted that a log file does not need to be

Forward engineering

Interview report

NEW

Interview report

Conceptual schema

Conceptual analysis

Conceptual schema

Logical schema

Logical design

Logical schema

Physical schema

Physical design

Physical schema

SQL database definition script

Coding

11.1. First case study: a simple forward engineering project 214

recorded for the analysis process, but it is needed during the conceptual normalisation.
Indeed, since the drawing step starts with a blank sheet, the final schema suffices by itself to
know what is done; the fact that a given entity type was drawn before or after another one
is not important. But the method engineer wants the database engineers to be able to
remember what normalisation transformations they performed during the third step. The
“CONCEPTUAL_ANALYSIS” process type is shown in Figure 11.2. It must be noted
that the “CONCEPTUAL_ANALYSIS” process type has to be placed before the “FOR-
WARD_ ENGINEERING” description to avoid forward referencing that is forbidden in
the MDL language.

Figure 11.2 Conceptual analysis strategy

c. The logical design phase

The logical design phase uses the conceptual schema and produces a logical schema. This
will be performed in two steps. In the first one the conceptual schema will be roughly con-
verted automatically by global transformations of the CASE environment. They are
grouped in a sub-process type named “RELATIONAL_TRANSLATION”, itself divided
in five simpler steps:

1. a global transformation for transforming all is-a relations into rel-types

2. three transformations for transforming complex rel-types as well as rel-types with multi-
ple entity types roles and non-binary rel-types into many-to-one binary rel-types

3. transformations for flattening entity types that will be performed several times until a fix
point is reached, that is to say while there remains compound or multivalued attributes

4. the fourth step prepares the job of the fifth one by adding some technical identifiers to
entity types that need one

5. transformation of all the rel-types into referential attributes and constraints.

Since the conceptual schema is one of the final products of the project, it cannot be modi-
fied, so the logical design has to start by doing a copy of the schema, and it has to work on
that copy. The method engineer decides that the raw logical schema will also be copied
before the second step of the logical design in order to keep a trace of the intermediate state
in the history. This second step of the logical design is a human activity aimed at cleaning

Conceptual analysis
Interview report

Conceptual schema

Conceptual schema

NEW

Conceptual schema

Interview report

Analysis

Conceptual schema

Conceptual normalisation

11.1. First case study: a simple forward engineering project 215

the logical schema that can be realised with the “TB_NAME_CONVERSION” toolbox.
The graphical representation of the “LOGICAL_DESIGN” phase is shown in Figure 11.3
and its “RELATIONAL_TRANSLATION” in Figure 11.4.

Figure 11.3 The logical design strategy Figure 11.4 The relational design strategy

d. The physical design phase

The physical design phase (Figure 11.5), named “PHYSICAL_DESIGN”, begins by copy-
ing the logical schema to preserve it. The first task consists in setting access keys on primary
keys and foreign keys that deserve it. Since simple rules exist to perform this task, it is done
automatically by global transformations. The second task is aimed at distributing the tables
(entity types are renamed tables in a relational schema) among files. It could be possible to
automatically put all the tables in a single file or to put each table in its own file, but the
method engineer prefers to permit the database engineers to decide on a better distribution,
for instance, by grouping two relevant tables in one file and three other relevant tables in a
second file. So she declares the “TB_STORAGE_ ALLOCATION” toolbox.

e. The coding phase

Finally, the phase named “CODING” (Figure 11.6) allows the CASE environment to
automatically generate an SQL DDL script. This coding can be prepared by database engi-
neers by copying the schema and adding some properties to the table description that can
be understood by the DDL generator. So, the method engineer declares the “TB_SET-
TING_PARAMETERS” toolbox and plan its use just before the generation.

C. Declaring the method

The only remaining task for the method engineer is to specify some properties for the
method itself in the mandatory method paragraph. The most important characteristic of
this paragraph is certainly the perform clause that specifies that the “FORWARD_ ENGI-
NEERING” process type is the root process type.

Logical design
Conceptual schema

Logical schema

Conceptual schema

Raw logical schema

COPY

Raw logical schema

Relational design

Raw logical schema

Logical schema

COPY

Logical schema

Name conversion

Relational design Relational logical schema

Relational logical schema

Process is-a relations

Relational logical schema

Process non-functional rel-types

Relational logical schema

Process attributes

Relational logical schema

Process identifiers

Relational logical schema

Process references

11.1. First case study: a simple forward engineering project 216

Figure 11.5 Physical design strategy Figure 11.6 The coding process strategy

D. Compiling the method

When the method definition is finished (see listing in Appendix F), the engineer saves it
and compiles it using the menu item MDL/MDL/MDL/MDL/CompileCompileCompileCompile. A new window appears on the
screen with the graphical representation of the root process shown in Figure 11.1. The
engineer can then browse through the method to check her job.

Finally, she generates a .lum file with the compiled version using the menu item File/File/File/File/GenGenGenGen----
erateerateerateerate LUMLUMLUMLUM. This file can be distributed to database engineers who can use it to perform
new projects.

11.1.2. Performing the project

A. Starting the new project

The DB-MAIN CASE environment is started, its workspace is blank. The analyst creates a
new project that he will fulfil using the “forward.lum” method defined above.

When the project is created, the project window is opened, and, on top of it, another win-
dow containing the root process of the method (Figure 11.1) displayed in a graphical way,
with the “New” process type shown in the allowed state (Figure 11.7).

The analyst executes a process of type “New”, using the ExecuteExecuteExecuteExecute item of the contextual
menu of this process type (Figure 11.8), to add an interview report (“library.txt”) to the
project. In Figure 11.8, the “New text” process has been created, and the “library.txt” text
has been added to the history. An arrow shows that the text is the output of the process.

In the method window, the “New” process type is in the allowed state, and a second one,
“Conceptual analysis”, too. It means that the engineer can choose either to collect as many
interview reports as he wants, or to proceed with the conceptual analysis of these reports. It
is to be noticed that, during the execution of the “New text” process, the “New” process
type was in the running state, shown with the associated colour.

In this example, the engineer will work on a single text.

Physical design
Logical schema

Physical schema

Logical schema

Physical schema

COPY

Physical schema

Setting indexes

Physical schema

Storage allocation

Coding
Physical schema

SQL database definition script

Physical schema

Working schema

COPY

Working schema

Setting coding parameters

Working schema

SQL database definition script

GENERATE

11.1. First case study: a simple forward engineering project 217

Figure 11.7 The project has just been created and the windows tiled. The method
window shows what process can be executed, and the history window is empty.

Figure 11.8 The first process is executed: a new text is added to the history. The analyst has
now the possibility to perform a process of two different types: either add another new text or
go on with the conceptual analysis. The contextual menu of the “New” process type is shown

using the right mouse button.

B. Performing the conceptual analysis

The interview report must be analysed in order to draw the conceptual schema of the
library management system. The analyst starts a new engineering process of type “Concep-
tual analysis”. The content of the method window changes. It now shows the strategy of
the “Conceptual analysis” process type (Figure 11.2 and Figure 11.9). The project window
has changed in the same way, a “Conceptual analysis” engineering process has been created,
and the window shows it. By opening the process hierarchy window (menu Window/Window/Window/Window/
ProcessProcessProcessProcess hierarchyhierarchyhierarchyhierarchy), the analyst can see that Conceptual analysis is a sub-process of Library.
The hierarchy window can be used to browse through the history.

11.1. First case study: a simple forward engineering project 218

The engineer can now start the conceptual analysis by creating a new schema that will be
used as the drawing board. He calls this schema “Library/Conceptual”. On this drawing
board, he will introduce the conceptual schema of the library management system during
the analysis process

The primitive process “Analysis” must be performed using a toolbox. By double clicking on
the “Analysis” process type in the method window, the engineer can see what tools are
available in this toolbox (Figure 11.10). They allow him to create and edit entity types,
relationship types, attributes, roles and groups in the schema. The analyst has to open the
interview report and the blank schema, and to fill it by creating the conceptual schema of
the database by its own on the basis of the interview report, which is shown in Appendix F.
Figure 11.11 shows the two products in use, as well as the NewNewNewNew menu whose only available
items are Entity type... Entity type... Entity type... Entity type..., Rel-type... Rel-type... Rel-type... Rel-type..., and Role/Rel-type... Role/Rel-type... Role/Rel-type... Role/Rel-type... according to the toolbox in use.

Figure 11.9 Beginning of the conceptual analysis process. The method window now
shows the strategy to follow for the new process and the history window shows the new

engineering process which contains one input product. The hierarchy window shows that
the new engineering process is a child of the root process.

Figure 11.10 A toolbox for the conceptual analysis process

11.1. First case study: a simple forward engineering project 219

Figure 11.11The Analyst performs the Analysis primitive process, he draws the schema on the
basis of the interview report. In the menu, only tools allowed by the toolbox are available.

When the engineer finishes the job, he has to signal it to the methodological engine using
the Engineering/EndEngineering/EndEngineering/EndEngineering/End useuseuseuse ofofofof primitivesprimitivesprimitivesprimitives menu. Then the analyst signals he has finished
with that process type using the TerminateTerminateTerminateTerminate item of its contextual menu.

The conceptual schema being introduced, it can be normalised. To know what this process
means, the engineer double clicks on the “Conceptual normalisation” process type in the
method window and reads its description. Then he starts the process, opens the schema
and normalises it, and finally terminates the process.

The conceptual analysis is finished (see Figure 11.12). The CASE tool automatically termi-
nates the process type: the CASE tool automatically performs the same action as the user
could perform by selecting the menu entry EngineeringEngineeringEngineeringEngineering/EndEndEndEnd currentcurrentcurrentcurrent processprocessprocessprocess with noth-
ing selected in the project window. A dialogue box appears to allow the engineer to select
output products, as shown in Figure 11.13. Since the process type specifies there should be
conceptual schema(s) in output, and since there is only one conceptual schema in the proj-
ect, this schema is automatically proposed in output. The engineer accepts this choice and
terminates the use of the conceptual analysis process type.

Both the project window and the method window are back to their first view, the one of
the root process, as shown in Figure 11.14.

C. Performing the logical design

In the method window, only the “Logical design” process type is now in the allowed state.
The engineer executes it. The strategy of the logical process (Figure 11.3) appears in the
method window. The engineer, according to the strategy of the process, copies the concep-
tual schema, naming the copy “Library/First logical”, and starts an engineering process of
the “Relational design” type.

The “Relational design” process type is a sequence of five primitive process types, as shown
in Figure 11.4. The “New” and “Copy” process types are automatic basic primitive process
types (see Chapter 2): the CASE environment knows by itself what to do. The “Analysis”
process type met during the conceptual analysis was a manual primitive process type. The
following ones are of a third kind: they are automatic configurable primitive process types.
By double-clicking on them in the method window, one can see a script of transformations
that were specified by the method engineer and that will be executed automatically by the

11.1. First case study: a simple forward engineering project 220

 Figure 11.12 The conceptual analysis process is over

Figure 11.13The output product selection dialogue box

Figure 11.14 The “Conceptual analysis” engineering process is over. The
“Library/Conceptual” schema is terminated and the method window proposes to the

analyst to start the “Logical design” of the database.

11.1. First case study: a simple forward engineering project 221

CASE environment. For example, Figure 11.15 shows the definition of the “Non-func-
tional rel-types” process type.

The engineer performs a process of each type in the order specified by the sequence, and
terminates the relational design.

He goes on with the logical design by keeping a copy of the current state of the schema and
transforming all the names in order for them to be compliant with the SQL standard.

The logical design is over and the CASE tool automatically terminates the process type: the
schema “Library/Logical” is proposed in output, and the schema “Library/First logical “ is
put in the “candidates” list (see Figure 11.16), that is to say it is not proposed in output,
but the user can decide to use it in output anyway. The engineer simply accepts the pro-
posed solution.

Figure 11.15 The definition of the “Non-functional rel-
types” primitive process type.

Figure 11.16 The logical design is terminated. One
product is proposed in output. Another candidate is

available, but it is left aside.

D. Performing the physical design

In the same way, the engineer can perform the physical design (see Figure 11.5) of the
database.

After copying the input schema to “Library/Physical”, a primitive process of an automatic
configurable type creates indexes automatically where they are probably the most useful,
that is to say on every primary and secondary keys and on every foreign keys, except the
keys which are a prefix of another key.

A manual primitive process allows the database engineer to manually specify the database
files to create and to distribute the tables among those files. He opens the physical schema,
creates the two following collections and fills them:

• LIBRARY(AUTHOR,BOOK,COPY,KEYWORD,REFERENCE,WRITTEN)

• BORROWING(BORROWER,BORROWING,CLOSED_BORROWING,PHONE,

11.1. First case study: a simple forward engineering project 222

PROJECT)

Then the engineer closes the schema and the physical design is over. It is terminated auto-
matically by the CASE tool with “Library/Physical” as proposed output product.

E. Performing the coding

Finally the coding phase (Figure 11.6) will generate the SQL-DDL script.

The engineers starts a new process of the “Coding” type and copies the input product to a
working one. This last schema is an internal temporary schema aimed at preparing the cod-
ing. The technical descriptions of the components of this schema can be modified by intro-
ducing some coding parameters. They will be interpreted by the SQL generator. For
instance, the technical description could specify, for each access key, if it must be imple-
mented with a b-tree, or with hashing. Bothering with these optimisations will bring noth-
ing interesting to this small case study, so this step can be skipped, assuming the default
configuration will be all right for the SQL generator.

Finally, the SQL generator can be invoked.

Then the CASE tool automatically terminates the “Coding” process with “library.dll/1” as
the proposed output product. Both the coding and the project are terminated.

11.1.3. The resulting history

When the project is over, the whole history of the job is recorded. It is possible to browse
through it. Figure 11.17 shows the main tree of the history. Bold lines are engineering pro-
cesses. Double clicking on one of them shows its graph in the history window. For
instance, Figure 11.18 shows the conceptual analysis process. The three primitive processes
beneath the conceptual analysis process in the tree (three non-bold lines) are shown as three
rectangles in the graph of the process. The tree shows the order of their performance more
clearly, while the graph shows the products involved.

Figure 11.17 The history tree

11.1. First case study: a simple forward engineering project 223

The lines written with regular characters are primitive processes. Automatic processes, as
well as manual processes whose type was declared with “[log off]” do not have a log file.
Other primitive process log files can be opened with a text editor or treated with Voyager 2
user-written processors.

Figure 11.18 The conceptual analysis process

11.2. Second case study: a complex reverse engineering project
The second CASE study concerns a more complex job: the reverse engineering of a legacy
database. This case study was formerly published in [HAINAUT,96d] which focuses on
the reverse engineering aspects without using the methodological engine. This chapter will
complete this case study. This project needs more intelligence than the first case study.
Indeed, the latter was mainly a straightforward sequence of actions and contained a few
transformations scripts which are automatic processes. In the second case study, the strate-
gies are more complex, use more non-deterministic control structures, have less automatic
processes, and often require much database engineers’ expertise. The use of the method
sometimes needs so much intuition that engineers will have to try various options with dif-
ferent hypotheses, and to take decisions afterwards.

In the following, the method designed by Mister method engineer will be quickly
described. Then, Madam database engineer will perform one part of a project using this
method. Finally, the resulting history will be transformed.

11.2.1. Method description

A. The reverse engineering method

The aim of the reverse engineering process is to analyse a legacy database, made up of a col-
lection of COBOL files, which is used in production for several years, which has evolved
along the years, and for which the documentation is poor, erroneous, or even non-existent.
This analysis should produce the following results:

• a detailed conceptual schema of the database

• a possible history of the original design

• a mapping between the components of the conceptual and the physical schemas.

From this list of goals, it can be deduced that the method needs to recognise a series of
product models: COBOL programs, COBOL physical schemas, COBOL logical schemas
and conceptual schemas. The mapping and the possible design history can be obtained by
analysis and transformation of the reverse engineering project history.

In this case study, some schema models are defined in two layers using the inheritance
mechanism: a logical schema model is defined to declare a few general properties which are

Conceptual normalisation

Analysis

New schema

Library/Conceptual

library.txt/IR

Conceptual analysis

11.2. Second case study: a complex reverse engineering project 224

usual for logical schemas, then a COBOL logical schema model is defined by inheriting
properties of the previous model and refining it. A physical schema model and a COBOL
physical schema model are defined in the same way, as shown in Figure 11.19. If the
method had to evolve in order to treat other kinds of databases (for instance, SQL data-
bases), the new logical and physical model can be designed by inheriting the same
LOG_SCHEMA and PHYS_SCHEMA models.

Figure 11.19 The model hierarchy

At the highest strategic level, the reverse engineering activity to model is made up of five
phases:

1. COBOL program files collection.

2. Data structure extraction for retrieving the complete physical schema.

3. Schema cleaning, for retrieving a logical schema by removing all physical constructs.

4. Data structures de-optimisation and untranslation to recover the conceptual schema.

5. Conceptual normalisation to make the conceptual schema more compliant to some
presentation rules, to make it more readable.

The second step is the most complex one, it requires a lot of human expertise. This case
study mainly focuses on it. The complete method listing can be found in Appendix F.

B. The data structure extraction phase

The DataDataDataData StructureStructureStructureStructure ExtractionExtractionExtractionExtraction process consists in recovering the logical schema of the
database, including all the implicit and explicit structures and constraints. It mainly con-
sists of three distinct sub-processes:

• DDL text analysis. A first-cut schema is produced through parsing the DDL texts or
through extraction from data dictionaries.

• Schema refinement. This schema is then refined through specific analysis techniques
[HAINAUT,96b] that search non-declarative sources of information for evidences of
implicit constructs and constraints, that is many important constructs and constraints
that are not explicitly declared, but rather are managed through procedural section, or
even are left unmanaged. The analysts will recover structures such as field and record
hierarchical structures, identifiers, foreign keys, concatened fields, multivalued fields,
cardinalities and functional dependencies.

• Schema integration. If several schemas have been recovered, they have to be integrated.
The output of this process is, for instance, a complete description of COBOL files and
record types, with their fields and record keys (explicit structures), but also with all the
foreign keys that have been recovered through program and data analysis (implicit struc-
tures).

a. The process type

The extraction of all the data structures can be performed according to the strategy shown

LOG_SCHEMA PHYS_SCHEMA

LOG_COBOL_SCHEMA PHYS_COBOL_SCHEMA

11.2. Second case study: a complex reverse engineering project 225

in Figure 11.20. A COBOL application generally comprises a collection of COBOL source
code files. Some of them contain an input-output section in an environment division that
specifies the files and their characteristics, and a data division which is a rough description
of the data records. A record description is a list of fields, possibly decomposed in several
levels, each field being characterised by a level, a name, a data type that can be undefined,
and possibly an array sizing. There is no constraints on field values and no relations
between records. The record identifier, or record key, is expressed in the input-output sec-
tion. All other additional constraints are managed by the procedural part of the files, in the
procedure division.

Figure 11.20 The data structure extraction strategy

The analysis of the environment division and the data division is a task that can be per-
formed automatically. It will be handled by the “COBOL data structures extraction” proc-
ess type which will extract a schema from each COBOL source file containing an environ-
ment division or a data division.

The analysis of the procedure division for enriching the extracted schemas is the most com-
plex task which is managed by the “COBOL schema enrichment” process type.

When all the schemas are completed, they can be integrated by a process of the “Schema
integration” type in order to provide a single physical schema of the whole system. The
condition in the diamond is:

count-greater(COBOL_schema,1)

which indicates that an integration process is necessary only if more than one schema has
been extracted, else, a simple copy of the schema suffices.

b. The COBOL extraction step

The “COBOL data division extraction” process type strategy is shown in Figure 11.21.
The analyst has to select the files deserving such an extraction and to treat them one by

COBOL schema extraction
COBOL programs

Pysical schema

COBOL programs

Raw COBOL schemas

COBOL data structures extraction

COBOL programs

Raw COBOL schemas

COBOL schemas

COBOL schema enrichment

COBOL schemas

Pysical schema

Schema integration

COBOL schemas

Pysical schema

COPY

11.2. Second case study: a complex reverse engineering project 226

one, either with the automatic extractor or manually. Typically, analysts should prefer the
automatic way, except if a COBOL file contains peculiarities unrecognised by the extrac-
tor. The automatic tool creates a new schema representing the extracted structures. The
manual way has to do the same, a new schema has to be created and, once put in the
“cobsch” set to distinguish it from the previously created schemas, it has to be edited
manually. Let us note that the set “cobsch” always contains a single schema of type
“COBOL schemas”, which is in fact the product type used in update by “Manual extract”.

Figure 11.21 The data division extraction strategy

c. The schema enrichment step

The “COBOL schema enrichment” process type has to be performed for each schema
extracted previously as shown in Figure 11.22. The enrichment must be done on the basis
of information found in all COBOL source files, possibly from the file from which the
schema was extracted, possibly from any other source file. In practice, most information
will be found in files with a procedure division.

The strategy of the enrichment process type to be performed once for each schema is
shown in Figure 11.23. First of all, the extracted schema is copied. The fact of taking the
extracted schema in input and copying it to work on the copy only has two purposes.
Firstly, it allows the history to be complete by keeping a copy of the result of the extraction
and to modify its copy only. Secondly, it allows the engineers to make several copies to try
various hypotheses and to choose the copy in output.

The engineer can choose either to use an expert process type to be guided during the job,
or to do it entirely manually. Both methods can be combined: the expert can do a maxi-
mum, then the engineer can terminate with a few refinements, or the engineer can do the
job in the manual way then use the expert process type to validate the result.

COBOL data structures extraction
COBOL programs

COBOL schemas

COBOL programs

cobfil

FS

1

cobfil

COBOL schemas

EXTRACT

COBOL schemas

NEW

cobsch

COBOL schemas DEFINE

cobfil

cobsch

Manual extract

11.2. Second case study: a complex reverse engineering project 227

Figure 11.22 The global schema enrichment strategy

Physical schema enrichment
COBOL programs COBOL schema

Complete COBOL schema

COBOL schema

Complete COBOL schema

COPY

S

COBOL programs

Complete COBOL schema

Physical schema enrichment expert 1

COBOL programs

Complete COBOL schema

ET-ID search

COBOL programs

Complete COBOL schema

Long fields refinement

COBOL programs

Complete COBOL schema

FK search

COBOL programs

Complete COBOL schema

N-N multiplicity refinement

COBOL programs

Complete COBOL schema

Field-ID search

Figure 11.23 The true enrichment strategy for one schema

The manual way of working simply provides the engineer with a series of toolboxes aimed
at several precise tasks:

• The “ET-ID search” toolbox provides tools for analysing texts and creating groups, in
order to search for entity type identifiers. One of the tools, the program slicing26 facility,

26 Program slicing [WEISER,84] consists in analysing the procedural code of the programs in order to detect
evidence of additional data structures and integrity constraints by extracting instructions having a direct or

COBOL schema enrichment
COBOL programs COBOL schemas

Complete COBOL schemas

COBOL schemas

cobsch

FE

COBOL programs

cobsch

Complete COBOL schemas

Physical schema enrichment

11.2. Second case study: a complex reverse engineering project 228

allows the analyst to find some programming patterns in the source files that check the
uniqueness of one (possibly some) field value among all the records in a same datafile.

• The “Long fields refinement” toolbox provides tools for analysing texts and creating
attributes. It is a common practice in COBOL to declare two data structures, a single
rather large string and a compound field made of several sub-levels, possibly with repeti-
tive components, and to copy (move in COBOL) one in the other and conversely. In
that case, the second data structure can be seen as a refinement of the first one. Pattern
matching is a text analysis function that is well suited to finding such move instructions.

• The “FK search” toolbox provides tools for analysing texts, looking for foreign keys by
field names analysis and creating groups. Relations between tables are not declared in
COBOL, they are hidden in the source code. Both the already cited program slicing and
the pattern matching facilities can help, but DB-MAIN also provides a foreign key assis-
tant which allows the comparison of attribute names, length and types and which can
look for perfect or approaching matches.

• The “N-N multiplicity refinement” toolbox provides tools for analysing texts and modi-
fying attribute properties. The COBOL syntax allows the declaration of repetitive fields
(“OCCURS n TIMES”) which clearly show the maximum multiplicity of the field. But
it gives no information about the minimum multiplicity. This last information must be
found in the source code with the pattern matching and the program slicing facilities.

• The “Field-ID search” toolbox provides tools for analysing texts and creating groups in
order to discover and create instance identifiers for multi-valued compound fields.

The expert process type, shown in Figure 11.24, uses the same toolboxes in sequence and
embedded in if control structures whose conditions are examples of simple heuristics that
give hints rather than absolute rules to follow blindly.

• The first conditional structure demands that the “ET_ID_search” toolbox is used when
the condition “exists(COBOL_schema,ID_per_ET(0 0))” is satisfied, i.e. when there
exists at least one entity type without primary identifier.

• The second conditional structure concerns the same toolbox, but with a different heu-
ristic in the condition: “exists(COBOL_schema,NONE_in_LIST_CI_NAMES(ID*,
*ID))” which looks for field names beginning or ending by “ID”.

• The third condition concerns the presence of long fields. But the notion of long field is
subjective, it can be more than 10 characters, more than 20, 50, 100,... So the condi-
tions is an informal one: “ask "Are there long fields?"”.

• The fourth condition simply looks for entity types without foreign keys: “exists
(COBOL_schema,REF_per_ET(0 0))”. This condition is only a tip: the fact that each
record has a foreign key does not mean that all foreign keys have been found because
some entity types can have several foreign keys, and each entity type does not need a
foreign key. But every entity type having at least one foreign key can be adopted as a
completion condition.

• When the multiplicity of multi-valued fields as been refined, the minimum cardinality
ends up being 0 or 1 most of the time, so it is a good trick to try to refine N-N multi-
plicities when the minimum one is greater or equal to 2: “exists(COBOL_schema,
MIN_CARD_of_ATT(2 N))”.

• The fifth condition looks for compound multi-valued fields with no identifier:
“exists(COBOL_schema,MAX_CARD_of_ATT(2 N) and SUB_ATT_per_ATT(1 N)
and ID_per_ATT(0 0))”.

indirect incidence on the value of a given variable at a given point.

11.2. Second case study: a complex reverse engineering project 229

Figure 11.24 The enrichment expert strategy

11.2.2. Project performance

The method described above will be used to reverse engineer the database of a very small
order management system. This application is written in COBOL. It is a very small pro-
gram that holds in a single source file, shown in Appendix F.

A. Beginning of the project

The beginning of the project is straightforward and simply follows the method:

• The engineer has to add a new COBOL source file to the project. She selects a single
source file: “Order.cob”.

• The engineer must then perform a process of type “COBOL schema extraction” which
itself requires the performance of a process of type “COBOL data division extraction”.

Physical schema enrichment expert
COBOL programs

COBOL schema

COBOL programs COBOL schema

ET-ID search

COBOL programs COBOL schema

ET-ID search

COBOL programs COBOL schema

Long fields refinement

COBOL programs COBOL schema

FK search

COBOL programs COBOL schema

N-N multiplicity refinement

COBOL programs COBOL schema

Field-ID search

11.2. Second case study: a complex reverse engineering project 230

• The “COBOL data division extraction” strategy requires the engineer to choose some
products from which to extract data structures. Since “Order.cob” is the only available
product and since it contains a data division, the engineer performs an “EXTRACT”
primitive process with it. This last process creates a new schema named “ORDER/
extracted”.

• The engineer terminates the process of type “COBOL data division extraction” with the
new schema in output.

• Back to the “COBOL schema extraction” strategy in the method window, the engineer
has to perform a process of type “COBOL schema enrichment”.

• The “COBOL schema enrichment” strategy simply demands that a process of type
“Physical schema enrichment” be performed with each schema in input, that is to say
once with schema “ORDER/extracted” and all source files, i.e. “Cobol.cob”, in input.
In fact, the for each control structure makes a set, called “cobsch”, with each extracted
schema at its turn, and passes this set as well as all source files to the new process.

B. The physical enrichment process

The performance of the “physical enrichment process” (same name as the process type
because no confusion is possible between them, and their relationship appears more easily)
is the most interesting part of the project because it is the one that requires the more
human expertise. It will be described in detail. It follows the strategy shown in Figure
11.23.

a. Starting the process

When the process is started, its history is as shown in Figure 11.25. It contains two inputs:
the set, “cobsch”, with its content, schema “ORDER/extracted”, and the “Order.cob”
COBOL source file. “ORDER/extracted” is shown in Figure 11.26, and “Order.cob” is
listed in Appendix F.

The first step of the process is imposed by the single sub-process type in the allowed state in
the strategy: to make a copy of the original schema. The engineer knows the process is
complex and thinks she will possibly make several copies of the schema during the process,
at various intermediate states, so she decides to give the copy an extension that shows the
temporary state of the product and calls it: “ORDER/draft-1”.

Order.cobORDER/extracted

cobsch

Physical schema enrichment

Figure 11.25 The beginning of the enrichment process

STK
STK-CODE
STK-NAME
STK-LEVEL
id: STK-CODE

acc

ORD
ORD-CODE
ORD-CUSTOMER
ORD-DETAIL
id: ORD-CODE

acc
acc: ORD-CUSTOMER

CUS
CUS-CODE
CUS-DESCR
CUS-HIST
id: CUS-CODE

acc

CUSTOMER

CUS

ORDERS

ORD

STOCK

STK

ORDER/Extracted

Figure 11.26 The “C-ORD/extracted” schema to enrich

11.2. Second case study: a complex reverse engineering project 231

When the copy is performed, the control flow follows the sequence in the strategy and
arrives to the some structure. Its two branches are allowed. In the left one, the “Physical
schema enrichment expert” process type is allowed. In the right branch, the one structure is
allowed, and so all its branches, which are all primitive processes. So, the engineer has the
choice either to use the expert or to start the job with a toolbox of her choice, as it can be
seen in Figure 11.27.

The engineer prefers to proceed manually. When she looks at the schema
“ORDER/draft-1”, in Figure 11.26, she thinks it would be better to concentrate her atten-
tion on one table only, in order to apprehend the reverse engineering activity thoroughly
and to better understand the studied application (source file organisation, programming
style, programming subtleties,...). She decides to examine the table “CUS”.

Physical schema enrichment
COBOL programs COBOL schema

Complete COBOL schema

COBOL schema

Complete COBOL schema

COPY

S

COBOL programs

Complete COBOL schema

Physical schema enrichment expert 1

COBOL programs

Complete COBOL schema

ET-ID search

COBOL programs

Complete COBOL schema

Long fields refinement

COBOL programs

Complete COBOL schema

FK search

COBOL programs

Complete COBOL schema

N-N multiplicity refinement

COBOL programs

Complete COBOL schema

Field-ID search

Figure 11.27 The engineer must decide what to do by herself.
Allowed state is shown with a box filled in light grey, done state with black borders.

b. Long field refinement

The engineer notices that attribute “CUS_DESCR” is made of 80 characters, and attribute
“CUS_HIST” is made of 1000 characters. These are rather long fields. By double-clicking
on the “Long fields refinement” process type, the window shown in Figure 11.28 appears.
The description suits her needs, so she closes this window and starts a new primitive proc-
ess of this type. The method window then appears as in Figure 11.29. All other processes of
the one structure are disabled.

She uses the pattern matching tool, which is a text analysis tool, to look for the “MOVE”
instructions involving the “CUS” record, which gave birth to the “CUS” entity type. She
finds the instructions:

• “MOVE DESCRIPTION TO CUS-DESCR” in procedure “NEW-CUS”

• “MOVE CUS-DESCR TO DESCRIPTION” in procedure “NEW-ORD”.

11.2. Second case study: a complex reverse engineering project 232

Figure 11.28 The “Long fields” refinement process type properties

Physical schema enrichment
COBOL programs COBOL schema

Complete COBOL schema

COBOL schema

Complete COBOL schema

COPY

S

COBOL programs

Complete COBOL schema

Physical schema enrichment expert 1

COBOL programs

Complete COBOL schema

ET-ID search

COBOL programs

Complete COBOL schema

Long fields refinement

COBOL programs

Complete COBOL schema

FK search

COBOL programs

Complete COBOL schema

N-N multiplicity refinement

COBOL programs

Complete COBOL schema

Field-ID search

Figure 11.29 The engineer performs a process of the “Long fields refinement” type.
Running state is shown with a dark grey rectangle, unused state with white rectangle with grey borders.

In the declaration of the “DESCRIPTION” record, she also notices that its size is the same
as “CUS-DESCR”. So she assumes that “DESCRIPTION” is a refinement of “CUS-
DESCR” and she creates new sub-fields to “CUST_DESCR” in the schema which corre-
spond to the fields of the record “DESCRIPTION” in the source file.

She refines the field “CUS-HIST” in the same way27. The result is shown in Figure 11.30.
Then she ends the primitive process, and she declares she has finished with the “Long fields
refinement” type with the “Terminate” entry in the conceptual menu of the process type.

The one structure ends, and the repeat control structures allows the one structure body to be
executed again, making the strategy look like in Figure 11.27 again.

c. N-N multiplicity refinement: 2 versions

The first refinement introduced an array of size [100-100] in the schema. The engineer

27 More details in [HAINAUT,96d]

11.2. Second case study: a complex reverse engineering project 233

knows that the array is the only available structure in COBOL to implement lists or sets.
Moreover, if the array hides another structure, the actual minimum cardinality frequently is
not really 100. She will use the “N-N multiplicity refinement” toolbox to try to solve the
problem. But she does not know if the array is used to code a list or a set. A rapid look at
the source files does not help her. So she decides to try both hypotheses. She manually
makes two copies of the schema (using the copy function of the CASE tool, not the “copy”
process type in the strategy, and choosing the same schema type as the original schema)
that she calls “ORDER/draft-2” and “ORDER/draft-3”.

i. First hypothesis

In the method window, the engineer selects the “Long fields refinement” process type and
executes it. A dialogue box appears at the creation of the new primitive process, as shown in
Figure 11.31. The engineer changes the name of the process to “N-N refinement - CUS-
list” in order to show clearly and in short that the process concerns the refinement of the
N-N records of the record “CUS” using lists. By clicking on the “Description button”, she
can write a longer and more complete text with the hypothesis. The “Input” and the
“Update” lists contain the products of the “COBOL programs” and “Complete COBOL
schema” types. The read only products, “Order.cob” which is an input of the current engi-
neering process, and “ORDER/draft-1” which can no longer be modified after being cop-
ied, are proposed in input. Others, “ORDER/draft-2” and “ORDER/draft-3” are proposed
in update. But the engineer only needs “Order.cob” and “ORDER/draft-2” so she removes
the others from the lists, and confirms the creation of the primitive process.

The engineer opens both products and examines the “INIT-HIST” procedure. She notices
that the data structure is initialised with “0” everywhere, meaning that it can be “empty”.
So she edits the properties of the “CUS-HIST.PURCH” field to change the minimum car-
dinality to “0” and to change the type from “array” to “list”. Then she closes the two prod-
ucts and terminates the primitive process.

Figure 11.30 The long fields of record CUS are refined

Figure 11.31 The new primitive process dialogue

STK
STK-CODE
STK-NAME
STK-LEVEL
id: STK-CODE

acc

ORD
ORD-CODE
ORD-CUSTOMER
ORD-DETAIL
id: ORD-CODE

acc
acc: ORD-CUSTOMER

CUS
CUS-CODE
CUS-DESCR

NAME
ADDR
FUNCT
REC-DATE

CUS-HIST
PURCH[100-100] array

REF-PURCH-STK
TOT

id: CUS-CODE
acc

CUSTOMER

CUS

ORDERS

ORD

STOCK

STK

ORDER/draft-1

11.2. Second case study: a complex reverse engineering project 234

ii. Second hypothesis

The engineer can then perform the same process type again with the second hypothesis by
selecting the “Execute again” entry in the “N-N multiplicity refinement” process type con-
textual menu, and creating the new primitive process with the name “N-N refinement -
CUS-set”, with the products “Order.cob” in input and “ORDER/draft-3” in update, and
with the second hypothesis detailed in the description.

She then opens “ORDER/draft-3”, edits the “CUS-HIST.PURCH” properties to change
its type from “array” to “set”, and to change the minimum cardinality to “0”.

When every process has been carried out with all the hypotheses, the use of the process
type can be stopped by selecting the “Terminate” entry in its contextual menu.

d. Searching for field identifiers in both product versions

i. In the first product version

After examination of all the versions of the resulting schema, the engineer still cannot
choose the best solution, so she continues the job. She looks again at the “CUS-HIST”
data structure, as a set and as a list, and wonders if there could not be an identifier in that
structure. So she decides to perform processes of type “Field-ID search”, she selects the
“Execute” entry in the contextual menu and creates a new primitive process using products
“Order.cob” and “ORDER/draft-2”.

With the text analysis tools28, she discovers the “UPDATE-CUS-HIST” procedure that
looks for an element of the list with “REF-PURCH-STK” being equal to a given “PROD-
CODE”. If one is found, it is updated, else, a new element with that “PROD-CODE” is
added to the list. She concludes that the field “REF-PURCH-STK” identifies list elements
and she adds a new identifying group to the list with “REF-PURCH-STK” as the only
component. She terminates the process.

ii. In the second product version

By selecting the “execute again” entry in the process type contextual menu, she starts the
same process with “Order.cob” and “ORDER/draft-3” in input. But the job to perform is
exactly the same. To avoid to do the same things several times, she opens the schema
“ORDER/draft-2” again and stores its log in an independent file, then she comes back in
“ORDER/draft-3" and replays automatically the part of the log file concerning the last
process. This is easy to do since the starting of each new primitive process adds a tag to the
log file containing the name of the process.

e. Taking a decision

When the engineer has ended the primitive process and the use of the primitive process
type, she looks again at both versions of the schema and thinks it is time to take a decision,
to choose one of them to continue the project. In the history window, she selects both ver-
sions of the product. Then she selects the “make decision” entry in the “engineering”
menu29. She transfers “ORDER/draft-3” in the “Kept” list and writes the rationales of her
decision, as show in Figure 11.32. The history then looks like in Figure 11.33 into which
the reader can notice the difference between the arrows connected to the decision.

After having transformed the table “CUS”, the engineer wants to keep an image of the cur-
rent state of the product transformation, so she makes a copy of “ORDER/draft-3”, that
she names “ORDER/draft-4”.

28 More details in [HAINAUT,96d]
29 See Chapter 9.

11.2. Second case study: a complex reverse engineering project 235

Figure 11.32 A decision taking dialogue box.

Figure 11.33 The history after a decision.

f. Enriching the remaining of the schema

She goes on with the project and does to the remaining of the schema what she did with
the “CUS” table: she performs again processes of types “Long field refinement” with fields
“CUS-DESCR” and “ORD-DETAIL”, “N-N multiplicity refinement” and “Field-ID
search” with the field “ORD-DETAIL”. Since she already did the job once with the record
“CUS”, she knows how to work, so she does not need to make several hypotheses again.
The resulting schema, with all the fields refined, is shown in Figure 11.34.

g. Looking for foreign keys

All the records being refined, the engineer decides to look for the links between the record
types. So she starts a process of type “FK search” and she opens both the COBOL source
file and the schema.

Decision

Field-ID searchField-ID search

N-N refinement - CUS-setN-N refinement - CUS-list

Schema copySchema copy

Long fields refinement - CUS

Schema copy

ORDER/draft-3ORDER/draft-2

ORDER/draft-1

Order.cobORDER/extracted

cobsch

Physical schema enrichment

11.2. Second case study: a complex reverse engineering project 236

Figure 11.34 The schema after the refinement of all fields

i. Using intuition and the search tool

She notices the fields “REF-PURCH-STK” in “CUS”, and “REF-DET-STK” in “ORD”
which are prefixed by “ref” (standing for “reference”) and which are ended by “STK” which
is the name of the third record type. The properties of these two fields, as well as the prop-
erties of “STK-CODE”, which is the primary identifier of “STK”, show they are of the
same type and have the same length. The use of the search tool in the source file to find all
instances of “STK-CODE” allows the engineer to find the following instruction in proce-
dure “READ-PROD-CODE”:

MOVE PROD-CODE TO STK-CODE.

This instruction comes just before a “READ” instruction to check the existence of a “STK”
record in file “STOCK” with “STK-CODE” equals to “PROD-CODE”. Then the proce-
dure “READ-PROD-CODE” calls the procedure “UPDATE-ORD-DETAIL” which
stores the value of “PROD-CODE” in “REF-DET-STK” and which itself calls the proce-
dure “UPDATE-CUST-HIST” which stores the value in “REF-PURCH-STK”.

ii. Using program slicing

The program slicing assistant can be used in conjunction with the search assistant to con-
firm all this. It shows that the “MOVE” instruction above is at the beginning of the pro-
gram slices made of all the instructions of the application which have an influence on the
value of “PROD-CODE” at the two program points: the “MOVE” instructions that copy
that value in “REF-DET-STK”, and the “MOVE” instruction that copies the same value in
“REF-PURCH-STK”.

iii. Adding foreign keys to the schema

With these hints, the engineer is pretty sure there is a foreign key in “CUS” made of the
field “REF-PURCH-STK” which references “STK”, and another one in “ORD”, made of
the field “REF-DET-STK”, which references “STK” too. She creates them in the schema.

In the same way, she discovers a third foreign key in “ORD”, made of the field “ORD-
CUSTOMER” which references “CUS”.

When all the tables seem to be connected and when the engineer sees no more sign of
other reference keys, she terminates the process and the use of its type.

h. End of the enrichment process

The refinement process being finished, the schema changes its status from draft to final. So
the engineer changes the schema version from “draft-4” to “completed”.

STK
STK-CODE
STK-NAME
STK-LEVEL
id: STK-CODE

acc

ORD
ORD-CODE
ORD-CUSTOMER
ORD-DETAIL

DETAILS[0-20]
REF-DET-STK
ORD-QTY

id: ORD-CODE
acc

acc: ORD-CUSTOMER
id(ORD-DETAIL.DETAILS):

REF-DET-STK

CUS
CUS-CODE
CUS-DESCR

NAME
ADDR
FUNCT
REC-DATE

CUS-HIST
PURCH[0-100]

REF-PURCH-STK
TOT

id: CUS-CODE
acc

id(CUS-HIST.PURCH):
REF-PURCH-STK

CUSTOMER

CUS

ORDERS

ORD

STOCK

STK

ORDER/draft-4

11.2. Second case study: a complex reverse engineering project 237

Finally, the product looks like in Figure 11.35. The complete physical schema enrichment
process history is shown in Figure 11.36. The engineer terminates it with the schema
“ORDER/completed” as its only output. In the method window, the title is now in the
running state and can be terminated.

Back to the “COBOL schema enrichment” process (Figure 11.22), the for each loop is ter-
minated since there is only one schema in the set. The current engineering process can be
terminated too, with schema “ORDER/completed” as its only output product.

Figure 11.35 The refined physical schema

Figure 11.36 The complete physical schema enrichment process history

STK
STK-CODE
STK-NAME
STK-LEVEL
id: STK-CODE

acc

ORD
ORD-CODE
ORD-CUSTOMER
ORD-DETAIL

DETAILS[0-20]
REF-DET-STK
ORD-QTY

id: ORD-CODE
acc

ref: ORD-CUSTOMER
acc

ref: ORD-DETAIL.DETAILS[*].REF-DET-STK
id(ORD-DETAIL.DETAILS):

REF-DET-STK

CUS
CUS-CODE
CUS-DESCR

NAME
ADDR
FUNCT
REC-DATE

CUS-HIST
PURCH[0-100]

REF-PURCH-STK
TOT

id: CUS-CODE
acc

ref: CUS-HIST.PURCH[*].REF-PURCH-STK
id(CUS-HIST.PURCH):

REF-PURCH-STK CUSTOMER

CUS

ORDERS

ORD

STOCK

STK

ORDER/completed

FK search

Field-ID search

N-N refinement

Long fields refinement

Schema copy

Decision

Field-ID search Field-ID search

N-N refinement - CUS-set N-N refinement - CUS-list

Schema copySchema copy

Long fields refinement - CUS

Schema copy

ORDER/completed

ORDER/draft-3 ORDER/draft-2

ORDER/draft-1

Order.cobORDER/extracted

cobsch

Physical schema enrichment

11.2. Second case study: a complex reverse engineering project 238

C. Remaining of the project

The remaining of the project is more simple, so it will be presented more rapidly.

a. Remaining of the COBOL schema extraction

The method window shows the “COBOL schema extraction” process type (Figure 11.20)
again with the “COBOL schema enrichment” process type in the done state, and only the
diamond of the if control structure in the allowed state. The engineer can double-click on it
to see the condition:

cardinality(COBOL schemas) > 1

This is a condition that can be evaluated automatically by the CASE tool. Since
“ORDER/completed” is the only product of type “COBOL schemas”, the condition is not
satisfied. So, when the engineer orders the evaluation of the condition, the methodological
engine orients the control flow to the bottom of the diamonds, and the “COPY” process is
put in the allowed state.

The engineer names the copy “ORDER/physical”. This process ends the current engineer-
ing process (“COBOL schema extraction”) whose output is “ORDER/physical”. When the
engineer explicitly terminates the use of the current engineering process type, the method
window goes back to the strategy of the main engineering process type and the history win-
dow displays the root node of the history tree.

b. COBOL schema cleaning

The remaining of the project is more or less straightforward.

During the “COBOL schema cleaning” phase, the schema in Figure 11.35 is copied as
“ORDER/logical”, then the components of the copy are renamed to make the schema
more readable:

• Each of the three record types is stored in its own file whose name seems more explicit,
so the three record types can take the name of their file.

• All the fields of each record type have the same prefix. These prefixes are useless and can
be removed.

• Some field names can be completed (“DESCR” → “DESCRIPTION”, “ADDR” →
“ADDRESS”,...), and the field names can be capitalised (first letter upper case, others
lower case).

Finally, the three files are removed, as well as the access keys.

c. Conceptualisation

During the “Schema conceptualisation” phase, the schema is copied again as “ORDER/raw
conceptual”. In the copy, attributes (what was called a field in the physical model is now
called an attribute) “History” and “Detail” which are made of one component only are dis-
aggregated. Attributes “Purchase” and “Details”, which are very complex and look like
optimisations, are separated from their entity types and transformed into entity types
named “PURCHASE” and “DETAIL”. Foreign keys are untranslated and transformed into
rel-types.

d. Normalisation

Finally, during the “Conceptual normalisation” phase, a new “ORDER/conceptual”
schema, shown in Figure 11.37, is created as a copy of the raw conceptual schema into
which entity types “PURCHASE” and “DETAIL” are transformed into rel-types.

11.2. Second case study: a complex reverse engineering project 239

Figure 11.37 The normalised conceptual schema

11.2.3. The resulting history

The complete history tree is shown in Figure 11.38. Its global dependency view is shown
in Figure 11.39. This simple view shows all the products that were generated during the
schema extraction phase, derived from “Order.cob”. The abandoned schema version
(“ORDER/draft-2”) appears at the end of a dead branch. The bottom of this view, from
“ORDER/physical” to “ORDER/conceptual” is the straightforward conceptualisation part.

Figure 11.38 The history tree

0-100

0-Npurchased
Total

1-10-N places

0-N

0-20

is-in
Ord-qty

STOCK
Code
Name
Level
id: Code

ORDER
Code
id: Code

CUSTOMER
Code
Description

Name
Address
Function
Rec-date

id: Code

ORDER/conceptual

11.2. Second case study: a complex reverse engineering project 240

Figure 11.39 The global dependency view of the history

According to the implementation of the DB-MAIN CASE tool, the log files attached to
schemas “ORDER/logical”, “ORDER/raw conceptual” and “ORDER/conceptual” are the
concatenation of the log files of all the primitive processes that modify them. So, the engi-
neer can flatten the conceptualisation phase of the project by concatenating the three log
files associated to these schemas. The engineer can now use the new complete log file,
“reverse.log”, to fulfil the three goals of the process engineering project:

• The detailed schema of the database, “ORDER/conceptual”, is the first goal.

• The second goal is a possible history of the original design. This goal can be reached by
transformation of “reverse.log” using the history inversion transformation presented in
Chapter 7, section 7.7 to produce the file “forward.log”. This history transformation is
presented hereafter, in Section 11.2.4.

• The third goal is a mapping between all the components of the conceptual schema and
the physical schema. For example, the attribute “Code” of entity type “CUSTOMER”
in the conceptual schema (Figure 11.37) is the field “CUS-CODE” of record “CUS” in
the physical schema (Figure 11.35), and the rel-type “places” in the conceptual schema
is the field “ORD-CUSTOMER” of “CUS” in the physical schema. In fact, two differ-
ent mappings can be computed:

− A direct mapping, by drawing a two column table. In the left column, the engineer
lists all the components of the conceptual schema. Then she follows “rev-
forward.log” focussing her attention on each element of the left list and she writes in
the right column the name of the corresponding element in the physical schema,
possibly the result of several transformations. Since the log file is a simple text file
listing transformations performed in sequence, a simple static analysis program can
do the task.

− An inverse mapping, by copying the name of each component of the physical schema
in an attached technical note in the beginning of the project, and by taking care of all
the notes during the reverse engineering process. At the end of the process, each
component of the conceptual schema should have a note with the name of its physi-
cal counterpart. Once again, the copying process can easily be automated. A call to

ORDER/conceptual

ORDER/raw conceptual

ORDER/logical

ORDER/physical

ORDER/completed

ORDER/draft-3ORDER/draft-2

ORDER/draft-1

cobschORDER/extracted

cobfilOrder.cob

11.2. Second case study: a complex reverse engineering project 241

this automated process could even be appended to the method, in the “Schema
cleaning” engineering process type strategy, just before the “Renaming” primitive
process type.

This mapping is simpler to compute than the first one, but it can be less precise
because some particular transformations (for instance the merge of two components)
can loose some notes, while other transformations can create new components with-
out notes. Taking care of this kind of situations is difficult and only possible up to a
certain point, possibly by using some heuristics, with the static analysis program of
the first method.

11.2.4. Design recovery

The design recovery is the building of a possible history (“forward.log”) of the design of the
database by inversion of the history (“reverse.log”) of the reverse engineering activity, as it
was presented in Chapter 7, section 7.7.

An extended log file (required for design recovery) can be big, so interpreting it by hand
could be tedious. Since it has a formal syntax, it can easily be interpreted by a program.
Such a program can be written in almost any computer language that can handle strings,
and read and write in text files. This program can either be written by the method engineer
or be a function, built-in or add-on, of the CASE tool.

First of all, only the transformations are interesting, not the moves. Indeed, the automatic
COBOL extractor created a new schema into which it placed the extracted tables and files.
Then the analyst moved these constructs several times along the evolution of the schema in
order to keep it readable (to make all the tables hold in the window or to avoid overlaps for
instance). The trace of these moves is useless noise in the log history. The log files can be
cleaned from these moves. A small C program that does the job is shown in Appendix F.

Figure 11.40 shows a cleaned version of the “reverse.log” file. In fact, this log file has been
cleaned, only the first line of each entry is shown with a short description of its content.
Only the last transformation is shown completely. This is an entity type into rel-type trans-
formation (with the “TRF et_to_rt” header). The transformation is applied to the
“DETAIL” entity type.

The log file transformation program30 has to read the source file, each log entry at a time in
the reverse order, the last one first and the first one at the end, and it has to write in the
target file the inverse of each transformation. So this program has to understand every pos-
sible log entry and know their inverse. Applied to the “reverse.log” log file shown in Figure
11.40, the inversion transformation will produce the “forward.log” log file shown in Figure
11.41.

The new “forward.log” log file, the recovered design, is the new documentation of the leg-
acy system, which can be reused to make the legacy database evolve, or to re-engineer the
legacy system. For instance, it can be replayed on the final schema (see Figure 11.37). The
resulting schema exactly corresponds to the logical schema resulting form the reverse engi-
neering activity.

11.3. Conclusion
The first case study showed:

• how simple it is for an engineer to conduct a project with the guidance of the methodo-
logical engine

30 The complete program that does this job is much larger than the cleaning program because of the particu-
lar treatment for each possible log entry, so it cannot be printed in this thesis.

11.3. Conclusion 242

• how to build a complex structured history.

The second case study showed:

• the various degrees of freedom that can be given to the database engineer by the method
engineer

• how the database engineer can record all his or her reasoning including trials and errors

• how the database engineer can bring his or her own touch to the project progress by
making some simple processes which are not prescribed by the method, and which do
not perturb it

• how the resulting history can be reused and transformed.

These two case studies simply show in a pragmatic way that the goals presented in Chapter
1, Section 1.4 are reached. The database engineers are well guided, their work is simplified,
a correct and a useful documentation of their work is generated automatically.

*POT "begin-file" tag indicating the beginning of the log file
*POT "Renaming 20011206155142" tag indicating the renaming of construxts in the schema
*MOD ENT renaming ET “CUS” into “CUSTOMER”
*TRF prefix removing prefix “CUS-” in ET “CUSTOMER”
*MOD ENT renaming ET “ORD” into “ORDER”
*TRF prefix removing prefix “ORD-” in ET “ORDER”
*MOD ENT renaming ET “STK” into “STOCK”
*TRF prefix removing prefix “STK-” in ET “STOCK”
*MOD COA renaming attribute “DESCR” into “DESCRIPTION”
*MOD SIA renaming attribute “ADDR” into “ADDRESS”
*MOD SIA renaming attribute “FUNCT” into “FUNCTION”
*MOD COA renaming attribute “HIST” into “HISTORY”
*MOD COA renaming attribute “PURCH” into “PURCHASE”
*MOD SIA renaming attribute “TOT” into “TOTAL”
*MOD SIA renaming attribute “REF-PURCH-STK” into “REF-PURCH-STOCK”
*MOD SIA renaming attribute “REF-DET-STK” into “REF-DETAIL-STOCK”
*TRF name_proc name processing to capitalise attribute names
*POT "Remove files 20011206160632" tag indicating the removing of files
*DEL COL removing collection “STOCK”
*DEL COL removing collection “ORDERS”
*DEL COL removing collection “CUSTOMER”
*POT "Remove access 20011206160641" tag indicating the removing of access keys
*MOD GRP removing AK on identifier of “STOCK”
*MOD GRP removing AK on identifier of “ORDER”
*MOD GRP removing AK on foreign key in “ORDER”
*MOD GRP removing AK on identifier of “CUSTOMER”
*POT "Schema concept 20011206160701" tag indicating the beginning of the “Schema conceptualisation” process
*POT "De-optimizatio 20011206160951" tag indicating the beginning of the “De-optimization” process
*POT "Transform attr 20011206161014" tag indicating the beginning of the “Transform attributes into ET” process
*TRF desaggre_att disaggregation of attribute “CUSTOMER.History”
*TRF att_to_et_inst transformation of attribute “CUSTOMER.Purchase”
*TRF desaggre_att disaggregation of attribute “ORDER.Details”
*TRF att_to_et_inst transformation of attribute “ORDER.Details”
*MOD ENT renaming ET “Purchase” into “PURCHASE”
*MOD REL renaming ET “CUS_Pur” into “CUS_PUR”
*POT "Untranslation 20011206161212" tag indicating the beginning of the “Untranslation” process
*POT "Transform FK 20011206161219" tag indicating the beginning of the “De-optimization” process
*TRF att_to_rt transformation of FK from “PURCHASE” to “STOCK” into RT
*TRF att_to_rt transformation of FK from “DETAILS” to “STOCK” into RT
*TRF att_to_rt transformation of FK from “ORDER” to “CUSTOMER” into RT
*POT "Conceptual nor 20011206161627" tag indicating the beginning of the “Conceptual normalization” process
*POT "Transform ET i 20011206161638" tag indicating the beginning of the “Transform ET into RT” process
*TRF et_to_rt transformation of ET “PURCHASE” into RT “purchased”
*TRF et_to_rt transformation of ET “DETAIL” into RT “is-in”.
%BEG This transformation is listed in full, with all its details.
 %NAM "DETAIL
 %OWN "ORDER"/"conceptual"
 *CRE REL
 %BEG
 %NAM "is-in"
 %OWN "ORDER"/"conceptual"
 %END

Figure 11.40 The “revese.log” log file, first part...

11.3. Conclusion 243

 &MOD SIA
 %BEG
 *OLD SIA
 %BEG
 %NAM "Ord-qty"
 %OWN "ORDER"/"conceptual"."DETAIL"
 %END
 %NAM "Ord-qty"
 %OWN "ORDER"/"conceptual"."is-in"
 %END
 &MOD GRP
 %BEG
 *OLD GRP
 %BEG
 %NAM "IDDETAIL"
 %OWN "ORDER"/"conceptual"."DETAIL"
 %END
 %NAM "IDDETAIL"
 %OWN "ORDER"/"conceptual"."is-in"
 %END
 &DEL ROL
 %BEG
 %OWN "ORDER"/"conceptual"."is_in"
 %ETR "ORDER"/"conceptual"."DETAIL"
 %CAR 1-1
 %END
 &MOD ROL
 %BEG
 *OLD ROL
 %BEG
 %OWN "ORDER"/"conceptual"."is_in"
 %ETR "ORDER"/"conceptual"."STOCK"
 %END
 %NAM "is_in"
 %OWN "ORDER"/"conceptual"."is-in"
 %ETR "ORDER"/"conceptual"."STOCK"
 %END
 &DEL REL
 %BEG
 %NAM "is_in"
 %OWN "ORDER"/"conceptual"
 %END
 &DEL ROL
 %BEG
 %OWN "ORDER"/"conceptual"."ORD_DET"
 %ETR "ORDER"/"conceptual"."DETAIL"
 %CAR 1-1
 %END
 &MOD ROL
 %BEG
 *OLD ROL
 %BEG
 %OWN "ORDER"/"conceptual"."ORD_DET"
 %ETR "ORDER"/"conceptual"."ORDER"
 %END
 %NAM "ORD_DET"
 %OWN "ORDER"/"conceptual"."is-in"
 %ETR "ORDER"/"conceptual"."ORDER"
 %END
 &DEL REL
 %BEG
 %NAM "ORD_DET"
 %OWN "ORDER"/"conceptual"
 %END
 &DEL GRP
 %BEG
 %NAM "IDDETAIL"
 %OWN "ORDER"/"conceptual"."is-in"
 %COM "ORDER"/"conceptual"."is-in"."STOCK"
 %COM "ORDER"/"conceptual"."is-in"."ORDER"
 %TYP A
 %FLA "P"
 %END
 &DEL ENT
 %BEG
 %NAM "DETAIL"
 %OWN "ORDER"/"conceptual"
 %END
%END
*POT "Transform ET l 20011206161933" tag indicating the beginning of “Transform ET looking like attributes”
*POT "Transform ET i 20011206161936" tag indicating the beginning of the “Transform RT into is-a” process
*POT "end-file" tag indicating the end of the log file

Figure 11.40 The “revese.log” log file, last part.

Only the first line of each menu entry is shown, with comments, except the last entry which is shown completely

11.3. Conclusion 244

*POT "begin-file" tag indicating the beginning of the log file
*TRF rt_to_et transformation of RT “is-in” into ET “DETAIL”
%BEG
 %NAM "is-in"
 %OWN "ORDER"/"conceptual"
 *CRE ENT
 %BEG
 %NAM "DETAIL"
 %OWN "ORDER"/"conceptual"
 %END
 *CRE REL
 %BEG
 %NAM "ORD_DET"
 %OWN "ORDER"/"conceptual"
 %END
 *CRE REL
 %BEG
 %NAM "is_in"
 %OWN "ORDER"/"conceptual"
 %END
 &CRE ROL
 %BEG
 %OWN "ORDER"/"conceptual"."ORD_DET"
 %ETR "ORDER"/"conceptual"."DETAIL"
 %CAR 1-1
 %END
 &MOD ROL
 %BEG
 *OLD ROL
 %BEG
 %OWN "ORDER"/"conceptual"."is-in"
 %ETR "ORDER"/"conceptual"."ORDER"
 %END
 %OWN "ORDER"/"conceptual"."ORD_DET"
 %ETR "ORDER"/"conceptual"."ORDER"
 %END
 &CRE ROL
 %BEG
 %OWN "ORDER"/"conceptual"."is_in"
 %ETR "ORDER"/"conceptual"."DETAIL"
 %CAR 1-1
 %END
 &MOD ROL
 %BEG
 *OLD ROL
 %BEG
 %OWN "ORDER"/"conceptual"."is-in"
 %ETR "ORDER"/"conceptual"."STOCK"
 %END
 %OWN "ORDER"/"conceptual"."is_in"
 %ETR "ORDER"/"conceptual"."STOCK"
 %END
 &MOD SIA
 %BEG
 *OLD SIA
 %BEG
 %NAM "Ord-qty"
 %OWN "ORDER"/"conceptual"."is-in"
 %END
 %NAM "Ord-qty"
 %OWN "ORDER"/"conceptual"."DETAIL"
 %END
 &CRE GRP
 %BEG
 %NAM "IDDETAIL"
 %OWN "ORDER"/"conceptual"."DETAIL"
 %COM "ORDER"/"conceptual"."is-in"."STOCK"
 %COM "ORDER"/"conceptual"."ORD_DET"."ORDER"
 %TYP A
 %FLA "P"
 %END
 &DEL REL
 %BEG
 %NAM "is-in"
 %OWN "ORDER"/"conceptual"
 %END
%END
*TRF rt_to_et transformation of RT “purchased” into ET “PURCHASE”
*TRF rt_to_att transformation of RT “places” into a FK
*TRF rt_to_att transformation of RT “is_in” into a FK
*TRF rt_to_att transformation of RT “from” into a FK
*MOD REL renaming ET “CUS_PUR” into “CUS_Pur”
*MOD ENT renaming ET “PURCHASE” into “Purchase”

Figure 11.41 The “forward.log” log file, first part...

11.3. Conclusion 245

*TRF et_to_att transformation of ET “Details” into attribute “ORDER.Details”
*TRF aggre_gr aggregation of group made up of attribute “ORDER.Details”
*TRF et_to_att transformation of ET “Purchase” into attribute “CUSTOMER.Purchase”
*TRF aggre_gr aggregation of group made up of attribute “CUSTOMER.History”
*MOD GRP adding AK to identifier of “CUSTOMER”
*MOD GRP adding AK to foreign key in “ORDER”
*MOD GRP adding AK to identifier of “ORDER”
*MOD GRP adding AK to identifier of “STOCK”
*CRE COL adding collection “CUSTOMER”
*CRE COL adding collection “ORDERS”
*CRE COL adding collection “STOCK”
*TRF name_proc name processing to convert all attribute names to upper case
*MOD SIA renaming attribute “REF-DETAIL-STOCK” into “REF-DET-STK”
*MOD SIA renaming attribute “REF-PURCH-STOCK” into “REF-PURCH-STK”
*MOD SIA renaming attribute “TOTAL” into “TOT”
*MOD COA renaming attribute “PURCHASE” into “PURCH”
*MOD COA renaming attribute “HISTORY” into “HIST”
*MOD SIA renaming attribute “FUNCTION” into “FUNCT”
*MOD SIA renaming attribute “ADDRESS” into “ADDR”
*MOD COA renaming attribute “DESCRIPTION” into “DESCR”
*TRF prefix adding prefix “STK-” in attributes of ET “STOCK”
*MOD ENT renaming ET “STOCK” into “STK”
*TRF prefix adding prefix “ORD-” in attributes of ET “ORDER”
*MOD ENT renaming ET “ORDER” into “ORD”
*TRF prefix adding prefix “CUS-” in attributes of ET “CUSTOMER”
*MOD ENT renaming ET “CUSTOMER” into “CUS”
*POT "end-file"

Figure 11.41 The “forward.log” log file, last part.

This log file is the result of the inversion of the “reverse.log” file.

Chapter 12

Professional use

The DB-MAIN CASE tool enhanced with the methodological engine has
been used to support the methodological aspect of several projects. This
chapter presents the feed-back from users and their comments.

Chapter 12 Professional use 248

The DB-MAIN CASE tool enhanced with the methodological engine has been used by
other researchers as a tool to accomplish their projects. This chapter presents two projects,
as well as the the feed-back and the comments of researchers in charge of these projects.
The first project addresses the database evolution problem already presented in Chapter 7.
The second project concerns the design of XML database schemas.

12.1. List of questions
The following questions were asked to the users:

1. For what purpose was the process modelling facility used?

2. What advantages did you get from the process modelling facility?

3. What critics can you formulate about the process modelling facility?

4. What enhancements would you suggest?

5. If you had to do your project again, would you still use the process modelling facility?

12.2. Relational database applications evolution
The relational database applications evolution problem is presented in Chapter 7, section
7.3. It is also presented in [HICK,98] and in [HICK,99], and fully detailed in [HICK,01].

Here are Jean-Marc Hick’s answers to the questions:

1. I used the process modelling facility to present the method to follow in a formal way
and to automate the use of this method.

2. The syntax was sufficient to describe the method. The use of the process modelling
facility to formalise the method allowed me to highlight difficulties and incoherence, as
well has to make that method clear. So, process modelling helped at enhancing the
methodology.
In the DB-MAIN CASE tool, the process modelling facility allows me to guide the user
who wishes to follow a complex evolution method.

3. Following the method in the CASE tool is pretty satisfying. But, while designing a
method, the necessity of building a new project each time the method is updated is a bit
heavy.

4. About the tools, a debugger would be useful.

5. To start to use a method in the field of database engineering, the process modelling
facility seems to be well adapted. It is a precious step in setting up a new methodology.
Hence the answer is yes.

12.3. XML Engineering
The second project is about engineering XML databases. It is presented in [DELCROIX,
01] and in [ESTIEVENART,02]. It follows a general path similar to the one of the first
case study in Chapter 11, but with transformations which are particular to XML.

The XML model is a hierarchical model. While the ER model is not. So the transforma-
tion process has to derive a hierarchical schema from a unconstrained schema. This cannot
be done automatically, and requires some decision taking. Indeed, after the transformation
of is-a relations and non-functional rel-types, in the same way as in the first case study of
Chapter 11, an ER schema is a graph. Some entity types appear as the root of a hierarchy.
The rel-types between these root nodes and their children are marked as inheritance links.

12.3. XML Engineering 249

Then those children themselves have children, so the links between them are marked too,
and so on. When no more inheritance links can be discovered, some unmarked rel-types
may remain in the graph. Some of them can be suppressed and replaced by a reference
group, then the search of more inheritance relations can go on. The decision of which
unmarked rel-type to suppress is not trivial. It is a human decision. When no more
unmarked rel-type remains, the graph is a forest which can be transformed into a tree by
adding a root node, which is the father of all previous root nodes. Then, the sub-types of
an entity type must be ordered in a sequence, this is, once again, a non-trivial task. For
instance, Figure 12.1 shows an intermediate version of a schema during the transformation
process (from [DELCROIX,01]). All rel-types are binary one-to-many without attributes,
and some many roles have the name “f” (“father”). The rel-types in which they are played
must be kept. Rel-types without such a role (“dét_PRO” in the example) will be deleted.
An entity type “root” has been added so that the hierarchy has a single root node. “root”
contains a special group which indicates the sequence order of its sub-types (the entity-
types linked to it through the many-to-one rel-types).

Figure 12.1 An XML schema transformation example

Many required functions (detection of the root of a hierarchy, detection of the children of
one node,... for instance) are not part of the CASE tool kernel and have been implemented
with the 4GL Voyager 2. Some transformation scripts do a part of the job too.

Here are the answers of F. Estiévenart to the questions:

1. The process modelling facility allows us to implement the method for transforming a
conceptual schema into an XML (DTD or XML schema) model compliant schema.

2. The advantages are the following:

• Graphical view of the transformation process (terminated processes and processes still
waiting to be performed are easily distinguishable).

• Possibility to use either global transformation scripts, validation scripts, or other
Voyager 2 programs using a single interface.

• Possibility to cope with schemas compliant with various models.

3. The critics are the following:

• When a process finishes automatically, it is necessary to explicitly start the following
one using the “execute” menu item. In the same way, at the end of a sub-process, the
user must click on “terminate” to go back to the main process. When a method con-
tains a lot of process types, too many clicks are necessary. A remedy to this “friendli-

f
0-N 1-1

f
0-N

1-1

f
0-N 1-1passe

1-1

0-N

dét_PRO

1-1f
0-N dét_COM

root
seq: .PRODUIT[*]

.CLIENT[*]

PRODUIT
NPRO
LIBELLE
PRIX
STOCK
id: NPRO

détail
QCOM
id: dét_PRO.PRODUIT

dét_COM.f

COMMANDE
NCOM
DATE
id: NCOM

CLIENT
NCLI
NOM
ADRESSE

VOIE
CODE-POSTAL
VILLE

TELEPHONE[1-5]
CAT
COMPTE
id: NCLI

COMMANDE/XML/ Etape 4

12.3. XML Engineering 250

ness weaknesses” is to merge several sub-processes into a single one, but this reduces
the clarity and the precision of the global process.

• Interaction with DB-MAIN. Necessity to export the conceptual schema made in one
project in an external format to be able to use it in the XML design project using the
process modelling facility.

4. The CASE tool should be able to start and finish some automatic process types auto-
matically, without the need for the user to click many times.

5. Yes, in a different way. The method is mainly a sequence of process types now. Most
decisions to take are asked to the analyst through Voyager 2 dialogue boxes. If the same
project had to be done again, a better use of MDL, using more of the control structures
it offers, could reduce the need of programming in Voyager 2.

12.4. Conclusion
The first true users of the DB-MAIN CASE tool augmented with the process modelling
facility seem to be happy with it, although some enhancements are still necessary to make it
a fully industrial tool.

The DB-MAIN team having many contacts with private companies in many domains can
notice that most of them still do not use methodological support and are, a priori, not very
interested in them. This lack of methodology leads them to poorly documented and
unmanageable systems which need being reverse engineered. So further effort of education
should be necessary to make them aware of the usefulness of methodological support before
their commitment to it and their feed-back can be analysed.

Part 4Part 4Part 4Part 4

Future workFuture workFuture workFuture work

Chapter 13

Method evolution

This thesis addresses the process of writing and using a method. But a
method also has to evolve along the time. This chapter will begin with the
reasons for making a method evolve and with a classification of these
reasons. Then the problem will be stated more formally and a solution will
be proposed. It is based on temporal databases that allow the repository to
store all the versions of the method, as well as the complete history of the
project with correct links between each part of the history and the method
version which guided it.

13.1. Presentation 254

13.1. Presentation
This thesis addresses the problem of writing and using a method. But a method also has to
evolve along the time for various reasons:

• A new project has to start which looks pretty like a previous one, with just a few differ-
ences (in the physical product model, for instance).

• A project following a method showed that a few aspects of the method could be
enhanced. The method engineer wants to update the method for future projects.

• During a project, the database engineer faces a situation in which the method does not
allow him or her to perform a required task. The method should be updated before
going further in the project.

• During a project, due to a method design problem, the methodological engine has
reached a deadlock. For example, a toolbox does not provide the useful tools to make a
product compliant with a given product model. In this case, an update of the method
(or the disabling of the method, as shown in Chapter 9) is required.

These reasons can be classified in two categories: the static updates (first and second cases)
and the dynamic updates (third and fourth cases). A static update is performed before the
beginning of a project; it is a further step in the design of the method. A dynamic update is
performed during a project, so that a part of the project is performed with the unmodified
method and another part of the project with the modified method. The same classification
is also made in [DOWSON,94].

Other project authors, such as [CUGOLA,99], [CONRADI,94a], [POHL,99], and many
more, also think taking possible deviations into account is necessary.

In Chapter 4, various process modelling techniques were compared. Most of them allow
dynamic updates. In fact, they take dynamic update as a requirement, according to the fact
that the third and fourth reasons above are common because of the design of the methods
by human beings. But this raises a question about giving a non-mature method to the user
to help. Ensuring that a method is correct is surely a good practice. If a large computer pro-
gram can reach several millions of lines of code, a large method will seldom go over a few
thousands of lines of code, a typical method being about several hundreds of lines of code
only as it could be observed in real projects. Verifying it and testing it are possible and real-
istic activities. Anyway, updating dynamically a method can always prove to be useful.

13.2. The problem
In this section, the problem will be stated more precisely. The possible modifications that
can be done to a method and their consequences, both on the remaining of the method
and on the history, will be examined within both declarative and procedural method defi-
nition paradigms.

The main kinds of method modifications are the following:

• insertion, modification or deletion of a product model

• insertion, modification or deletion of a product type

• insertion, modification or deletion of a process type.

13.2.1. Product models and product types

In the MDL framework, the definition of product models and product types follow a
declarative paradigm. So the following analysis holds for either the MDL framework, most

13.2. The problem 255

other procedural models, or declarative models.

Inserting a new product model is a really easy task since it has no direct impact on the
remaining of the method. It does not even has an impact on the history since no product
of a type compliant with this model already exist. Indirect consequences will generally
appear due to the fact that this insertion is often accompanied by the modification of sev-
eral product types or process types.

Inserting a new product type or a new process type has similar impacts.

Modifying a product model may have various impacts according to the kind of modification.
Either the list of concepts or the list of constraints can be modified. Adding a new concept
or modifying an existing one (that is to say changing its renaming) has no impact on the
remaining of the method nor on the history. Removing a concept can have a lot of conse-
quences: constraints may be invalid and process types concerned by this concept may
become senseless. Adding or modifying a constraint can also have a large impact on the
process type and on the history. Removing a constraint can cause product model compli-
ance problem with parameters during future use of sub-processes, but it has no impact on
the history.

Modifying a product type can have various impacts too. Modifying the product model of the
product type can have an impact on other product type definition since product model
compliance must still be insured in sub-process use, and an impact on the history since the
existing products may not be compliant with the product model anymore. Modifying the
cardinality constraints can also have an impact on parameter definitions, but also on the
strategy of the process type(s) using this product type. Modifying the cardinality con-
straints can also have consequences on the validity of the history.

13.2.2. Process types

Process types are very different within a procedural paradigm, including the MDL frame-
work, or within a declarative paradigm.

Within a procedural paradigm, modifying a process type is rather simple since it suffices to
replace the old one by the new one for the method to remain coherent. But the history
may suffer a lot of such a modification. Indeed, the recorded processes may not follow the
new strategy anymore. The links between the method and the history can only survive if
the new process type version still allows to perform the job in the same way. For instance, if
the modification simply adds a new branch to a some structure, the history is still valid with
respect to the new process type because performing the added branch is not mandatory and
it could have always been left apart in the past.

Deleting a product model, a product type or a process type has evident consequences on the
remaining of the method, each reference to the deleted component becoming invalid, and
on the history if it contains products or processes of this type or of this model.

Within a declarative paradigm, the insertion, the deletion or the modification of a process
type seem to be equally easy because no other process is directly involved. But the integrity
of the whole method still needs to be verified. Indeed, a situation into which a process type
can no longer be enacted, or into which no more process can be enacted, because of a pre-
condition or post-condition mismatch, can be reached.

13.2.3. The method evolution problem

In summary, the method evolution problem is twofold:

• The method itself has to keep its coherence.

• The history should keep its characteristic of following the method. In this respect, the

13.2. The problem 256

idea of automatically updating the history31 in parallel with the method is not an option
because it should not be altered.

For the method to keep its coherence, the problems impacted by a modification must be
detected and corrected with other modifications. Several impact detection techniques exist:

• Dependency graphs: graphs into which the nodes are product models or product types,
and the vertices are dependency relationships. For example, a dependency graph may
show that product type A depends on (“is of” in reality) product model M, as well as
product type B. It may also show that products of type C in one process type become
products of type D in another process type used by the first one.

• Call graphs: graphs into which the nodes are process types and the vertices show that
one process type uses another process type.

• Declaration graphs: graphs into which the nodes are product types and process types,
and the vertices show in what process types each product type is declared (for local
product types) or used (for global product types).

• Program slicing [WEISER,84]: it consists in analysing the MDL code of the methods in
order to detect integrity problems by extracting MDL instructions having a direct or
indirect incidence on the instances of a given product type at a given point.

• ...

But the use of these detection techniques is out of the scope of this chapter which is con-
cerned about the correct storage of every needed modifications in a valid method. In the
following section a solution to the evolution problem will be described in detail.

13.3. Solution proposal
A solution that keeps both the history unchanged and the links to the method it followed
is to keep the old method unchanged in the repository together with the modified method.
The solution proposed in this section to the problem of method evolution is to transform
the repository depicted in Chapter 10 to make it temporal. In a first time, a few elements
about temporal databases will be reminded. They will be applied to the method evolution
problem in a second time.

13.3.1. Temporal databases

A description of temporal database techniques can be found in [DETIENNE,01]. In this
section the aspects of this paper of interest for this work are summarised.

In a traditional database, only the current state of a given entity is kept. In a temporal data-
base, all the successive states of this entity are kept together with the date and time of their
modification. For example, a customer is known with his or her current address only in a
traditional database, and all the successive addresses of the customer are kept with the date
they moved from one to the other in a temporal database. In fact, either the true date and
time of the move can be saved, this is called the valid time, or the date and time of the
moment the information is stored, this is the transaction time. In the following, only the
transaction time is of concern. It will be stored by tagging entity types with timestamps.

A timestamptimestamptimestamptimestamp is a data structure that allows to represent moments. It can be a date, a pair
(date,time), just a time, including or not the century, the year, seconds, tenths of seconds,
hundredths of seconds,... It all depends on the granularity the problem needs: an informa-
tion system managing a stock in real time to which thousands of terminals are connected
does not require the same timestamps as an information system on a standalone computer

31 Is this realistic? This surely needs complex actions and decision taking. It would be worth another thesis.

13.3. Solution proposal 257

for managing lecturers and books in a small library; a timestamp as precise as a thousandth
of a second may be useful in the first case, while a timestamp with the precision of a day
may suffice in the second case. In order to avoid this granularity problem and to ease the
representation, integers will be used in this thesis, 0 representing the moment the informa-
tion system is activated, 999, or any large number, representing the future, any other inte-
ger value between 0 and 999 representing discrete moments between the activation and the
present time, itself represented by a variable now. This can be done without loss of general-
ity since a new table associating these integer values to real moments can always be intro-
duced32. Figure 13.1 shows an example of time line using these notations.

|0 |5 |8 |12 |27 |49 |68 |now 999

Figure 13.1 A time line

A temporaltemporaltemporaltemporal entityentityentityentity typetypetypetype is an entity type to which two timestamps are attached: one, the
start time, that represents the moment at which the entity type is created, and the other, the
end time, representing the time at which the data are “modified” or “deleted”. Indeed, the
values stored in a temporal data structure are never modified nor suppressed, they are sim-
ply marked as such. When a new entity of a temporal type is stored in the database, the
start time is set to the value of now and the end time is set to 999 in order to show that it
will still be correct in the future. This entry is the first state of the entity. When the entity
must be modified, the end time of its last state is set to the value of now, then a new state
of the same entity is added to the database with the new values. As a result, an entity is rep-
resented by one entry in a non-temporal database, but an entity is made of several entries
(several states) in a temporal database. To “delete” this entity, the end time of its last state
is simply set to the value of now, only states having an end time of 999 being valid.

The example in Figure 13.2 shows that a new customer, Smith, was encoded at time 5 with
the customer ID 123. Another new customer, Jones, was encoded at time 8 with ID 178.
At time 12, Mr Smith told us he moved from Roses street to Lemons square: his first state
was invalidated by setting the end time to 12, and a new state was created with the new
address, new timestamps (12 for the start time, 999 for the end time) and the former values
for all other attributes. Mr Jones moved twice and told it to us at times 27 and 49. Finally,
at time 68, Mr Jones was removed. This example contains two entities and five states. At
the present time, the correct address of Mr Smith is known by the line with an end time
value of 999, as well as all his previous addresses with the period at which he lived at each
one. The fact that Mr Jones was a customer in the past is known too.

CustIdCustIdCustIdCustId NameNameNameName AddressAddressAddressAddress Start timeStart timeStart timeStart time End timeEnd timeEnd timeEnd time Other dataOther dataOther dataOther data

123 Smith 45, Roses street 5 12 ...

178 Jones 13, Pines avenue 8 27 ...

123 Smith 14, Lemons square 12 999 ...

178 Jones 6, Grapefruit street 27 49 ...

178 Jones 26, Pineapple avenue 49 68 ...

Figure 13.2 A temporal data structure example

A temporal data structure has some properties that imply a few constraints:

• Since the database contains several states of the same entity (in the example above, sev-
eral lines concerning the same customers, with the same CustId value), the natural iden-

32 Furthermore, this reference table can also insure the uniqueness of timestamps since two events appearing
exactly at the same time will be assigned two consecutive integer values.

13.3. Solution proposal 258

tifier of an entity type, that is to say what identifies in the real world the concept repre-
sented by the entity in the database, is not an identifier. A possible identifier is the natu-
ral identifier plus the timestamps. Since both the start time and the end time are unique
for all the states of a same entity, only one of them suffice. And since the end time is ini-
tialised with a default value before being changed later on, it seems more natural to use
the start time. The genuine identifier of an entity type is thus the natural identifier plus
the start time. The entity type corresponding to the example above is shown in Figure
13.3, both in a non-temporal and in a temporal versions.

Figure 13.3 The Customer entity type, non-temporal
version and temporal version

• The natural identifier of an entity type must be stable. In other words, the value of the
natural identifier must remain unchanged among all its states. All other attributes can
vary, except if otherwise expressed in the temporal entity type declaration.

• The two timestamp values of a state define an interval. To be precise and to avoid con-
fusion, this interval is closed at left, open at right: [start time, end time[. The interval of
the different states of an entity type E (with natural identifier I) do not overlap and
leave no hole:

∀ e1, e2 ∈ E such that e1 ≠ e2 and e1.I = e2.I,
[e1.start time,e1.end time[∩ [e2.start time,e2.end time[= ∅

If efirst is the first state of an entity e of type E, such that e.I = id, and if elast is its last
state, then

∪i such that ei.I = id [ei.start time, ei.end time[= [efirst.start time, elast.end time[

[DETIENNE,01] implements such temporal databases within the relational SQL model,
interprets all the traditional relational operators, and define new necessary ones in order to
be able to handle temporal data structures. It also presents the two interpretations of the
time – the transaction time and the valid time – and how to cope with both of them at the
same time. Within the framework of this thesis, only the transaction time is of interest, and
an object oriented model is used for the design of the repository.

Within an object oriented model, classes (entity types) are linked with rel-types. A role
played by an object in a functional rel-type (one-to-many without attributes) is part of the
object, like an attribute. So, creating a rel-type between two objects must force the creation
of a new state for the temporal objects. Let us examine how the object oriented schemas
have to evolve. Figure 13.4 shows a simple situation into which each object of class B has
to be in relation with exactly one object of class A. If class A becomes a temporal class, as
shown in Figure 13.5, each object of class B has to always be in relation with exactly one
valid state of an object of class A (end time=999), and possibly one or several other states,
of the same object or others, which are no longer valid (end time<999). So, the cardinality
constraint of the role played by B in R has to be transformed from “1-1” into “1-N” and

CUSTOMER
CustId
Name
Address
Zip code
Town
Country
Phone
Birthdate
Start time
End time
id: CustId

Start time

CUSTOMER
CustId
Name
Address
Zip code
Town
Country
Phone
Birthdate
id: CustId

13.3. Solution proposal 259

the following constraint has to be added to the class B (the group labelled “Cst” in Figure
13.5):

∪a ∈ b.R.A [a.start time, a.end time[= [mina ∈ b.R.A a.start time, 999[
∧ ∃! a ∈ b.R.A such that a.end time=999

If the cardinality constraint of the role played by B in Figure 13.4 was “0-1” instead of
“1-1”, it can become “0-N” in Figure 13.5 and the constraint is no more necessary.

If class B becomes temporal, see Figure 13.6, the roles do not need to be changed. Indeed,
each state of an object of class B can be in relation with the same or with various objects of
class A without any contradiction, and adding new relationships does not perturb the exis-
tence of objects of type A. Note, that instances of R will never be removed because of the
“1-1” cardinality constraint and because of the fact that B is now temporal and none of its
instance states will be removed. This implies that no constraint needs to be added. Having
“1-1” instead of “0-1” in Figure 13.4 does not disturb this reasoning and the cardinality
constraint would be kept too.

Figure 13.7 shows the same transformations in a schema containing a one-to-one rel-type.
The constraint to be added when class A is made temporal is the same as in the case of the
many-to-one rel-type above.

Figure 13.4 A non-temporal schema with a 1-N rel-type

Figure 13.5 Class A has been made temporal

Figure 13.6 Class B has been made temporal

Figure 13.7 Transformations of a 1-1 rel-type

0-N 1-1

B
B1
B2
id: B1

A
A1
A2
id: A1

R

1-N0-N R

B
B1
B2
id: B1
Cst: R.A[*]

A
A1
A2
Start time
End time
id: A1

Start time

1-10-N R

B
B1
B2
Start time
End time
id: B1

Start time

A
A1
A2
id: A1

1-10-1 R

0-N 1-1R

0-1 1-NR

B
B1
B2
id: B1

B
B1
B2
Start time
End time
id: B1

Start time

B
B1
B2
id: B1
Cst: R.A[*]A

A1
A2
id: A1

A
A1
A2
id: A1

A
A1
A2
Start time
End time
id: A1

Start time

13.3. Solution proposal 260

13.3.2. A solution proposal for the method evolution problem

The temporal database notions presented above can be used to enhance the repository pre-
sented in Chapter 10 in order for it to store all the successive states of a method during a
project. When a product is used or a process is performed, its history is in relation with its
type in Chapter 10. Now, its history will be put in relation with the current state of its type
when it is executed. A product will always remain in relation with its type at the time of its
creation. If a process type is performed several times, but in different states (it is modified
between two uses), all the executions will be correctly stored and remain compliant with
the state into which they were performed.

The part of the repository for the method shown in Figure 10.3 has to evolve.

All the paragraphs (schema-model, text-model, product type, toolbox, process type,
method) in an MDL listing can evolve. So their counterpart class in the repository has to
become temporal. But two of them, schema_model and text_model are specializations of a
common super-class: model. So, the following classes must become temporal: method, proc-
ess_type, statement, toolbox, product_type, and model. Two new attributes, start_time and
end_time, must be added and the identifiers must be updated.

The specializations of a temporal class are automatically temporal too since they share the
same attributes and identifiers. So text_model, schema_model, text_type, schema_type and
prod_set_type can remain unchanged. An expression could be made temporal too because it
can evolve. But since it is identified by the statement into which it is defined, a modifica-
tion in an expression can be seen as a modification in the statement. So the full expression
can be stored each time a new state of the statement that contains it is stored, in order to
avoid complex time interval computation when accessing an expression. Usually, an expres-
sion is rather small in size, so this technique will not consume a lot of space. Since the
statement class is temporal and the expression class is not, the owner_of_parameter class has
to remain non temporal too. The same reasoning can be done for the parameter class and
the mod_concept class as for the expression class, so they can remain unchanged too. To ter-
minate the transformation, the rel-types still have to be updated too, and more specifically
their roles, according to the rules presented in the previous section.

The format of timestamps has to be defined. When a method must be updated, several
modifications may have to be taken into account. If no database engineer uses the method
during the update – this can honestly be taken as an hypothesis – there is no need to distin-
guish the precise moment of the different modifications. The complete update, including
all the modifications, can be a single transaction made at a single precise moment. So, sim-
ply numbering the method versions and using this integer number as a timestamp is suffi-
cient. The method is created at moment 0, the first update at moment 1,...

Between two updates of the method, the CASE environment has to know which state is
the last one. In other words, it has to know the value of now. This value has to be stored in
a new attribute, named now, of the System class.

The new repository is shown in Figure 13.8. The following constraints must be added:

• mod_concept.cst:
∪o∈have_concept.schema_model[o.start_time,o.end_time[

= [mino∈have_concept.schema_model o.start_time,999[
∧ ∃! o ∈ have_concept.schema_model such that o.end_time=999

• schema_type.cst:
∪o∈schema_conform.schema_model[o.start_time,o.end_time[
 = [mino∈schema_conform.schema_modelo.start_time,999[
∧ ∃! o ∈ R.A such that o.end_time=999

13.3. Solution proposal 261

Figure 13.8 The temporal version of part of the repository for storing a method

• text_type.cst:
∪o∈text_conform.text_model[o.start_time,o.end_time[

= [mino∈text_conform.text_model o.start_time,999[
∧ ∃! o ∈ text_conform.text_model such that o.end_time=999

• process_type.cst:
∪o∈strategy.statement[o.start_time,o.end_time[
 = [mino∈strategy.statement o.start_time,999[
∧ ∃! o ∈ strategy.statement such that o.end_time=999

• method.cst:
∪o∈perform.process_type[o.start_time,o.end_time[

= [mino∈perform.process_type o.start_time,999[
∧ ∃! o ∈ perform.process_type such that o.end_time=999

0-N

0-N

uses

0-N

1-N

text_conform

0-N
part_of

0-N
made_up_of

sub_stmt0-1
part_of

0-N
made_up_of

sub_expression

0-N 1-N
strategy

0-N

1-N

schema_conform

1-N

0-N

perform

1-1

0-N

owner_param

0-1

0-N
model_expr

1-1

1-N

link

0-N
specialization

0-N
generalization

is_a

0-N 0-N
invokes

0-N

1-1

have_concept

0-N

0-N

form_arg

0-1 0-1
condition

0-N

0-1

concept_mo

0-1

0-N
act_arg

P

P

P

toolbox
name
title
nb_fct
functions[0-N]
description[0-1]
start_time
end_time
id: name

start_time

text_model
default_ext
nb_ext
grammar[0-1]

System
now
cst: link.method[*]

statement
type
glbtrsf[0-1]
state
start_time
end_time
(ord)
excl: sub_stmt.made_up_of[*]

strategy.process_type[*]
excl: glbtrsf

condition.expression
uses.toolbox[*]
invokes.process_type[*]

schema_model
constraints
cst: have_concept.mod_concept[*]

prod_set_type

product_type
name
title
weak
min_mul
max_mul
usage
description[0-1]
start_time
end_time

process_type
name
title
explain[0-1]
description[0-1]
start_time
end_time
id: name

start_time
cst: strategy.statement[*]

parameter
integer[0-1]
string[0-1]
analysis_expr[0-1]
usage
type
mode
(ord)
id: owner_param .owner_of_parameter

(ord)
exact-1: model_expr.model

act_arg.product_type
string
integer
analysis_expr

owner_of_parameter

mod_concept
contextual_name
id: have_concept.schema_model

concept_mo.meta_object

model
name
title
description[0-1]
start_time
end_time
id: name

start_time

method
title
version
date
author
help_file[0-1]
description[0-1]
txt_file
start_time
end_time
id: start_time
cst: perform.process_type[*]

meta_object

expression
not
weak
type
(ord)
exact-1: sub_expression.made_up_of

condition.statement

 text_type
cst: text_conform.text_model[*]

 schema_type
cst: schema_conform.schema_model[*]

ADDITIONAL CONSTRAINTS

id(product_type):
 if(usage=global)
 name, start_time
 else
 name, start_time, form_arg.process_type
id(statement):
 if(strategy.process_type)
 start_time,strategy.process_type
 else
 start_time,(ord),sub_statement.made_of
id(expression)
 if(condition.statement)
 condition.statement
 else
 (ord),sub_statement.made_of

13.3. Solution proposal 262

• System.cst:
∪o∈link.method[o.start_time,o.end_time[
 = [mino∈link.method o.start_time,999[
∧ ∃! o ∈ link.method such that o.end_time=999

In practice, the work to do to implement method evolution is the following:

• Implement the new repository.

• Update the MDL translator for it to compare the new MDL source text with the stored
method state and to store only the new version of the modified parts of the method
with an incremented value of now. The way to perform the comparison is still to be
worked out.

• Update the CASE tool GUI to allow database engineers to see the various versions of
the method.

• Update the methodological engine so that it always uses the last version (with
end_time=999) of each component of the method.

This chapter just sketched the main lines of the method evolution problem. A more com-
plete study is necessary in order to implement it correctly. This is left for future research.

Chapter 14

Conclusion and future works

14.1. Conclusion
In Chapter 1 it was claimed that database engineering processes can be modelled so that a
CASE tool using the models can:

• force database engineers to perform projects in a specific way, the same as all their col-
leagues

• guide and help the database engineers perform their work

• keep a complete and reusable history of project developments

In the following chapters, database oriented schemas were formally defined, as well as
other kinds of products that can be useful, and process types with their strategy. A semi-
procedural Method Definition Language was developed. A complete history representation
model has been defined too, onto which a set of selection and transformation operators
have been designed. Then everything was put in practice by implementing new functions
in an existing database engineering CASE tool to support process modelling and history
recording and the use of these tool was experimented with case studies. The prototype has
even been used for real projects which are not presented in this thesis.

The various uses of the current implementation of the CASE environment with a method
has brought a series of comments from the database engineers, as well as several observa-
tions made by the author of this thesis:

• The help brought to the database engineers is real. The way the method is presented
makes additional documentation unnecessary even if a little bit of training is required to
understand the algorithms correctly.

• Designing a method really is different from writing a piece of program with a proce-
dural language, as shown in Chapter 8, and a learning period is required.

• The use of a single click to start predefined processes (mainly primitive processes of an
external type) allows engineers to work faster and to concentrate on the project in itself,
rather than on the way to organise it.

• In some cases, some improvements would be useful. For instance, it is necessary to start
manually all the automatic processes in a sequence (for instance, the five global transfor-
mations of the logical design process type in the first case study in Chapter 11). Users
reports this to be a bit tedious. Indeed, even if the number of mouse clicks is reduced
comparing to the same job without a method, database engineers still have to perform
several times the same actions without the need of thinking and taking decision. Auto-

14.1. Conclusion 264

mation was presented in Chapter 9, but it is still not implemented and this lack of
implementation proves the usefulness of the idea.

• When the method engineer and the database engineer are the same person (during the
test phase of a method design process, for example), method evolution (Chapter 13) is
lacking, so further study of the problem and implementation should come pretty soon.

Hence, overall, some work is still needed in order to get a professionally usable tool, but
the first results are very promising. We are definitely on the right path. Some work still
need to be done to make this work really industrially viable as expected in Chapter 1, sec-
tion 1.4, but it is already no more a simple prototype.

This work concentrated on modelling processes for database engineering, but it can be
extended to other domains of interest too, although a few problems have to be taken into
account. Indeed, neither the model, nor the strategy part of the language is specific to a
given paradigm. Among the problems to solve, the following ones can be cited:

• Database engineering with the DB-MAIN CASE tool does not need interfacing with
third party tools for complementary process types. Software engineering, for instance,
may require the use of high level text editors, compilers,... So an integration mechanism
is required, especially concerning the definition and the management of the history.
[POHL,99] addresses this problem.

• The classification of primitive processes in four types may have to be reviewed. For
instance, a fifth type consisting of external tools that cannot be configured at all to guide
the user may be necessary.

• New kinds of product models of interest may require new type of descriptions and new
transformations. So, either the schema-model section of the MDL language can be
updated by a new list of concepts and constraints (appendix A) and the text-model sec-
tion (Appendix B) can be adapted to new requirements, or either these two sections
maybe replaced by new sections. In the same way, the list of tools to put in toolboxes
(Appendix E) and the list of global transformations (Appendix C) have to be replaced
too.

In short, the main structure of the model and the language is valid whatever the paradigm,
and only the details of the new product models and primitive process types need to be
strongly revisited to cope with new paradigms, as well as the syntax and the generation of
primitive process types histories.

14.2. Future works
The research work performed in this thesis has not reached an end. Future research lines
are still open.

14.2.1. Method evolution implementation

Chapter 13 was entirely dedicated to the method evolution problem. It proposed an idea of
solution and drew a path in the direction of this solution, but the big part of the job has
still to be done.

14.2.2. Method engineering methodology

We proposed, in Chapter 8, a few elements of methodology for designing database engi-
neering methods with the MDL language. But there is much more to write about the sub-
ject. Traditional methodological theories and techniques about procedural programming
include structured programming, invariant theory, recursive design and recursion suppres-

14.2. Future works 265

sion techniques, program termination proving, and much more. These theories and tech-
niques only hold for deterministic systems. Since an engineering method is oriented
towards non-deterministic human beings, all these theories need to be revisited.

14.2.3. Method recovery

The history of a reverse engineering project can be used to recover a possible design history
of the reverse engineered database, as presented in Chapter 7. The history of a method-free
project can also be analysed in order to recover the method implicitly followed by the ana-
lyst. Indeed, the discovery of some patterns in the performance of actions and their order-
ing can help to discover typical design behaviours. From there, a possible method may be
induced.

A few examples can enlighten us about this reasoning:

• The log files may show that the same sequence of transformations is carried out on simi-
lar structure patterns of the schema. This can be the tip for a loop in the method
description. If it can be shown that the transformations tend to make the product satisfy
some rules or a particular model, than these rules or this model can be used as a condi-
tion for the loop. Else, it can be a non-deterministic, condition-less loop.

• If a simple transformation is performed systematically to all the objects of a given type
(for example to all rel-types), maybe a global transformation or an external function can
do the job.

• If the log file is made up of a first block of transformations which are typical of a par-
ticular abstraction level (for example, the transformation of binary rel-types into referen-
tial groups of attribute is typical of a relational logical design), followed by a second
block of transformations which are typical of another abstraction level (setting indexes
on referential groups is a typical transformation of a physical level for example), then
two engineering process types should describe these activities.

• Maybe more attention should be paid to a part of the log file where hesitancy appears
than in a part that looks more fluent. For instance, if a few transformations are followed
by their reverse in a short time, it seems that the engineer is looking for something. But
if several transformations are performed, without being corrected or undone, and with a
rather short and constant time interval between them, it seems that the engineer is
working easily. So maybe the induced method should be of a greater help in the first
case, than in the second one. Maybe the degrees of freedom left to the engineer should
be different in the two situations.

To perform such analyses, large text files analysis and induction techniques are required.
[HABRA,92] presents a solution using the RUSSEL rule-based language for analysing
audit trails; it can be used with the primitive process log files too. A complete set of induc-
tion rules still have to be defined for the particular framework of the MDL language.

14.2.4. Graphical method development environment

In the beginning of Chapter 9 we enumerated various kinds of development environment,
ranging from the simple command line to a complex RAD environment. For priority (the
translator was the main objective) and usefulness reasons, an intermediate solution was
chosen, made up of a simple development environment including an editor, the translator,
an error report window and a simple graphical browser. For the ease of use of the method
engineer and in order to make the tool look more professional, the development environ-
ment should evolve toward a complex RAD. It could include:

• A dialogue box to define schema models, including a list box with all the predefined
concepts and the use of the schema analysis assistant presented in Chapter 9, and shown

14.2. Future works 266

in Figure 9.22, to specify the constraints.

• A dialogue box to define text models (to be completely designed from scratch).

• A dialogue box to define toolboxes, using a list into which the method engineer could
simply select the right tools instead of typing their name.

• A graphical editor that would allow the method engineer to draw the algorithms
directly.

• Refined text models

• ...

14.2.5. Extending to software engineering in general

From the start, the scope of this thesis was voluntarily reduced to database engineering
only. This limitation has been justified in Chapter 1. But the software engineering commu-
nity in general deserves to possess good tools to do their job, to be guided and to get a
complete and well integrated history of the performed projects.

14.2.6. Supporting a Meta-CASE

Chapter 10 showed how the method support is implemented in a generic CASE tool. Since
more and more meta-CASE tools are available on the market, it should be interesting to
count with them as well. This is much more complex, it certainly deserves a new complete
design, from the requirements analysis down to the implementation.

14.2.7. Supporting co-operative design

This thesis classify concerned people in two categories, namely method engineers and data-
base engineers. But the latter could be further classified in sub-categories. Instead of allow-
ing everybody to follow a method, the method engineer could assign some tasks to some
specific categories of people. For instance, conceptual analysis could be assigned to analysts,
while the physical tuning of a database could be assigned to system administrators.

Furthermore, the DB-MAIN CASE environment, including the MDL implementation,
currently is a single-user application. Implementing the methodological engine in a multi-
user environment would make new problems appear, such as access rights or concurrency.

Bibliography

AHO,89AHO,89AHO,89AHO,89 Alfred Aho, Ravi Sethi, Jeffrey Ullman, Compilateurs: Principes, techniques et outils,
InterÉditions, Paris, 1989, translated from Compilers: Principles, Techniques and Tools, Addison-
Wesley, Mass., 1986.

BACHMAN,69 BACHMAN,69 BACHMAN,69 BACHMAN,69 Charles W. Bachman, Data Structure Diagrams, DATA BASE 1(2) pp. 4-10, 1969.

BAETEN,95BAETEN,95BAETEN,95BAETEN,95 J.C.M. Baeten, C. Verhoef, Concrete process Algebra, Einhoven University of
Technology, Department of Mathematics and computing Science.

BANDINELLI,93BANDINELLI,93BANDINELLI,93BANDINELLI,93 S. C. Bandinelli, A. Fuggetta, Software Process Model Evolution in the SPADE
Environment, IEEE Transactions on Software Engineering, Vol. 19, N° 12, December 1993, pp.
1128-1144. Also in [GARG,96].

BARGHOUTI,90BARGHOUTI,90BARGHOUTI,90BARGHOUTI,90 N. S. Barghouti, G. E. Kaiser, Consistency and Automation in Multi-User Rule-
Based Development Environments, Columbia University, Department of Computer Science, Technical
Report CUCS-047-90, October 31, 1990.

BARROS,97BARROS,97BARROS,97BARROS,97 A. P. Barros, A. H. M. ter Hofstede, H. A. Proper, Towards Real-Scale Business
Transaction Workflow Modelling, CAiSE’97, Advanced Information Systems Engineering, Barcelona,
June 1997, LNCS 1250, pp. 319-332.

BELKHATIR,94BELKHATIR,94BELKHATIR,94BELKHATIR,94 N. Belkhatir, J. Estublier, W. Melo, The ADELE-TEMPO experience: an
environment to support process modeling and enaction, in [FINKELSTEIN,94], pp. 187-222.

BENGHEZALA,01BENGHEZALA,01BENGHEZALA,01BENGHEZALA,01 H. Hadjami Ben Ghezala, R. Beltaifa Hajri, Towards a Systematic Reuse Based
on both General Purpose and Domain-Specific Approaches, Proc. of Japan-Tunisia Workshop on
INformatics, JTWIN 2001, University of Tsukuba, October 25-26, 2001.

BOBILLIER,99BOBILLIER,99BOBILLIER,99BOBILLIER,99 M.-E. Bobillier, Les transferts d’apprentissage dans le cadre des transferts technologiques
informatiques: le cas du maquettage en conception informatique, PhD thesis, Université de Metz,
Psychologie, 1999.

BODART,95BODART,95BODART,95BODART,95 F. Bodart, A. Hennebert, J. Lheureux, I. Provot, B. Sacré, J. Vanderdonckt. Towards
a systematic building of software architecture: The TRIDENT methodological guide. In Design,
Specification and Verification of Interactive Systems, pp. 262-278, Vienna, 1995. Springer Verlag.

BOEHM,88BOEHM,88BOEHM,88BOEHM,88 B. Boehm, A Spiral Model of Software Development and Enhancement, IEEE Computer,
vol.21, N° 5, May 1988, pp 61-72.

BOGUSCH,99BOGUSCH,99BOGUSCH,99BOGUSCH,99 R. Bogusch, B. Lohmann, W. Marquardt, Computer-Aided Process Modeling with
MODKIT, Technical Report LPT-1999-23, Lehrstuhl für Prozeßtechnik, RWTH Aachen, 1999.

BRATAAS,97BRATAAS,97BRATAAS,97BRATAAS,97, G. Brataas, P. H. Hughes, A. Sølvberg, Performance Engineering of Human and
Computarized Workflows, CAiSE’97, Advanced Information Systems Engineering, Barcelona, June
1997, LNCS 1250, pp. 187,202.

268 Bibliography

BRINKKEMPER,01BRINKKEMPER,01BRINKKEMPER,01BRINKKEMPER,01 S. Brinkkemper, M. Saeki, F. Harmsen, A Method Engineering Language for
the Description of Systems Development Methods (Extended Abstract), CAiSE 2001, LNCS 2068, pages
473-476.

BROCKERS,93BROCKERS,93BROCKERS,93BROCKERS,93 A. Bröckers, V. Gruhn, Computer-Aided Verification of Software Process Model
Properties, Colette Rolland, François Bodart, Corine Cauvet editors: Advanced Information Systems
Engineering, CAiSE’93, Paris, France, June 8-11, 1993, LNCS 685, pp. 521-546.

BRUNO,95BRUNO,95BRUNO,95BRUNO,95 G. Bruno, R. Agarwal, MCASE: Model-based CASE, Proc. of the 7th International
Workshop on Computer-Aided Software Engineering CASE’95, Toronto, Ontario, Canada, July
9-14, 1995, pp 152-161.

CAPGEMINI,95CAPGEMINI,95CAPGEMINI,95CAPGEMINI,95 Cap Gemini Sogeti, Process Weaver, General Information Manual, Version PW2.1,
1995.

CASTANO,99CASTANO,99CASTANO,99CASTANO,99 S. Castano, V. De Antonellis, M. Melchiori, A Methodology and Tool Environment
for Process Analysis and Reengineering, Data & Knowledge Engineering 31, 1991, Elsevier Science, pp.
253-278.

CATARCI,00CATARCI,00CATARCI,00CATARCI,00 T. Catarci, What happened when database researchers met usability, Information
Systems Vol. 25, N° 3, pp. 177-212, 2000.

CHANG,73CHANG,73CHANG,73CHANG,73 C.-L. Chang, R. C.-T. Lee, Symbolic Logic and Mechanical Theorem Proving, Academic
Press, Computer Science Classics, 1973, ISBN 0-12-170350-9.

CHEN,71CHEN,71CHEN,71CHEN,71 Wai-Kai Chen, Applied Graph Theory, North-Holland Publishing Company -
Amsterdam, London, 1971.

CHEN,76CHEN,76CHEN,76CHEN,76 P. P. Chen, The Entity-Relationship model: Toward a Unified View of Data, ACM TODS,
vol. 1, n°1, 1976.

CHUNG,91CHUNG,91CHUNG,91CHUNG,91 L. Chung, P. Katalagarinos, M Marakakis, M. Mertikas, J. Mylopoulos, Y. Vassiliou,
From Information System Requirements to Designs: a Mapping Framework, Information Systems, Vol.
16, N° 4, PP. 429-461, 1991.

CLOCKSIN,84CLOCKSIN,84CLOCKSIN,84CLOCKSIN,84 W. F. Clocksin, C. S. Mellish, Programming in Prolog, second edition, Springer-
Verlag, 1984, ISBN 3-540-15011-0, 0-387-15011-0.

COLE,95COLE,95COLE,95COLE,95 A. J. Cole, S. J. Wolak, J. T. Boardman, A Computer-based Process Handbook for a System
Engineering Business, Proc. of the 7th International Workshop on Computer-Aided Software
Engineering CASE’95, Toronto, Ontario, Canada, July 9-14, 1995, pp. 172-181.

COLLINS,95COLLINS,95COLLINS,95COLLINS,95 English Dictionary, Harper Collins Publishers, The Cobuild Series, Great Britain,
1995.

COLLONGUES,89COLLONGUES,89COLLONGUES,89COLLONGUES,89 A. Collongues, J. Hugues, B. Laroche, R. Malgoire, Merise: 1. méthode de
conception, Dunod Paris, 1989.

CONRADI,93CONRADI,93CONRADI,93CONRADI,93 R. Conradi, Customization and Evolution of Process Models in EPOS, IFIP 8.1
ISDP’93, Como, Italy, September 1-3, 1993.

CONRADI,94aCONRADI,94aCONRADI,94aCONRADI,94a R. Conradi, C. Fernström, A. Fuggetta, Concepts for Evolving Software Processes, in
[FINKELSTEIN,94], pp. 9-31.

CONRADI,94bCONRADI,94bCONRADI,94bCONRADI,94b R. Conradi, M. Hagaseth, J.-O. Larsen, M. N. Nguyên, B. P. Munch, P. H.
Westby, W. Z. Letizia Jaccheri, C. Liu, EPOS: Object-Oriented Cooperative Process Modelling, in
[FINKELSTEIN,94], pp. 33-70.

CUGOLA,95CUGOLA,95CUGOLA,95CUGOLA,95 G. Cugola, E. Di Nitto, C. Ghezzi, M. Mantione, How To Deal With Deviations
During Process Model Enactment, Proc. of 17th Intl. Conf. on Software Engineering, Seattle 1995.

CUGOLA,99CUGOLA,99CUGOLA,99CUGOLA,99 G. Cugola, C. Ghezzi, Design and Implementation of PROSYT: a Distributed Process
Support System, IEEE 8th Inth Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises, Palo Alto, California, June 16-18, 1999.

CURTIS,92CURTIS,92CURTIS,92CURTIS,92 B. Curtis, M. I. Kelner, J. Over, Process Modeling, Communications of the ACM,
September 1992, Vol.35 No.9.

Bibliography 269

DAHL,67DAHL,67DAHL,67DAHL,67 O.-J. Dahl, K. Nygaard, SIMULA: a language for programming and description of discrete
event systems, Norwegian Computing Center, Oslo, 1967.

DAMI,97DAMI,97DAMI,97DAMI,97 S. Dami, J. Estublier, M. Amiour, APEL: a Graphical Yet Executable Formalism for Process
Modeling, in Automated Software Engineering: an International Journal, Vol. 5, N° 1, January 1998,
pp. 61-96.

DBMAIN,02aDBMAIN,02aDBMAIN,02aDBMAIN,02a DB-MAIN team, DB-MAIN 6.5 Reference Manual, FUNDP Institut d’Informatique,
www.db-main.be, 2002.

DBMAIN,02bDBMAIN,02bDBMAIN,02bDBMAIN,02b DB-MAIN team, DB-MAIN.HLP file, included in the DB-MAIN package, FUNDP
Institut d’Informatique, 2002.

DEITERS,90DEITERS,90DEITERS,90DEITERS,90 W. Deiters, V. Gruhn, Managing Software Process in the Environment MELMAC,
ACM SIGSOFT Software Engineering Processes in the Environment MELMAC, Vol. 15, N° 6,
December 1990, pp. 193-205.

DELCROIX,01DELCROIX,01DELCROIX,01DELCROIX,01 Ch. Delcroix, Plan de transformation d’un schéma conceptuel en un schéma XML,
FUNDP, Institut d’Informatique, Technical report, 2001.

DETIENNE,01DETIENNE,01DETIENNE,01DETIENNE,01 V. Detienne, J.-L. Hainaut, CASE Tool Support for Temporal Database Design, H.S.
Kunii, S. Jajodia, and A. Sølvberg Editors, Proc. of the 20th International Conference on Conceptual
Modeling (ER 2001), Yokohama, Japan, November 2001, Springer LNCS 2224, pp. 208-224.

DEWITTE,97DEWITTE,97DEWITTE,97DEWITTE,97 P. S. de Witte, C. Pourteau, IDEF enterprise engineering methodologies support
simulation, Manufacturing Systems: Information Technology for Manufacturing Managers, March
1997, pp. 70-75.

DIJKSTRA,62DIJKSTRA,62DIJKSTRA,62DIJKSTRA,62 E. W. Dijkstra, Primer of Algol 60 Programming, Academic Press, June 1962.

DIJKSTRA,68DIJKSTRA,68DIJKSTRA,68DIJKSTRA,68 E. W. Dijkstra, Go To Statement Considered Harmful, Communications of the ACM,
Vol. 11, N° 3, March 1968, pp. 147-148.

DITTRICH,00DITTRICH,00DITTRICH,00DITTRICH,00 K. Dittrich, D. Tombros, A. Geppert, The Future of Software Engineering, A.
Finkelstein editor, ACM Press, May 2000.

DOMGES,98DOMGES,98DOMGES,98DOMGES,98 R. Dömges, K. Pohl, Adapting Traceability Environments to Project-Specific Needs,
Communications of the ACM, Vol. 41, N° 12, December 1998.

DOMINGUEZ,97DOMINGUEZ,97DOMINGUEZ,97DOMINGUEZ,97 E. Domínguez, M. A. Zapata, J. Rubio, A Conceptual Approach to Meta-
Modelling, CAiSE’97, Advanced Information Systems Engineering, Barcelona, June 1997, LNCS
1250, pp. 319-332.

DOWSON,94DOWSON,94DOWSON,94DOWSON,94 M. Dowson, C. Fernström, Towards Requirements for Enactment Mechanisms, Proc.
of the 3rd European Workshop on Software Process Technology (EWSPT94), Villard de Lens,
France, Feb. 7-9, 1994, LNCS 772, pages 90-106.

DSOUZA,98DSOUZA,98DSOUZA,98DSOUZA,98 D. F. D’Souza, A. C. Wills, Objects, components and Framework with UML; the
Catalysis Approach, Addisson-Wesley, Object Technology Series, 1998, ISBN 0-201-31012-0.

DUBOIS,94DUBOIS,94DUBOIS,94DUBOIS,94 E. Dubois, P. Du Bois, M. Petit, ALBERT II: An Agent-oriented Language for Building
and Eliciting Requirements for real-Time systems, Proc. of the 27th Hawaii Intl. Conf. on System
Science (HICSS-27), 1994.

ENGELS,94ENGELS,94ENGELS,94ENGELS,94 Gregor Engels and Luuk P.J. Groenewegen, SOCCA: Specifications of Coordinated and
Cooperative Activities, in [FINKELSTEIN,94], pp. 71-102.

ENGLEBERT,95ENGLEBERT,95ENGLEBERT,95ENGLEBERT,95 V. Englebert, J. Henrard, J.-M. Hick, D. Roland, J.-L. Hainaut, DB-MAIN: un
atelier d’ingénierie de bases de données, in Proc. of the “11èmes journées Base de Données Avancées”,
Nancy (France), September 1995. Also in Ingénierie des systèmes d’information, Vol. 4, N° 1/1996,
pp. 87-116.

ENGLEBERT,99ENGLEBERT,99ENGLEBERT,99ENGLEBERT,99 V. Englebert, Voyager 2 Reference Manual, technical DB-MAIN documentation.

EPOS,95EPOS,95EPOS,95EPOS,95 http://www.idi.ntnu.no/~epos/OVERVIEW/epos/epos.html

ESTIEVENART,02ESTIEVENART,02ESTIEVENART,02ESTIEVENART,02 F. Estiévenart, Méthode et outils pour la conception de bases de données XML
natives, FUNDP, Institut d’Informatique, mémoire, 2002.

270 Bibliography

ESTUBLIER,94ESTUBLIER,94ESTUBLIER,94ESTUBLIER,94 J. Estublier, R. Casallas, The Adele Configuration Manager, in Tichy editor,
Configuration Management. John Wiley & Sons, 1994.

ESTUBLIER,96ESTUBLIER,96ESTUBLIER,96ESTUBLIER,96 J. Estublier, S. Dami, Process Engine Interoperability: An Experiment, in Proc.
European Workshop on Software Process Technology (EWSPT5), Nancy, France, October 9-11,
1996. LNCS 1149.

FAUSTMANN,99FAUSTMANN,99FAUSTMANN,99FAUSTMANN,99 G. Faustmann, Enforcement vs. Freedom of Action – An Integrated Approach to
Flexible Workflow Enactment, ACM SIGGROUP Bulletin, Vol. 20, Issue 3, December 1999.

FEILER,93FEILER,93FEILER,93FEILER,93 P. H. Feiler, W. S. Humphrey, Software Process Development and Enactment: Concepts
and Definitions, Proc. of Second International Conference on the Software Process, (ICSP-2), IEEE
Press, February 1993.

FERNSTROM,93FERNSTROM,93FERNSTROM,93FERNSTROM,93 C. Fernström, PROCESS WEAVER: Adding Process Support to UNIX, Proc of the
2nd International Conference on the Software Process, Berlin, Germany, February 25-26, 1993. Also
in [GARG,96].

FICKAS,85FICKAS,85FICKAS,85FICKAS,85 S. F. Fickas, Automating the Transformational Development of Software, IEEE
Transactions on Software Engineering, Vol. 11, N°11, November 1985.

FINKELSTEIN,92FINKELSTEIN,92FINKELSTEIN,92FINKELSTEIN,92 A. Finkelstein, J. Kramer, M. Hales, Process Modelling: a critical analysis,
Integrated Software Reuse: Management and Techniques, P. Walton, N. Maiden editors, Chapman
and Hall and UNICOM, 1992, pages 137-148.

FINKELSTEIN,94FINKELSTEIN,94FINKELSTEIN,94FINKELSTEIN,94 A. Finkelstein, J. Kramer, B. Nuseibeh editors, Software Process Modelling and
Technology, Research Studies Press Ltd., England, John Wiley & Sons Inc., ISBN 0-86380-169-2

FINKELSTEIN,00FINKELSTEIN,00FINKELSTEIN,00FINKELSTEIN,00 A. Finkelstein, J. Kramer, Software Engineering: A Roadmap, The Future of
Software Engineering, A. Finkelstein editor, ACM Press, May 2000.

FOUCAUT,78FOUCAUT,78FOUCAUT,78FOUCAUT,78 O. Foucaut, Colette Rolland, Concepts for Design of an Information System
Conceptual Schema and its Utilization in the REMORA Project, Proc of the 4th VLDB conf.,
September 13-15, 1978, West Berlin, Germany, pp. 342-350.

FROEHLICH,95FROEHLICH,95FROEHLICH,95FROEHLICH,95 G. Froehlich, J.-P. Tremblay, P. Sorenson, Providing Support for Process Model
Enaction in the Metaview Metasystem, Proc. of the 7th International Workshop on Computer-Aided
Software Engineering CASE’95, Toronto, Ontario, Canada, July 9-14, 1995, PP 141-149.

GARG,96GARG,96GARG,96GARG,96 P. K. Garg, M. Jazayeri editors, Process-Centered Software Engineering Environments, IEEE
Computer Society Press, Los Alamitos, California, 1996.

GHEZZI,91GHEZZI,91GHEZZI,91GHEZZI,91 C. Ghezzi, M. Jazayari, D. Mandrioli, Fundamentals of Software Engineering, Prentice-
Hall, 1991, ISBN 0-13-818204-3.

GREEN,00GREEN,00GREEN,00GREEN,00 P. Green, M. Rosemann, Integrated Process Modeling: an Ontological Evaluation,
Information Systems Vol. 25, N° 2, pp. 73-87, 2000.

HABRA,92HABRA,92HABRA,92HABRA,92 N. Habra, B. Le Charlier, A. Mounji, I. Mathieu, ASAX: Software Architecture and Rule-
Based Language for Universal Audit Trail Analysis, Proc. of ESORICS’92, European Symposium on
Research in Computer Security, November 23-25, Toulouse, Springer-Verlag, 1992.

HAINAUT,89HAINAUT,89HAINAUT,89HAINAUT,89 J-L. Hainaut, A Generic Entity-Relationship Model, in Proc. of the IFIP WG 8.1
Conf. on Information System Concepts: an in-depth analysis, North-Holland, 1989.

HAINAUT,94HAINAUT,94HAINAUT,94HAINAUT,94 J-L. Hainaut, V. Englebert, J. Henrard, J-M. Hick, D. Roland, Evolution of database
Applications: the DB-MAIN Approach, in Proc. of the 13th Int. Conf. on ER Approach, Manchester,
Springer-Verlag, LNCS 881, 1994

HAINAUT,95HAINAUT,95HAINAUT,95HAINAUT,95 J-L Hainaut, V. Englebert, J. Henrard, J-M. Hick, D. Roland, Requirements for
Information System Reverse Engineering Support, in Proc. of the IEEE Working Conference on Reverse
Engineering, Toronto, IEEE Computer Society Press, July 1995

HAINAUT,96aHAINAUT,96aHAINAUT,96aHAINAUT,96a Hainaut J.-L., Englebert V., Henrard J., Hick J.-M., Roland D., Database Reverse
Engineering: from Requirement to CARE tools, Journal of Automated Software Engineering, 3(2),
1996, Kluwer Academic Press.

Bibliography 271

HAINAUT,96bHAINAUT,96bHAINAUT,96bHAINAUT,96b Hainaut J.-L., Henrard J., Hick J.-M., Roland D., Englebert V., Database Design
Recovery, in Proc of the 8th Conf. on Advanced Information Systems Engineering (CAISE’96),
Heraklion (Crete, Greece), Springer-Verlag, 1996.

HAINAUT,96cHAINAUT,96cHAINAUT,96cHAINAUT,96c Hainaut J.-L., Specification preservation in schema transformations - Application to
semantics and statistics, Data & Knowledge Engineering, 16(1), 1996, Elsevier Science Publish.

HAINAUT,96dHAINAUT,96dHAINAUT,96dHAINAUT,96d Hainaut J.-L., Roland D., Englebert V., Hick J.-M., Henrard J., Database Reverse
Engineering - A Case Study, in Actes du 2ème Forum International d’Informatique Appliquée
(FIIA96), Tunis, March 12-14, 1996.

HARANI,98HARANI,98HARANI,98HARANI,98 Y. Harani, Modèle de produit et modèle de processus pour la représentation de l’acrtivité de
conception, Revue Internationale d’Ingénierie des Systèmes de Production Mécanique, N° 1,
novembre 1998, pp. V-11 – V-20.

HAUMER,99HAUMER,99HAUMER,99HAUMER,99 P. Haumer, M. Jarke, K. Pohl, K. Weidenhaupt, Improving Reviews of Conceptual
Models by Extended Traceability to Captured System Usage, Crews Report 99-16, Information Systems,
RWTH Aachen, Germany, 1999.

HENDERSON,90HENDERSON,90HENDERSON,90HENDERSON,90 B. Henderson-Sellers, J. M. Edwards, The Object-Oriented Systems Life Cycle,
Communications of the ACM, Vol. 33, N° 9, September 1990.

HENRARD,96HENRARD,96HENRARD,96HENRARD,96 Henrard J., Hick J.-M., Roland D., Englebert V., Hainaut J.-L., Techniques
d’analyse de programmes pour la rétro-ingénierie de base de données, submitted to INFORSID’96, 1996.

HENRARD,98HENRARD,98HENRARD,98HENRARD,98 J. Henrard, D. Roland, V. Englebert, J.-M. Hick, J.-L. Hainaut, Outils d’analyse de
programmes pour la rétro-conception de bases de données, Proc. of INFORSID’98, May 12-15, 1998,
Montpellier, France.

HICK,98HICK,98HICK,98HICK,98 Hick, J-M., Hainaut J-L., Maintenance et évolution d’applications de bases de données,
Research Paper RP-98-005, FUNDP, Journées sur la Ré-ingenierie des Systèmes d’Information -
RSI’98, Lyon (France), 1-2 avril 1998.

HICK,99HICK,99HICK,99HICK,99 J.-M. Hick, J.-L. Hainaut, V. Englebert, D. Roland, J. Henrard, Stratégies pour l'évolution
des applications de bases de données relationnelles : l'approche DB-MAIN, in XVIIe congrès INFORSID,
Toulon, 1999.

HICK,01HICK,01HICK,01HICK,01 J.-M. Hick, Évolution d’applications de bases de données relationnelles: méthodes et outils,
PhD thesis, FUNDP, Institut d’Informatique, Namur, Belgium, September 26, 2001.

HUMPHREY,95HUMPHREY,95HUMPHREY,95HUMPHREY,95 W. S. Humphrey, A Discipline for Software Engineering, Addisson-Wesley, the SEI
Series in Software Engineering, 1995, ISBN 0-201-54610-8.

JACCHERI,98JACCHERI,98JACCHERI,98JACCHERI,98 M. L. Jaccheri, P. Lago, G. P. Picco, Eliciting Software Process Models with E3
Language, ACM Transcations on Software Engineering and Mathodology, Vol. 7, N° 4, 1998, pp
368-410.

JAMART,94JAMART,94JAMART,94JAMART,94 P. Jamart, A. van Lamsweerde, A Reflective Approch to Process Model Customization,
Enactment and Evolution, Proc. ICSP3, 3rd Intl. Conf. on Software Process, IEEE Computer Society
Press, 1994, pp. 21-32.

JARKE,92JARKE,92JARKE,92JARKE,92 M. Jarke, J. Mylopoulos, J. W. Schmidt, Y. Vasciliou, DAIDA: An Environment for
Evolving Information Systems, ACM Transactions on Information Systems, Vol. 10, N° 1, January
1992, pp. 1-50.

JARKE,93JARKE,93JARKE,93JARKE,93 M. Jarke, editor. Database Application Engineering with DAIDA, Springer - Verlag, 1993.

JENSEN,78JENSEN,78JENSEN,78JENSEN,78 K. Jensen, N. Wirth, Pascal User Manual and Report, second edition, Springer-Verlag,
ISBN 0-387-90144-2, 3-540-90144-2.

JORGENSEN,99JORGENSEN,99JORGENSEN,99JORGENSEN,99 H. D. Jorgensen, S. Carlsen, Emergent Workflow: Planning and Performance of
Process Instances, Proc. of Workflow Management ‘98, Münster, Germany, November 9, 1999.

JORGENSEN,00aJORGENSEN,00aJORGENSEN,00aJORGENSEN,00a H. D. Jorgensen, Software Process Model Reuse and Learning, Proc. of Process
Support for Distributed Team-based Software Development (PDTSD’00), SCI2000, Orlando, July
2000.

272 Bibliography

JORGENSEN,00bJORGENSEN,00bJORGENSEN,00bJORGENSEN,00b H. D. Jorgensen, Supporting Knowledge Work with Emergent Process Models,
CSCW 2000, Workshop: Beyond Workflow Management, Supporting Dynamic Organisational
Processes, Philadelphia, December 2000.

JUNKERMANN,94JUNKERMANN,94JUNKERMANN,94JUNKERMANN,94 G. Junkermann, B. Peuschel, W. Schäfer, S. Wolf, Merlin: Supporting
Cooperation in Software Development through a Knowledge-based Environment, in [FINKELSTEIN,
94], pp. 103-130.

KATAYAMA,89KATAYAMA,89KATAYAMA,89KATAYAMA,89 T. Katayama, A Hierarchical and Functional Software Process Description and its
Enaction, Proc. of the 11th International Conference on Software Engineering (ICSE ‘89), Pittsburgh,
USA, 1989, pp. 343-352.

KELLY,KELLY,KELLY,KELLY, 96969696, S. Kelly, K. Lyytinen, MetaEdit+, A Fully Configurable Multi-User and Multi-Tool
CASE and CAME Environment, CAiSE’96, Advanced Information System Engineering, Heraklion,
Crete, Greece, May 1996, LNCS 1080, pp. 1-21.

KIM,95KIM,95KIM,95KIM,95 Y.-G. Kim, S. T. March, Comparing Data Modeling Formalisms, Communications of the
ACM, Vol. 38, N° 6, June 1995, pp. 103-115.

KORTH,91KORTH,91KORTH,91KORTH,91 H. F. Korth, A. Silberschatz, Database System Concepts, second edition, McGraw Hill
Intl Editions, Computer Science Series, 1991, ISBN 0-07-100804-7.

KRASNER,92KRASNER,92KRASNER,92KRASNER,92 H. Krasner, J. Terrel, A. Linehan, P. Arnold, W. H. Ett, Lessons Learned from a
Software Process Modeling System, Communications of the ACM, September 1992, Vol. 35, N° 9, pp.
91-100.

KRUCHTEN,01KRUCHTEN,01KRUCHTEN,01KRUCHTEN,01 Ph. Kruchten, A Rational Development Process, white paper, Rational Software
Corp. Vancouver, Canada, 2001.

LACAZE,02LACAZE,02LACAZE,02LACAZE,02 X. Lacaze, Ph. Palanque, D. Navarre, Analyse de performance et modèles de tâches comme
support à la conception rationelle des systèmes interactifs, IHM 2002, November 26-29, 2002, Poitiers,
France, ACM Press, pages 17-24.

MARCHAL,01MARCHAL,01MARCHAL,01MARCHAL,01 B. Marchal, XML by example, QUE publishing, ISBN 0-7897-2504-5.

MARTTIIN,88MARTTIIN,88MARTTIIN,88MARTTIIN,88 P. Marttiin, M. Koskinen, Similarities and Differences of Method Engineering and
Process Engineering Approaches, M. Khosnowpour editor, Effective Utilization and Management of
Emerging Information Technologies, Harrisburg, Idea Group Publishing, pages 420-427.

MAYER,98MAYER,98MAYER,98MAYER,98 R. J. Mayer, P. C. Benjamin, B. E. Caraway and M. K. Painter, A Framework and a
Suite of Methods for Business Process Reengineering, www.idef.comarticles, October 30, 1998.

MCCARTHYMCCARTHYMCCARTHYMCCARTHY J. McCarthy, Recursive Functions of Symbolic Expressions and their computation by
machine, Communications of the ACM, April 1960.

MCLEODMCLEODMCLEODMCLEOD K. McLeod, Jackson Structured Programming, & Introduction to JSD,
http://www.cee.hw.ac.uk/ism/ug1/jsd/jspjsd.htm.

MUETZELFELDT,01MUETZELFELDT,01MUETZELFELDT,01MUETZELFELDT,01 R. Muetzelfeldt, J. Taylor, Getting to know SIMILE the visual modelling
environment for ecological, biological and environmental research, University of Edinburgh, Institute of
Ecology and Resource Management, www.ierm.ed.ac.uk/simile, 2001.

MYLOPOULOS,92MYLOPOULOS,92MYLOPOULOS,92MYLOPOULOS,92 J. Mylopoulos, L. Chung, B. Nixon, Representing and Using Nonfunctional
Requirements: A Process-Oriented Approach, IEEE TSE, Vol. 18, No. 6, June 1992.

NATURE,96NATURE,96NATURE,96NATURE,96 Nature Team, Defining Visions In Context: Models, Processes And Tools For
Requirements Engineering, Information Systems, Vol. 21, No 6, 1996.

NUSEIBEH,93NUSEIBEH,93NUSEIBEH,93NUSEIBEH,93 B. Nuseibeh, A. Finkelstein, J. Kramer, Fine-Grain Process Modelling, Proc. of the
7th Intl Workshop on Software Specification and Design, Redondo Beach, California, USA,
December 6-7, 1993, IEEE CS Press, Pages 42-46.

OIVO,92OIVO,92OIVO,92OIVO,92 M. Oivo, V. R. Basili, Representing Software Engineering Models: The TAME Goal Oriented
Approach, IEEE transactions on Software Engineering, Vol. 18, N° 10, October 1992, pp. 886-898.

OMG,01OMG,01OMG,01OMG,01 OMG, Unified Modeling Language, V. 1.4, www.omg.org, September 2001.

Bibliography 273

OSTERWEIL,97OSTERWEIL,97OSTERWEIL,97OSTERWEIL,97 L. J. Osterweil, Software Process are software too, revisited: An Invited Talk on the
Most Influential Paper of ICSE9*, Proc. of the 19th Intl Conf. on Software Engineering, Boston, USA,
May 1997.

POHL,96 POHL,96 POHL,96 POHL,96 K. Pohl, Process-Centered Requirements Engineering, Research Studies Press Ltd,1996

POHL,97POHL,97POHL,97POHL,97 K. Pohl, R. Dömges, M. Jarke, Towards Method-Driven Trace Capture, CAiSE’97,
Advanced Information Systems Engineering, Barcelona, June 1997, LNCS 1250, pp. 103-116.

POHL,99POHL,99POHL,99POHL,99 K. Pohl, K. Weidenhaupt, R. Dömges, P. Haumer, M. Jarke, R. Klamma, PRIME:
Towards process-integrated environments, ACM Transactions on Software Engineering and
Methodology, Vol. 8, N° 4, October 1999.

POTTS,88POTTS,88POTTS,88POTTS,88 C. Potts, G. Bruns, Recording the Reasons for Design Decisions, in ICSE 88, 1988.

PROFORMA,99PROFORMA,99PROFORMA,99PROFORMA,99 Proforma Corporation, Enterprise Application Modeling, technical paper, 1999.

RALYTE,01aRALYTE,01aRALYTE,01aRALYTE,01a J. Ralyté, Ingénierie des méthodes à base de composants, PhD thesis, Université Paris 1 –
Sorbonne, France, 2001

RALYTE,01bRALYTE,01bRALYTE,01bRALYTE,01b J. Ralyté, C. Rolland, An approach for Method Reengineering, Proc. of the 20th Intl
Conf. on Conceptual modeling, Yokohama, Japan, November 2001, Springer LNCS 2224, pp
471-484.

ROLAND,97ROLAND,97ROLAND,97ROLAND,97 D. Roland, J.-L. Hainaut, Database Engineering Process Modelling, Proceedings Of
The First International Workshop On The Many Facets Of Process Engineering, Gammarth,
Tunisia, September 22-23, 1997.

ROLAND,99ROLAND,99ROLAND,99ROLAND,99 D. Roland, , J-L. Hainaut, J. Henrard, J-M. Hick, V. Englebert, Database engineering
process history, Proceedings of the second International Workshop on the Many Facets of Process
Engineering, Gammarth, Tunisia, May 1999.

ROLAND,00ROLAND,00ROLAND,00ROLAND,00 D. Roland, J-L. Hainaut, J.-M. Hick, J. Henrard, V. Englebert, Database Engineering
Processes with DB-MAIN, Proc. of the 8th European Conference on Information Systems, ECIS 2000,
Vienna, July 3-5, 2000, pp. 244-251.

ROLLAND,93ROLLAND,93ROLLAND,93ROLLAND,93 C. Rolland, Modeling the Requirements Engineering Process, in 3rd European-Japanese
Seminar on Information Modeling and Knowledge Bases, Budapest, May 1993.

ROLLAND,95ROLLAND,95ROLLAND,95ROLLAND,95 C. Rolland, C. Souveyet, M. Moreno, An Approach For Defining Ways-Of-Working,
Information Systems, Vol. 20, No. 4, pp. 337-359, 1995.

ROLLAND,96ROLLAND,96ROLLAND,96ROLLAND,96 C.Rolland, L’ingénierie des processus de développement de système : un cadre de
référence, Ingénierie des systèmes d’information, Vol. 4, No 6, 1996.

ROLLAND,97ROLLAND,97ROLLAND,97ROLLAND,97 C. Rolland, A primer for method engineering, CREWS Report Series 97-06,
Proceedings of the conference INFORSID, Toulouse, France, June 10-13, 1997.

ROSENTHAL,94ROSENTHAL,94ROSENTHAL,94ROSENTHAL,94 A. Rosenthal, D. Reiner, Tools and Transformations - Rigourous and Otherwise -
for Practical Database Design, ACM TODS, Vol. 19, No. 2, June 1994

ROYCE,70ROYCE,70ROYCE,70ROYCE,70 W. W. Royce, Managing the Development of Large Software Systems, Proceedings of
IEEE WESTCON, San Francisco, August 1970.

SADIQ,00SADIQ,00SADIQ,00SADIQ,00 W. Sadiq, M. E. Orlowska, Analysing Process Models Using Graph Reduction Techniques,
Information Systems Vol. 25 N° 2 pp. 117-134, 2000.

SAEKI,94SAEKI,94SAEKI,94SAEKI,94 M. Saeki, K. Wenyin, Specifying Software Specification & Design Methods, Proc. of
Advanced Information Systems Engineering, CAiSE'94, Utrecht, The Netherlands, June 6-10, 1994,

SCHLENOFF,96SCHLENOFF,96SCHLENOFF,96SCHLENOFF,96 C. Schelnoff, A. Knutilla, A. Ray, Unified Process Specification Language:
Requirements for Modeling Process, US Department of Commerce, Technology Administration,
National Institue of Standards and Technology, NISTR 5910, September 1996.

SCHLENOFF,00SCHLENOFF,00SCHLENOFF,00SCHLENOFF,00 C. Schlenoff, M. Gruninger, F. Tissot, J. Valois, J. Lubell, J. Lee, The Process
Specification Language (PSL), Overview and Version 1.0 Specification, National Institute of
Technology, Gaithersburg, NISTIR6459, 2000.

274 Bibliography

SISAID,96SISAID,96SISAID,96SISAID,96 S. Si-Said, C. Rolland, G. Grosz, MENTOR: A Computer Aided Requirements
Engineering Environment, CAiSE’96, Advanced Information System Engineering, Heraklion, Crete,
Greece, May 1996, LNCS 1080, pp. 22-43. Same in French: G. Grosz, S. Si-Said, C. Rolland,
Mentor: un environnement pour l’ingénierie des méthodes et des besoins, INFORSID’96, Bordeaux, 4-7
juin 1996.

SMITH,01SMITH,01SMITH,01SMITH,01 J. Smith, A comparison of RUP and XP, Rational Software White Paper, 2001.

SORENSON,88SORENSON,88SORENSON,88SORENSON,88 P. G. Sorenson, J. P. Tremblay, A. J. McAllister, The Metaview System for Many
Specification Environments, IEEE Software, Vol.5, N° 2, March 1988, pages 30-38.

SOUQUIERES,93SOUQUIERES,93SOUQUIERES,93SOUQUIERES,93 J. Souquières, N. Lévy, Description of Specification Developments, in Proceedings
of RE’93, San Diego (CA), 1993.

STEELE,90STEELE,90STEELE,90STEELE,90 Guy L. Steele, Common Lisp: The Language, 2nd Edition, Digital Press, 1990. 1029
pages, ISBN 1-55558-041-6.

SUTCLIFFE,00SUTCLIFFE,00SUTCLIFFE,00SUTCLIFFE,00 A. G. Sutcliffe, Requirements Analysis for Socio-Technical System Design, Information
System Vol. 25, N° 3, PP. 213-233, 2000.

SUTTON,90SUTTON,90SUTTON,90SUTTON,90 S. M. Sutton Jr., D. Heimbigner, L. J. Osterweil, Language Constructs for Managing
Change in Process-Centered Environments, in Proc. of the 4th International Symposium on Practical
Software Development Environment, ACM SIGSOFT notes, Vol. 15, N° 6, pp. 206-217, 1990.

TAWBI,99TAWBI,99TAWBI,99TAWBI,99 M. Tawbi, C. Souveyet, Guiding Requirement Engineering with a Process map,
Proceedings of the second International Workshop on the Many Facets of Process Engineering,
Gammarth, Tunisia, May 1999.

TAYLOR,88TAYLOR,88TAYLOR,88TAYLOR,88 R. N. Taylor, F. C. Belz, L. A. Clarke, L. Osterweil, R. W. Selby, J. C. Wileden, A. L.
Wolft, M. Young, Foundations for the Arcadia Environment Architecture, Proc. of the 3rd ACM
SIGSOFT/SIGPLAN symposium Practical Software Development Environments, ACM Press, New-
York, 1988, pp. 1-13. Also in [GARG,96].

TOLVANEN,98TOLVANEN,98TOLVANEN,98TOLVANEN,98 J.-P. Tolvanen, Incremental Method Engineering with Modeling Tools: Theoretical
Principles and Empirical Evidence, PhD Thesis, University of Jyväskylä, 1998, ISBN 951-39-0303-6.

VANDERAALST,02VANDERAALST,02VANDERAALST,02VANDERAALST,02 W.M.P. van der Aalst, B.F. van Dongen, Discovering Workflow Performance
Models from Timed Logs, In Y. Han, S. Tai, and D. Wikarski, editors, International Conference on
Engineering and Deployment of Cooperative Information Systems (EDCIS 2002), LNCS 2480,
pages 45-63. Springer-Verlag, Berlin, 2002

VANDERDONCKT,97VANDERDONCKT,97VANDERDONCKT,97VANDERDONCKT,97 J. Vanderdonckt. Conception assistée de la présentation d’une interface
homme-machine ergonomique pour une application de gestion hautement interactive, PhD thesis,
Facultés Universitaires Notre-Dame de la Paix, Institut d’Informatique, Namur, 1997.

VONDRAK,01VONDRAK,01VONDRAK,01VONDRAK,01 Ivo Vondrák, Business Process Modeling and Workflow Automation, Proc. of the 4th

International Conference on Information Systems Modelling, ISM’01, Hradec nad Moravici, Czech
Republic, May 9-11, 2001.

WANG,95WANG,95WANG,95WANG,95 X. Wang, P. Loucopoulos, The Development of Phedias: a CASE Shell, Proceedings of the
Seventh International Wokshop on Computer-Aided Software Engineering, Toronto, July 10-14,
1995.

WEISER,84WEISER,84WEISER,84WEISER,84 M. Weiser, Program Slicing, IEEE Transactions on Software Engineering, Vol. 10, N°
4, July 1984, pp. 352-357.

WELZEL,92WELZEL,92WELZEL,92WELZEL,92 D. Welzel, Embedding and Evaluating of Software Assessment within a Process Model,
Proc. ERCIM Workshop on Software Quality Principles & Techniques, Pisa, May 21-22, 1992.

XPXPXPXP, www.xprogramming.com

YONESAKI,93YONESAKI,93YONESAKI,93YONESAKI,93 N. Yonesaki, M. Saeki, J. Ljungberg, T. Kinnula. Software Process Modeling with the
TAP Approach - Tasks-Agents-Products, in 3rd European-Japanese Seminar on Information Modeling
and Knowledge Bases, Budapest, May 1993.

Bibliography 275

ZAMFIROIU,98ZAMFIROIU,98ZAMFIROIU,98ZAMFIROIU,98 M. Zamfiroiu, Contribution à la traçabilité du processus de conception en génie
logiciel, PhD thesis, Université de Paris IX-Dauphine, UFR Sciences des Organisations, Paris,
December 1998.

ZAMFIROIU,01ZAMFIROIU,01ZAMFIROIU,01ZAMFIROIU,01 M. Zamfiroiu, N. Prat, Traçabilité du processus de conception des systèmes
d’information, in Ingénierie des systèmes d’information, Corine Cauvet, Camille Rosenthal-Sabroux
editors, Hermès Sciences Publication, Paris, 2001, pp. 245-276.

ZEROUAL,92ZEROUAL,92ZEROUAL,92ZEROUAL,92 K. Zeroual, P.-N. Robillard, KBMS: A Knowledge-Based System for Modeling Software
System Specifications, IEEE Transactions on Knowledge and Data Engineering, Vol. 4, N° 3, June
1992.

Appendix A

Schema analysis predicates

This appendix is a complete listing of the structural predicates on schemas included in ver-
sion 6,* of the DB-MAIN CASE environment. These predicates are used for constraints in
schema models, for formal expressions in conditional instructions of the strategies and by
the schema analysis assistant of the CASE environment.

A.1. Constraints on schema
ET_per_SCHEMA (ET_per_SCHEMA (ET_per_SCHEMA (ET_per_SCHEMA (min maxmin maxmin maxmin max))))

The number of entity types per schema must be at least min and at most max.
 min and max are integer constants or NNNN.

RT_per_SCHEMA (RT_per_SCHEMA (RT_per_SCHEMA (RT_per_SCHEMA (min maxmin maxmin maxmin max))))
The number of rel-types per schema must be at least min and at most max.
 min and max are integer constants or NNNN.

COLL_per_SCHEMA (COLL_per_SCHEMA (COLL_per_SCHEMA (COLL_per_SCHEMA (min maxmin maxmin maxmin max))))
The number of collections per schema must be at least min and at most max.
 min and max are integer constants or NNNN.

DYN_PROP_of_SCHEMA (DYN_PROP_of_SCHEMA (DYN_PROP_of_SCHEMA (DYN_PROP_of_SCHEMA (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

SELECTED_SCHEMASELECTED_SCHEMASELECTED_SCHEMASELECTED_SCHEMA
Search for all selected objects. This constraint should not be used for validation.
 No parameters.

MARKED_SCHEMAMARKED_SCHEMAMARKED_SCHEMAMARKED_SCHEMA
Search for all marked objects. This constraint should not be used for validation.
 No parameters.

V2_CONSTRAINT_on_SCHEMA (V2_CONSTRAINT_on_SCHEMA (V2_CONSTRAINT_on_SCHEMA (V2_CONSTRAINT_on_SCHEMA (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.2. Constraints on collections
ALL_COLLALL_COLLALL_COLLALL_COLL

Used for a search, this constraint finds all collections. It should not be used for a valida-

278 Appendix A Schema analysis predicates

tion.
 No parameters.

ET_per_COLL (ET_per_COLL (ET_per_COLL (ET_per_COLL (min maxmin maxmin maxmin max))))
The number of entity types per collection must be at least min and at most max.
 min and max are integer constants or NNNN.

DYN_PROP_of_COLL (DYN_PROP_of_COLL (DYN_PROP_of_COLL (DYN_PROP_of_COLL (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

SELECTED_COLLSELECTED_COLLSELECTED_COLLSELECTED_COLL
Search for all selected objects. This constraint should not be used for validation.
 No parameters.

MARKED_COLLMARKED_COLLMARKED_COLLMARKED_COLL
Search for all marked objects. This constraint should not be used for validation.
 No parameters.

V2_CONSTRAINT_on_COLL (V2_CONSTRAINT_on_COLL (V2_CONSTRAINT_on_COLL (V2_CONSTRAINT_on_COLL (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.3. Constraints on entity types
ALL_ETALL_ETALL_ETALL_ET

Used for a search, this constraint finds all entity types. It should not be used for a valida-
tion.
 No parameters.

ATT_per_ET (ATT_per_ET (ATT_per_ET (ATT_per_ET (min maxmin maxmin maxmin max))))
The number of attributes per entity type must be at least min and at most max.
 min and max are integer constants or NNNN.

ATT_LENGTH_per_ET (ATT_LENGTH_per_ET (ATT_LENGTH_per_ET (ATT_LENGTH_per_ET (min maxmin maxmin maxmin max))))
The sum of the size of all the attributes of an entity type must be at least min and at
most max.
 min and max are integer constants or NNNN.

ROLE_per_ET (ROLE_per_ET (ROLE_per_ET (ROLE_per_ET (min maxmin maxmin maxmin max))))
The number of roles an entity type can play must be at least min and at most max.
 min and max are integer constants or NNNN.

ONE_ROLE_per_ET (ONE_ROLE_per_ET (ONE_ROLE_per_ET (ONE_ROLE_per_ET (min maxmin maxmin maxmin max))))
Entity types play between min and max roles with maximum cardinality = 1.
 min and max are integer constants or NNNN.

N_ROLE_per_ET (N_ROLE_per_ET (N_ROLE_per_ET (N_ROLE_per_ET (min maxmin maxmin maxmin max))))
Entity types play between min and max roles with maximum cardinality > 1.
 min and max are integer constants or NNNN.

MAND_ROLE_per_ET (MAND_ROLE_per_ET (MAND_ROLE_per_ET (MAND_ROLE_per_ET (min maxmin maxmin maxmin max))))
The number of mandatory roles played by entity types must be at least min and at most
max.
 min and max are integer constants or NNNN.

OPT_ROLE_per_ET (OPT_ROLE_per_ET (OPT_ROLE_per_ET (OPT_ROLE_per_ET (min maxmin maxmin maxmin max))))
The number of optional roles played by entity types must be at least min and at most

A.3. Constraints on entity types 279

max.
 min and max are integer constants or NNNN.

GROUP_per_ET (GROUP_per_ET (GROUP_per_ET (GROUP_per_ET (min maxmin maxmin maxmin max))))
The number of groups per entity type must be at least min and at most max.
 min and max are integer constants or NNNN.

ID_per_ET (ID_per_ET (ID_per_ET (ID_per_ET (min maxmin maxmin maxmin max))))
The number of identifiers per entity type must be at least min and at most max.
 min and max are integer constants or NNNN.

PID_per_ET (PID_per_ET (PID_per_ET (PID_per_ET (min maxmin maxmin maxmin max))))
The number of primary identifiers per entity type must be at least min and at most max.
 min and max are integer constants or NNNN.

ALL_ATT_in_ID_ET (ALL_ATT_in_ID_ET (ALL_ATT_in_ID_ET (ALL_ATT_in_ID_ET (ynynynyn))))
If parameter is yesyesyesyes, all the identifiers of an entity type contain all attributes (possibly
with or without some roles) or the entity type has no explicit identifier. If parameter is
nononono, an entity type must have at least one identifier which does not contain all the attrib-
utes of the entity type.
 yn is either yesyesyesyes or nononono.

ALL_ATT_ID_per_ET (ALL_ATT_ID_per_ET (ALL_ATT_ID_per_ET (ALL_ATT_ID_per_ET (min maxmin maxmin maxmin max))))
The number of primary identifiers made of attributes only must be at least min and at
most max.
 min and max are integer constants or NNNN.

HYBRID_ID_per_ET (HYBRID_ID_per_ET (HYBRID_ID_per_ET (HYBRID_ID_per_ET (min maxmin maxmin maxmin max))))
The number of hybrid identifiers (made of attributes, roles or other groups) must be at
least min and at most max.
 min and max are integer constants or NNNN.

KEY_ID_per_ET (KEY_ID_per_ET (KEY_ID_per_ET (KEY_ID_per_ET (min maxmin maxmin maxmin max))))
The number of identifiers that are access keys must be at least min and at most max.
 min and max are integer constants or NNNN.

ID_NOT_KEY_per_ET (ID_NOT_KEY_per_ET (ID_NOT_KEY_per_ET (ID_NOT_KEY_per_ET (min maxmin maxmin maxmin max))))
The number of identifiers that are not access keys must be at least min and at most max.
 min and max are integer constants or NNNN.

KEY_ALL_ATT_ID_per_ET (KEY_ALL_ATT_ID_per_ET (KEY_ALL_ATT_ID_per_ET (KEY_ALL_ATT_ID_per_ET (min maxmin maxmin maxmin max))))
The number of identifiers made of attributes only which are access keys must be at least
min and at most max.
 min and max are integer constants or NNNN.

EMBEDDED_ID_per_ET (EMBEDDED_ID_per_ET (EMBEDDED_ID_per_ET (EMBEDDED_ID_per_ET (min maxmin maxmin maxmin max))))
The number of overlapping identifiers must be at least min and at most max.
 min and max are integer constants or NNNN.

ID_DIFF_in_ET (ID_DIFF_in_ET (ID_DIFF_in_ET (ID_DIFF_in_ET (typetypetypetype))))
All the identifiers of an entity type are different. Similarity criteria are function of the
specified type: componentscomponentscomponentscomponents indicates that all the elements of both identifiers are the
same, possibly in a different order, components_and_ordercomponents_and_ordercomponents_and_ordercomponents_and_order forces the components in
both identifiers to be in the same order for the identifiers to be identical. For instance,
let an entity type have two identifiers, one made of attributes A and B, the other made
of attributes B and A. They will be said to be identical when type is components and dif-
ferent in the other case.
 type is either componentscomponentscomponentscomponents or components_and_ordercomponents_and_ordercomponents_and_ordercomponents_and_order.

280 Appendix A Schema analysis predicates

KEY_per_ET (KEY_per_ET (KEY_per_ET (KEY_per_ET (min maxmin maxmin maxmin max))))
The number of access key groups per entity type must be at least min and at most max.
 min and max are integer constants or NNNN.

ALL_ATT_KEY_per_ET (ALL_ATT_KEY_per_ET (ALL_ATT_KEY_per_ET (ALL_ATT_KEY_per_ET (min maxmin maxmin maxmin max))))
The number of access keys made of attributes only must be at least min and at most
max.
 min and max are integer constants or NNNN.

HYBRID_KEY_per_ET (HYBRID_KEY_per_ET (HYBRID_KEY_per_ET (HYBRID_KEY_per_ET (min maxmin maxmin maxmin max))))
The number of hybrid access keys must be at least min and at most max.
 min and max are integer constants or NNNN.

ID_KEY_per_ET (ID_KEY_per_ET (ID_KEY_per_ET (ID_KEY_per_ET (min maxmin maxmin maxmin max))))
The number of access keys that are identifiers too must be at least min and at most max.
 min and max are integer constants or NNNN.

KEY_PREFIX_in_ET (KEY_PREFIX_in_ET (KEY_PREFIX_in_ET (KEY_PREFIX_in_ET (typetypetypetype))))
An access key is a prefix of another identifier or access key. type specifies whether the
order of the attributes must be the same in the access key and in the prefix or not. This
constraint is particularly well suited for using the assistant for search. To use it in order
to validate a schema, it should be used with a negation (not KEY_PREFIX_in_ET).
 type is either same_ordersame_ordersame_ordersame_order or any_orderany_orderany_orderany_order.

REF_per_ET (REF_per_ET (REF_per_ET (REF_per_ET (min maxmin maxmin maxmin max))))
The number of reference groups in an entity type must be at least min and at most max.
 min and max are integer constants or NNNN.

REF_in_ET (REF_in_ET (REF_in_ET (REF_in_ET (typetypetypetype))))
Referential constraints reference groups of type type.
 type is either pidpidpidpid to find ET with primary identifiers or sidsidsidsid to find ET with secon-

dary identifiers.

COEXIST_per_ET (COEXIST_per_ET (COEXIST_per_ET (COEXIST_per_ET (min maxmin maxmin maxmin max))))
The number of coexistence groups per entity type must be at least min and at most max.
 min and max are integer constants or NNNN.

EXCLUSIVE_per_ET (EXCLUSIVE_per_ET (EXCLUSIVE_per_ET (EXCLUSIVE_per_ET (min maxmin maxmin maxmin max))))
The number of exclusive groups per entity type must be at least min and at most max.
 min and max are integer constants or NNNN.

ATLEASTONE_per_ET (ATLEASTONE_per_ET (ATLEASTONE_per_ET (ATLEASTONE_per_ET (min maxmin maxmin maxmin max))))
The number of at-least-one groups per entity type must be at least min and at most max.
 min and max are integer constants or NNNN.

INCLUDE_per_ET (INCLUDE_per_ET (INCLUDE_per_ET (INCLUDE_per_ET (min maxmin maxmin maxmin max))))
The number of inclusion constraints per entity type must be at least min and at most
max.
 min and max are integer constants or NNNN.

INVERSE_per_ET (INVERSE_per_ET (INVERSE_per_ET (INVERSE_per_ET (min maxmin maxmin maxmin max))))
The number of inverse constraints per entity type must be at least min and at most max.
 min and max are integer constants or NNNN.

GENERIC_per_ET (GENERIC_per_ET (GENERIC_per_ET (GENERIC_per_ET (min maxmin maxmin maxmin max))))
The number of generic constraints per entity type must be at least min and at most max.
 min and max are integer constants or NNNN.

A.3. Constraints on entity types 281

PROCUNIT_per_ET (PROCUNIT_per_ET (PROCUNIT_per_ET (PROCUNIT_per_ET (min maxmin maxmin maxmin max))))
The number of processing units per entity type must be at least min and at most max.
 min and max are integer constants or NNNN.

COLL_per_ET (COLL_per_ET (COLL_per_ET (COLL_per_ET (min maxmin maxmin maxmin max))))
The number of collections an entity type belongs to must be at least min and at most
max.
 min and max are integer constants or NNNN.

DYN_PROP_of_ET (DYN_PROP_of_ET (DYN_PROP_of_ET (DYN_PROP_of_ET (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

SELECTED_ETSELECTED_ETSELECTED_ETSELECTED_ET
Search for all selected objects. This constraint should not be used for validation.
 No parameters.

MARKED_ETMARKED_ETMARKED_ETMARKED_ET
Search for all marked objects. This constraint should not be used for validation.
 No parameters.

V2_CONSTRAINT_on_ET (V2_CONSTRAINT_on_ET (V2_CONSTRAINT_on_ET (V2_CONSTRAINT_on_ET (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.4. Constraints on is-a relations
ALL_ISAALL_ISAALL_ISAALL_ISA

Used for a search, this constraint finds all is-a relations. It should not be used for a vali-
dation.
 No parameters.

SUB_TYPES_per_ISA (SUB_TYPES_per_ISA (SUB_TYPES_per_ISA (SUB_TYPES_per_ISA (minminminmin maxmaxmaxmax))))
An entity type can not have less than min sub-types or more than max sub-types.
 min and max are integer constants or NNNN.

SUPER_TYPES_per_ISA (SUPER_TYPES_per_ISA (SUPER_TYPES_per_ISA (SUPER_TYPES_per_ISA (min maxmin maxmin maxmin max))))
An entity type can not have less than min super-types or more than max super-types.
 min and max are integer constants or NNNN.

TOTAL_in_ISA (TOTAL_in_ISA (TOTAL_in_ISA (TOTAL_in_ISA (ynynynyn))))
Is-a relations have (yes) or do not have (no) the total attribute.
 yn is either yesyesyesyes or nononono.

DISJOINT_in_ISA (DISJOINT_in_ISA (DISJOINT_in_ISA (DISJOINT_in_ISA (ynynynyn))))
Is-a relations have (yes) or do not have (no) the disjoint attribute.
 yn is either yesyesyesyes or nononono.

DYN_PROP_of_ISA (DYN_PROP_of_ISA (DYN_PROP_of_ISA (DYN_PROP_of_ISA (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

SELECTED_ISASELECTED_ISASELECTED_ISASELECTED_ISA
Search for all selected objects. This constraint should not be used for validation.
 No parameters.

MARKED_ISAMARKED_ISAMARKED_ISAMARKED_ISA
Search for all marked objects. This constraint should not be used for validation.

282 Appendix A Schema analysis predicates

 No parameters.

V2_CONSTRAINT_on_ISA (V2_CONSTRAINT_on_ISA (V2_CONSTRAINT_on_ISA (V2_CONSTRAINT_on_ISA (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.5. Constraints on rel-types
ALL_RTALL_RTALL_RTALL_RT

Used for a search, this constraint finds all rel-types. It should not be used for a valida-
tion.
 No parameters.

ATT_per_RT (ATT_per_RT (ATT_per_RT (ATT_per_RT (min maxmin maxmin maxmin max))))
The number of attributes per rel-type must be at least min and at most max.
 min and max are integer constants or NNNN.

ATT_LENGTH_per_RT (ATT_LENGTH_per_RT (ATT_LENGTH_per_RT (ATT_LENGTH_per_RT (min maxmin maxmin maxmin max))))
The sum of the size of all the attributes of a rel-type must be at least min and at most
max.
 min and max are integer constants or NNNN.

ROLE_per_RT (ROLE_per_RT (ROLE_per_RT (ROLE_per_RT (min maxmin maxmin maxmin max))))
The number of roles played in a rel-type must be at least min and at most max.
 min and max are integer constants or NNNN.

ONE_ROLE_per_RT (ONE_ROLE_per_RT (ONE_ROLE_per_RT (ONE_ROLE_per_RT (min maxmin maxmin maxmin max))))
Rel-types have between min and max roles with maximum cardinality = 1.
 min and max are integer constants or NNNN.

N_ROLE_per_RT (N_ROLE_per_RT (N_ROLE_per_RT (N_ROLE_per_RT (min maxmin maxmin maxmin max))))
Rel-types have between min and max roles with maximum cardinality > 1.
 min and max are integer constants or NNNN.

MAND_ROLE_per_RT (MAND_ROLE_per_RT (MAND_ROLE_per_RT (MAND_ROLE_per_RT (min maxmin maxmin maxmin max))))
The number of mandatory roles in a rel-types must be at least min and at most max.
 min and max are integer constants or NNNN.

RECURSIVITY_in_RT (RECURSIVITY_in_RT (RECURSIVITY_in_RT (RECURSIVITY_in_RT (min maxmin maxmin maxmin max))))
The number of times an entity type plays a role in a rel-type should be at least min and
at most max.
 min and max are integer constants or NNNN.

GROUP_per_RT (GROUP_per_RT (GROUP_per_RT (GROUP_per_RT (min maxmin maxmin maxmin max))))
The number of groups per rel-type must be at least min and at most max.
 min and max are integer constants or NNNN.

ID_per_RT (ID_per_RT (ID_per_RT (ID_per_RT (min maxmin maxmin maxmin max))))
The number of identifiers per rel-type must be at least min and at most max.
 min and max are integer constants or NNNN.

PID_per_RT (PID_per_RT (PID_per_RT (PID_per_RT (min maxmin maxmin maxmin max))))
The number of primary identifiers per rel-type must be at least min and at most max.
 min and max are integer constants or NNNN.

ALL_ATT_ID_per_RT (ALL_ATT_ID_per_RT (ALL_ATT_ID_per_RT (ALL_ATT_ID_per_RT (min maxmin maxmin maxmin max))))
The number of identifiers made of attributes only must be at least min and at most max.

A.5. Constraints on rel-types 283

 min and max are integer constants or NNNN.

HYBRID_ID_per_RT (HYBRID_ID_per_RT (HYBRID_ID_per_RT (HYBRID_ID_per_RT (min maxmin maxmin maxmin max))))
The number of hybrid identifiers (made of attributes, roles or other groups) must be at
least min and at most max.
 min and max are integer constants or NNNN.

EMBEDDED_ID_per_RT (EMBEDDED_ID_per_RT (EMBEDDED_ID_per_RT (EMBEDDED_ID_per_RT (min maxmin maxmin maxmin max))))
The number of overlapping identifiers must be at least min and at most max.
 min and max are integer constants or NNNN.

ID_DIFF_in_RT (ID_DIFF_in_RT (ID_DIFF_in_RT (ID_DIFF_in_RT (typetypetypetype))))
All the identifiers of a rel-type are different. Similarity criteria are function of the speci-
fied type: componentscomponentscomponentscomponents indicates that all the elements of both identifiers are the same,
possibly in a different order, components_and_ordercomponents_and_ordercomponents_and_ordercomponents_and_order forces the components in both
identifiers to be in the same order for the identifiers to be identical. For instance, let an
entity type have two identifiers, one made of attributes A and B, the other made of
attributes B and A. They will be said to be identical when type is componentscomponentscomponentscomponents and dif-
ferent in the other case.
 type is either componentscomponentscomponentscomponents or components_and_ordercomponents_and_ordercomponents_and_ordercomponents_and_order.

KEY_per_RT (KEY_per_RT (KEY_per_RT (KEY_per_RT (min maxmin maxmin maxmin max))))
The number of access keys per rel-type must be at least min and at most max.
 min and max are integer constants or NNNN.

COEXIST_per_RT (COEXIST_per_RT (COEXIST_per_RT (COEXIST_per_RT (min maxmin maxmin maxmin max))))
The number of coexistence groups per rel-type must be at least min and at most max.
 min and max are integer constants or NNNN.

EXCLUSIVE_per_RT (EXCLUSIVE_per_RT (EXCLUSIVE_per_RT (EXCLUSIVE_per_RT (min maxmin maxmin maxmin max))))
The number of exclusive groups per rel-type must be at least min and at most max.
 min and max are integer constants or NNNN.

ATLEASTONE_per_RT (ATLEASTONE_per_RT (ATLEASTONE_per_RT (ATLEASTONE_per_RT (min maxmin maxmin maxmin max))))
The number of at-least-one groups per rel-type must be at least min and at most max.
 min and max are integer constants or NNNN.

INCLUDE_per_RT (INCLUDE_per_RT (INCLUDE_per_RT (INCLUDE_per_RT (min maxmin maxmin maxmin max))))
The number of inclusion constraints per rel-type must be at least min and at most max.
 min and max are integer constants or NNNN.

GENERIC_per_RT (GENERIC_per_RT (GENERIC_per_RT (GENERIC_per_RT (min maxmin maxmin maxmin max))))
The number of generic constraints per rel-type must be at least min and at most max.
 min and max are integer constants or NNNN.

PROCUNIT_per_RT (PROCUNIT_per_RT (PROCUNIT_per_RT (PROCUNIT_per_RT (min maxmin maxmin maxmin max))))
The number of processing units per rel-type must be at least min and at most max.
 min and max are integer constants or NNNN.

DYN_PROP_of_RT (DYN_PROP_of_RT (DYN_PROP_of_RT (DYN_PROP_of_RT (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

SELECTED_RTSELECTED_RTSELECTED_RTSELECTED_RT
Search for all selected objects. This constraint should not be used for validation.
 No parameters.

MARKED_RTMARKED_RTMARKED_RTMARKED_RT
Search for all marked objects. This constraint should not be used for validation.

284 Appendix A Schema analysis predicates

 No parameters.

V2_CONSTRAINT_on_RT (V2_CONSTRAINT_on_RT (V2_CONSTRAINT_on_RT (V2_CONSTRAINT_on_RT (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.6. Constraints on roles
ALL_ROLEALL_ROLEALL_ROLEALL_ROLE

Used for a search, this constraint finds all roles. It should not be used for a validation.
 No parameters.

MIN_CARD_of_ROLE (MIN_CARD_of_ROLE (MIN_CARD_of_ROLE (MIN_CARD_of_ROLE (min maxmin maxmin maxmin max))))
The minimum cardinality of role must be at least min and at most max.
 min and max are integer constants or NNNN.

MAX_CARD_of_ROLE (MAX_CARD_of_ROLE (MAX_CARD_of_ROLE (MAX_CARD_of_ROLE (min maxmin maxmin maxmin max))))
The minimum cardinality of role must be at least min and at most max.
 min and max are integer constants or NNNN.

ET_per_ROLE (ET_per_ROLE (ET_per_ROLE (ET_per_ROLE (min maxmin maxmin maxmin max))))
The number of entity types per role must be at least min and at most max.
 min and max are integer constants or NNNN.

DYN_PROP_of_ROLE (DYN_PROP_of_ROLE (DYN_PROP_of_ROLE (DYN_PROP_of_ROLE (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

SELECTED_ROLESELECTED_ROLESELECTED_ROLESELECTED_ROLE
Search for all selected objects. This constraint should not be used for validation.
 No parameters.

MARKED_ROLEMARKED_ROLEMARKED_ROLEMARKED_ROLE
Search for all marked objects. This constraint should not be used for validation.
 No parameters.

V2_CONSTRAINT_on_ROLE (V2_CONSTRAINT_on_ROLE (V2_CONSTRAINT_on_ROLE (V2_CONSTRAINT_on_ROLE (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.7. Constraints on attributes
ALL_ATTALL_ATTALL_ATTALL_ATT

Used for a search, this constraint finds all attributes. It should not be used for a valida-
tion.
 No parameters.

MIN_CARD_of_ATT (MIN_CARD_of_ATT (MIN_CARD_of_ATT (MIN_CARD_of_ATT (min maxmin maxmin maxmin max))))
The minimum cardinality of an attribute must be at least min and at most max.
 min and max are integer constants or NNNN.

MAX_CARD_of_ATT (MAX_CARD_of_ATT (MAX_CARD_of_ATT (MAX_CARD_of_ATT (min maxmin maxmin maxmin max))))
The maximum cardinality of an attribute must be at least min and at most max.
 min and max are integer constants or NNNN.

A.7. Constraints on attributes 285

DEPTH_of_ATT (DEPTH_of_ATT (DEPTH_of_ATT (DEPTH_of_ATT (min maxmin maxmin maxmin max))))
The depth of a compound attribute, that is the amount of encompassing compound
attributes plus one, must be at least <min> and at most <max>. For instance, in order to
select all sub-attributes, use this constraint with <min>=2 and <max>=N.
 min and max are integer constants or NNNN.

SUB_ATT_per_ATT (SUB_ATT_per_ATT (SUB_ATT_per_ATT (SUB_ATT_per_ATT (min maxmin maxmin maxmin max))))
The number of sub-attributes of a compound attribute is at least min and at most max.
 min and max are integer constants or NNNN.

TYPES_ALLOWED_for_ATT (TYPES_ALLOWED_for_ATT (TYPES_ALLOWED_for_ATT (TYPES_ALLOWED_for_ATT (listlistlistlist))))
List of allowed types of attribute.
 list is the list of all allowed types (BOOLEANBOOLEANBOOLEANBOOLEAN, CHARCHARCHARCHAR, DATEDATEDATEDATE, FLOATFLOATFLOATFLOAT,

NUMERICNUMERICNUMERICNUMERIC, VARCHARVARCHARVARCHARVARCHAR), separated with a space.

TYPES_NOTALLOWED_for_ATT (TYPES_NOTALLOWED_for_ATT (TYPES_NOTALLOWED_for_ATT (TYPES_NOTALLOWED_for_ATT (listlistlistlist))))
List of all forbidden types of attribute.
 list is the list of all forbidden types, separated with a space: BOOLEANBOOLEANBOOLEANBOOLEAN CHARCHARCHARCHAR

DATEDATEDATEDATE FLOATFLOATFLOATFLOAT NUMERICNUMERICNUMERICNUMERIC VARCHARVARCHARVARCHARVARCHAR.

TYPE_DEF_for_ATT (TYPE_DEF_for_ATT (TYPE_DEF_for_ATT (TYPE_DEF_for_ATT (typetypetypetype parametersparametersparametersparameters))))
Specification of the parameters for a type of attributes. For instance, to specify that all
numbers should be coded with 1 to 5 digits and 0 to 2 decimals:

TYPE_DEF_for_ATT NUMERIC 1 5 0 2
 type is the type of attribute for which the parameters must be specified, parameters is

the list of parameters for the type; the content of that list depends on the type:
CHARCHARCHARCHAR min-length max-length
FLOATFLOATFLOATFLOAT min-size max-size
NUMERICNUMERICNUMERICNUMERIC min-length max-length min-decimals max-decimals
VARCHARVARCHARVARCHARVARCHAR min-length max-length
BOOLEANBOOLEANBOOLEANBOOLEAN min-size max-size
DATEDATEDATEDATE min-size max-size

min-... and max-... are integer constants or NNNN.

PART_of_GROUP_ATT (PART_of_GROUP_ATT (PART_of_GROUP_ATT (PART_of_GROUP_ATT (min maxmin maxmin maxmin max))))
The number of groups the attribute is a component of is at least min and at most max.
 min and max are integer constants or NNNN.

ID_per_ATT (ID_per_ATT (ID_per_ATT (ID_per_ATT (min maxmin maxmin maxmin max))))
The number of identifiers per attribute is at least min and at most max.
 min and max are integer constants or NNNN.

PID_per_ATT (PID_per_ATT (PID_per_ATT (PID_per_ATT (min maxmin maxmin maxmin max))))
The number of primary identifiers per attribute is at least min and at most max.
 min and max are integer constants or NNNN.

PART_of_ID_ATT (PART_of_ID_ATT (PART_of_ID_ATT (PART_of_ID_ATT (min maxmin maxmin maxmin max))))
The number of foreign keys the attribute is a component of is at least min and at most
max.
 min and max are integer constants or NNNN.

KEY_per_ATT (KEY_per_ATT (KEY_per_ATT (KEY_per_ATT (min maxmin maxmin maxmin max))))
The number of access keys per attribute is at least min and at most max.
 min and max are integer constants or NNNN.

REF_per_ATT (REF_per_ATT (REF_per_ATT (REF_per_ATT (min maxmin maxmin maxmin max))))
The number of referential group per attribute is at least min and at most max.

286 Appendix A Schema analysis predicates

 min and max are integer constants or NNNN.

PART_of_REF_ATT (PART_of_REF_ATT (PART_of_REF_ATT (PART_of_REF_ATT (min maxmin maxmin maxmin max))))
The number of referential groups the attribute is a component of is at least min and at
most max.
 min and max are integer constants or NNNN.

DYN_PROP_of_ATT (DYN_PROP_of_ATT (DYN_PROP_of_ATT (DYN_PROP_of_ATT (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

SELECTED_ATTSELECTED_ATTSELECTED_ATTSELECTED_ATT
Search for all selected objects. This constraint should not be used for validation.
 No parameters.

MARKED_ATTMARKED_ATTMARKED_ATTMARKED_ATT
Search for all marked objects. This constraint should not be used for validation.
 No parameters.

V2_CONSTRAINT_on_ATT (V2_CONSTRAINT_on_ATT (V2_CONSTRAINT_on_ATT (V2_CONSTRAINT_on_ATT (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.8. Constraints on groups
ALL_GROUPALL_GROUPALL_GROUPALL_GROUP

Used for a search, this constraint finds all groups. It should not be used for a validation.
 No parameters.

COMP_per_GROUP (COMP_per_GROUP (COMP_per_GROUP (COMP_per_GROUP (min maxmin maxmin maxmin max))))
The number of terminal components in a group must be at least min and at most max.
A component is terminal if it is not a group. For instance, let A be a group made of an
attribute a and another group B. B is made of two attributes b1 and b2. Then A has got
three terminal components: a, b and c.
 min and max are integer constants or NNNN.

ATT_per_GROUP (ATT_per_GROUP (ATT_per_GROUP (ATT_per_GROUP (min maxmin maxmin maxmin max))))
The number of attributes per group must be at least min and at most max.
 min and max are integer constants or NNNN.

ROLE_per_GROUP (ROLE_per_GROUP (ROLE_per_GROUP (ROLE_per_GROUP (min maxmin maxmin maxmin max))))
The number of roles per group must be at least min and at most max.
 min and max are integer constants or NNNN.

GROUP_per_GROUP (GROUP_per_GROUP (GROUP_per_GROUP (GROUP_per_GROUP (min maxmin maxmin maxmin max))))
The number of groups per group must be at least min and at most max.
 min and max are integer constants or NNNN.

ID_in_GROUP (ID_in_GROUP (ID_in_GROUP (ID_in_GROUP (ynynynyn))))
Identifiers are (yes), are not (no) allowed.
 yn is either yesyesyesyes or nononono.

PID_in_GROUP (PID_in_GROUP (PID_in_GROUP (PID_in_GROUP (ynynynyn))))
Primary identifiers are (yes), are not (no) allowed.
 yn is either yesyesyesyes or nononono.

KEY_in_GROUP (KEY_in_GROUP (KEY_in_GROUP (KEY_in_GROUP (ynynynyn))))
Access keys are (yes), are not (no) allowed.

A.8. Constraints on groups 287

 yn is either yesyesyesyes or nononono.

REF_in_GROUP (REF_in_GROUP (REF_in_GROUP (REF_in_GROUP (ynynynyn))))
Reference groups are (yes), are not (no) allowed.
 yn is either yesyesyesyes or nononono.

COEXIST_in_GROUP (COEXIST_in_GROUP (COEXIST_in_GROUP (COEXIST_in_GROUP (ynynynyn))))
Coexistence groups are (yes), are not (no) allowed.
 yn is either yesyesyesyes or nononono.

EXCLUSIVE_in_GROUP (EXCLUSIVE_in_GROUP (EXCLUSIVE_in_GROUP (EXCLUSIVE_in_GROUP (ynynynyn))))
Exclusive groups are (yes), are not (no) allowed.
 yn is either yesyesyesyes or nononono.

ATLEASTONE_in_GROUP (ATLEASTONE_in_GROUP (ATLEASTONE_in_GROUP (ATLEASTONE_in_GROUP (ynynynyn))))
At_least_one groups are (yes), are not (no) allowed.
 yn is either yesyesyesyes or nononono.

INCLUDE_in_GROUP (INCLUDE_in_GROUP (INCLUDE_in_GROUP (INCLUDE_in_GROUP (ynynynyn))))
Include constraints are (yes), are not (no) allowed.
 yn is either yesyesyesyes or nononono.

INVERSE_in_GROUP (INVERSE_in_GROUP (INVERSE_in_GROUP (INVERSE_in_GROUP (ynynynyn))))
Inverse constraints are (yes), are not (no) allowed.
 yn is either yesyesyesyes or nononono.

GENERIC_in_GROUP (GENERIC_in_GROUP (GENERIC_in_GROUP (GENERIC_in_GROUP (ynynynyn))))
Generic constraints are (yes), are not (no) allowed.
 yn is either yesyesyesyes or nononono.

LENGTH_of_ATT_GROUP (LENGTH_of_ATT_GROUP (LENGTH_of_ATT_GROUP (LENGTH_of_ATT_GROUP (min maxmin maxmin maxmin max))))
The sum of the length of all components of a group must be at least min and at most
max.
 min and max are integer constants or NNNN.

DYN_PROP_of_GROUP (DYN_PROP_of_GROUP (DYN_PROP_of_GROUP (DYN_PROP_of_GROUP (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

SELECTED_GROUPSELECTED_GROUPSELECTED_GROUPSELECTED_GROUP
Search for all selected objects. This constraint should not be used for validation.
 No parameters.

MARKED_GROUPMARKED_GROUPMARKED_GROUPMARKED_GROUP
Search for all marked objects. This constraint should not be used for validation.
 No parameters.

V2_CONSTRAINT_on_GROUP (V2_CONSTRAINT_on_GROUP (V2_CONSTRAINT_on_GROUP (V2_CONSTRAINT_on_GROUP (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.9. Constraints on entity type identifiers
ALL_EIDALL_EIDALL_EIDALL_EID

Used for a search, this constraint finds all entity type identifiers. It should not be used
for a validation.
 No parameters.

288 Appendix A Schema analysis predicates

COMP_per_EID (COMP_per_EID (COMP_per_EID (COMP_per_EID (min maxmin maxmin maxmin max))))
The number of components of an entity type identifier must be at least min and at most
max.
 min and max are integer constants or NNNN.

ATT_per_EID (ATT_per_EID (ATT_per_EID (ATT_per_EID (min maxmin maxmin maxmin max))))
The number of attributes per entity type identifier must be at least min and at most
max.
 min and max are integer constants or NNNN.

OPT_ATT_per_EID (OPT_ATT_per_EID (OPT_ATT_per_EID (OPT_ATT_per_EID (min maxmin maxmin maxmin max))))
An entity type identifier must have between min and max optional attributes.
 min and max are integer constants or NNNN.

MAND_ATT_per_EID (MAND_ATT_per_EID (MAND_ATT_per_EID (MAND_ATT_per_EID (min maxmin maxmin maxmin max))))
An entity type identifier must have between min and max mandatory attributes.
 min and max are integer constants or NNNN.

SINGLE_ATT_per_EID (SINGLE_ATT_per_EID (SINGLE_ATT_per_EID (SINGLE_ATT_per_EID (min maxmin maxmin maxmin max))))
An entity type identifier must have between min and max single-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_EID (MULT_ATT_per_EID (MULT_ATT_per_EID (MULT_ATT_per_EID (min maxmin maxmin maxmin max))))
An entity type identifier must have between min and max multi-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_MULT_COMP_EID (MULT_ATT_per_MULT_COMP_EID (MULT_ATT_per_MULT_COMP_EID (MULT_ATT_per_MULT_COMP_EID (min maxmin maxmin maxmin max))))
An entity type identifier made of several components must have between min and max
multi-valued attributes.
 min and max are integer constants or NNNN.

SUB_ATT_per_EID (SUB_ATT_per_EID (SUB_ATT_per_EID (SUB_ATT_per_EID (min maxmin maxmin maxmin max))))
An entity type identifier must have between min and max sub-attributes.
 min and max are integer constants or NNNN.

COMP_ATT_per_EID (COMP_ATT_per_EID (COMP_ATT_per_EID (COMP_ATT_per_EID (min maxmin maxmin maxmin max))))
An entity type identifier must have between min and max compound attributes.
 min and max are integer constants or NNNN.

ROLE_per_EID (ROLE_per_EID (ROLE_per_EID (ROLE_per_EID (min maxmin maxmin maxmin max))))
The number of roles per entity type identifier must be at least min and at most max.
 min and max are integer constants or NNNN.

OPT_ROLE_per_EID (OPT_ROLE_per_EID (OPT_ROLE_per_EID (OPT_ROLE_per_EID (min maxmin maxmin maxmin max))))
An entity type identifier must have between min and max optional roles.
 min and max are integer constants or NNNN.

MAND_ROLE_per_EID (MAND_ROLE_per_EID (MAND_ROLE_per_EID (MAND_ROLE_per_EID (min maxmin maxmin maxmin max))))
An entity type identifier must have between min and max mandatory roles.
 min and max are integer constants or NNNN.

ONE_ROLE_per_EID (ONE_ROLE_per_EID (ONE_ROLE_per_EID (ONE_ROLE_per_EID (min maxmin maxmin maxmin max))))
An entity type identifier must have between min and max single-valued roles.
 min and max are integer constants or NNNN.

N_ROLE_per_EID (N_ROLE_per_EID (N_ROLE_per_EID (N_ROLE_per_EID (min maxmin maxmin maxmin max))))
An entity type identifier must have between min and max multi-valued roles.
 min and max are integer constants or NNNN.

A.9. Constraints on entity type identifiers 289

GROUP_per_EID (GROUP_per_EID (GROUP_per_EID (GROUP_per_EID (min maxmin maxmin maxmin max))))
The number of groups per entity type identifier must be at least min and at most max.
 min and max are integer constants or NNNN.

ALL_EPIDALL_EPIDALL_EPIDALL_EPID
Used for a search, this constraint finds all entity type primary identifiers. It should not
be used for a validation.
 No parameters.

COMP_per_EPID (COMP_per_EPID (COMP_per_EPID (COMP_per_EPID (min maxmin maxmin maxmin max))))
The number of components of a entity type primary identifier must be at least min and
at most max.
 min and max are integer constants or NNNN.

ATT_per_EPID (ATT_per_EPID (ATT_per_EPID (ATT_per_EPID (min maxmin maxmin maxmin max))))
The number of attributes per entity type primary identifier must be at least min and at
most max.
 min and max are integer constants or NNNN.

OPT_ATT_per_EPID (OPT_ATT_per_EPID (OPT_ATT_per_EPID (OPT_ATT_per_EPID (min maxmin maxmin maxmin max))))
An entity type primary identifier must have between min and max optional attributes.
 min and max are integer constants or NNNN.

MAND_ATT_per_EPID (MAND_ATT_per_EPID (MAND_ATT_per_EPID (MAND_ATT_per_EPID (min maxmin maxmin maxmin max))))
An entity type primary identifier must have between min and max mandatory attributes.
 min and max are integer constants or NNNN.

SINGLE_ATT_per_EPID (SINGLE_ATT_per_EPID (SINGLE_ATT_per_EPID (SINGLE_ATT_per_EPID (min maxmin maxmin maxmin max))))
An entity type primary identifier must have between min and max single-valued attrib-
utes.
 min and max are integer constants or NNNN.

MULT_ATT_per_EPID (MULT_ATT_per_EPID (MULT_ATT_per_EPID (MULT_ATT_per_EPID (min maxmin maxmin maxmin max))))
An entity type primary identifier must have between min and max multi-valued attrib-
utes.
 min and max are integer constants or NNNN.

MULT_ATT_per_MULT_COMP_EPID (MULT_ATT_per_MULT_COMP_EPID (MULT_ATT_per_MULT_COMP_EPID (MULT_ATT_per_MULT_COMP_EPID (min maxmin maxmin maxmin max))))
An entity type primary identifier made of several components must have between min
and max multi-valued attributes.
 min and max are integer constants or NNNN.

SUB_ATT_per_EPID (SUB_ATT_per_EPID (SUB_ATT_per_EPID (SUB_ATT_per_EPID (min maxmin maxmin maxmin max))))
An entity type primary identifier must have between min and max sub-attributes.
 min and max are integer constants or NNNN.

COMP_ATT_per_EPID (COMP_ATT_per_EPID (COMP_ATT_per_EPID (COMP_ATT_per_EPID (min maxmin maxmin maxmin max))))
An entity type primary identifier must have between min and max compound attributes.
 min and max are integer constants or NNNN.

ROLE_per_EPID (ROLE_per_EPID (ROLE_per_EPID (ROLE_per_EPID (min maxmin maxmin maxmin max))))
The number of roles per entity type primary identifier must be at least min and at most
max.
 min and max are integer constants or NNNN.

OPT_ROLE_per_EPID (OPT_ROLE_per_EPID (OPT_ROLE_per_EPID (OPT_ROLE_per_EPID (min maxmin maxmin maxmin max))))
An entity type primary identifier must have between min and max optional roles.
 min and max are integer constants or NNNN.

290 Appendix A Schema analysis predicates

MAND_ROLE_per_EPID (MAND_ROLE_per_EPID (MAND_ROLE_per_EPID (MAND_ROLE_per_EPID (min maxmin maxmin maxmin max))))
An entity type primary identifier must have between min and max mandatory roles.
 min and max are integer constants or NNNN.

ONE_ROLE_per_EPID (ONE_ROLE_per_EPID (ONE_ROLE_per_EPID (ONE_ROLE_per_EPID (min maxmin maxmin maxmin max))))
An entity type primary identifier must have between min and max single-valued roles.
 min and max are integer constants or NNNN.

N_ROLE_per_EPID (N_ROLE_per_EPID (N_ROLE_per_EPID (N_ROLE_per_EPID (min maxmin maxmin maxmin max))))
An entity type primary identifier must have between min and max multi-valued roles.
 min and max are integer constants or NNNN.

GROUP_per_EPID (GROUP_per_EPID (GROUP_per_EPID (GROUP_per_EPID (min maxmin maxmin maxmin max))))
The number of groups per entity type primary identifier must be at least min and at
most max.
 min and max are integer constants or NNNN.

DYN_PROP_of_EID (DYN_PROP_of_EID (DYN_PROP_of_EID (DYN_PROP_of_EID (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

SELECTED_EIDSELECTED_EIDSELECTED_EIDSELECTED_EID
Search for all selected objects. This constraint should not be used for validation.
 No parameters.

MARKED_EIDMARKED_EIDMARKED_EIDMARKED_EID
Search for all marked objects. This constraint should not be used for validation.
 No parameters.

V2_CONSTRAINT_on_EID (V2_CONSTRAINT_on_EID (V2_CONSTRAINT_on_EID (V2_CONSTRAINT_on_EID (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.10. Constraints on rel-type identifiers
ALL_RIDALL_RIDALL_RIDALL_RID

Used for a search, this constraint finds all rel-type identifiers. It should not be used for a
validation.
 No parameters.

COMP_per_RID (COMP_per_RID (COMP_per_RID (COMP_per_RID (min maxmin maxmin maxmin max))))
The number of components of a rel-type identifier must be at least min and at most
max.
 min and max are integer constants or NNNN.

ATT_per_RID (ATT_per_RID (ATT_per_RID (ATT_per_RID (min maxmin maxmin maxmin max))))
The number of attributes per rel-type identifier must be at least min and at most max.
 min and max are integer constants or NNNN.

OPT_ATT_per_RID (OPT_ATT_per_RID (OPT_ATT_per_RID (OPT_ATT_per_RID (min maxmin maxmin maxmin max))))
A rel-type identifier must have between min and max optional attributes.
 min and max are integer constants or NNNN.

MAND_ATT_per_RID (MAND_ATT_per_RID (MAND_ATT_per_RID (MAND_ATT_per_RID (min maxmin maxmin maxmin max))))
A rel-type identifier must have between min and max mandatory attributes.
 min and max are integer constants or NNNN.

A.10. Constraints on rel-type identifiers 291

SINGLE_ATT_per_RID (SINGLE_ATT_per_RID (SINGLE_ATT_per_RID (SINGLE_ATT_per_RID (min maxmin maxmin maxmin max))))
A rel-type identifier must have between min and max multi-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_RID (MULT_ATT_per_RID (MULT_ATT_per_RID (MULT_ATT_per_RID (min maxmin maxmin maxmin max))))
A rel-type identifier must have between min and max single-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_MULT_COMP_RID (MULT_ATT_per_MULT_COMP_RID (MULT_ATT_per_MULT_COMP_RID (MULT_ATT_per_MULT_COMP_RID (min maxmin maxmin maxmin max))))
A rel-type identifier made of several components must have between min and max
multi-valued attributes.
 min and max are integer constants or NNNN.

SUB_ATT_per_RID (SUB_ATT_per_RID (SUB_ATT_per_RID (SUB_ATT_per_RID (min maxmin maxmin maxmin max))))
A rel-type identifier must have between min and max sub-attributes.
 min and max are integer constants or NNNN.

COMP_ATT_per_RID (COMP_ATT_per_RID (COMP_ATT_per_RID (COMP_ATT_per_RID (min maxmin maxmin maxmin max))))
A rel-type identifier must have between min and max compound attributes.
 min and max are integer constants or NNNN.

ROLE_per_RID (ROLE_per_RID (ROLE_per_RID (ROLE_per_RID (min maxmin maxmin maxmin max))))
The number of roles per rel-type identifier must be at least min and at most max.
 min and max are integer constants or NNNN.

OPT_ROLE_per_RID (OPT_ROLE_per_RID (OPT_ROLE_per_RID (OPT_ROLE_per_RID (min maxmin maxmin maxmin max))))
A rel-type identifier must have between min and max optional roles.
 min and max are integer constants or NNNN.

MAND_ROLE_per_RID (MAND_ROLE_per_RID (MAND_ROLE_per_RID (MAND_ROLE_per_RID (min maxmin maxmin maxmin max))))
A rel-type identifier must have between min and max mandatory roles.
 min and max are integer constants or NNNN.

ONE_ROLE_per_RID (ONE_ROLE_per_RID (ONE_ROLE_per_RID (ONE_ROLE_per_RID (min maxmin maxmin maxmin max))))
A rel-type identifier must have between min and max single-valued roles.
 min and max are integer constants or NNNN.

N_ROLE_per_RID (N_ROLE_per_RID (N_ROLE_per_RID (N_ROLE_per_RID (min maxmin maxmin maxmin max))))
A rel-type identifier must have between min and max multi-valued roles.
 min and max are integer constants or NNNN.

GROUP_per_RID (GROUP_per_RID (GROUP_per_RID (GROUP_per_RID (min maxmin maxmin maxmin max))))
The number of groups per rel-type identifier must be at least min and at most max.
 min and max are integer constants or NNNN.

ALL_RPIDALL_RPIDALL_RPIDALL_RPID
Used for a search, this constraint finds all rel-type primary identifiers. It should not be
used for a validation.
 No parameters.

COMP_per_RPID (COMP_per_RPID (COMP_per_RPID (COMP_per_RPID (min maxmin maxmin maxmin max))))
The number of components of a rel-type primary identifier must be at least min and at
most max.
 min and max are integer constants or NNNN.

ATT_per_RPID (ATT_per_RPID (ATT_per_RPID (ATT_per_RPID (min maxmin maxmin maxmin max))))
The number of attributes per rel-type primary identifier must be at least min and at
most max.
 min and max are integer constants or NNNN.

292 Appendix A Schema analysis predicates

OPT_ATT_per_RPID (OPT_ATT_per_RPID (OPT_ATT_per_RPID (OPT_ATT_per_RPID (min maxmin maxmin maxmin max))))
A rel-type primary identifier must have between min and max optional attributes.
 min and max are integer constants or NNNN.

MAND_ATT_per_RPID (MAND_ATT_per_RPID (MAND_ATT_per_RPID (MAND_ATT_per_RPID (min maxmin maxmin maxmin max))))
A rel-type primary identifier must have between min and max mandatory attributes.
 min and max are integer constants or NNNN.

SINGLE_ATT_per_RPID (SINGLE_ATT_per_RPID (SINGLE_ATT_per_RPID (SINGLE_ATT_per_RPID (min maxmin maxmin maxmin max))))
A rel-type primary identifier must have between min and max single-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_RPID (MULT_ATT_per_RPID (MULT_ATT_per_RPID (MULT_ATT_per_RPID (min maxmin maxmin maxmin max))))
A rel-type primary identifier must have between min and max multi-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_MULT_COMP_RPID (MULT_ATT_per_MULT_COMP_RPID (MULT_ATT_per_MULT_COMP_RPID (MULT_ATT_per_MULT_COMP_RPID (min maxmin maxmin maxmin max))))
A rel-type primary identifier made of several components must have between min and
max multi-valued attributes.
 min and max are integer constants or NNNN.

SUB_ATT_per_RPID (SUB_ATT_per_RPID (SUB_ATT_per_RPID (SUB_ATT_per_RPID (min maxmin maxmin maxmin max))))
A rel-type primary identifier must have between min and max sub-attributes.
 min and max are integer constants or NNNN.

COMP_ATT_per_RPID (COMP_ATT_per_RPID (COMP_ATT_per_RPID (COMP_ATT_per_RPID (min maxmin maxmin maxmin max))))
A rel-type primary identifier must have between min and max compound attributes.
 min and max are integer constants or NNNN.

ROLE_per_RPID (ROLE_per_RPID (ROLE_per_RPID (ROLE_per_RPID (min maxmin maxmin maxmin max))))
The number of roles per rel-type primary identifier must be at least min and at most
max.
 min and max are integer constants or NNNN.

OPT_ROLE_per_RPID (OPT_ROLE_per_RPID (OPT_ROLE_per_RPID (OPT_ROLE_per_RPID (min maxmin maxmin maxmin max))))
A rel-type primary identifier must have between min and max optional roles.
 min and max are integer constants or NNNN.

MAND_ROLE_per_RPID (MAND_ROLE_per_RPID (MAND_ROLE_per_RPID (MAND_ROLE_per_RPID (min maxmin maxmin maxmin max))))
A rel-type primary identifier must have between min and max mandatory roles.
 min and max are integer constants or NNNN.

ONE_ROLE_per_RPID (ONE_ROLE_per_RPID (ONE_ROLE_per_RPID (ONE_ROLE_per_RPID (min maxmin maxmin maxmin max))))
A rel-type primary identifier must have between min and max single-valued roles.
 min and max are integer constants or NNNN.

N_ROLE_per_RPID (N_ROLE_per_RPID (N_ROLE_per_RPID (N_ROLE_per_RPID (min maxmin maxmin maxmin max))))
A rel-type primary identifier must have between min and max multi-valued roles.
 min and max are integer constants or NNNN.

GROUP_per_RPID (GROUP_per_RPID (GROUP_per_RPID (GROUP_per_RPID (min maxmin maxmin maxmin max))))
The number of groups per rel-type primary identifier must be at least min and at most
max.
 min and max are integer constants or NNNN.

DYN_PROP_of_RID (DYN_PROP_of_RID (DYN_PROP_of_RID (DYN_PROP_of_RID (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

A.10. Constraints on rel-type identifiers 293

SELECTED_RIDSELECTED_RIDSELECTED_RIDSELECTED_RID
Search for all selected objects. This constraint should not be used for validation.
 No parameters.

MARKED_RIDMARKED_RIDMARKED_RIDMARKED_RID
Search for all marked objects. This constraint should not be used for validation.
 No parameters.

V2_CONSTRAINT_on_RID (V2_CONSTRAINT_on_RID (V2_CONSTRAINT_on_RID (V2_CONSTRAINT_on_RID (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.11. Constraints on attribute identifiers
ALL_AIDALL_AIDALL_AIDALL_AID

Used for a search, this constraint finds all attribute identifiers. It should not be used for
a validation.
 No parameters.

COMP_per_AID (COMP_per_AID (COMP_per_AID (COMP_per_AID (min maxmin maxmin maxmin max))))
The number of components of an attribute identifier must be at least min and at most
max.
 min and max are integer constants or NNNN.

ATT_per_AID (ATT_per_AID (ATT_per_AID (ATT_per_AID (min maxmin maxmin maxmin max))))
The number of attributes per attribute identifier must be at least min and at most max.
 min and max are integer constants or NNNN.

OPT_ATT_per_AID (OPT_ATT_per_AID (OPT_ATT_per_AID (OPT_ATT_per_AID (min maxmin maxmin maxmin max))))
An attribute identifier must have between min and max optional attributes.
 min and max are integer constants or NNNN.

MAND_ATT_per_AID (MAND_ATT_per_AID (MAND_ATT_per_AID (MAND_ATT_per_AID (min maxmin maxmin maxmin max))))
An attribute identifier must have between min and max mandatory attributes.
 min and max are integer constants or NNNN.

SINGLE_ATT_per_AID (SINGLE_ATT_per_AID (SINGLE_ATT_per_AID (SINGLE_ATT_per_AID (min maxmin maxmin maxmin max))))
An attribute identifier must have between min and max single-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_AID (MULT_ATT_per_AID (MULT_ATT_per_AID (MULT_ATT_per_AID (min maxmin maxmin maxmin max))))
An attribute identifier must have between min and max multi-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_MULT_COMP_AID (MULT_ATT_per_MULT_COMP_AID (MULT_ATT_per_MULT_COMP_AID (MULT_ATT_per_MULT_COMP_AID (min maxmin maxmin maxmin max))))
An attribute identifier made of several components must have between min and max
multi-valued attributes.
 min and max are integer constants or NNNN.

SUB_ATT_per_AID (SUB_ATT_per_AID (SUB_ATT_per_AID (SUB_ATT_per_AID (min maxmin maxmin maxmin max))))
An attribute identifier must have between min and max sub-attributes.
 min and max are integer constants or NNNN.

COMP_ATT_per_AID (COMP_ATT_per_AID (COMP_ATT_per_AID (COMP_ATT_per_AID (min maxmin maxmin maxmin max))))
An attribute identifier must have between min and max compound attributes.
 min and max are integer constants or NNNN.

294 Appendix A Schema analysis predicates

GROUP_per_AID (GROUP_per_AID (GROUP_per_AID (GROUP_per_AID (min maxmin maxmin maxmin max))))
The number of groups per attribute identifier must be at least min and at most max.
 min and max are integer constants or NNNN.

ALL_APIDALL_APIDALL_APIDALL_APID
Used for a search, this constraint finds all attribute primary identifiers. It should not be
used for a validation.
 No parameters.

COMP_per_APID (COMP_per_APID (COMP_per_APID (COMP_per_APID (min maxmin maxmin maxmin max))))
The number of components of an attribute primary identifier must be at least min and
at most max.
 min and max are integer constants or NNNN.

ATT_per_APID (ATT_per_APID (ATT_per_APID (ATT_per_APID (min maxmin maxmin maxmin max))))
The number of attributes per attribute primary identifier must be at least min and at
most max.
 min and max are integer constants or NNNN.

OPT_ATT_per_APID (OPT_ATT_per_APID (OPT_ATT_per_APID (OPT_ATT_per_APID (min maxmin maxmin maxmin max))))
An attribute primary identifier must have between min and max optional attributes.
 min and max are integer constants or NNNN.

MAND_ATT_per_APID (MAND_ATT_per_APID (MAND_ATT_per_APID (MAND_ATT_per_APID (min maxmin maxmin maxmin max))))
An attribute primary identifier must have between min and max mandatory attributes.
 min and max are integer constants or NNNN.

SINGLE_ATT_per_APID (SINGLE_ATT_per_APID (SINGLE_ATT_per_APID (SINGLE_ATT_per_APID (min maxmin maxmin maxmin max))))
An attribute primary identifier must have between min and max single-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_APID (MULT_ATT_per_APID (MULT_ATT_per_APID (MULT_ATT_per_APID (min maxmin maxmin maxmin max))))
An attribute primary identifier must have between min and max multi-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_MULT_COMP_APID (MULT_ATT_per_MULT_COMP_APID (MULT_ATT_per_MULT_COMP_APID (MULT_ATT_per_MULT_COMP_APID (min maxmin maxmin maxmin max))))
An attribute primary identifier made of several components must have between min and
max multi-valued attributes.
 min and max are integer constants or NNNN.

SUB_ATT_per_APID (SUB_ATT_per_APID (SUB_ATT_per_APID (SUB_ATT_per_APID (min maxmin maxmin maxmin max))))
An attribute primary identifier must have between min and max sub-attributes.
 min and max are integer constants or NNNN.

COMP_ATT_per_APID (COMP_ATT_per_APID (COMP_ATT_per_APID (COMP_ATT_per_APID (min maxmin maxmin maxmin max))))
An attribute primary identifier must have between min and max compound attributes.
 min and max are integer constants or NNNN.

GROUP_per_APID (GROUP_per_APID (GROUP_per_APID (GROUP_per_APID (min maxmin maxmin maxmin max))))
The number of groups per attribute primary identifier must be at least min and at most
max.
 min and max are integer constants or NNNN.

DYN_PROP_of_AID (DYN_PROP_of_AID (DYN_PROP_of_AID (DYN_PROP_of_AID (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

SELECTED_AIDSELECTED_AIDSELECTED_AIDSELECTED_AID
Search for all selected objects. This constraint should not be used for validation.

A.11. Constraints on attribute identifiers 295

 No parameters.

MARKED_AIDMARKED_AIDMARKED_AIDMARKED_AID
Search for all marked objects. This constraint should not be used for validation.
 No parameters.

V2_CONSTRAINT_on_AID (V2_CONSTRAINT_on_AID (V2_CONSTRAINT_on_AID (V2_CONSTRAINT_on_AID (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.12. Constraints on access keys
ALL_KEYALL_KEYALL_KEYALL_KEY

Used for a search, this constraint finds all access keys. It should not be used for a valida-
tion.
 No parameters.

COMP_per_KEY (COMP_per_KEY (COMP_per_KEY (COMP_per_KEY (min maxmin maxmin maxmin max))))
The number of components of an access key must be at least min and at most max.
 min and max are integer constants or NNNN.

ATT_per_KEY (ATT_per_KEY (ATT_per_KEY (ATT_per_KEY (min maxmin maxmin maxmin max))))
The number of attributes per access key must be at least min and at most max.
 min and max are integer constants or NNNN.

OPT_ATT_per_KEY (OPT_ATT_per_KEY (OPT_ATT_per_KEY (OPT_ATT_per_KEY (min maxmin maxmin maxmin max))))
An access key must have between min and max optional attributes.
 min and max are integer constants or NNNN.

MAND_ATT_per_KEY (MAND_ATT_per_KEY (MAND_ATT_per_KEY (MAND_ATT_per_KEY (min maxmin maxmin maxmin max))))
An access key must have between min and max mandatory attributes.
 min and max are integer constants or NNNN.

SINGLE_ATT_per_KEY (SINGLE_ATT_per_KEY (SINGLE_ATT_per_KEY (SINGLE_ATT_per_KEY (min maxmin maxmin maxmin max))))
An access key must have between min and max single-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_KEY (MULT_ATT_per_KEY (MULT_ATT_per_KEY (MULT_ATT_per_KEY (min maxmin maxmin maxmin max))))
An access key must have between min and max multi-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_MULT_COMP_KEY (MULT_ATT_per_MULT_COMP_KEY (MULT_ATT_per_MULT_COMP_KEY (MULT_ATT_per_MULT_COMP_KEY (min maxmin maxmin maxmin max))))
An access key made of several components must have between min and max multi-val-
ued attribute.
 min and max are integer constants or NNNN.

SUB_ATT_per_KEY (SUB_ATT_per_KEY (SUB_ATT_per_KEY (SUB_ATT_per_KEY (min maxmin maxmin maxmin max))))
An access key must have between min and max sub-attributes.
 min and max are integer constants or NNNN.

COMP_ATT_per_KEY (COMP_ATT_per_KEY (COMP_ATT_per_KEY (COMP_ATT_per_KEY (min maxmin maxmin maxmin max))))
An access key must have between min and max compound attributes.
 min and max are integer constants or NNNN.

ROLE_per_KEY (ROLE_per_KEY (ROLE_per_KEY (ROLE_per_KEY (min maxmin maxmin maxmin max))))
The number of roles per access key must be at least min and at most max.
 min and max are integer constants or NNNN.

296 Appendix A Schema analysis predicates

OPT_ROLE_per_KEY (OPT_ROLE_per_KEY (OPT_ROLE_per_KEY (OPT_ROLE_per_KEY (min maxmin maxmin maxmin max))))
An access key must have between min and max optional roles.
 min and max are integer constants or NNNN.

MAND_ROLE_per_KEY (MAND_ROLE_per_KEY (MAND_ROLE_per_KEY (MAND_ROLE_per_KEY (min maxmin maxmin maxmin max))))
An access key must have between min and max mandatory roles.
 min and max are integer constants or NNNN.

ONE_ROLE_per_KEY (ONE_ROLE_per_KEY (ONE_ROLE_per_KEY (ONE_ROLE_per_KEY (min maxmin maxmin maxmin max))))
An access key must have between min and max single-valued roles.
 min and max are integer constants or NNNN.

N_ROLE_per_KEY (N_ROLE_per_KEY (N_ROLE_per_KEY (N_ROLE_per_KEY (min maxmin maxmin maxmin max))))
An access key must have between min and max multi-valued roles.
 min and max are integer constants or NNNN.

GROUP_per_KEY (GROUP_per_KEY (GROUP_per_KEY (GROUP_per_KEY (min maxmin maxmin maxmin max))))
The number of groups per access key must be at least min and at most max.
 min and max are integer constants or NNNN.

DYN_PROP_of_KEY (DYN_PROP_of_KEY (DYN_PROP_of_KEY (DYN_PROP_of_KEY (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

SELECTED_KEYSELECTED_KEYSELECTED_KEYSELECTED_KEY
Search for all selected objects. This constraint should not be used for validation.
 No parameters.

MARKED_KEYMARKED_KEYMARKED_KEYMARKED_KEY
Search for all marked objects. This constraint should not be used for validation.
 No parameters.

V2_CONSTRAINT_on_KEY (V2_CONSTRAINT_on_KEY (V2_CONSTRAINT_on_KEY (V2_CONSTRAINT_on_KEY (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.13. Constraints on referential groups
ALL_REFALL_REFALL_REFALL_REF

Used for a search, this constraint finds all referential constraints. It should not be used
for a validation.
 No parameters.

COMP_per_REF (COMP_per_REF (COMP_per_REF (COMP_per_REF (min maxmin maxmin maxmin max))))
The number of components of a reference group must be at least min and at most max.
 min and max are integer constants or NNNN.

ATT_per_REF (ATT_per_REF (ATT_per_REF (ATT_per_REF (min maxmin maxmin maxmin max))))
The number of attributes per reference group must be at least min and at most max.
 min and max are integer constants or NNNN.

OPT_ATT_per_REF (OPT_ATT_per_REF (OPT_ATT_per_REF (OPT_ATT_per_REF (min maxmin maxmin maxmin max))))
A reference group must have between min and max optional attributes.
 min and max are integer constants or NNNN.

MAND_ATT_per_REF (MAND_ATT_per_REF (MAND_ATT_per_REF (MAND_ATT_per_REF (min maxmin maxmin maxmin max))))
A reference group must have between min and max mandatory attributes.
 min and max are integer constants or NNNN.

A.13. Constraints on referential groups 297

SINGLE_ATT_per_REF (SINGLE_ATT_per_REF (SINGLE_ATT_per_REF (SINGLE_ATT_per_REF (min maxmin maxmin maxmin max))))
A reference group must have between min and max single-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_REF (MULT_ATT_per_REF (MULT_ATT_per_REF (MULT_ATT_per_REF (min maxmin maxmin maxmin max))))
A reference group must have between min and max multi-valued attributes.
 min and max are integer constants or NNNN.

MULT_ATT_per_MULT_COMP_REF (MULT_ATT_per_MULT_COMP_REF (MULT_ATT_per_MULT_COMP_REF (MULT_ATT_per_MULT_COMP_REF (min maxmin maxmin maxmin max))))
A reference group made of several components must have between min and max multi-
valued attribute.
 min and max are integer constants or NNNN.

SUB_ATT_per_REF (SUB_ATT_per_REF (SUB_ATT_per_REF (SUB_ATT_per_REF (min maxmin maxmin maxmin max))))
A reference group must have between min and max sub-attributes.
 min and max are integer constants or NNNN.

COMP_ATT_per_REF (COMP_ATT_per_REF (COMP_ATT_per_REF (COMP_ATT_per_REF (min maxmin maxmin maxmin max))))
A reference group must have between min and max compound attributes.
 min and max are integer constants or NNNN.

ROLE_per_REF (ROLE_per_REF (ROLE_per_REF (ROLE_per_REF (min maxmin maxmin maxmin max))))
The number of roles per reference group must be at least min and at most max.
 min and max are integer constants or NNNN.

OPT_ROLE_per_REF (OPT_ROLE_per_REF (OPT_ROLE_per_REF (OPT_ROLE_per_REF (min maxmin maxmin maxmin max))))
A reference group must have between min and max optional roles.
 min and max are integer constants or NNNN.

MAND_ROLE_per_REF (MAND_ROLE_per_REF (MAND_ROLE_per_REF (MAND_ROLE_per_REF (min maxmin maxmin maxmin max))))
A reference group must have between min and max mandatory roles.
 min and max are integer constants or NNNN.

ONE_ROLE_per_REF (ONE_ROLE_per_REF (ONE_ROLE_per_REF (ONE_ROLE_per_REF (min maxmin maxmin maxmin max))))
A reference group must have between min and max single-valued roles.
 min and max are integer constants or NNNN.

N_ROLE_per_REF (N_ROLE_per_REF (N_ROLE_per_REF (N_ROLE_per_REF (min maxmin maxmin maxmin max))))
A reference group must have between min and max multi-valued roles.
 min and max are integer constants or NNNN.

GROUP_per_REF (GROUP_per_REF (GROUP_per_REF (GROUP_per_REF (min maxmin maxmin maxmin max))))
The number of groups per reference group must be at least min and at most max.
 min and max are integer constants or NNNN.

LENGTH_of_REF (LENGTH_of_REF (LENGTH_of_REF (LENGTH_of_REF (operatoroperatoroperatoroperator))))
The length of a reference group (the sum of the length of its components) must be
equal, different, smaller than or greater than the length of the referenced group.
 operator is either equalequalequalequal, differentdifferentdifferentdifferent, smallersmallersmallersmaller or greatergreatergreatergreater.

TRANSITIVE_REF (TRANSITIVE_REF (TRANSITIVE_REF (TRANSITIVE_REF (ynynynyn))))
The group is a transitive referential constraints. For instance, A(a,b), B(a,b) and C(b) are
3 entity types. (A.a,A.b) is a reference attribute of (B.a,B.b), A.b is a reference attribute
of C.b and B.b is a reference attribute of C.b. In that case, the referential constraint
from A.b to C.b is redundant and should be suppressed.
 yn is either yesyesyesyes or nononono.

DYN_PROP_of_REF (DYN_PROP_of_REF (DYN_PROP_of_REF (DYN_PROP_of_REF (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.

298 Appendix A Schema analysis predicates

 See Section A.16.

SELECTED_REFSELECTED_REFSELECTED_REFSELECTED_REF
Search for all selected objects. This constraint should not be used for validation.
 No parameters.

MARKED_REFMARKED_REFMARKED_REFMARKED_REF
Search for all marked objects. This constraint should not be used for validation.
 No parameters.

V2_CONSTRAINT_on_REF (V2_CONSTRAINT_on_REF (V2_CONSTRAINT_on_REF (V2_CONSTRAINT_on_REF (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.14. Constraints on processing units
ALL_PROCUNITALL_PROCUNITALL_PROCUNITALL_PROCUNIT

Used for a search, this constraint finds all processing units. It should not be used for a
validation.
 No parameters.

DYN_PROP_of_PROCUNIT (DYN_PROP_of_PROCUNIT (DYN_PROP_of_PROCUNIT (DYN_PROP_of_PROCUNIT (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

SELECTED_PROCUNITSELECTED_PROCUNITSELECTED_PROCUNITSELECTED_PROCUNIT
Search for all selected processing units. This constraint should not be used for valida-
tion.
 No parameters.

MARKED_PROCUNITMARKED_PROCUNITMARKED_PROCUNITMARKED_PROCUNIT
Search for all marked processing units. This constraint should not be used for valida-
tion.
 No parameters.

V2_CONSTRAINT_on_PROCUNIT (V2_CONSTRAINT_on_PROCUNIT (V2_CONSTRAINT_on_PROCUNIT (V2_CONSTRAINT_on_PROCUNIT (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.15. Constraints on names
CONCERNED_NAMES (CONCERNED_NAMES (CONCERNED_NAMES (CONCERNED_NAMES (listlistlistlist))))

This predicate retains all the objects of specified types. This is a very special predicate in
the sense that it does not really treats about object names, but that it should only be
used in conjunction with other predicates on names. Indeed, it has no real sense by
itself, but it allows other predicates to restrict their scope. For instance, to restrict entity
type and rel-type names to 8 characters, the following validation rule can be used:

CONCERNED_NAMES ET RT
 and LENGTH_of_NAMES 1 8
 or not CONCERNED_NAMES ET RT

 list is a list of object types separated by spaces. The valid object type names are those
used as the suffixes of all the prodecates: SCHEMA, COLL, ET, RT, ATT, ROLE,
ATT, GROUP, EID, EPID, RID, RPID, AID, APID, KEY, REF, PROCUNIT.

A.15. Constraints on names 299

NONE_in_LIST_NAMES (NONE_in_LIST_NAMES (NONE_in_LIST_NAMES (NONE_in_LIST_NAMES (listlistlistlist))))
The names of the schema, entity types, rel-types, attributes, roles, groups, processing
units and collections are not in the list list.
 list is a list of words separated by a comma. All the characters between two commas

belong to a word, spaces included. The syntax of the words is the same as for the
name processor. Hence, it is possible to use the following special characters: ^ to rep-
resent the beginning of a line, $ to represent its end, ? to represent any single charac-
ter and * to represent any suite of characters. For instance: ^_*, *_$. This list forbids
any name that begins by _ or end by _.

NONE_in_LIST_CI_NAMES (NONE_in_LIST_CI_NAMES (NONE_in_LIST_CI_NAMES (NONE_in_LIST_CI_NAMES (listlistlistlist))))
The names of the schema, entity types, rel-types, attributes, roles, groups, processing
units and collections are not in the list list. The comparison between names and words
in the list is case insensitive.
 list is a list of words separated by a comma. All the characters between two commas

belong to a word, spaces included. The syntax is similar to the one described in the
NONE_in_LIST_NAMES constraint.

ALL_in_LIST_NAMES (ALL_in_LIST_NAMES (ALL_in_LIST_NAMES (ALL_in_LIST_NAMES (listlistlistlist))))
The names of the schema, entity types, rel-types, attributes, roles, groups, processing
units and collections are in the list list.
 list is a list of words separated by a comma. All the characters between two commas

belong to a word, spaces included. The syntax is similar to the one described in the
NONE_in_LIST_NAMES constraint.

ALL_in_LIST_CI_NAMES (ALL_in_LIST_CI_NAMES (ALL_in_LIST_CI_NAMES (ALL_in_LIST_CI_NAMES (listlistlistlist))))
The names of the schema, entity types, rel-types, attributes, roles, groups, processing
units and collections are in the list list. The comparison between names and words in
the list is case insensitive.
 list is a list of words separated by a comma. All the characters between two commas

belong to a word, spaces included. The syntax is similar to the one described in the
NONE_in_LIST_NAMES constraint.

NONE_in_FILE_NAMES (NONE_in_FILE_NAMES (NONE_in_FILE_NAMES (NONE_in_FILE_NAMES (file_namefile_namefile_namefile_name))))
The names of the schema, entity types, rel-types, attributes, roles, groups, processing
units and collections can not be in the file with the name file_name.
 file_name is the name of an ASCII file that contains a list of all the forbidden names.

Each line of the file contains a name. All the characters of a line are part of the name,
except the end of line characters. The syntax is similar to the one described in the
NONE_in_LIST_NAMES constraint.

NONE_in_FILE_CI_NAMES (NONE_in_FILE_CI_NAMES (NONE_in_FILE_CI_NAMES (NONE_in_FILE_CI_NAMES (file_namefile_namefile_namefile_name))))
The names of the schema, entity types, rel-types, attributes, roles, groups, processing
units and collections can not be in the file with the name file_name. The comparison
between names and words in the file is case insensitive.
 file_name is the name of an ASCII file that contains a list of all the forbidden names.

Each line of the file contains a name. All the characters of a line are part of the name,
except the end of line characters. The syntax is similar to the one described in the
NONE_in_LIST_NAMES constraint.

ALL_in_FILE_NAMES (ALL_in_FILE_NAMES (ALL_in_FILE_NAMES (ALL_in_FILE_NAMES (file_namefile_namefile_namefile_name))))
The names of the schema, entity types, rel-types, attributes, roles, groups, processing
units and collections are in the file with the name file_name.
 file_name is the name of an ASCII file that contains a list of all the forbidden names.

Each line of the file contains a name. All the characters of a line are part of the name,

300 Appendix A Schema analysis predicates

except the end of line characters. The syntax is similar to the one described in the
NONE_in_LIST_NAMES constraint.

ALL_in_FILE_CI_NAMES (ALL_in_FILE_CI_NAMES (ALL_in_FILE_CI_NAMES (ALL_in_FILE_CI_NAMES (file_namefile_namefile_namefile_name))))
The names of the schema, entity types, rel-types, attributes, roles, groups, processing
units and collections are in the file with the name file_name. The comparison between
names and words in the file is case insensitive.
 file_name is the name of an ASCII file that contains a list of all the forbidden names.

Each line of the file contains a name. All the characters of a line are part of the name,
except the end of line characters. The syntax is similar to the one described in the
NONE_in_LIST_NAMES constraint.

NO_CHARS_in_LIST_NAMES (NO_CHARS_in_LIST_NAMES (NO_CHARS_in_LIST_NAMES (NO_CHARS_in_LIST_NAMES (listlistlistlist))))
The names of the schema, entity types, rel-types, attributes, roles, groups, processing
units and collections can not contain any character of the list list.
 list is a list of characters with no separator. For example: &é"'()§è!çà{}@#[]

ALL_CHARS_in_LIST_NAMES (ALL_CHARS_in_LIST_NAMES (ALL_CHARS_in_LIST_NAMES (ALL_CHARS_in_LIST_NAMES (listlistlistlist))))
The names of the schema, entity types, rel-types, attributes, roles, groups, processing
units and collections must be made of the characters of the list list only.
 list is a list of characters with no separator.

For example: ABCDEFGHIJKLMNOPQRSTUVWXYZ

LENGTH_of_NAMES (LENGTH_of_NAMES (LENGTH_of_NAMES (LENGTH_of_NAMES (min maxmin maxmin maxmin max))))
The length of names of the schema, entity types, rel-types, attributes, roles, groups,
processing units and collections must be at least min and at most max.
 min and max are integer constants or NNNN.

DYN_PROP_of_NAMES (DYN_PROP_of_NAMES (DYN_PROP_of_NAMES (DYN_PROP_of_NAMES (dynamic-property parametersdynamic-property parametersdynamic-property parametersdynamic-property parameters))))
Check some properties of the dynamic properties.
 See Section A.16.

SELECTED_NAMESSELECTED_NAMESSELECTED_NAMESSELECTED_NAMES
Search for all selected objects. This constraint should not be used for validation.
 No parameters.

MARKED_NAMESMARKED_NAMESMARKED_NAMESMARKED_NAMES
Search for all marked objects. This constraint should not be used for validation.
 No parameters.

V2_CONSTRAINT_on_NAMES (V2_CONSTRAINT_on_NAMES (V2_CONSTRAINT_on_NAMES (V2_CONSTRAINT_on_NAMES (V2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parametersV2-file V2-predicate parameters))))
A call to a Voyager 2 boolean function. This constraint returns the result of the func-
tion. It provides an easy way to add any new constraint.
 See Section A.17.

A.16. Using DYN_PROP_OF_... constraints
All dynamic property constraints are of the form:

DYN_PROP_of_XXX (dynamic-property parameters)

where:

• XXX is either SCHEMA, COLL, ET, ISA, RT, ROLE, ATT, GROUP, EID, RID,
AID, KEY, REF, PROCUNIT or NAMES.

• dynamic-property is the name of a dynamic property defined on constructs of type XXX.
If the name contains a space character, it must be surrounded by double quotes. The

A.16. Using DYN_PROP_OF_... constraints 301

name cannot itself contain double quotes. E.g.: owner, "account number" are valid
names.

• parameters is a series of parameters, the number and the type of which depend on the
dynamic-property, as shown hereafter.

The dynamic property can be declared either mono-valued or multi-valued.

1. If the dynamic property is mono-valued, the parameters string format depends on the
type of the dynamic property:

• If the dynamic property is of type Integer, parameters are: min max
The dynamic property value must be comprised between min and max, integer con-
stants or NNNN.

• If the dynamic property is of type Char, parameters are: min max
The dynamic property value must be comprised, in the ASCII order, between min and
max, two character constants.

• If the dynamic property is of type Real, parameters are: min max
The dynamic property value must be comprised between min and max, two real con-
stants.

• If the dynamic property is Boolean, the single parameter is either truetruetruetrue or falsefalsefalsefalse.
The dynamic property value must be either true or false.

• If the dynamic property is of type String, parameters are comparison_operator string
The comparison operator must be one of: ====, <<<<, >>>>, =ci=ci=ci=ci, <ci<ci<ci<ci, >ci>ci>ci>ci, and containscontainscontainscontains. ==== is the
strict equality of both the string value and the dynamic property value, <<<< means string
comes before the dynamic property value in alphabetical order, and >>>> is the inverse; =ci=ci=ci=ci,
<ci<ci<ci<ci and >ci>ci>ci>ci are the case insensitive equivalents of ====, <<<<, >>>>; containscontainscontainscontains is the sub-string
operator that checks whether string is a sub-string of the dynamic property value.

2. If the dynamic property is multi-valued, the parameters string is one of the following:

• countcountcountcount min max
The number of values (whatever they are) is comprised between min, an integer num-
ber, and max, an integer number or NNNN.

• oneoneoneone mono-valued-dynamic-property-parameters
Exactly one of the values must satisfy the mono-valued-dynamic-property-parameters. In
fact, each values treated as if the dynamic property was mono-valued; all the values that
satisfy the property are counted and the multi-valued property is said to be satisfied if
the count equals one.

• somesomesomesome mono-valued-dynamic-property-parameters
At least one of the values must satisfy the mono-valued-dynamic-property-parameters. In
fact, each value is treated as if the dynamic property was mono-valued; all the values that
satisfy the property are counted and the multi-valued property is said to be satisfied if
the count is greater or equal to one.

• eacheacheacheach mono-valued-dynamic-property-parameters
Every value must satisfy the mono-valued-dynamic-property-parameters. In fact, each
value is treated as if the dynamic property was mono-valued and the multi-valued prop-
erty is said to be satisfied if every value satisfy the “mono-valued property”.

Examples:

• DYN_PROP_of_ATT (view count 2 N)

302 Appendix A Schema analysis predicates

Searches for all attributes used in at least two views (view is the DB-MAIN built-in
dynamic property for the definition of views)

• DYN_PROP_of_ET(owner = "T. Smith")
Assuming owner is a mono-valued string dynamic property defined on entity types, this
constraints looks for all entity types owned by T. Smith.

• DYN_PROP_of_ET("modified by" some contains Smith)
Assuming modified by is a multi-valued string dynamic property defined on entity types
which contains the list of all the persons who modified the entity type, this constraint
looks for all entity types modified by Smith.

• DYN_PROP_of_ATT(line 50 60)
line is a mono-valued integer dynamic property defined on all constructs generated by
the COBOL extractor. This constraint looks for all constructs obtained from the extrac-
tion of a specific part (lines 50-60) of the COBOL source file.

A.17. Using Voyager 2 constraints
Voyager 2 can be used to implement user-defined constraints with all object types. They
are used with the V2_CONSTRAINT_on_XXX constraints, where XXX stands for
SCHEMA, ET, RT, ROLE, ATT, EID, EPID, AID, EPID, RID, RPID, REF, KEY, ISA,
or NAMES. This may be very useful to look for complex patterns that cannot be expressed
with the predefined constraints.

All the V2-CONSTRAINT_on_... are used the same way, they all need three parameters:

V2_CONSTRAINT_on_... (V2-file V2-function parameters)

where

• V2-file is the name of the Voyager 2 program that contains the function to execute

• V2-function is the name of the Voyager 2 function

• parameters all the parameters to pass to the function. The number of such parameters
may vary according to the function definition.

The Voyager 2 function must be declared as an integer function with two parameters: the
object of the repository that must be analysed (an entity type for instance) and a string con-
taining all the parameters. The value returned by this function must be 0 if the constraint
is not satisfied and any value different of 0 otherwise. The function must be declared as
exportable.

Example:

Let Num_tech_id_per_et be the name of a Voyager 2 function that verifies if an entity
type has a valid number of technical identifiers. It is placed in the program ANALYSE.V2,
compiled as ANALYSE.OXO in directory C:\PROJECT. This function needs two
parameters, one that is a minimum valid number of technical identifiers and the other that
is a maximum valid number. The declaration of the Voyager 2 function in the file ANA-
LYSE.V2 should look like:

export function integer Num_tech_id_per_et(entity_type: ent, string: arguments)

and the constraint in the analyser script should look like:

V2_CONSTRAINT_on_ET (ANALYSE.OXO Num_tech_id_per_et 0 1)

Appendix B

The PDL syntax

This appendix lists the abstract syntax of the Pattern Definition Language (PDL) used in
the DB-MAIN CASE environment by the reverse engineering assistant and in the MDL
language to define the grammar of text models.

B.1. BNF notation
::= is the definition symbol. The left member is the defined term, the right member its
definition. For instance,
<a> ::= t means that <a> is defined as t.

<...> angle brackets encompass the terms that have a definition. When placed at the left
side of ::=, it shows the term that is defined. At the right side of that symbol, it must be
replaced by its definition. For instance, ::= t, defines as t, and in <a> ::= rs,
 is replaced by its definition and thus <a> is defined as rts.

| stands for an alternative. Either the left member or the right member may be used. They
are two possible definitions. For instance, <a> ::= |<c> means that <a> may be defined
either as or <c>.

[...] encompasses a facultative part of a definition. For instance, <a> ::= [<c>] means
that <a> may be defined either as or as <c>

{...} encompasses a repeatable part of a definition. That part may be used zero, one or many
times. For instance, <a> ::= {<c>} means that <a> may be defined either as ,
<c>, <c><c>,...

{...}m-n encompasses a repeatable part of a definition with a limit on the number of repeti-
tions. That part may be used at least m times and at most n times. For instance, <a> ::=
{<c>}0-3 means that <a> may be defined either as , <c>, <c><c> or
<c><c><c>.

B.2. The PDL language
<pattern> ::= <pattern_name> ::=::=::=::= {<segment>};
<pattern_name> ::= <letter>{<valid-character>}0-29

This is the name of the pattern
<valid-character> ::= <letter>|<figure>
<letter> ::= aaaa|bbbb|cccc|dddd|eeee|ffff|gggg|hhhh|iiii|jjjj|kkkk|llll|mmmm|nnnn|oooo|pppp|qqqq|rrrr|ssss|tttt|uuuu|vvvv|wwww|xxxx|yyyy|zzzz|

AAAA|BBBB|CCCC|DDDD|EEEE|FFFF|GGGG|HHHH|IIII|JJJJ|KKKK|LLLL|MMMM|NNNN|OOOO|PPPP|QQQQ|RRRR|SSSS|TTTT|UUUU|VVVV|WWWW|XXXX|YYYY|ZZZZ
<figure> ::= 1111|2222|3333|4444|5555|6666|7777|8888|9999|0000

304 Appendix B The PDL syntax

<segment> ::= <terminal_seg>|<pattern_name>|<variable>|<range>|<optional_seg>|
<repeat_seg>|<group_seg>|<choice_seg>|<regular_expr>

<terminal_seg> ::= """"string""""
Match the string, case sensitive, /t = tabulation; /n = new line

<variable> ::= @@@@<pattern_name>
The “@” symbol indicates that the segment is a variable. If a variable appears two times
 in a pattern, then both occurences have the same value. When a pattern is found, the
 value of the variables can be known. A variable can not appear into a repetitive
 structure.

<range> ::= range(range(range(range(<any-character>----<any-character>))))
Is any character between the two specified

<any-character> ::= any ASCII character
<optional_seg> ::= [[[[<segment>]]]]

Optional segment
<repeat_seg> ::= <segment>****

Repetitive segment: match one or more time <segment>
<group_seg> ::= (((({<segment>}))))
<choice_seg> ::= <segment>{||||<segment>}

Match any of the <segment>.
<regular_exp> ::= /g"/g"/g"/g"<regular expression>""""

<regular expression> is a regular expression à la grep

Appendix C

Global transformations

This appendix lists all the global transformations of the DB-MAIN 6.* CASE environ-
ment. These transformations are used by the glbtrsfglbtrsfglbtrsfglbtrsf instruction of the MDL language and
by the “advanced global transformation assistant” of the CASE environment.

C.1. Transformations
A transformation is designed to perform a given action on a set of objects. A default set is
defined for each transformation. This set may be refined to a subset defined by a predica-
tive rule (see Appendix A).

Here follows a list of all transformations with their default scope:

ET_into_RTET_into_RTET_into_RTET_into_RT, default scope: all entity types.

Transform all entity types satisfying the preconditions of the elementary transformation
into rel-types.

ET_into_ATTET_into_ATTET_into_ATTET_into_ATT, default scope: all entity types.

Transform all entity types satisfying the preconditions of the elementary transformation
into attributes.

ADD_TECH_IDADD_TECH_IDADD_TECH_IDADD_TECH_ID, default scope: all entity types.

Add a technical identifier to all entity types. This transformation should never be used
without refinement of the scope.

SMART_ADD_TECH_IDSMART_ADD_TECH_IDSMART_ADD_TECH_IDSMART_ADD_TECH_ID, default scope: all entity types.

Add a technical identifier to all entity types that do not have one but should for all rel-
types to be transformable into referential constraints.

ISA_into_RTISA_into_RTISA_into_RTISA_into_RT, default scope: all is-a relations.

Transform all is-a relations into binary one-to-one rel-types.

RT_into_ETRT_into_ETRT_into_ETRT_into_ET, default scope: all rel-types.

Transform all rel-types into entity types. This transformation should never be used
without refinement of the scope.

RT_into_ISART_into_ISART_into_ISART_into_ISA, default scope: all rel-types.

Transform all binary one-to-one rel-types that satisfy the preconditions of the elemen-
tary transformation into is-a relations if it can be done without dilemma (the remaining

306 Appendix C Global transformations

is-a relations can possibly be transformed with the elementary transformation).

RT_into_REFRT_into_REFRT_into_REFRT_into_REF, default scope: all rel-types.

Transform all rel-types into referential attribute(s).

RT_into_OBJATTRT_into_OBJATTRT_into_OBJATTRT_into_OBJATT, default scope: all rel-types.

Transform all rel-types into object-attribute(s).

REF_into_RTREF_into_RTREF_into_RTREF_into_RT, default scope: all referential attribute.

Transform all referential attributes into rel-types.

ATT_into_ET_VALATT_into_ET_VALATT_into_ET_VALATT_into_ET_VAL, default scope: all attributes.

Transform all attributes into entity types using the value representation of the attributes.
This transformation should never be used without refinement of the scope.

ATT_into_ET_INSTATT_into_ET_INSTATT_into_ET_INSTATT_into_ET_INST, default scope: all attributes.

Transform all attributes into entity types using the instance representation of the attrib-
utes. This transformation should never be used without refinement of the scope.

OBJATT_into_RTOBJATT_into_RTOBJATT_into_RTOBJATT_into_RT, default scope: all object attributes.

Transform all object attributes into a rel-type.

DISAGGREGATEDISAGGREGATEDISAGGREGATEDISAGGREGATE, default scope: all attributes.

Disaggregate all compound attributes.

INSTANCIATEINSTANCIATEINSTANCIATEINSTANCIATE, default scope: all attributes.

Transforms all multivalued atomic attributes into a list of single-valued attributes.

MATERIALIZEMATERIALIZEMATERIALIZEMATERIALIZE, default scope: all attributes.

Materializes all user-defined attributes, replaces them with their definition.

SPLIT_MULTIET_ROLESPLIT_MULTIET_ROLESPLIT_MULTIET_ROLESPLIT_MULTIET_ROLE, default scope: all roles.

Split all the rel-types that contain one or more multi-ET roles.

AGGREGATEAGGREGATEAGGREGATEAGGREGATE, default scope: all groups

Aggregate all groups. This transformation should never be used without refinement of
the scope.

GROUP_into_KEYGROUP_into_KEYGROUP_into_KEYGROUP_into_KEY, default scope: all groups

Add the access key property to all groups.

RENAME_GROUPRENAME_GROUPRENAME_GROUPRENAME_GROUP, default scope: all groups

Give a new meaningful name to each group. This name is unique in the schema. Note
that the old name is lost forever.

REMOVE_KEYREMOVE_KEYREMOVE_KEYREMOVE_KEY, default scope: all access keys

Remove all access keys.

REMOVE_PREFIX_KEYREMOVE_PREFIX_KEYREMOVE_PREFIX_KEYREMOVE_PREFIX_KEY, default scope: all access keys

Remove all access keys that are a prefix of another one.

REMOVE_TECH_DESCREMOVE_TECH_DESCREMOVE_TECH_DESCREMOVE_TECH_DESC, default scope: all objects of the schema

Remove the technical description of all the objects of the schema.

C.1. Transformations 307

REMOVEREMOVEREMOVEREMOVE, default scope: NONE; scope definition is mandatory

Remove all the objects that are in the specified scope. The deleted objects are lost for-
ever.
Note that this transformation is very special, it does not exactly conform to the defini-
tion of a transformation since there is no default scope.

NAME_PROCESSINGNAME_PROCESSINGNAME_PROCESSINGNAME_PROCESSING, default scope: NONE; scope definition mandatory

Process the name and short name of the selected objects. The parameters (in the script)
must be interpreted in two parts. The second one is the rule defining the set of objects
to process. The first parameter is the patterns; it has the following syntax:
“L” stands for the conversion of uppercase letters to lowercase letters;
“U” stands for the conversion of lowercase letters to uppercase letters;
“C” stands for “capitalization”;
“A” stands for accents removal;
“S” stands for shortening and is followed by the maximum size of new names;
“P” stands for patterns and is followed by the list of patterns with the following syntax
(in the patterns, semi-colons and backslashes are prefixed by a backslash):

search_pattern_1;replace_pattern_1;...;search_pattern_n;replace_pattern_n;

MARKMARKMARKMARK, default scope: NONE; scope definition mandatory

Mark all the objects that are in the specified scope.

Note that this transformation is very special, it does not exactly conform to the defini-
tion of a transformation since there is no default scope and no real transformation.

UNMARKUNMARKUNMARKUNMARK, default scope: NONE; scope definition mandatory

Remove the mark of all the marked objects that are in the specified scope.

Note that this transformation is very special, it does not exactly conform to the definition
of a transformation since there is no default scope and no real transformation.

EXTERNEXTERNEXTERNEXTERN, default scope: NONE; scope definition mandatory

Call an external Voyager 2 function, that is a user defined function. This function may
work on any type of objects.

C.2. Control structures
ONONONON (<rule>)... ENDONENDONENDONENDON

This structure allows us to reduce the scope of a set of transformations. The rule is
evaluated and the set of objects it finds will be the scope of all the subsequent transfor-
mations until the ENDON keyword.

During execution, it is possible that a transformation destroys an object of the scope. In
that case, this object is no more available for the following transformations. It is also
possible that a transformation creates an object that validates the rule of the ON clause.
In that case, this object will not be added to the scope. To address this question, the
ON...ENDON structure can be inserted in a LOOP...ENDLOOP structure.

Note that ON...ENDON structure can not overlap, there can not be an ON...ENDON
structure inside another ON...ENDON structure.

LOOPLOOPLOOPLOOP...ENDLOOPENDLOOPENDLOOPENDLOOP

This structure allows us to perform the same actions several times until a fix point is
reached. The LOOP keyword is just a label: when encountered, it does nothing. All the

308 Appendix C Global transformations

transformations that follow it are performed until the ENDLOOP keyword is reached.
Then, if one or more transformations have effectively modified the schema, all these
transformations are performed once more. This will continue until the schema has
reached a fix point for these transformations, i.e. none of them modifies the schema.

Note that LOOP...ENDLOOP structures can be included one into another.

Appendix D

The MDL syntax

D.1. BNF notation
::= is the definition symbol. The left member is the defined term, the right member its
definition. For instance,
<a> ::= t means that <a> is defined as t.

<...> angle brackets encompass the terms that have a definition. When placed at the left
side of ::=, it shows the term that is defined. At the right side of that symbol, it must be
replaced by its definition. For instance, ::= t, defines as t, and in <a> ::= rs,
 is replaced by its definition and thus <a> is defined as rts.

| stands for an alternative. Either the left member or the right member may be used. They
are two possible definitions. For instance, <a> ::= |<c> means that <a> may be defined
either as or <c>.

[...] encompasses a facultative part of a definition. For instance, <a> ::= [<c>] means
that <a> may be defined either as or as <c>

{...} encompasses a repeatable part of a definition. That part may be used zero, one or many
times. For instance, <a> ::= {<c>} means that <a> may be defined either as ,
<c>, <c><c>,...

{...}m-n encompasses a repeatable part of a definition with a limit on the number of repeti-
tions. That part may be used at least m times and at most n times. For instance, <a> ::=
{<c>}0-3 means that <a> may be defined either as , <c>, <c><c> or
<c><c><c>.

D.2. Miscellaneous rules

D.2.1. Spaces and comments

For the readability of the grammar, spaces between grammar elements are not specified. In
fact, they should be appended “intelligently”:

• no spaces between letters of a word or between figures forming a number

• mandatory spaces between separated words both made of letters and/or figures

• optional spaces between special symbols or words and symbols.

For example:
dodododo normalise(SQL-schema)

310 Appendix D The MDL syntax

Spaces are mandatory between do and normalise and optional everywhere else; the follow-
ing is equivalent:

dodododo normalise (SQL-schema)

A space is any series of blank (ASCII code 32), tab (ASCII code 8) or new line (ASCII
codes 13 and/or 10) characters.

Comments are also considered as spaces: they can be put anywhere a space is allowed. A
comment begins with the %%%% character and is terminated with the end of the line. For
instance:

dodododo normalise(SQL-schema) %%%% this is a comment
dodododo optimise(SQL-schema) %%%% this is another comment

D.2.2. Forward references

Forward references are not allowed.

D.3. Multi-purpose definitions
These definitions make a useful set for the following. They include the definition of special
characters such as an end-of-line, an end-of-file,... and the definition of special strings such
as valid-names that will serve as identifiers, human readable texts, comments,...

The characters used are the following:

<EOL> ::= End-Of-Line character
<EOF> ::= End-Of-File character
<letter> ::= aaaa|bbbb|cccc|dddd|eeee|ffff|gggg|hhhh|iiii|jjjj|kkkk|llll|mmmm|nnnn|oooo|pppp|qqqq|rrrr|ssss|tttt|uuuu|vvvv|wwww|xxxx|yyyy|zzzz|

AAAA|BBBB|CCCC|DDDD|EEEE|FFFF|GGGG|HHHH|IIII|JJJJ|KKKK|LLLL|MMMM|NNNN|OOOO|PPPP|QQQQ|RRRR|SSSS|TTTT|UUUU|VVVV|WWWW|XXXX|YYYY|ZZZZ
<figure> ::= 1111|2222|3333|4444|5555|6666|7777|8888|9999|0000
<valid-character> ::= <letter>|<figure>|----|____

characters recognised by the language for identifiers
<readable-character> ::= any readable ASCII character but <EOL> and <EOF>....

These characters are used for messages that appear on the screen
A double quote must be doubled ("").

<any-character> ::= any character but <EOL> and <EOF>
<really-any-character> ::= any character but <EOF>

Those characters can be combined. A valid-name is a string that is recognised by the lan-
guage as an identifier. And some readable text is any text that will be displayed on screen
such as messages, contextual names,... Strings are used for any suite of parameters of any
type. Numbers are positive integers.

<free-text> ::= {<any-character>}
<totally-free-text> ::= {<really-any-character>}
<valid-name> ::= {<valid-character>}1-100

a name used for identifiers
<readable-name> ::= """"{<readable-character>}0-100""""

a human readable and meaningful name
<string> ::= """"{<readable-character>}0-255""""

a human readable and meaningful string of characters
<textual-description> ::= descriptiondescriptiondescriptiondescription <totally-free-text> end-descriptionend-descriptionend-descriptionend-description

A description is a free text of any length, the “|” character may be used as the left margin
indicator. Almost every block can have a description.

<number> ::= <figure>{<figure>}

D.4. Expressions
Some expressions are required by several control structures in a strategy.

D.4. Expressions 311

<expression> ::= <and-expression> [orororor <expression>]
<and-expression> ::= <not-expression> [andandandand <and-expression>]
<not-expression> ::= [notnotnotnot] <weak-expression>
<weak-expression> ::= [weakweakweakweak] <elem-expression>
<elem-expression> ::= <exists-expr>|<model-expr>|<external-expr>|<ask>|<built-in-expr>|

<parenth-expr>
<exists-expr> ::= exists (exists (exists (exists (<product-name> ,,,, <sch-anal-expr> {,,,, <sch-anal-expr>}))))

the comma acts as a and, all expressions must be true for the result to be true
<model-expr> ::= modelmodelmodelmodel ((((<product-name> ,,,, <model-name>))))
<external-expr> ::= external external external external <external-fct-name> (((([<ext-parameters>]))))
<ext-parameters> ::= <ext-parameter> {,,,, <ext-parameter>}
<ext-parameter> ::= [content:content:content:content:]<product-name>|<string>|<number>
<ask> ::= askaskaskask <string>
<built-in-expr> ::= <built-in-fct-name> <misc-parameters>
<built-in-fct-name> ::= <valid-name>
<misc-parameters> ::= ((((<parameter> {,,,, <parameter>}))))
<parameter> ::= <product-name>|<string>|<number>
<parenth-expr> ::= ((((<expression>))))
<sch-anal-expr> ::= <and-sch-anal-expr> [orororor <sch-anal-expr>]
<and-sch-anal-expr> ::= <not-sch-anal-expr> [andandandand <and-sch-anal-expr>]
<not-sch-anal-expr> ::= [notnotnotnot] <elem-sch-anal-expr>
<elem-sch-anal-expr> ::= <constraint-name> <cstr-param>

a first-order logic predicate
<constraint-name> ::= <valid-name>

the name of a validation function of the supporting CASE environment
<cstr-param> ::= (((({<any-character>}0-255))))

strings for the parameters of predicates; their syntax may vary depending on the context
in which they are used. Characters “(“, “)” and “\” must be prefixed by “\”

D.5. Method description
A single special paragraph describes the method itself with a title, a version, an author, a
date, possibly a description or a help file and the main process type.

<Method> ::= <block> {<block>} <method-description>
<block> ::= <extern-decl>|<schema-model>|<text-model>|<product-type>|<toolbox>|

<task-model>
<method-description> ::= methodmethodmethodmethod <method-title> <method-version> [<textual-description>]

<method-author> <method-date> [<method-help>] <method-perform>
end-methodend-methodend-methodend-method

<method-title> ::= titletitletitletitle <readable-name>
<method-version> ::= versionversionversionversion <version-name>
<version-name> ::= """"{<readable-character>}16""""
<method-author> ::= authorauthorauthorauthor <readable-name>
<method-date> ::= datedatedatedate <date>
<date> ::= """"<day>-<month>-<year>""""
<day> ::= {<figure>}2-2

<month> ::= {<figure>}2-2

<year> ::= {<figure>}4-4

<method-help> ::= help-filehelp-filehelp-filehelp-file <felp-file-name>
<help-file-name> ::= <string>
<method-perform> ::= performperformperformperform <task-name>

D.6. External declaration
The language allows the methodological engine to use external functions, that is user-
defined functions written in the Voyager 2 language. These functions must be declared
before they can be used.

<extern-decl> ::= externexternexternextern <external-fct-name> <real-ext-fct-name> ([<ext-param-decl>])
<external-fct-name> ::= <valid-name>
<real-ext-fct-name> ::= <voyager-file>....<voyager-fct>

312 Appendix D The MDL syntax

<voyager-file> ::= <readable-name>
<voyager-fct> ::= <valid-name>
<ext-param-decl> ::= <ext-param> {,,,, <ext-param>}
<ext-param> ::= <ext-param-type> [<ext-param-name>]
<ext-param-type> ::= listlistlistlist | typetypetypetype | integerintegerintegerinteger | stringstringstringstring
<ext-param-name> ::= <valid-name>

D.7. Schema model description
A schema model is a specialisation of the GER model. It is identified by a name and a more
readable title. A small description can be added to ease its understanding by database engi-
neers. The specialisation is made up of (1) a concept selection and renaming list and (2) a
series of structural constraints.

<schema-model> ::= schema-modelschema-modelschema-modelschema-model <model-header> <model-title> [<textual-description>]
[<schema-concepts>] [<model-constraints>] end-modelend-modelend-modelend-model

<model-header> ::= <model-name>[isisisis <model-name>]
<model-name> ::= <valid-name>
<model-title> ::= titletitletitletitle <readable-name>

title to be written to the screen
<schema-concepts> ::= conceptsconceptsconceptsconcepts {<concept-line>}
<concept-line> ::= <concept-name> <readable-name>

one concept with its conceptual name
<concept-name> ::= <valid-name>
<model-constraints> ::= constraintsconstraintsconstraintsconstraints {<constraint-block>}
<constraint-block> ::= <rule> <diagnosis-line>

one single constraint line
<rule> ::= <sch-anal-expr>
<diagnosis-line> ::= diagnosisdiagnosisdiagnosisdiagnosis <diagnosis-string>

the message to be displayed when the constraint is violated
<diagnosis-string> ::= <string>

a readable and meaningful string

D.8. Text model description
A text is any product that is not a schema in the sense above. An identifying name must be
given to a text model as well as a readable name and a list of possible file extensions.

<text-model> ::= text-modeltext-modeltext-modeltext-model <model-header> <model-title> [<textual-description>]
<extensions> [<grammar>] end-modelend-modelend-modelend-model

<extensions> ::= extensions extensions extensions extensions <extension-name> {,,,, <extension-name>}
<grammar> ::= grammar grammar grammar grammar <grammar-file>
<grammar-file> ::= <readable-name>
<extension-name> ::= <string>

D.9. Product type description
A product type has an identifying name, a readable name, a reference model and possibly a
description.

<product-type> ::= productproductproductproduct <product-name> <product-title> [<textual-description>]
<product-model> [<multiplicity>] end-productend-productend-productend-product

<product-name> ::= <valid-name>
<product-title> ::= titletitletitletitle <readable-name>

title to be written to the screen
<product-model> ::= modelmodelmodelmodel [weakweakweakweak] <model-name>
<multiplicity> ::= multiplicitymultiplicitymultiplicitymultiplicity <min-max-mult>
<min-max-mult> ::= [<min-mult> - <max-mult>]
<min-mult> ::= <number>
<max-mult> ::= <number>|nnnn|NNNN

D.10. Toolbox description 313

D.10. Toolbox description
A tool is a product transformation. For instance, a function for adding an entity-type is a
tool. A toolbox is a set of such tools. It can be defined from an empty toolbox in which we
add all the tools we need or from another one by adding or removing tools.

<toolbox> ::= toolboxtoolboxtoolboxtoolbox <toolbox-header> <toolbox-title> [<textual-description>]
<toolbox-body> end-toolboxend-toolboxend-toolboxend-toolbox

<toolbox-header> ::= <toolbox-name> [isisisis <toolbox-name>]
<toolbox-name> ::= <valid-name>

the toolbox identifier
<toolbox-title> ::= titletitletitletitle <readable-name>

name to be written to the screen
<toolbox-body> ::= <toolbox-line> {<toolbox-line>}
<toolbox-line> ::= <add-line>|<remove-line>
<add-line> ::= addaddaddadd <tool-name>
<remove-line> ::= removeremoveremoveremove <tool-name>
<tool-name> ::= <valid-name>

the name of a function of the supporting CASE environment

D.11. Process type description
A process type is defined in three parts: a header with its name, its external definition and
its internal definition.

The external definition contains some methodological aspects and a static definition of the
process. Firstly, a title in clear text. It is that title that the user will see on screen. Secondly,
the name of a section in the help file that should contain a description of the process. The
user can read that file whenever he wants while performing a process of that type. Finally,
the static description of the process type simply shows what product types are required in
input and what product types are provided in output or updated, with the model they are
conform to and possibly their cardinality constraint. The internal definition begins with
the schema types used as the internal workplaces. Finally, the strategy shows how the proc-
ess has to be performed.

<task-model> ::= processprocessprocessprocess <task-name> <task-body> end-processend-processend-processend-process
<task-name> ::= <valid-name>

the task identifier
<task-body> ::= <task-title> [<textual-description>] <models-section> [<explain-line>] <strategy>
<task-title> ::= titletitletitletitle <readable-name>

title to be used by the user interface
<models-section> ::= [<input-line>] [<output-line>] [<update-line>] [<intern-line>] [<set-line>]
<input-line> ::= inputinputinputinput <product-list>

the product types expected in input that will not be modified
<product-list> ::= <product-element> {,,,, <product-element>}
<product-element> ::= <product-name> [<multiplicity>] [<UI-name>] :::: [weakweakweakweak] <model-name>
<UI-name> ::= <readable-name>
<output-line> ::= outputoutputoutputoutput <product-list>

the product types produced in output
<update-line> ::= updateupdateupdateupdate <product-list>

the product types expected in update (input, transformation, output)
<intern-line> ::= interninterninternintern <product-list>

the product types to which the internal schemas must (or should) conform
<set-line> ::= setsetsetset <product-set-list>

the product types to which the internal schemas must (or should) conform
<product-set-list> ::= <product-set-element> {,,,, <product-set-element>}
<product-set-element> ::= <product-set-name> [<multiplicity>] [<UI-name>]
<product-set-name> ::= <valid-name>
<explain-line> ::= explainexplainexplainexplain <explain-section>

the section in the help file where explanation and suggestions can be found
<explain-section> ::= <readable-name>

314 Appendix D The MDL syntax

<strategy> ::= strategystrategystrategystrategy <action>
body of a process

<action> ::= |<elem-action>|<compl-action>
action to be carried out, possibly no action

<elem-action> ::= <do-action>|<toolbox-action>|<external-action>|<glbtrsf-action>|
<extract-action>|<generate-action>|<message-action>|<built-in-action>

<do-action> ::= dodododo <task-name> ([<do-prod-parameters>])
<do-prod-parameters> ::= [content:content:content:content:]<product-name> {,,,, [content:content:content:content:]<product-name>}
<toolbox-action> ::= toolboxtoolboxtoolboxtoolbox <toolbox-name> [[log[log[log[log <log-level>]]]]] <tb-prod-parameters>
<log-level> ::= offoffoffoff | replayreplayreplayreplay | allallallall
<tb-prod-parameters> ::= ((((<product-name> {,,,, <product-name>}))))
<external-action> ::= externalexternalexternalexternal <external-fct-name> [[log[log[log[log <log-level>]]]]] <ext-parameters>
<glbtrsf-action> ::= glbtrsf glbtrsf glbtrsf glbtrsf [""""<transfo-name>""""] [[log[log[log[log <log-level>]]]]] ((((<product-name> ,,,, <global-trsf>

{,,,, <global-trsf>}))))
<global-trsf> ::= <transfo-name> ((((<free-text>))))
<transfo-name> ::= <valid-name>
<extract-action> ::= extractextractextractextract <extractor-name> ((((<source-file> ,,,, <dest-schema>))))
<extractor-name> ::= <valid-name>
<source-file> ::= <product-name>
<dest-schema> ::= <product-name>
<generate-action> ::= generategenerategenerategenerate <generator-name> ((((<source-schema> ,,,, <dest-file>))))
<generator-name> ::= <valid-name>
<source-schema> ::= <product-name>
<dest-file> ::= <product-name>
<message-action> ::= messagemessagemessagemessage <string>
<bulti-in-action> ::= <new-action>|<copy-action>|<import-action>|<cast-action>|<define-action>
<new-action> ::= new (new (new (new (<product-name>))))
<copy-action> ::= copy (copy (copy (copy (<product-name>,<product-name>))))
<import-action> ::= import (import (import (import (<product-name>))))
<cast-action> ::= cast (cast (cast (cast (<product-name>,<product-name>))))
<define-action> ::= define (define (define (define (<product-set-element>,,,,<product-set-expr>))))
<product-set-expr> ::= <product-set-op> <product-set-expr-list>
<product-set-op> ::= unionunionunionunion | interinterinterinter | minusminusminusminus | subsetsubsetsubsetsubset | originoriginoriginorigin | targettargettargettarget | choose-onechoose-onechoose-onechoose-one | choose-manychoose-manychoose-manychoose-many |

firstfirstfirstfirst | remainingremainingremainingremaining
<product-set-expr-list> ::= ((((<product-set-expr> {,,,, <product-set-expr>}))))
<compl-action> ::= <sequence>|<iterate>|<choose>|<alternate>

complex action
<sequence> ::= sequencesequencesequencesequence <action-list> end-sequenceend-sequenceend-sequenceend-sequence | <action-list>

perform all actions of the body in the specified order
<action-list> ::= <action> {;;;; <action>}

a list of actions separated by semi-colons
<iterate> ::= <repeat>|<while-repeat>|<repeat-until>|<for>
<repeat> ::= repeatrepeatrepeatrepeat <action> end-repeatend-repeatend-repeatend-repeat
<while-repeat> ::= whilewhilewhilewhile <parenth-expr> <repeat>
<repeat-until> ::= <repeat> untiluntiluntiluntil <parenth-expr>
<for> ::= forforforfor <one-some-each> <product-name> inininin <product-name> dodododo <action> end-forend-forend-forend-for
<one-some-each> ::= one one one one | some some some some | eacheacheacheach
<choose> ::= <one>|<some>|<each>
<one> ::= oneoneoneone <action-list> end-oneend-oneend-oneend-one

perform one action from the list
<some> ::= somesomesomesome <action-list> end-someend-someend-someend-some

perform at least one action from the list in any order
<each> ::= eacheacheacheach <action-list> end-eachend-eachend-eachend-each

perform each action from the list in any order
<alternate> ::= ifififif <parenth-expr> thenthenthenthen <action> [elseelseelseelse <action>] end-ifend-ifend-ifend-if

carry out one action or the other according to the condition

Appendix E

DB-MAIN functions

The following pages show a table with all the functions of DB-MAIN version 6 with the
different ways to use them. This can be by selecting a menu entry, by selecting a tool in a
toolbar, by using a keyboard shortcut, by clicking on a mouse button when the mouse is
pointing a place in a window, by a dialogue box, by a Voyager 2 program, by a method, or
by the history replay function. Finally, when a function deserves to be known by the MDL
language to be put in a toolbox, a name (possibly several when the context matters) is given
to the function.

For instance, the mark selected function which marks the currently selected part of a prod-
uct th the current marking plan can be called through the Edit menu, by clicking on the
corresponding tool in the standard toolbar, by using a Voyager 2 function in a Voyager 2
program, or by a method (using a global transformation). We will name it mark. So, when
defining a toolbox with the MDL language, the mark keyword can be used to allow the use
of this mark selected function, as well as the mark function which allows to mark some spe-
cific product components.

FunctionsFunctionsFunctionsFunctions MenuMenuMenuMenu Tool barTool barTool barTool bar KSKSKSKS MouseMouseMouseMouse Dialogue boxesDialogue boxesDialogue boxesDialogue boxes VVVV
2222

MMMM RRRR NameNameNameName

New project dialogue File Standard

Create project Project properties
Open project

√

Open project dialogue File Standard

Save project dialogue File Standard

Save project as dialogue File Standard

Close project File  √
Project properties File

Modify project properties Project properties √
Import dialogue File

Export dialogue File

Execute Voyager dialogue File Standard

Execute Voyager Execute Voyager √ √ E externals

Continue Voyager File Standard E externals

Rerun Voyager File Standard E externals

<Voyager programmes> File √ E externals

Extract ... dialogue File

Extract ... Extract √
Generate ... dialogue File

Generate ... Generate
Global transfo.

√

Edit text file File

Print dictionary File

316 Appendix E DB-MAIN functions

FunctionsFunctionsFunctionsFunctions MenuMenuMenuMenu Tool barTool barTool barTool bar KSKSKSKS MouseMouseMouseMouse Dialogue boxesDialogue boxesDialogue boxesDialogue boxes VVVV
2222

MMMM RRRR NameNameNameName

Printer Setup File

Configuration File

Exit File

Save point Edit √
Rollback Edit

Copy to clipboard Edit Ctrl+C

Paste from clipboard Edit Ctrl+V create
create-entity-type
create-rel-type
create-attribute
create-processing-unit
create-role
create-group
create-collection

Copy graphic to clipboard Edit Graphical

Select All Edit Ctrl+A

Select Left √
Mark Mark view

Schema anal. result
√ √ mark

Mark selected Edit Standard √ √ mark

Select marked Edit √ √ √
Colour selected Edit Standard colour

Colour √ √
Delete Integrate two objects

Remove view
√ √ √

Delete selected Edit Del delete
delete-entity-type
delete-rel-type
delete-attribute
delete-processing-unit
delete-role
delete-group
delete-collection

Change font Edit

New schema dialogue Product

Create schema √ √
Add text dialogue Product

Create text √ √
New set dialogue Product

Create product set √ √
Open product Product Double left

Product properties dialogue Product

Modify product properties Product properties
Graphical settings

√

Copy product dialogue Product √
Copy product Copy product √
Define view dialogue Product/View create-view

Generate view dialogue Product/View create-view

Create view Generate view

Mark view dialogue Product/View mark

Remove view dialogue Product/View delete-view

Copy view dialogue Product/View create-view

Rename view dialogue Product/View modify-view

Meta-properties dialogue Product/Meta create-meta-prop
delete-meta-prop
modify-meta-prop

Create meta-property Meta-property √ create-meta-prop

Delete meta-property Meta-property √ delete-meta-prop

Modify meta-property Meta-property √ modify-meta-prop

User domains dialogue Product create-user-domain
delete-user-domain
modify-user-domain

Appendix E DB-MAIN functions 317

FunctionsFunctionsFunctionsFunctions MenuMenuMenuMenu Tool barTool barTool barTool bar KSKSKSKS MouseMouseMouseMouse Dialogue boxesDialogue boxesDialogue boxesDialogue boxes VVVV
2222

MMMM RRRR NameNameNameName

Create user domains √ create-user-domain

Delete user domains √ delete-user-domain

Modify user domains √ modify-user-domain

Lock/unlock Product

New collection dialogue New (TV) Standard
(TV)

Collection properties
 (TV)

create-collection
create

New collection mode
(=NCM)

New (GV) Standard
(GV)

Collection properties
 (GV)

create-collection
create

End new collection mode New
Text standard
Text compact
Text extended
Text sorted
(NCM)

Standard
(NCM)

Create collection Edit/Paste Ctrl+V Left (NCM) Schema integrate √ √
New entity type dialogue New (TV) Standard

(TV)
ET properties (TV) create-entity-type

create

New entity type mode
(=NETM)

New (GV) Standard
(GV)

ET properties (GV) create-entity-type
create

End new entity type mode New
Text standard
Text compact
Text extended
Text sorted
(NETM)

Standard
(NETM)

Create entity type Edit/Paste Ctrl+V Left (NETM) Schema integrate √ √
New rel-type dialogue New (TV) Standard

(TV)
RT properties (TV) create-rel-type

create

New rel-type mode
(=NRTM)

New (GV) Standard
(GV)

RT properties (GV) create-rel-type
create

End new rel-type mode New
Text standard
Text compact
Text extended
Text sorted
(NRTM)

Standard
(NRTM)

Create rel-type Edit/Paste Ctrl+V Left (NRTM) Schema integrate √ √
New first attribute dialogue New/

 Attribute
Standard Attribute properties

ET properties
RT properties
Schema integrate

create-attribute
create

New next attribute dialogue New/
 Attribute

Standard Attribute properties
Schema integrate
Integrate two objects

create-attribute
create

Create attribute Edit/Paste Ctrl+V Attribute properties √ √
New processing unit dia-
logue

New Proc. unit properties
Schema integrate

create-processing-unit
create

Create processing unit Edit/Paste Ctrl+V Proc. unit properties √ √
New role New Standard Role properties (TV)

RT properties (TV)
create-role
create

New role mode (=NRM) New (GV) Standard
(GV)

Role properties (GV)
RT properties (GV)

create-role
create

End new rel-type mode New
Text standard
Text compact
Text extended
Text sorted
(NRM)

Standard
(NRM)

Create role Left (NRM) Schema integrate √ √
New group dialogue New create-group

create

Create group Edit/Paste Standard Group properties
Ref. key assistant
Schema integrate

√ √

Create identifier Standard Schema integrate √ √ create-identifier
create

318 Appendix E DB-MAIN functions

FunctionsFunctionsFunctionsFunctions MenuMenuMenuMenu Tool barTool barTool barTool bar KSKSKSKS MouseMouseMouseMouse Dialogue boxesDialogue boxesDialogue boxesDialogue boxes VVVV
2222

MMMM RRRR NameNameNameName

New constraint dialogue New Group properties create-constraint
create

Create constraint Constraint properties
Schema integrate

√ √

Delete constraint Constraint properties √ √ delete-constraint

Constraint properties dia-
logue

Group properties √ √ create-constraint
delete-constraint
modify-constraint
create
delete
modify

Modify constraint Constraint properties

Entity type -> rel-type Transform Transfo Global transfo.
Adv. global transfo.

√ tf-ET-into-RT

Entity type -> attribute Transform Transfo Global transfo.
Adv. global transfo.

√ tf-ET-into-att

Is-a -> rel-types Transform Transfo Global transfo.
Adv. global transfo.

√ tf-isa-into-RT

Rel-types -> is-a Transform Transfo Global transfo.
Adv. global transfo.

√ tf-RT-into-isa

Split/merge Transform Transfo Global transfo.
Adv. global transfo.

√ tf-split-merge

Add technical identifier Transform Transfo Global transfo.
Adv. global transfo.

√ tf-add-tech-id

Rel-type -> entity type Transform Transfo Global transfo.
Adv. global transfo.

√ tf-RT-into-ET

Rel-type -> attribute Transform Transfo Global transfo.
Adv. global transfo.

√ tf-RT-into-att

Rel-type -> object attribute Transform Transfo Global transfo.
Adv. global transfo.

√ tf-RT-into-obj-att

Attribute -> entity type Transform Transfo Global transfo.
Adv. global transfo.

√ tf-att-into-ET

Disaggregation Transform Transfo Global transfo.
Adv. global transfo.

√ tf-disaggregate

Multi att. -> single Transform Transfo Global transfo.
Adv. global transfo.

√ tf-multi-att-into-single

Single att. -> multi Transform Transfo Global transfo.
Adv. global transfo.

√ tf-single-att-into-multi

Multi att -> list single Transform Transfo Global transfo.
Adv. global transfo.

√ tf-multi-att-into-list

Multi attribute conversion Transform Transfo Global transfo.
Adv. global transfo.

√ tf-multi-att-conversion

Materialize domain Transform Transfo Global transfo.
Adv. global transfo.

√ tf-materialize-domain

Object attribute -> rel-type Transform Transfo Global transfo.
Adv. global transfo.

√ tf-obj-att-into-RT

Multi-ET role -> rel-type Transform Transfo Global transfo.
Adv. global transfo.

√ tf-multi-ET-role-
into-RT

Group -> rel-type Transform Transfo Global transfo.
Adv. global transfo.

√ tf-ref-group-into-RT

Aggregate Transform Transfo Global transfo.
Adv. global transfo.

√ tf-aggregate

Group -> multi attribute Transform Transfo Global transfo.
Adv. global transfo.

√ tf-list-into-multi-att

Change prefix Transform √ change-prefix

Name processing dialogue Transform Global transfo. name-processing

Name processing Global transfo. √
Relational model Transform √
Quick SQL Transform

Global transfo. dialogue Assist global-transfo

Global transformations Globval transfo. √
Adv. global transfo. dia-
logue

Assist advanced-global-
transfo

Advanced global transfo. Adv. global transfo. √ √

Appendix E DB-MAIN functions 319

FunctionsFunctionsFunctionsFunctions MenuMenuMenuMenu Tool barTool barTool barTool bar KSKSKSKS MouseMouseMouseMouse Dialogue boxesDialogue boxesDialogue boxesDialogue boxes VVVV
2222

MMMM RRRR NameNameNameName

Schema analysis dialogue Assist √ schema-analysis

Schema analysis Schema analysis √
Schema integration dialogue Assist schema-integration

Schema integration Schema integration

Object integration dialogue Assist object-integration

Object integration Object integration √
Load pattern Assist/text anal. text-analysis

Search Assist/text anal. Rev. Eng. text-analysis

Search next Assist/text anal. Rev. Eng. text-analysis

Execute Assist/text anal. text-analysis

Dependency Assist/text anal. text-analysis

Progarm slicing Assist/text anal. Rev. Eng. text-analysis

Mark slice Assist/text anal. text-analysis

Slicing assistant Assist/text anal. text-analysis

Dependency/SDG Assist/text anal. text-analysis

Load SDG Assist/text anal. text-analysis

Save SDG Assist/text anal. text-analysis

Load parsing Assist/text anal. text-analysis

Free SDG Assist/text anal. text-analysis

Text analysis settings Assist/text anal. text-analysis

Text analysis color Assist/text anal. text-analysis

Goto Assist/text anal. Rev. Eng. text-analysis

Referential key dialogue Assist Rev. Eng. ref-key-search

Use primitives Engineering Process √
Copy schema & use prim. Engineering

End use of primitives Engineering Process

New engineering process Engineering Process √
End current process Engineering Process

Continue process Engineering Process

Take decision Engineering Process √
Process properties Engineering

Edit in/out/update prod. Engineering

Controlled history Engineering

Trace Log

Add check point Log √
Add schema Log

Add description Log

Clear log Log

Save log as Log

Replay automatic Log

Replay interactive Log

Text compact View

Text standard View Standard

Text extended View

Text sorted View

Graph compact View

Graph standard View Standard

Graph dependency View

Graphical settings dialogue View

Alignment ... View Graphical √
Autodraw View

View engineering method View

... Window

... Help

320 Appendix E DB-MAIN functions

FunctionsFunctionsFunctionsFunctions MenuMenuMenuMenu Tool barTool barTool barTool bar KSKSKSKS MouseMouseMouseMouse Dialogue boxesDialogue boxesDialogue boxesDialogue boxes VVVV
2222

MMMM RRRR NameNameNameName

Object properties dialogue Enter Double left modify
modify-entity-type
modify-rel-type
modify-attribute
modify-processing-unit
modify-role
modify-group
modify-collection

Modify object properties ... properties

Edit semantic description Standard ... properties
Conflict resolution

√ √ modify-sem-desc

Edit technical description Standard ... properties
Conflict resolution

√ √ modify-tech-desc

Edit meta-properties dia-
logue

Standard ... properties modify-meta-prop-
value

Modify meta-properties Edit meta-properties
Define view
Remove view
Copy view
Rename view

√ √

Change mark plan Standard √
Independant graph. objects Graphical Graphical settings

Zoom +10% Graphical

Zoom -10% Graphical

Zoom Graphical Graphical settings √
Connection dialogue Text properties

Schema properties
√ edit-connection

Center object Right √

Abbreviations:
KS keyboard shortcut
V2 Voyager 2 language
M method
R replay function
(TV) textual view
(GV) graphical view
E. (in the “R” column) Effects: the Voyager 2 function executions are not stored in the repository, but all the transformations

they perform are stored.
 closing button in the title bar of a window

Appendix F

Case study listings

This appendix contains the material required to perform the two case studies in Chapter
11: the MDL listings of the methods followed, the texts required to start the case studies,
and the complete script of the first case study.

F.1. The first case study: a forward engineering method
% Product models definitions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

text-model TEXT_FILE
 title "Text file"
 description
 A text file contains some free text. In this method, we will use them
 to store reports written in natural language.
 end-description
 extensions "TXT"
end-model

text-model SQL_FILE
 title "SQL file"
 description
 An SQL script containing SQL instructions for the creation of a database
 including create database, create table, create index, alter table with
 checks, create trigger,...
 end-description
 extensions "SQL", "DDL"
end-model

schema-model CONCEPT_SCHEMA
 title "Conceptual schema model"
 description
 The conceptual schema model allows an analyst to draw a representation of the
 real world. A schema compliant with that model shows precisely, in a readable
 way, the semantics of the database. It cannot be directly implemented. Its
 main purpose is to be a basis for documenting the database, to be a support
 for dialogue.
 end-description
 concepts
 schema "schema"
 entity_type "entity type"
 rel_type "relationship type"
 attribute "attribute"
 atomic_attribute "attribute"
 compound_attribute "compound attribute"
 role "role"
 is_a_relation "is-a relation"
 sub_type "sub-type"
 super_type "super-type"
 note "note"
 group "group"
 identifier "identifier"

322 Appendix F Case study listings

 primary_identifier "primary identifier"
 secondary_identifier "secondary identifier"
 constraint "constraint"
 at_least_one_constraint "at-least-one constraint"
 exactly_one_constraint "exactly-one constraint"
 coexistence_constraint "coexistence constraint"
 exclusive_constraint "exclusive constraint"
 user_constraint "constraint"
 constraints
 ET_per_SCHEMA (1 N) % At list one ET required
 diagnosis "Schema &NAME should have an entity type"
 COLL_per_SCHEMA (0 0) % No collection allowed
 diagnosis "The schema should have no collection"
 ATT_per_ET (1 N) % At least one attribute per ET
 diagnosis "Entity type &NAME should have at least one attribute"
 KEY_per_ET (0 0) % No access keys
 diagnosis "Entity type &NAME should not have an access key"
 REF_per_ET (0 0) % No foreign key
 diagnosis "Entity type &NAME should not have a foreign key"
 ID_per_ET (1 N) % If there are identifiers, one is primary
 and PID_per_ET (1 1)
 or ID_per_ET (0 0)
 diagnosis "One of the identifiers of entity type &NAME should be primary"
 EMBEDDED_ID_per_ET (0 0) % Embedded identifiers are not allowed"
 diagnosis "Embedded identifiers should be removed in entity type &NAME"
 ID_DIFF_in_ET (components) % All identifiers must have different components
 diagnosis "Ids made up of the same components should be avoided in &NAME"
 TOTAL_in_ISA (no) % Total is-a relations should concern at least
 or TOTAL_in_ISA (yes) % two subtypes
 and SUB_TYPES_per_ISA (2 N)
 diagnosis "Total is-a relations are not allowed with only one sub-type"
 DISJOINT_in_ISA (no) % Disjoint is-a relations should concern at
 or TOTAL_in_ISA (yes) % least two subtypes
 and SUB_TYPES_per_ISA (2 N)
 diagnosis "Disjoint is-a relations must have at least two sub-types"
 ROLE_per_RT (2 2) % 2 <= degree of a rel-type <= 4
 or ROLE_per_RT (3 4) % if 3 or 4, the rel-type cannot have a one role
 and ATT_per_RT (1 N) % or it must also have attributes
 or ROLE_per_RT (3 4)
 and ATT_per_RT (0 0)
 and ONE_ROLE_per_RT (0 0)
 diagnosis "Rel-type &NAME has too many roles, or too few attributes"
 ID_per_RT (1 N) % If RT have some identifiers, one is primary
 and PID_per_RT (1 1)
 or ID_per_RT (0 0)
 diagnosis "One of the identifiers of rel-type &NAME should be primary"
 EMBEDDED_ID_per_RT (0 0) % Embedded identifiers are not allowed"
 diagnosis "Embedded identifiers should be removed in rel-type &NAME"
 ID_DIFF_in_RT (components) % All identifiers must have different components
 diagnosis "Ids made up of the same components should be avoided in &NAME"
 not SUB_ATT_per_ATT (1 1) % Compound att must have at least two components
 diagnosis "Compound attribute &NAME has too few sub-attributes"
 ID_per_ATT (0 0) % A compound attribute cannot have an identifier
 diagnosis "Multi-valued compound attribute &NAME should not have an id."
 COMP_per_GROUP (1 N) % Every group must have at least one component
 diagnosis "Group &NAME should have components"
 ROLE_per_EID (0 0) % An ET id. cannot be made up of a single role
 and COMP_per_EID (1 N)
 or ROLE_per_EID (1 N)
 and COMP_per_EID (2 N)
 diagnosis "ET Identifier &NAME should have another component"
 MULT_ATT_per_EID (1 1) % If an ET id. contains a multi-valued attribute
 and COMP_per_EID (1 1) % it must be the only component.
 or MULT_ATT_per_EID (0 0)
 diagnosis "ET identifier &NAME should have no multi-valued attribute or
 no other component"
 ONE_ROLE_per_EID (0 0) % An ET identifier should not have a one-role
 diagnosis "One-roles should be removed from entity type identifier &NAME"
 OPT_ATT_per_EPID (0 0) % Optional columns not allowed in primary ids.
 diagnosis "There should be no optional column in primary id &NAME."
 COMP_per_RID (1 1) % If a RT identifier has only one component,
 and ROLE_per_RID (0 0) % it must be an attribute
 or COMP_per_RID (2 N)
 diagnosis "Rel-type identifier &NAME should have more components"
 MULT_ATT_per_RID (1 1) % If a RT identifier contains a multi-valued
 and COMP_per_RID (1 1) % attribute, it must be the only component.
 or MULT_ATT_per_RID (0 0)

F.1. The first case study: a forward engineering method 323

 diagnosis "RT identifier &NAME should have no multi-valued attribute
 or no other component"
 ONE_ROLE_per_RID (0 0) % A RT identifier should not have a one-role
 diagnosis "One-roles should be removed from rel-type identifier &NAME"
 OPT_ATT_per_RPID (0 0) % No optional attribute in a rel-type identifier
 diagnosis "Optional att. should be removed from RT identifier &NAME"
end-model

schema-model LOG_SQL_SCHEMA
 title "Logical relational schema"
 description
 The logical relational schema model maps the generic entity/object-
 relationship (GER) model of DB-MAIN to a generic relational model, without
 any specific RDBMS in mind. Schemas compliant with this model are the one
 to give as a reference to people who need to write queries on the database.
 end-description
 concepts
 schema "view"
 entity_type "table"
 atomic_attribute "column"
 user_constraint "constraint"
 identifier "unique constraint"
 primary_identifier "primary key"
 access_key "index"
 constraints
 ET_per_SCHEMA (1 N) % At list one table required
 diagnosis "Schema &NAME should have a table"
 RT_per_SCHEMA (0 0) % No rel-type allowed
 diagnosis "Rel-type &NAME should not exist"
 COLL_per_SCHEMA (0 0) % No collection/table space allowed
 diagnosis "The schema should have no table space"
 ATT_per_ET (1 N) % At least one column per table
 diagnosis "Table &NAME should have at least one column"
 PID_per_ET (0 1) % At most one primary key per ET
 diagnosis "Table &NAME has too many primary keys"
 KEY_per_ET (0 0) % No access keys/indexes
 diagnosis "Table &NAME should not have an index"
 SUB_TYPES_per_ISA (0 0) % Is-a relations are not allowed
 diagnosis "Is-a relations are not allowed and &NAME has a sub-type"
 OPT_ATT_per_EPID (0 0) % Optional columns not allowed in primary keys.
 diagnosis "There should be no optional column in primary key &NAME."
 DEPTH_of_ATT (1 1) and MAX_CARD_of_ATT (1 1)
 % Columns are atomic and single-valued
 diagnosis "Column &NAME should be atomic and single-valued."
end-model

schema-model PHYS_SQL_SCHEMA
 title "SQL schema model"
 description
 The SQL schema model maps the generic entity/object-relationship (GER) model
 of DB-MAIN to an SQL relational model, including physical characteristics such
 as the setting of indexes and the definition of dataspaces. This is the schema
 model from which database creation scripts can be derived. This is the schema
 that can be used as a reference for the database administrator to fine tune
 the database.
 end-description
 concepts
 collection "table space"
 schema "view"
 entity_type "table"
 atomic_attribute "column"
 user_constraint "constraint"
 identifier "unique constraint"
 primary_identifier "primary key"
 access_key "index"
 constraints
 ET_per_SCHEMA (1 N) % At list one table required
 diagnosis "Schema &NAME should have a table"
 RT_per_SCHEMA (0 0) % No rel-type allowed
 diagnosis "Rel-type &NAME should not exist"
 ATT_per_ET (1 N) % At least one column per table
 diagnosis "Table &NAME should have at least one column"
 PID_per_ET (0 1) % At most one primary key per table
 diagnosis "Table &NAME has too much primary keys"
 SUB_TYPES_per_ISA (0 0) % Is-a relations are not allowed
 diagnosis "Is-a relations are not allowed and &NAME has a sub-type"
 ID_NOT_KEY_per_ET (0 0) % Every unique constraint is an index

324 Appendix F Case study listings

 diagnosis "Unique constraint &NAME should be an index"
 OPT_ATT_per_EPID (0 0) % Optional columns not allowed in primary keys.
 diagnosis "There should be no optional column in primary key &NAME."
 DEPTH_of_ATT (1 1) and MAX_CARD_of_ATT (1 1)
 % Columns are atomic and single-valued
 diagnosis "Column &NAME should be atomic and single-valued."
 ALL_CHARS_in_LIST_NAMES (ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstu
 vwxyz0123456789$_)
 and NONE_in_LIST_NAMES (_$,$$)
 and LENGTH_of_NAMES (0 31)
 and NONE_in_FILE_CI_NAMES (PHYSRDB.NAM)
 diagnosis "The name &NAME is invalid"
end-model

% Toolbox definitions
%%%%%%%%%%%%%%%%%%%%%

toolbox TB_ANALYSIS
 title "Analysis"
 description
 This toolbox allows you to draw a conceptual schema. You can create and edit
 entity types, relationship types, attributes, roles and integrity constraints.
 end-description
 add create-entity-type
 add create-rel-type
 add create-attribute
 add create-group
 add create-role
 add modify-entity-type
 add modify-rel-type
 add modify-attribute
 add modify-group
 add modify-role
 add delete-entity-type
 add delete-rel-type
 add delete-attribute
 add delete-group
 add delete-role
end-toolbox

toolbox TB_CONCEPTUAL_NORMALISATION
 title "Conceptual normalisation"
 description
 This toolbox allows you to enhance the readability of your conceptual schema
 without modifying its semantics. You can do it by applying some
 transformations on entity types, relationship types and attributes. You should
 be aware of some entity types that look like relationship types (the roles
 they play are all 1-1 and they are identified by all the roles they play),
 of some entity types that look like attributes (small, just a few attributes,
 and they play a single role in a single relationship type), of some entity
 types that are linked by a one to one relationship type and that have the same
 semantics, and of large entity types that do not have a clear semantic.
 end-description
 add tf-ET-into-att
 add tf-att-into-ET
 add tf-RT-into-ET
 add tf-ET-into-RT
 add tf-split-merge
 add modify-entity-type
 add modify-rel-type
 add modify-attribute
 add modify-group
 add modify-role
end-toolbox

toolbox TB_NAME_CONVERSION
 title "Name conversion"
 description
 The names of all objects of the schema should be transformed by removing
 white spaces, accents and other special symbols.
 end-description
 add name-processing
end-toolbox

toolbox TB_STORAGE_ALLOCATION
 title "Storage allocation"
 description

F.1. The first case study: a forward engineering method 325

 Allows you to define what files have to create and which table goes in
 which file.
 end-description
 add create-collection
 add modify-collection
 add delete-collection
end-toolbox

toolbox TB_SETTING_PARAMETERS
 title "Setting coding parameters"
 description
 Allows you to update technical descriptions in order to specify a few
 database engine dependent parameters.
 end-description
 add modify-tech-desc
end-toolbox

% Process types definitions
%%%%%%%%%%%%%%%%%%%%%%%%%%%

process CONCEPTUAL_ANALYSIS
 title "Conceptual analysis"
 description
 On the basis of interview reports with the future users of the system that
 will be build, a conceptual schema of the database is drawn.
 It has to reflect the real world system.
 end-description
 input Interview_report[1-N] "Interview report" : TEXT_FILE
 output Conceptual_schema "Conceptual schema" : CONCEPT_SCHEMA
 strategy
 new(Conceptual_schema);
 toolbox TB_ANALYSIS [log off] (Conceptual_schema,Interview_report);
 toolbox TB_CONCEPTUAL_NORMALISATION [log all] (Conceptual_schema);
end-process

process RELATIONAL_TRANSLATION
 title "Relational design"
 description
 Transformation of a binary schema into a relational (SQL-compliant) schema.
 end-description
 update Logical_schema "Relational logical schema" : LOG_SQL_SCHEMA
 strategy
 % Transform is-a relations
 glbtrsf "Is-a relations" (Logical_schema,ISA_into_RT);
 % Transform all non-functional rel-types
 glbtrsf "Non-functional rel-types" (Logical_schema,
 RT_into_ET(ROLE_per_RT(3 N) or
 ATT_per_RT(1 N)),
 SPLIT_MULTIET_ROLE,
 RT_into_ET(N_ROLE_per_RT(2 2)));
 % Transform all compound and/or multi-valued attributes
 glbtrsf "Attributes"(Logical_schema,
 LOOP,
 ATT_into_ET_INST(MAX_CARD_of_ATT(2 N)),
 DISAGGREGATE,
 ENDLOOP);
 % Add technical identifiers where needed in order to be able to transform
 % all rel-types into referential constraints
 glbtrsf "Identifiers" (Logical_schema,SMART_ADD_TECH_ID);
 % Transform all rel-types into referential constraints
 glbtrsf "References" (Logical_schema,
 LOOP,
 RT_into_REF,
 ENDLOOP)
end-process

process LOGICAL_DESIGN
 title "Logical design"
 description
 Logical design is the process of transforming a conceptual schema into a data
 model compliant schema, a relational model compliant schema in this case. In a
 first time, the conceptual schema will be simplified (transformed into a
 binary schema). It will be possible, in a second time, to optimise this
 simplified schema. In a third time, this optimised schema will be transformed
 into a relational schema. Finally, a few relational model specific
 optimisations can be performed.
 end-description

326 Appendix F Case study listings

 input Conceptual_schema "Conceptual schema" : CONCEPT_SCHEMA
 output Logical_schema "Logical schema" : LOG_SQL_SCHEMA
 intern Raw_logical_schema "Raw logical schema" : weak LOG_SQL_SCHEMA
 strategy
 copy(Conceptual_schema,Raw_logical_schema);
 do RELATIONAL_TRANSLATION(Raw_logical_schema);
 copy(Raw_logical_schema,Logical_schema);
 toolbox TB_NAME_CONVERSION [log all] (Logical_schema);
end-process

process PHYSICAL_DESIGN
 title "Physical design"
 description
 Physical design is the process of updating a logical schema into a DBMS
 specific schema by adjunction of a series of specific structures like
 files, access keys,...
 end-description
 input Logical_schema "Logical schema" : LOG_SQL_SCHEMA
 output Physical_schema "Physical schema" : PHYS_SQL_SCHEMA
 strategy
 copy(Logical_schema,Physical_schema);
 % setting indexes
 glbtrsf "Setting indexes" (Physical_schema,
 RENAME_GROUP,
 GROUP_into_KEY(ID_in_GROUP(YES) or
 REF_in_GROUP(YES)),
 REMOVE_PREFIX_KEY);
 toolbox TB_STORAGE_ALLOCATION(Physical_schema);
end-process

process CODING
 title "Coding"
 description
 Coding consists in setting a few database dependent parameters and
 generating an SQL DDL file.
 end-description
 input Physical_schema "Physical schema" : PHYS_SQL_SCHEMA
 intern Completed_physical_schema "Physical schema" : PHYS_SQL_SCHEMA
 output SQL_script "SQL database definition script" : SQL_FILE
 strategy
 copy(Physical_schema,Completed_physical_schema);
 toolbox TB_SETTING_PARAMETERS [log replay] (Completed_physical_schema);
 generate STD_SQL(Completed_physical_schema,SQL_script)
end-process

process FORWARD_ENGINEERING
 title "Forward engineering"
 description
 Forward engineering is the process of building a database from a conceptual
 schema. In this context, you will have to design an SQL database.
 end-description
 intern Interview_report "Interview report" : TEXT_FILE,
 Conceptual_schema "Conceptual schema" : CONCEPT_SCHEMA,
 Logical_schema "Logical schema" : LOG_SQL_SCHEMA,
 Physical_schema "Physical schema" : PHYS_SQL_SCHEMA,
 SQL_script "SQL database definition script" : SQL_FILE
 strategy
 repeat
 new(Interview_report);
 end-repeat;
 do CONCEPTUAL_ANALYSIS(Interview_report,Conceptual_schema);
 do LOGICAL_DESIGN(Conceptual_schema,Logical_schema);
 do PHYSICAL_DESIGN(Logical_schema,Physical_schema);
 do CODING(Physical_schema,SQL_script)
end-process

% Method definition
%%%%%%%%%%%%%%%%%%%

method
 title "Forward engineering"
 version "1.0"
 author "D. Roland"
 date "28-10-1998"
 perform FORWARD_ENGINEERING
end-method

F.2. The first case study: the interview report 327

F.2. The first case study: the interview report
This interview report is a text stored in the file “library.txt”. It is used by the database engi-
neer to design the conceptual schema of the database he designs.

A book is considered a piece of literary, scientific or technical
writing.

Every book has an identifying number, a title, a publisher, a
first published date, keywords, and an abstract (the abstracts are
being encoded), the names of its authors, and its bibliographic
references (i.e. the books it references).

For each book, the library has acquired a certain number (0, 1 or
more) of copies. The copies of a given book have distinct serial
numbers. For each copy, the date it was acquired is known, as
well as its location in the library (i.e. the store, the shelf and
the row in which it is normally stored), its borrower (if any),
the number of volumes it comprises.

It appears that one cannot borrow one individual volume, but that
one must borrow all the volumes of a copy. In addition, the copies
of a given book may have different numbers of volumes. A book is
also characterised by its physical state (new, used, worn, torn,
damaged, etc), specified by a one-character code, and by an
optional comment on this state.

The author of a book has a name, a first name, a birth date, and
an origin (i.e. the organisation which (s)he came from when the
book was written).

For some authors, only the name is known. The employees admit that
two authors may have the same name (and first name), but such a
situation does not seem to raise any problem. Only the authors of
books known by the library are recorded.

A copy can be borrowed, at a given date, by a borrower. Borrowers
are identified by a personal id. The library records the name, the
first name, the address (name of the company, street, zip-code and
city name), as well as the phone numbers of each borrower. In
addition, when (s)he is absent, another borrower (who is
responsible for the former) can be contacted instead.

When a copy is brought back, it is put in a basket from which it
is extracted at the end of the day to be stored in its location,
so that it is available again from the following day on. A copy is
borrowed on behalf of a project (identified by its name, but also
by its internal code). When a copy is brought back to the desk,
the “employee records the following information on this copy:
borrowing date, current date, borrower and project.

F.3. The first case study: the script of actions performed by the
engineer
This script is the list of every actions performed by the database engineer using the DB-
MAIN CASE environment. Following this script step by step, the reader should be able to
perform exactly the same project too.

The following notational conventions are used in the script:

• Bold charactersBold charactersBold charactersBold characters are used to show menu entries to select, or static text in dialogue boxes.

• Italics is used to show some text to be typed by the user.

• Square brackets [...][...][...][...] show a button to push.

• Quotes “...” surround a graphical object (process type, process, product type, product)
that can be found in a window, or a file name.

328 Appendix F Case study listings

Menu File/New projectFile/New projectFile/New projectFile/New project
 Name Name Name Name: Library
 Short name Short name Short name Short name: lib
 MethodologyMethodologyMethodologyMethodology: forward.lum
 [OK][OK][OK][OK]

Menu Windows/Tile Windows/Tile Windows/Tile Windows/Tile to display the method and the project windows side by side.

The engineer executes the “New” process type: in the method window, he clicks on the
“New” process type with the mouse right button; a contextual menu appears, he selects
ExecuteExecuteExecuteExecute.

A File openFile openFile openFile open dialogue box appears
The engineer selects the “library.txt” file.
And he validates by cliking [OK][OK][OK][OK]

The engineer executes “Conceptual analysis”.
He confirms the new proposed process name by clicking [OK][OK][OK][OK].

He executes the “New” process type.
 NameNameNameName: Library
 Short nameShort nameShort nameShort name: lib
 VersionVersionVersionVersion: conceptual
 [OK][OK][OK][OK].

He executes a process of the “Analysis” type.

The engineer opens the “Library.txt/IR” text file and the “Library/conceptual” schema.

He draws the following conceptual schema:

0-N 1-Nwritten

0-N
responsible

0-1

responsible-for

0-N
reference

0-N
origin

reference

1-1

0-N

of

0-N

0-N

0-N

closed-borrowing
Borrow-Date
End-Date
id: COPY

Borrow-Date

0-N

0-N

0-1 borrowing
Borrow-Date

PROJECT
Pcode
Title
id: Pcode
id': Title

COPY
Copy-No
Date-Acquired
Location

Store
Shelf
Row

Nbr-of-Volumes
State
Comment[0-1]
id: of.BOOK

Copy-No

BORROWER
Pid
Name
First-Name
Address

Company
Street
Zip-code
City

Phone[1-5]
id: Pid

BOOK
Book-id
Title
Publisher
Date-Published
Keyword[0-10]
Abstract[0-1]
id: Book-id

AUTHOR
Name
First-Name[0-1]
Origin[0-1]

Library/Conceptual

When finished, he closes both the schema and the text.

F.3. The first case study: the script of actions performed by the engineer 329

To signal the end of the job, in the project window, he selects the “Analysis” process.
Menu Engineering/End use of primitivesEngineering/End use of primitivesEngineering/End use of primitivesEngineering/End use of primitives.

And he terminates the “Analysis” process type: in the method window, he clicks on the
“Analysis” process type, shown in the running state, with the mouse right button; a con-
textual menu appears, he selects TerminateTerminateTerminateTerminate.

The engineer executes “Conceptual normalisation”.

He opens the “Library/Conceptual” schema.

He sees that the schema is already normalised, so he immediately closes the window.

He selects “Conceptual normalisation” in the project window.

Menu Engineering/End use of primitivesEngineering/End use of primitivesEngineering/End use of primitivesEngineering/End use of primitives.
He terminates “Conceptual normalisation”.

The “Conceptual analysis” process is automatically terminated by the method engine. A
dialogue box appears to allow the engineer to confirm the list of output products
He clicks on [OK][OK][OK][OK] in the End engineering process End engineering process End engineering process End engineering process dialogue box.

He terminates “Conceptual analysis”.

The engineer executes “Logical design”.

He executes “Copy”.
 VersionVersionVersionVersion: first logical
 [OK][OK][OK][OK]

He executes “Relational design”.

The engineer executes “Process Is-a relations”.

He executes “Process non-functional rel-types”.

He executes “Process attributes”.

He executes “Process identifiers”.

He executes “Process references”

In the project window, the engineer selects menu Engineering/EndEngineering/EndEngineering/EndEngineering/End currentcurrentcurrentcurrent processprocessprocessprocess,
and he terminates “Relational design”.

The engineer executes “Copy”.
 VersionVersionVersionVersion: logical

He executes “Name conversion”.

He opens “Library/logical”.

Menu Transform/Name processingTransform/Name processingTransform/Name processingTransform/Name processing
 [Add][Add][Add][Add] "-" -> "_" [OK][OK][OK][OK]
 [lower -> uppercase][lower -> uppercase][lower -> uppercase][lower -> uppercase]
 [OK][OK][OK][OK]

The engineer closes the schema.

He selects “Name conversion” in the project window and the Engineering/EndEngineering/EndEngineering/EndEngineering/End useuseuseuse ofofofof
primitivesprimitivesprimitivesprimitives menu entry.

He terminates “Name conversion”.

The End engineering process End engineering process End engineering process End engineering process automatically appears. He clicks on [OK][OK][OK][OK]

And he terminates “Logical design”.

330 Appendix F Case study listings

He executes “Physical design”.

He executes “Copy”.
 VersionVersionVersionVersion: Physical
 [OK][OK][OK][OK].

He executes “Setting indexes”.
 [OK] [OK] [OK] [OK].

The engineer executes “Storage allocation”.

He opens schema “Library/Physical”, creates two collections and fills them:
- LIBRARY (AUTHOR,BOOK,COPY,KEYWORD,REFERENCE,WRITTEN)
- BORROWING(BORROWER,BORROWING,CLOSED_BORROWING,

PHONE,PROJECT)

He closes the schema.

He selects “Storage allocation” in the project window and the Engineering/EndEngineering/EndEngineering/EndEngineering/End useuseuseuse ofofofof
primitivesprimitivesprimitivesprimitives menu entry

He terminates “Storage allocation”.

The End engineering process End engineering process End engineering process End engineering process automatically appears. The engineer confirms

He terminates “Physical design”.

The engineer executes “Coding”.

He executes “Copy”.
 VersionVersionVersionVersion: Implemented
 [OK][OK][OK][OK]

He executes “Setting coding parameters”.

He opens the schema, decides to do nothing and closes the schema.

He selects “Setting coding parameters” in the project window and the Engineering/EndEngineering/EndEngineering/EndEngineering/End
use of primitivesuse of primitivesuse of primitivesuse of primitives menu entry

He terminates “Setting coding parameters”.

The engineer executes “Generate”.
 File NameFile NameFile NameFile Name: LIBRARY.DDL

The End engineering process End engineering process End engineering process End engineering process automatically appears. The engineer confirms.

He terminates “Coding”.

F.4. The second case study: a reverse engineering method

% Product models definitions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

text-model COBOL_FILE
 title "COBOL file"
 description
 A COBOL program stored in an ASCII file.
 end-description
 extensions "COB"
end-model

schema-model PHYS_SCHEMA
 title "Physical schema model"
 concepts
 % No concepts declared here because this model must be inherited
 constraints

F.4. The second case study: a reverse engineering method 331

 ET_per_SCHEMA (1 N) % At list one table required
 diagnosis "Schema &NAME should have a table"
 RT_per_SCHEMA (0 0) % No rel-type allowed
 diagnosis "Rel-type &NAME should not exist"
 ATT_per_ET (1 N) % At least one column per table
 diagnosis "Table &NAME should have at least one column"
 PID_per_ET (0 1) % At most one primary ID per table
 diagnosis "Table &NAME has too much primary identifiers"
 SUB_TYPES_per_ISA (0 0) % Is-a relations are not allowed
 diagnosis "Is-a relations are not allowed and &NAME has a sub-type"
 ID_NOT_KEY_per_ET (0 0) % Every identifier is an access key
 diagnosis "Identifier &NAME should be an access key"
 OPT_ATT_per_EPID (0 0) % Optional columns not allowed in primary ids.
 diagnosis "There should be no optional column in primary id &NAME."
end-model

schema-model PHYS_COBOL_SCHEMA is PHYS_SCHEMA
 title "COBOL schema model"
 concepts
 project "database"
 schema "view"
 entity_type "table"
 atomic_attribute "field"
 compound_attribute "compound field"
 identifier "key"
 primary_identifier "primary_key"
 access_key "key"
 user_constraint "constraint"
 constraints
 ID_KEY_per_ET (1 N) % At least one identifying AK per table
 diagnosis "Table &NAME has access keys that should also be identifiers"
 not KEY_PREFIX_in_ET (any_order) % No key is a prefix of another one with
 % the fields in a different order.
 diagnosis "An invalid prefix key in &NAME should have its fields sorted"
 KEY_per_ET (0 0) % If there are several keys, at least one
 or KEY_per_ET (1 N) % of them must be an identifier
 and ID_KEY_per_ET (1 N)
 diagnosis "In table &NAME, at least one key should be an identifier too"
 COLL_per_ET (1 1) % Each ET must be in one and only one file
 diagnosis "Table &NAME should be in one and only one file"
 COMP_per_EID (1 1) % An identifier is made of a single
 and ATT_per_EID (1 1) % single-valued field
 and MULT_ATT_per_EID (0 0)
 diagnosis "Id. &NAME should be made of a single single-valued field"
 COMP_per_KEY (1 1) % An access key is made of a single
 and ATT_per_KEY (1 1) % single-valued field
 and MULT_ATT_per_KEY (0 0)
 diagnosis "AK &NAME should be made of a single single-valued field"
 ALL_CHARS_in_LIST_NAMES (ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuv
 vwxyz0123456789$_-)
 and ALL_in_LIST_CI_NAMES (*A*,*B*,*C*,*D*,*E*,*F*,*G*,*H*,*I*,*J*,*K*,*L*,
 M,*N*,*O*,*P*,*Q*,*R*,*S*,*T*,*U*,*V*,*W*,*X*,*Y*,*Z*)
 and NONE_in_LIST_NAMES (^-,-$)
 and LENGTH_of_NAMES (0 31)
 and NONE_in_FILE_CI_NAMES (VAXCOBOL.NAM)
 diagnosis "The name &NAME is invalid"
end-model

schema-model LOG_SCHEMA
 title "Logical schema model"
 concepts
 % No concepts declared here because this model must be inherited
 constraints
 ET_per_SCHEMA (1 N) % At list one table required
 diagnosis "Schema &NAME should have a table"
 RT_per_SCHEMA (0 0) % No rel-type allowed
 diagnosis "Rel-type &NAME should not exist"
 COLL_per_SCHEMA (0 0) % No collection allowed
 diagnosis "The schema should have no collection"
 ATT_per_ET (1 N) % At least one column per table
 diagnosis "Table &NAME should have at least one column"
 PID_per_ET (0 1) % At most one primary ID per ET
 diagnosis "Table &NAME has too many primary identifiers"
 KEY_per_ET (0 0) % No access keys
 diagnosis "Table &NAME should not have an access key"
 SUB_TYPES_per_ISA (0 0) % Is-a relations are not allowed
 diagnosis "Is-a relations are not allowed and &NAME has a sub-type"

332 Appendix F Case study listings

 OPT_ATT_per_EPID (0 0) % Optional columns not allowed in primary ids.
 diagnosis "There should be no optional column in primary id &NAME."
end-model

schema-model LOG_COBOL_SCHEMA is LOG_SCHEMA
 title "Logical COBOL schema"
 concepts
 project "database"
 schema "view"
 entity_type "table"
 atomic_attribute "field"
 compound_attribute "compound field"
 identifier "key"
 primary_identifier "primary_key"
 access_key "key"
 user_constraint "constraint"
 constraints
 not MIN_CARD_of_ATT (0 0) % No optional field allowed
 diagnosis "Field &NAME should not be optional"
 COMP_per_EID (1 1) % An identifier is made of a single
 and ATT_per_EID (1 1) % single-valued field
 and MULT_ATT_per_EID (0 0)
 diagnosis "Id. &NAME should be made of a single single-valued field"
end-model

schema-model CONCEPT_SCHEMA
 title "Conceptual schema model"
 concepts
 project "project"
 schema "schema"
 entity_type "entity type"
 rel_type "relationship type"
 atomic_attribute "attribute"
 compound_attribute "compound attribute"
 role "role"
 group "group"
 user_constraint "constraint"
 constraints
 ET_per_SCHEMA (1 N) % At list one ET required
 diagnosis "Schema &NAME should have an entity type"
 COLL_per_SCHEMA (0 0) % No collection allowed
 diagnosis "The schema should have no collection"
 ATT_per_ET (1 N) % At least one attribute per ET
 diagnosis "Entity type &NAME should have at least one attribute"
 KEY_per_ET (0 0) % No access keys
 diagnosis "Entity type &NAME should not have an access key"
 REF_per_ET (0 0) % No foreign key
 diagnosis "Entity type &NAME should not have a foreign key"
 ID_per_ET (1 N) % If there are ids, one of them is primary
 and PID_per_ET (1 1)
 or ID_per_ET (0 0)
 diagnosis "One of the identifiers of entity type &NAME should be primary"
 EMBEDDED_ID_per_ET (0 0) % Embedded identifiers are not allowed"
 diagnosis "Embedded identifiers should be removed in entity type &NAME"
 ID_DIFF_in_ET (components) % All identifiers must have different components
 diagnosis "Id. made of the same components should be avoided in &NAME"
 TOTAL_in_ISA (no) % Total is-a relations should concern at least
 or TOTAL_in_ISA (yes) % two subtypes
 and SUB_TYPES_per_ISA (2 N)
 diagnosis "Total is-a relations are not allowed with only one sub-type"
 DISJOINT_in_ISA (no) % Disjoint is-a relations should concern at least
 or TOTAL_in_ISA (yes) % two subtypes
 and SUB_TYPES_per_ISA (2 N)
 diagnosis "Disjoint is-a relations are not allowed with only one sub-type"
 ROLE_per_RT (2 2) % 2 <= degree of a rel-type <= 4
 or ROLE_per_RT (3 4) % if 3 or 4, the rel-type cannot have a one role
 and ATT_per_RT (1 N) % or it must also have attributes
 or ROLE_per_RT (3 4)
 and ATT_per_RT (0 0)
 and ONE_ROLE_per_RT (0 0)
 diagnosis "Rel-type &NAME has too many roles, or too few attributes"
 ID_per_RT (1 N) % If RT have some id., one of them is primary
 and PID_per_RT (1 1)
 or ID_per_RT (0 0)
 diagnosis "One of the identifiers of rel-type &NAME should be primary"
 EMBEDDED_ID_per_RT (0 0) % Embedded identifiers are not allowed"
 diagnosis "Embedded identifiers should be removed in rel-type &NAME"

F.4. The second case study: a reverse engineering method 333

 ID_DIFF_in_RT (components) % All identifiers must have different components
 diagnosis "Id. made of the same components should be avoided in &NAME"
 not SUB_ATT_per_ATT (1 1) % Compound att. must have at least two components
 diagnosis "Compound attribute &NAME has too few sub-attributes"
 ID_per_ATT (0 0) % A compound attribute cannot have an identifier
 diagnosis "Multivalued compound attribute &NAME should not have an id."
 COMP_per_GROUP (1 N) % Every group must have at least one component
 diagnosis "Group &NAME should have components"
 ROLE_per_EID (0 0) % An ET id. cannot be made of a single role
 and COMP_per_EID (1 N)
 or ROLE_per_EID (1 N)
 and COMP_per_EID (2 N)
 diagnosis "ET Identifier &NAME should have another component"
 MULT_ATT_per_EID (1 1) % If an ET id. contains a multi-valued attribute
 and COMP_per_EID (1 1) % it must be the only component.
 or MULT_ATT_per_EID (0 0)
 diagnosis "ET id. &NAME should have no multi-valued attribute
 or no other component"
 ONE_ROLE_per_EID (0 0) % An entity type id. should not have a one-role
 diagnosis "One-roles should be removed from entity type identifier &NAME"
 OPT_ATT_per_EPID (0 0) % Optional columns not allowed in primary ids.
 diagnosis "There should be no optional column in primary id &NAME."
 COMP_per_RID (1 1) % If a rel-type id. has only one component,
 and ROLE_per_RID (0 0) % it must be an attribute
 or COMP_per_RID (2 N)
 diagnosis "Rel-type identifier &NAME should have more components"
 MULT_ATT_per_RID (1 1) % If a RT id. contains a multi-valued attribute
 and COMP_per_RID (1 1) % it must be the only component.
 or MULT_ATT_per_RID (0 0)
 diagnosis "RT id. &NAME should have no multi-valued attribute
 or no other component"
 ONE_ROLE_per_RID (0 0) % A rel-type id. should not have a one-role
 diagnosis "One-roles should be removed from rel-type identifier &NAME"
 OPT_ATT_per_RPID (0 0) % No optional attribute in a rel-type identifier
 diagnosis "Optional attributes should be removed from rel-type id. &NAME"
end-model

% Toolbox definitions
%%%%%%%%%%%%%%%%%%%%%

toolbox TB_ET_ID_SEARCH
 title "ET-ID search"
 description
 This process is aimed at searching for ids by analysis of the COBOL source
 code. Those that are found can be created and edited in the COBOL schema.
 end-description
 add create-group
 add modify-group
 add text-analysis
end-toolbox

toolbox TB_LONG_FIELDS_REFINEMENT
 title "Long fields refinement"
 description
 This toolbox allows you to refine long fields (several tenths of characters
 or more) which very often hide more complex structures. In the COBOL source
 codes, you may the genuine structure of some long fields. You can reproduce
 those structures in the database schema by creation of sub-attributes.
 end-description
 add create-attribute
 add modify-attribute
 add text-analysis
end-toolbox

toolbox TB_FK_SEARCH
 title "FK search"
 description
 This toolbox allows you to find out some foreign keys. This inquiry may be
 based on several methods like name analysis, field length analysis, source
 program analysis,...
 end-description
 add ref-key-search
 add create-group
 add modify-group
 add text-analysis
end-toolbox

334 Appendix F Case study listings

toolbox TB_N_N_REFINEMENT
 title "N-N multiplicity refinement"
 description
 A column that has a minimum and a maximum multiplicity greater than one
 generally is the result of translation. Indeed, COBOL allows programmers to
 use arrays but with a fix number of columns only. So, a 10-10 multiplicity,
 for example, should in fact be a 0-10 or a 1-10 multiplicity. This should
 be found by analysis of the source programs.
 end-description
 add modify-attribute
 add text-analysis
end-toolbox

toolbox TB_ATT_ID_SEARCH
 title "Field-ID search"
 description
 Compound fields are sometimes an optimisation: a small table included in
 another one to increase access speed. In this case, this compound field very
 often has an identifier. This toolbox allows you to find it and to adapt the
 database schema.
 end-description
 add create-group
 add modify-group
 add text-analysis
end-toolbox

toolbox TB_RENAMING
 title "Renaming"
 description
 COBOL imposes that tables and fields be named with a reduced set of
 characters. Furthermore, programmers often use short-cuts or strange
 conventions to name tables and fields. The result is that table and field
 names can be unreadable to most people, making the schema unreadable too.
 Changing the names by using a broader character set (with spaces or accents,
 for instance) can be a good mean to improve a schema.
 end-description
 add name-processing
 add modify
 add text-analysis
 add change-prefix
end-toolbox

toolbox TB_BINARY_INTEGRATION
 title "Binary integration"
 description
 This toolbox allows you to integrate one schema into another.
 end-description
 add schema-integration
 add object-integration
end-toolbox

toolbox TB_TRANSFORM_FK
 title "Transform FK"
 description
 Foreign keys are the translation of rel-types. This toolbox allows you to
 untranslate foreign keys by transforming them back to rel-types.
 end-description
 add tf-ref-group-into-RT
end-toolbox

toolbox TB_REMOVE_FK
 title "Remove FK"
 description
 Foreign keys can be redundant. So they can be removed.
 end-description
 add delete-constraint
 add delete-group
end-toolbox

toolbox TB_EXTRACT
 title "Manual extract"
 description
 This toolbox allows you to extract data structures form COBOL files by
 upgrading existing schemas.
 end-description
 add text-analysis
 add create

F.4. The second case study: a reverse engineering method 335

 add delete
 add modify
end-toolbox

toolbox TB_ATT_INTO_ET
 title "Transform attributes into ET"
 description
 Complex attributes (compound, with identifier) are generally the result of
 an optimisation. They may be transformed back to a table.
 end-description
 add tf-att-into-ET
 add tf-disaggregate
end-toolbox

toolbox TB_ET_INTO_RT
 title "Trnasform ET into RT"
 description
 Entity types that plays only 1-1 roles and the identifier of which is made
 of all these roles looks like the translation of a complex rel-type. This
 toolbox allows you to find them and untranslate them.
 end-description
 add tf-ET-into-RT
end-toolbox

toolbox TB_ET_INTO_ATT
 title "Transform ET looking like attributes into attributes"
 description
 It can happen that an entity type seems to represent a property of another
 entity type, linked to it by a single rel-type, participating in no other
 rel-type, and partly identified by the role played by the other entity type.
 In that case, the schema may be more readable by integrating the entity type
 in the other one as an attribute, possibly compound or repetitive.
 end-description
 add tf-ET-into-att
end-toolbox

toolbox TB_RT_INTO_ISA
 title "Transform RT into is-a"
 description
 Rel-types with a generalisation/specialisation meaning can be transformed
 into more readable is-a relations
 end-description
 add tf-RT-into-isa
end-toolbox

% Process types definitions
%%%%%%%%%%%%%%%%%%%%%%%%%%%

process ENRICHMENT_EXPERT
 title "Physical schema enrichment expert"
 description
 When the database schema of a COBOL program has to be recovered, the
 DB-MAIN extractor can get all the information back from the data division
 but much more information can be found in the procedure division.
 A lot of indices can help to find that information. The expert can help
 to see them.
 end-description
 input COBOL_progs[1-N] "COBOL programs" : COBOL_FILE
 update COBOL_schema[1-1] "COBOL schema" : weak PHYS_COBOL_SCHEMA
 strategy
 if (exists(COBOL_schema,ID_per_ET(0 0))) then
 toolbox TB_ET_ID_SEARCH(COBOL_progs,COBOL_schema)
 end-if;
 if (exists(COBOL_schema,NONE_in_LIST_CI_NAMES(ID*,*ID))) then
 toolbox TB_ET_ID_SEARCH(COBOL_progs,COBOL_schema)
 end-if;
 if (ask "Are there long fields?") then
 toolbox TB_LONG_FIELDS_REFINEMENT(COBOL_progs,COBOL_schema)
 end-if;
 if (exists(COBOL_schema,REF_per_ET(0 0))) then
 toolbox TB_FK_SEARCH(COBOL_progs,COBOL_schema)
 end-if;
 if (exists(COBOL_schema,MIN_CARD_of_ATT(2 N))) then
 toolbox TB_N_N_REFINEMENT(COBOL_progs,COBOL_schema)
 end-if;
 if (exists(COBOL_schema,MAX_CARD_of_ATT(2 N)
 and SUB_ATT_per_ATT(1 N) and ID_per_ATT(0 0))) then

336 Appendix F Case study listings

 toolbox TB_ATT_ID_SEARCH(COBOL_progs,COBOL_schema)
 end-if;
 toolbox TB_RENAMING(COBOL_progs,COBOL_schema)
end-process

process MANUAL_ENRICHMENT
 title "Physical schema enrichment"
 description
 Schema enrichment is the completion of an extracted COBOL schema
 with the information manually found in the procedure division of
 the COBOL files.
 end-description
 input COBOL_progs[1-1] "COBOL programs" : COBOL_FILE,
 COBOL_schema "COBOL schema" : weak PHYS_COBOL_SCHEMA
 output Complete_COBOL_schema "Complete COBOL schema" : weak PHYS_COBOL_SCHEMA
 strategy
 copy (COBOL_schema,Complete_COBOL_schema);
 some
 repeat
 do ENRICHMENT_EXPERT(COBOL_progs,Complete_COBOL_schema)
 end-repeat;
 repeat
 one
 toolbox TB_ET_ID_SEARCH(COBOL_progs,Complete_COBOL_schema);
 toolbox TB_LONG_FIELDS_REFINEMENT(COBOL_progs,Complete_COBOL_schema);
 toolbox TB_FK_SEARCH(COBOL_progs,Complete_COBOL_schema);
 toolbox TB_N_N_REFINEMENT(COBOL_progs,Complete_COBOL_schema);
 toolbox TB_ATT_ID_SEARCH(COBOL_progs,Complete_COBOL_schema);
 toolbox TB_RENAMING(COBOL_progs,Complete_COBOL_schema)
 end-one
 end-repeat
 end-some
end-process

process SCHEMA_INTEGRATION
 title "Schema integration"
 description
 The data extraction of all the COBOL files produce a set of small
 schemas (one for each COBOL file). They can all be integrated in
 a single larger schema.
 end-description
 input Physical_schema[2-N] : weak PHYS_COBOL_SCHEMA
 output integrated[1-1] : weak PHYS_COBOL_SCHEMA
 set master[1-1] "Master schema",
 secondary[1-N] "Secondary schemas",
 sec[1-1] "One secondary schema"
 strategy
 define (master,choose-one(Physical_schema));
 copy (master,integrated);
 define (secondary,minus(Physical_schema,master));
 for each sec in secondary do
 toolbox TB_BINARY_INTEGRATION(integrated,sec)
 end-for
end-process

process DATA_DIVISION_EXTRACTION
 title "COBOL data division extraction"
 description
 COBOL files data division extraction possibly with the automatic extractors
 or manually.
 end-description
 input COBOL_progs[1-N] "COBOL programs" : COBOL_FILE
 output COBOL_schema[1-N] "COBOL schemas" : PHYS_COBOL_SCHEMA
 set cobfil[1-1], cobsch[1-1]
 strategy
 for each cobfil in COBOL_progs do
 one
 extract COBOL(cobfil,COBOL_schema);
 sequence
 new(COBOL_schema);
 define(cobsch,last(COBOL_schema));
 toolbox TB_EXTRACT(cobfil,cobsch)
 end-sequence;
 sequence end-sequence
 end-one
 end-for
end-process

F.4. The second case study: a reverse engineering method 337

process SCHEMA_ENRICHMENT
 title "COBOL schema enrichment"
 description
 COBOL schema enrichment by analysis of COBOL programs.
 end-description
 input COBOL_progs[1-N] "COBOL programs" : COBOL_FILE,
 COBOL_schema[1-N] "COBOL schemas" : PHYS_COBOL_SCHEMA
 output Complete_COBOL_schemas[1-N] "Complete COBOL schemas" :
 weak
PHYS_COBOL_SCHEMA
 set cobsch[1-1]
 strategy
 for each cobsch in COBOL_schema do
 do MANUAL_ENRICHMENT (COBOL_progs,cobsch,Complete_COBOL_schemas)
 end-for
end-process

process SCHEMA_EXTRACTION
 title "COBOL schema extraction"
 description
 COBOL files data structure extraction.
 end-description
 input COBOL_progs[1-N] "COBOL programs" : COBOL_FILE
 output Physical_schema[1-1] "Physical schema" : weak PHYS_COBOL_SCHEMA
 intern Raw_COBOL_schema[1-N] "Raw COBOL schemas" : PHYS_COBOL_SCHEMA,
 COBOL_schema[1-N] "COBOL schemas" : weak PHYS_COBOL_SCHEMA
 strategy
 do DATA_DIVISION_EXTRACTION(COBOL_progs,Raw_COBOL_schema);
 do SCHEMA_ENRICHMENT(COBOL_progs,Raw_COBOL_schema,COBOL_SCHEMA);
 if (count-greater(COBOL_schema,1)) then
 do SCHEMA_INTEGRATION (COBOL_schema,Physical_schema)
 else
 copy (COBOL_schema,Physical_schema)
 end-if
end-process

process SCHEMA_CLEANING
 title "COBOL schema cleaning"
 description
 Cleaning a schema by removing the physical elements in order to transform
 a physical schema into a logical one.
 end-description
 input Physical_schema[1-1] "Physical schema" : weak PHYS_COBOL_SCHEMA
 output Logical_schema[1-1] "Logical schema" : weak LOG_COBOL_SCHEMA
 strategy
 copy (Physical_schema,Logical_schema);
 glbtrsf "Remove files" log all (Logical_schema, REMOVE(ALL_COLL()));
 glbtrsf "Remove access keys" log all (Logical_schema, REMOVE_KEY);
end-process

process DEOPTIMISATION
 title "De-optimisation"
 description
 De-optimising a schema consists in removing all the constructs aimed at
 optimising database access. This can be done by removing redundant
 structures, extracting complex fields with identifier from tables,...
 end-description
 update Conceptual_schema[1-1] "Conceptual schema" : weak CONCEPT_SCHEMA
 strategy
 each
 if (exists(Conceptual_schema,ID_per_ATT(1 N))) then
 toolbox log all TB_ATT_INTO_ET(Conceptual_schema)
 end-if;
 if (exists(Conceptual_schema,TRANSITIVE_REF(yes))) then
 toolbox log all TB_REMOVE_FK(Conceptual_schema)
 end-if
 end-each
end-process

process UNTRANSLATION
 title "Untranslation"
 description
 Untranslating a schema consists in removing typical COBOL constructs, ie
 the constructs that make the difference between a COBOL schema and a
 conceptual one.
 end-description

338 Appendix F Case study listings

 update Conceptual_schema[1-1] "Conceptual schema" : weak CONCEPT_SCHEMA
 strategy
 if (exists(Conceptual_schema,REF_per_ET(1 N))) then
 toolbox log all TB_TRANSFORM_FK(Conceptual_schema)
 end-if
end-process

process SCHEMA_CONCEPTUALISATION
 title "Schema conceptualisation"
 description
 Reverse engineering consists in recovering a possible conceptual database
 schema from a series of documents including source programs, DDL files,
 documentation,...
 end-description
 input Logical_schema[1-1] "Logical schema" : weak LOG_COBOL_SCHEMA
 output Conceptual_schema[1-1] "Conceptual schema" : weak CONCEPT_SCHEMA
 strategy
 copy (Logical_schema,Conceptual_schema);
 repeat
 one
 do DEOPTIMISATION(Conceptual_schema);
 do UNTRANSLATION(Conceptual_schema)
 end-one
 end-repeat
end-process

process CONCEPTUAL_NORMALISATION
 title "Conceptual normalisation"
 description
 Conceptual normalisation consists in transforming a logical schema into
 a good looking readable conceptual schema.
 end-description
 input Conceptual_schema[1-1] "Conceptual schema" : CONCEPT_SCHEMA
 output Normalised_schema[1-1] "Normalised conceptual schema" : CONCEPT_SCHEMA
 strategy
 copy (Conceptual_schema,Normalised_schema);
 toolbox log all TB_ET_INTO_RT(Normalised_schema);
 toolbox log all TB_ET_INTO_ATT(Normalised_schema);
 toolbox log all TB_RT_INTO_ISA(Normalised_schema)
end-process

process REVERSE_ENGINEERING
 title "Reverse Engineering"
 description
 Reverse engineering consists in recovering a possible conceptual database
 schema from a series of documents including source programs, DDL files,
 documentation,...
 end-description
 intern COBOL_progs[1-N] "COBOL programs" : COBOL_FILE,
 Physical_schema[1-1] "Physical schema" : weak PHYS_COBOL_SCHEMA,
 Logical_schema[1-1] "Logical schema" : weak LOG_COBOL_SCHEMA,
 Conceptual_schema[1-1] "Conceptual schema" : weak CONCEPT_SCHEMA,
 Normalised_schema[1-1] "Normalised conceptual schema" : CONCEPT_SCHEMA
 strategy
 repeat
 new (COBOL_progs)
 end-repeat;
 do SCHEMA_EXTRACTION(COBOL_progs,Physical_schema);
 do SCHEMA_CLEANING(Physical_schema,Logical_schema);
 do SCHEMA_CONCEPTUALISATION(Logical_schema,Conceptual_schema);
 do CONCEPTUAL_NORMALISATION(Conceptual_schema,Normalised_schema)
end-process

% Method definition
%%%%%%%%%%%%%%%%%%%

method
 title "Reverse-engineering"
 version "1.0"
 author "Didier ROLAND"
 date "24-10-2001"
 perform REVERSE_ENGINEERING
end-method

F.5. The Order.cob program analysed in the second case study 339

F.5. The Order.cob program analysed in the second case study
Order.cob is a COBOL program which is analysed in the second case study in order to
reverse engineer the database it uses and to recover the design of this database.
IDENTIFICATION DIVISION.
PROGRAM-ID. C-ORD.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT CUSTOMER ASSIGN TO "CUSTOMER.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS CUS-CODE.
 SELECT ORDERS ASSIGN TO "ORDER.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS ORD-CODE
 ALTERNATE RECORD KEY IS ORD-CUSTOMER
 WITH DUPLICATES.
 SELECT STOCK ASSIGN TO "STOCK.DAT"
 ORGANIZATION IS INDEXED
 ACCESS MODE IS DYNAMIC
 RECORD KEY IS STK-CODE.

DATA DIVISION.
FILE SECTION.
FD CUSTOMER.
01 CUS.
 02 CUS-CODE PIC X(12).
 02 CUS-DESCR PIC X(80).
 02 CUS-HIST PIC X(1000).

FD ORDERS.
01 ORD.
 02 ORD-CODE PIC 9(10).
 02 ORD-CUSTOMER PIC X(12).
 02 ORD-DETAIL PIC X(200).

FD STOCK.
01 STK.
 02 STK-CODE PIC 9(5).
 02 STK-NAME PIC X(100).
 02 STK-LEVEL PIC 9(5).

WORKING-STORAGE SECTION.
01 DESCRIPTION.
 02 NAME PIC X(20).
 02 ADDR PIC X(40).
 02 FUNCT PIC X(10).
 02 REC-DATE PIC X(10).

01 LIST-PURCHASE.
 02 PURCH OCCURS 100 TIMES INDEXED BY IND.
 03 REF-PURCH-STK PIC 9(5).
 03 TOT PIC 9(5).

01 LIST-DETAIL.
 02 DETAILS OCCURS 20 TIMES INDEXED BY IND-DET.
 03 REF-DET-STK PIC 9(5).
 03 ORD-QTY PIC 9(5).

01 CHOICE PIC X.
01 END-FILE PIC 9.
01 END-DETAIL PIC 9.
01 EXIST-PROD PIC 9.
01 PROD-CODE PIC 9(5).
01 TOT-COMP PIC 9(5) COMP.
01 QTY PIC 9(5) COMP.
01 NEXT-DET PIC 99.

PROCEDURE DIVISION.

MAIN.
 PERFORM INIT.
 PERFORM PROCESS UNTIL CHOICE = 0.

340 Appendix F Case study listings

 PERFORM CLOSING.
 STOP RUN.

INIT.
 OPEN I-O CUSTOMER.
 OPEN I-O ORDERS.
 OPEN I-O STOCK.

PROCESS.
 DISPLAY "1 NEW CUSTOMER".
 DISPLAY "2 NEW STOCK".
 DISPLAY "3 NEW ORDER".
 DISPLAY "4 LIST OF CUSTOMERS".
 DISPLAY "5 LIST OF STOCKS".
 DISPLAY "6 LIST OF ORDERS".
 DISPLAY "0 END".
 ACCEPT CHOICE.
 IF CHOICE = 1
 PERFORM NEW-CUS.
 IF CHOICE = 2
 PERFORM NEW-STK.
 IF CHOICE = 3
 PERFORM NEW-ORD.
 IF CHOICE = 4
 PERFORM LIST-CUS.
 IF CHOICE = 5
 PERFORM LIST-STK.
 IF CHOICE = 6
 PERFORM LIST-ORD.

CLOSING.
 CLOSE CUSTOMER.
 CLOSE ORDERS.
 CLOSE STOCK.

NEW-CUS.
 DISPLAY "NEW CUSTOMER".
 DISPLAY "CUSTOMER CODE: "
 WITH NO ADVANCING.
 ACCEPT CUS-CODE.
 DISPLAY "NAME OF CUSTOMER: "
 WITH NO ADVANCING.
 ACCEPT NAME.
 DISPLAY "ADDRESS OF CUSTOMER: "
 WITH NO ADVANCING.
 ACCEPT ADDR.
 DISPLAY "FUNCTION OF CUSTOMER: "
 WITH NO ADVANCING.
 ACCEPT FUNCT.
 DISPLAY "DATE: "
 WITH NO ADVANCING.
 ACCEPT REC-DATE.
 MOVE DESCRIPTION TO CUS-DESCR.
 PERFORM INIT-HIST.
 WRITE CUS
 INVALID KEY DISPLAY "ERROR".

LIST-CUS.
 DISPLAY "LIST OF CUSTOMERS".
 CLOSE CUSTOMER.
 OPEN I-O CUSTOMER.
 MOVE 1 TO END-FILE.
 PERFORM READ-CUS UNTIL (END-FILE = 0).

READ-CUS.
 READ CUSTOMER NEXT
 AT END MOVE 0 TO END-FILE
 NOT AT END
 DISPLAY CUS-CODE
 DISPLAY CUS-DESCR
 DISPLAY CUS-HIST.

NEW-STK.
 DISPLAY "NEW STOCK".
 DISPLAY "PRODUCT NUMBER: "
 WITH NO ADVANCING.
 ACCEPT STK-CODE.

F.5. The Order.cob program analysed in the second case study 341

 DISPLAY "NAME: "
 WITH NO ADVANCING.
 ACCEPT STK-NAME.
 DISPLAY "LEVEL: "
 WITH NO ADVANCING.
 ACCEPT STK-LEVEL.
 WRITE STK
 INVALID KEY DISPLAY "ERROR".

LIST-STK.
 DISPLAY "LIST OF STOCKS".
 CLOSE STOCK.
 OPEN I-O STOCK.
 MOVE 1 TO END-FILE.
 PERFORM READ-STK UNTIL END-FILE = 0.

READ-STK.
 READ STOCK NEXT
 AT END MOVE 0 TO END-FILE
 NOT AT END
 DISPLAY STK-CODE
 DISPLAY STK-NAME
 DISPLAY STK-LEVEL.

NEW-ORD.
 DISPLAY "NEW ORDER".
 DISPLAY "ORDER NUMBER: "
 WITH NO ADVANCING.
 ACCEPT ORD-CODE.
 MOVE 1 TO END-FILE.
 PERFORM READ-CUS-CODE UNTIL END-FILE = 0.
 MOVE CUS-DESCR TO DESCRIPTION.
 DISPLAY NAME.
 MOVE CUS-CODE TO ORD-CUSTOMER.
 MOVE CUS-HIST TO LIST-PURCHASE.
 SET IND-DET TO 1.
 MOVE 1 TO END-FILE.
 PERFORM READ-DETAIL
 UNTIL END-FILE = 0 OR IND-DET = 21.
 MOVE LIST-DETAIL TO ORD-DETAIL.
 WRITE ORD
 INVALID KEY DISPLAY "ERROR".
 MOVE LIST-PURCHASE
 TO CUS-HIST.
 REWRITE CUS
 INVALID KEY DISPLAY "ERROR CUS".

READ-CUS-CODE.
 DISPLAY "CUSTOMER NUMBER: "
 WITH NO ADVANCING.
 ACCEPT CUS-CODE.
 MOVE 0 TO END-FILE.
 READ CUSTOMER INVALID KEY
 DISPLAY "NO SUCH CUSTOMER"
 MOVE 1 TO END-FILE
 END-READ.

READ-DETAIL.
 DISPLAY "PRODUCT CODE (0 = END): ".
 ACCEPT PROD-CODE.
 IF PROD-CODE = 0
 MOVE 0
 TO REF-DET-STK(IND-DET)
 MOVE 0 TO END-FILE
 ELSE
 PERFORM READ-PROD-CODE.

READ-PROD-CODE.
 MOVE 1 TO EXIST-PROD.
 MOVE PROD-CODE TO STK-CODE.
 READ STOCK INVALID KEY
 MOVE 0 TO EXIST-PROD.
 IF EXIST-PROD = 0
 DISPLAY "NO SUCH PRODUCT"
 ELSE
 PERFORM UPDATE-ORD-DETAIL.

342 Appendix F Case study listings

UPDATE-ORD-DETAIL.
 MOVE 1 TO NEXT-DET.
 DISPLAY "QUANTITY ORDERED: "
 WITH NO ADVANCING
 ACCEPT ORD-QTY(IND-DET).
 PERFORM UNTIL
 (NEXT-DET < IND-DET
 AND REF-DET-STK(NEXT-DET) = PROD-CODE)
 OR IND-DET = NEXT-DET
 ADD 1 TO NEXT-DET
 END-PERFORM.
 IF IND-DET = NEXT-DET
 MOVE PROD-CODE
 TO REF-DET-STK(IND-DET)
 PERFORM UPDATE-CUS-HIST
 SET IND-DET UP BY 1
 ELSE
 DISPLAY "ERROR: ALREADY ORDERED".

UPDATE-CUS-HIST.
 SET IND TO 1.
 PERFORM UNTIL
 REF-PURCH-STK(IND) = PROD-CODE
 OR REF-PURCH-STK(IND) = 0
 OR IND = 101
 SET IND UP BY 1
 END-PERFORM.
 IF IND = 101
 DISPLAY "ERROR: HISTORY OVERFLOW"
 EXIT.
 IF REF-PURCH-STK(IND)
 = PROD-CODE
 ADD ORD-QTY(IND-DET) TO TOT(IND)
 ELSE
 MOVE PROD-CODE
 TO REF-PURCH-STK(IND)
 MOVE ORD-QTY(IND-DET) TO TOT(IND).

LIST-ORD.
 DISPLAY "LIST OF ORDERS".
 CLOSE ORDERS.
 OPEN I-O ORDERS.
 MOVE 1 TO END-FILE.
 PERFORM READ-ORD UNTIL END-FILE = 0.

READ-ORD.
 READ ORDERS NEXT
 AT END MOVE 0 TO END-FILE
 NOT AT END
 DISPLAY "ORD-CODE "
 WITH NO ADVANCING
 DISPLAY ORD-CODE
 DISPLAY "ORD-CUSTOMER "
 WITH NO ADVANCING
 DISPLAY ORD-CUSTOMER
 DISPLAY "ORD-DETAIL "
 MOVE ORD-DETAIL TO LIST-DETAIL
 SET IND-DET TO 1
 MOVE 1 TO END-DETAIL
 PERFORM DISPLAY-DETAIL.

INIT-HIST.
 SET IND TO 1.
 PERFORM UNTIL IND = 100
 MOVE 0 TO REF-PURCH-STK(IND)
 MOVE 0 TO TOT(IND)
 SET IND UP BY 1
 END-PERFORM.
 MOVE LIST-PURCHASE TO CUS-HIST.

DISPLAY-DETAIL.
 IF IND-DET = 21
 MOVE 0 TO END-DETAIL
 EXIT.
 IF REF-DET-STK(IND-DET) = 0
 MOVE 0 TO END-DETAIL
 ELSE

F.5. The Order.cob program analysed in the second case study 343

 DISPLAY REF-DET-STK(IND-DET)
 DISPLAY ORD-QTY(IND-DET)
 SET IND-DET UP BY 1.

F.6. A small C program to clean log files
#include <stdio.h>
#include <string.h>
#define SIZE 1000

void clean_sch_ent_rel(FILE* fin, FILE* fout, char* s, char** res)
{
 char lines[16][SIZE];
 int i;

 for (i=0; *res && i<16; i++) {
 strcpy(lines[i],s);
 *res = fgets(s,SIZE,fin);
 }
 if (strcmp(lines[4]+1,lines[10])
 || strcmp(lines[5]+1,lines[11])
 || strcmp(lines[6]+1,lines[14]))
 for (i=0; i<16; i++)
 if (fputs(lines[i],fout)==EOF) {
 *res = NULL;
 return;
 }
}

void clean_rol(FILE* fin, FILE* fout, char* s, char** res)
{
 char lines[16][SIZE];
 int i;

 for (i=0; *res && i<16; i++) {
 strcpy(lines[i],s);
 *res = fgets(s,SIZE,fin);
 }
 if (strcmp(lines[4]+1,lines[10])
 || strcmp(lines[5]+1,lines[13])
 || strcmp(lines[6]+1,lines[14]))
 for (i=0; i<16; i++)
 if (fputs(lines[i],fout)==EOF) {
 *res = NULL;
 return;
 }
}

void copy(FILE* fin, FILE* fout, char* s, char** res)
{
 do {
 if (fputs(s,fout)==EOF) {
 *res = NULL;
 return;
 }
 *res = fgets(s,SIZE,fin);
 } while (*res && *s!='*');
}

void clean(FILE* fin, FILE* fout)
{
 char s[SIZE];
 char* res;

 res = fgets(s,SIZE,fin);
 while (res==s) {
 if (!strcmp(s,"*MOD SCH\n"))
 clean_sch_ent_rel(fin,fout,s,&res);
 else if (!strcmp(s,"*MOD ENT\n"))
 clean_sch_ent_rel(fin,fout,s,&res);
 else if (!strcmp(s,"*MOD REL\n"))
 clean_sch_ent_rel(fin,fout,s,&res);
 else if (!strcmp(s,"*MOD ROL\n"))
 clean_rol(fin,fout,s,&res);
 else

344 Appendix F Case study listings

 copy(fin,fout,s,&res);
 }
}

void main(int c, char**s)
{
 FILE* fin;
 FILE* fout;

 if (c!=3)
 return;
 fin = fopen(s[1],"rt");
 if (!fin)
 return;
 fout = fopen(s[2],"wt");
 if (!fout) {
 fclose(fin);
 return;
 }
 clean(fin,fout);
 fclose(fin);
 fclose(fout);
}

