
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

On Multiplicities in Coordination Languages

Darquennes, Denis

Award date:
2017

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Oct. 2024

https://researchportal.unamur.be/en/studentTheses/42a0c2d1-cb24-4783-874b-a7e52b707a29

On Multiplicities

in Coordination Languages

Denis Darquennes

Faculty of Computer Science

University of Namur

Thesis submitted for the degree of

Doctor of Science,

option Computer Science

Namur, December 7th 2017

logoUnamur.eps

Jury

Prof. Erik De Vink

Eindhoven University of Technology, Netherland

Prof. Vincent Englebert

University of Namur, Belgium

Prof. Jean-Marie Jacquet

University of Namur, Belgium

Prof. Isabelle Linden

University of Namur, Belgium

Dr. Gilles Perrouin

University of Namur, Belgium

Prof. Wim Vanhoof

University of Namur, Belgium

Prof. Denis Zampunieris

University of Luxemburg, Luxemburg

A thesis submitted in partial fulfilment of the requirements for the

degree of Doctor of Science in the subject of Computer Science

Supervised by Prof. Jean-Marie Jacquet and Prof. Isabelle Linden

University of Namur

FOCUS Research Group

logoUnamur.eps

Abstract

Coordination languages provide a nice framework for separating computations from

interaction among components. Promoted by Carriero and Gelernter, Linda is the

first coordination language having been proposed. Since then, many variants have

been studied in the coordination community, among others by the Coordination

research group at the University of Namur. Most of them however suffer from

the Linda property of manipulating only one tuple at a time, which is obviously

not expressive enough to tackle service oriented applications where, for instance,

recommendation is a key feature.

In this context, this thesis proposes and studies several extensions of Bach, a Linda

dialect developped at the University of Namur. They offer the possibility of manip-

ulating many instances of a same token at a time as well as of manipulating simul-

taneously many instances of different tokens. Our work includes both the definition

of the languages, the study of their expressiveness, the design of implementations as

well as the conception of tools for reasoning on programs written with them.

iv

A mes parents, Denise et Henri,

pour la vie qu’ils m’ont donnée

et l’amour dont ils m’ont comblé.

Acknowledgements

I would like to thank my two supervisors Professor Jean-Marie Jacquet and Professor

Isabelle Linden. With their help I discovered the world of coordination languages,

and they were a great example of scientific rigour during all the years of my work. I

thank them for their support, expertise and encouragement at every step of my work,

and especially during the writing of the scientific articles. I thank more specifically

Jean-Marie for his presence in the conferences where I communicated my results,

and for his introduction to the Professor Antonio Brogi, Professor Erik de Vink,

Professor Farhad Arbab and Professor José Proença. I thank all of them for their

help and answers to some of my requests during my research.

I express my gratitude to the members of the accompanying committee for their

interest in the content of the thesis, and for their recommendation near the Faculty

of Computer Science of the University of Namur, to provide me additional time to

finish my work. I thank the authorities of the Faculty of Computer Science and of

the University for their agreement.

I express also my gratitude to the members of the jury, Professors Isabelle

Linden, Vincent Englebert, Erik De Vink, Denis Zampunieris, Gilles Perrouin, Wim

Vanhoof and Jean-Marie Jacquet for their evaluation of my work and their comments

on earlier drafts of it.

I thank the Professors of the Faculty of Computer Science, from which I have

been the teaching assistant, with a special thought to Professor Jean-Paul Leclercq,

Professor Marie-Ange Remiche and Professor Jean-Marie Jacquet. I greatly appre-

ciated to collaborate with them. I specifically thank Jean-Marie for his trust in me,

and our perfect collaboration. I admired his constant enthusiasm and pedagogical

perfection. I thank all my students, for their participation during the courses. This

has always been my best return.

I have a special thought to all the teachers and people I met in my life, and

that have contributed to make me progress, and to become – I hope – more Human.

Among them I thank my wife Claudette Kibasha for the life we share now together,

and for her perspective on the world, and I thank my teachers of the first hour, my

parents Henri and Denise, that have always supported me, in every project that I

have undertaken. With all my love to them.

December 2017 Denis Darquennes

Contents

I Background 1

1 Introduction 3

1.1 The current context . 3

1.1.1 Density in coordination languages . 3

1.1.2 The taxi application and the need for domain specific coordination languages 4

1.1.3 Other applications . 17

1.2 The thesis . 19

1.3 Structure . 19

1.4 Publications . 20

2 Coordination Languages and Models 23

2.1 Coordination as a natural evolution in Computer Science 23

2.2 Linda as the first coordination language . 24

2.2.1 The tuples . 25

2.2.2 The primitives . 25

2.2.3 The generative communication model . 26

2.3 A survey of the family of coordination models and languages 26

2.3.1 General concerns . 26

2.3.2 Manifold and its successor Reo . 29

2.3.3 Gamma . 32

2.3.4 TuCSoN . 34

2.3.5 Klaim . 36

2.3.6 Lime . 36

2.3.7 Linda with priorities or probabilities . 37

2.4 Conclusion . 39

ix

3 Variants of Linda and Gamma 43

3.1 BachT and MRT: two coordination languages . 43

3.1.1 Transition system . 45

3.1.2 Observables and operational semantics . 48

3.2 Expressiveness study . 48

3.2.1 Expressiveness and modular embedding 49

3.2.2 Main results . 50

3.2.3 General patterns . 52

3.2.4 Expressiveness relations between the BachT sublanguages 52

3.2.5 BachT in comparison with MRT . 57

3.3 BachT, MRT and the thesis . 67

3.4 Conclusion . 67

II Language Design 73

4 The Dense Bach Language 75

4.1 Definition of the language . 75

4.1.1 Language issues . 75

4.1.2 Transition system . 76

4.2 Applications . 78

4.2.1 Commerce . 78

4.2.2 Security . 80

4.2.3 Smart cities . 81

4.3 Conclusion . 82

5 Dense Bach with Distributed Density 83

5.1 Definition of VD-Bach . 83

5.1.1 Language issues . 83

5.1.2 Transition system . 84

5.1.3 Weak negative ask . 85

5.1.4 Application . 87

5.2 On Distributed Density . 87

5.2.1 Definition of a distributed density . 87

5.2.2 Definition of DBD-Bach . 89

5.2.3 Application . 91

5.2.4 Cardinality on tokens . 91

x

5.2.5 Translation in VD-Bach . 93

5.3 Conclusion . 93

6 Expressiveness Study of Dense Bach 95

6.1 Comparison with BachT . 95

6.1.1 Generic patterns and results . 95

6.1.2 Adding tokens on the store . 97

6.1.3 Checking for presence and/or absence when adding tokens 97

6.1.4 Retrieving tokens from the store . 104

6.1.5 Checking for the presence and/or absence when adding and/or retrieving

tokens . 107

6.2 Comparison with MRT . 109

6.2.1 Generic patterns and results . 109

6.2.2 Adding tokens on the store . 110

6.2.3 Checking for the presence and/or absence when adding tokens 110

6.2.4 Retrieving tokens from the store . 124

6.2.5 Checking for the presence and/or absence when adding and/or retrieving

tokens . 126

6.3 Conclusion . 127

7 Expressiveness Study of Vectorized Dense Bach 131

7.1 Comparison with Dense Bach . 131

7.1.1 Generic patterns and results . 131

7.1.2 Adding tokens on the store . 133

7.1.3 Checking for presence and/or absence when adding tokens 133

7.1.4 Retrieving tokens from the store . 146

7.1.5 Checking for presence and/or absence when adding and/or retrieving tokens149

7.2 Comparison with MRT . 151

7.2.1 Generic patterns and results . 151

7.2.2 Adding tokens on the store . 152

7.2.3 Checking for presence and/or absence when adding tokens 152

7.2.4 Retrieving tokens from the store . 162

7.2.5 Checking for presence and/or absence when adding and/or retrieving tokens164

7.3 Conclusion . 165

xi

III Programming Aspects 169

8 On the Implementation of Dense Bach 171

8.1 A command-line interpreter for BachT . 171

8.1.1 Introduction . 171

8.1.2 The parser . 173

8.1.3 The store . 176

8.1.4 The simulator . 178

8.1.5 Using the command-line interperter . 181

8.2 A command line simulator for BachT . 189

8.2.1 Introduction . 189

8.2.2 The parser . 190

8.2.3 Executing agents . 191

8.2.4 The store . 194

8.2.5 The main object . 200

8.2.6 Using the BachT Command Line Simulator 201

8.3 A command-line interpreter for Dense Bach . 203

8.3.1 Introduction . 203

8.3.2 The parser . 205

8.3.3 The store . 205

8.3.4 The simulator . 207

8.3.5 Using the command-line interpreter . 210

8.4 A Command Line Simulator for Dense Bach . 211

8.4.1 Introduction . 211

8.4.2 The parser . 212

8.4.3 Executing agents . 212

8.4.4 The store . 215

8.4.5 The main object . 217

8.4.6 Using the Dense Bach Command Line Simulator 217

8.5 Conclusion . 221

9 On the Implementation of Distributed Density 223

9.1 A command-line interpreter for Vectorized Dense Bach 223

9.1.1 Introduction . 223

9.1.2 The parser . 224

9.1.3 The store . 225

xii

9.1.4 The simulator . 226

9.1.5 Using the command-line interpreter . 226

9.2 A Command Line Simulator for Vectorized Dense Bach 228

9.2.1 Introduction . 228

9.2.2 The parser . 230

9.2.3 Executing agents . 230

9.2.4 The store . 231

9.2.5 The main object . 232

9.2.6 Using the Vectorized Dense Bach command line simulator 233

9.3 A command-line interpreter for MRT . 236

9.3.1 Introduction . 236

9.3.2 The parser . 236

9.3.3 The store . 237

9.3.4 The simulator . 239

9.3.5 Using the command-line interpreter . 239

9.4 A command line simulator for MRT . 244

9.4.1 Introduction . 244

9.4.2 The parser . 245

9.4.3 Executing agents . 245

9.4.4 The store . 246

9.4.5 The main object . 247

9.4.6 Using the MRT command line simulator 247

9.5 Conclusion . 249

10 Simulations 251

10.1 A graphical simulator . 251

10.1.1 Design . 251

10.1.2 Usage . 254

10.2 Implementation . 261

10.2.1 Introduction . 261

10.2.2 The structure of the data . 261

10.2.3 The parser . 262

10.2.4 The store . 262

10.2.5 The simulator . 263

10.2.6 The interactive blackboard . 266

10.2.7 The interactive execution . 273

xiii

10.2.8 The automatic execution . 277

10.3 Living example . 279

10.4 Conclusion . 286

11 Modeling Dense Bach with Petri Nets 287

11.1 Open Petri nets . 287

11.2 DB-open Petri Nets . 288

11.3 Modeling Dense Bach agents . 294

11.3.1 The basic primitives . 294

11.3.2 The complex agents . 298

11.4 Towards a workbench . 320

11.4.1 Main data structures . 321

11.4.2 Converting Dense Bach agents to Petri Nets 322

11.4.3 Drawing Petri Net representations . 344

11.4.4 Running Petri Nets representations . 352

11.4.5 Illustration on an example . 359

11.5 Conclusion . 369

IV Conclusion 371

12 Conclusion 373

V Appendix 375

A Appendix: Expressiveness of BachT and MRT 377

A.1 Expressiveness relations between the BachT sublanguages 377

A.1.1 Sublanguages . 377

A.1.2 Checking for presence and/or absence when adding tokens 377

A.1.3 Retrieving tokens from the store . 379

A.1.4 Checking for presence and/or absence when adding and/or retrieving tokens380

A.2 BachT in comparison with MRT . 381

A.2.1 Sublanguages . 381

A.2.2 Putting tokens on the store . 382

A.2.3 Checking for presence and/or absence when adding tokens 382

A.2.4 Retrieving tokens from the store in the BachT language 388

A.2.5 Retrieving tokens from the store in MRT 395

xiv

A.2.6 Checking fo presence and/or absence when adding and/or retrieving tokens397

B The BachT Language 399

B.1 The interpreter . 399

B.1.1 The bacht-cli.scala file . 399

B.2 The command line simulator . 404

B.2.1 The parser . 404

B.2.2 Vector of continuations . 405

B.2.3 Complete code of the command line simulator 405

C The Dense Bach Language 417

C.1 The interpreter . 417

C.1.1 The dbach-cli.scala file . 417

C.2 The command line simulator . 422

C.2.1 Abstract class . 422

C.2.2 Dense Bach Parser . 423

C.2.3 The store . 424

C.2.4 Executing a Dense Bach Agent . 427

C.2.5 The Command Line Simulator . 430

C.2.6 Complete code of the command line simulator 433

D The Vectorized Dense Bach Language 445

D.1 The interpreter . 445

D.1.1 The data . 445

D.1.2 The parser . 445

D.1.3 The store . 447

D.1.4 The simulator . 448

D.2 The command line simulator . 451

E The MRT Language 465

E.1 The interpreter . 465

E.1.1 The data . 465

E.1.2 The parser . 465

E.1.3 The store . 466

E.1.4 The simulator . 470

E.2 The command line simulator . 473

xv

F The Simulator 485

F.1 The Data sructures . 485

F.2 The Parser . 485

F.3 The Store . 487

F.4 The Dense Bach Simulator . 488

F.5 The Interavtive Blackboard . 492

F.6 The Interactive Agent . 496

F.7 The Autonomous Agent . 501

G From Dense Bach to Petri Net 507

H Svg Picture of Petri Net 513

H.1 Subprocedures for the conversion of Petri Net to svg 513

H.2 Conversion of Petri Net to svg . 515

I Running the Petri Net 523

I.1 Running Petri Net . 523

I.2 Running Petri Net Main Methods . 528

VI References 533

Bibliography 535

List of Figures 541

List of Tables 547

xvi

Part I

Background

1

Chapter 1

Introduction

1.1 The current context

1.1.1 Density in coordination languages

The technological evolution over the last recent years confirm the upward trends in pervading

our everyday environments with new mobile devices injecting or retrieving information from

very dynamic and dense networks.

Internet falls within this scope. But as explained in [BCGZ01], “the Internet is today much

more than a mere distributed information repository, or a world-wide collection of network

services. Instead it constitutes a global, distributed, open, heterogeneous, descentralised, and

unpredictable environment”. It is clear that, in such an environment, coordination plays an

essential role, not only at the technological level, but also at the application level.

The existing languages for coordination and in particular those based on the exchange of

tuples through a shared dataspace offer an elegant response to such a constraint. Among them,

the Bach language – a dialect of Linda developed at the University of Namur – permits to model

in an elegant way the interaction between different components through the deposit and retrieval

of tuples in a shared space. However, together with other coordination languages it suffers from

several limits. The manipulation of one tuple at a time, that induces a non-deterministic choice

between several tuples matching a required one, is one of them. Moreover, as service-oriented

applications become more and more available, the rapid evolution of their demand induces a

competition between them, requiring a vast adaptive capacity. The ability to measure their pop-

ularity and quality of services is then crucial for their evolution, as well as their survival on the

3

Internet. Again with respect to that point Linda-like languages do not offer proper mechanisms.

It appears that those limits can be circumvented by providing an atomic global selection of

a finite number of tokens. We obtain this property by considering the level of presence of the

tokens in the shared space, a level that we call density. Many applications can take advantage of

the densities associated with information, represented by the tokens. The intuition is that the

more frequent a tuple is present on the tuplespace, the more likely it will be discovered to provide

an answer to a question or quality request. Moreover, requiring tuples beyond a minimum level

of density guarantees that only those with a sufficient recognition will be selected. As we shall

see in the next subsections, many examples can be treated by this new extension of the Linda

language, and in many different contexts.

1.1.2 The taxi application and the need for domain specific coordination

languages

In a commercial context, we may easily develop applications allowing to select some actors

on the basis of a specific criteria. For instance, the actors could be taxi drivers, with their

reputation in quality of service as criteria of selection. To make it operational, the system needs

on the one hand to allow users to express their satisfaction with regard to the service provided,

and on the other hand, to test that a taxi driver is recognized at a sufficient level of satisfaction.

For the following, we will assume that only positive marks are taken into account and that

the service offered by a taxi driver can be evaluated as good or excellent, corresponding to a

respective evaluation with number 1 or 2. We will then imagine that a level of satisfaction

100 is a minimal satisfaction mark for a reasonable driver. As we shall see later, other similar

applications can be imagined in the fields of security or for smart traffic management.

To illustrate our claim for a domain specific coordination language, let us first show how

easy it is to program the taxi application by using the Bach language, extended with density.

Then we present a way to code it in java, using threads to provide concurrency, and thereafter

we compare the two approaches.

For the first task, the satisfaction of a user can be registered by inserting the tuple

<taxi driver id> once if the evaluation mark is good and twice if it is excellent. Techni-

cally, with taxi driver id being the identifier of the taxi driver, this amounts to respectively

executing tell(<taxi driver id>(1)) or tell(<taxi driver id>(2)). As regards the sec-

ond task, making sure that a proposed driver, say identified by id, has reached a level of

satisfaction of at least 100, can be simulated by executing the primitive ask(<id>(100)). Note

4

that, as the number of matching tuples is only counted, such a satisfaction level may be reached

thanks to the contribution of many users. Of course, different policies can be implemented in

the application, for instance to forbid a user to mark a taxi driver more than once a day. It is

also worth noting that thanks to the space and time decoupling between information producers

and information consumers offered by coordination languages, it is very easy to introduce new

users and new taxi drivers in the application. This kind of application could also be used for

other businesses, like restaurants, hairdressers, plumbers, electricians or building contractors.

To further illustrate the coding in Bach, we present hereafter some screenshots of the ap-

plication running with the command line simulators discussed in Chapter 8. The client has

two possibilities. The first consists in choosing to evaluate the quality of service of a driver,

supposing for instance that the driver has an actual evaluation of 125.

Welcome to Dense Bach version 1.

Type in agents to evaluate them.

DBach> tell(cab01(2)).

DBach> >> Request 1 launched

DBach> >> tell(cab01(2)) successfully terminated

>> store : { cab01(127) }

DBach> >> Request 1 successfully terminated

The second choice of the client is to know if the actual popularity of its driver is higher than

100, supposing the previous evaluation of 127. The answer shows the actual value and confirm

a successful answer to the request.

5

Welcome to Dense Bach version 1.

Type in agents to evaluate them.

DBach> tell(cab01(2)).

DBach> >> Request 1 launched

DBach> >> tell(cab01(2)) successfully terminated

>> store : { cab01(127) }

DBach> >> Request 1 successfully terminated

DBach> ask(cab01(100)).

DBach> >> Request 2 launched

DBach> >> ask(cab01(100)) successfully terminated

>> store : { cab01(127) }

DBach> >> Request 2 successfully terminated

For comparison, we now present the java code for the same application. It consists in two

main parts written in two files. The first one concerns the server of the taxi company, that

manages the reputation level of every taxi driver working for it. The second file is in charge of

managing the requests of clients to the server. An instance of this class is created for every new

connected agent.

The first file Server.java is composed of two classes. The first one is the public Server class

that contains the main method. This class has a variable ServerSocket to connect the clients

to the server. The main method contains a mapping for storing the identifications of the taxi

cabs, represented by a string, and their associated popularities, represented by an integer. This

class opens a socket on a specific port and announces that the server listens on it. Any accepted

client is connected through a specific socket. The server creates a specific thread for any new

client, by invoking the second class TaxiServerThread. This class captures any incoming flux

from the client, starting by getting the identifier of the taxi cab. As long as the client does not

signal the end of the communication with a specific string bye, the server reacts to the only

two possible actions : on the one hand consult and on the other hand give. With the first one

the client wants to obtain the actual popularity of the taxi cab. The server provides it unless

in case of a new driver, for which the popularity is not yet evaluated. With the second action

the client communicates to the server its evaluation of the service of the taxi cab. The server

registers the evaluation and confirms it to the client. Figures 1.1 to 1.3 list the code of these

two server classes.

6

import java . i o . ∗ ;

import java . net . ∗ ;

import java . u t i l . HashMap ;

import java . u t i l . NoSuchElementException ;

import java . u t i l . Scanner ;

import java . i o . Buf feredReader ;

import java . i o . IOException ;

import java . i o . InputStreamReader ;

import java . i o . Pr intWriter ;

import java . net . Socket ;

pub l i c class Server {

publ i c s t a t i c ServerSocket s s = null ;

pub l i c s t a t i c void main (Str ing [] a rgs) {

HashMap<Str ing , Integer> hm = new HashMap<Str ing , Integer >() ;

i n t port = 2009;

try {

s s = new ServerSocket (port) ;

System . out . p r i n t l n (”Taxi s e r v e r i s l i s t e n i n g on port ”+ port) ;

while (true){

Socket s = s s . accept () ;

System . out . p r i n t l n (”Connection e s t a b l i s h ed to a c l i e n t ”) ;

Thread t = new Thread (new TaxiServerThread (s ,hm)) ;

t . s t a r t () ;

}

} catch (IOException e) {

System . out . p r i n t l n (”System except i on f o r port ”+port) ;

}

}

}

Figure 1.1: The server class (1)

7

class TaxiServerThread implements Runnable {

private HashMap<Str ing , Integer> hm;

private Socket s ;

private Str ing cabId = ”unknown” ;

pub l i c boolean endOfSess ion = fa l se ;

pub l i c TaxiServerThread (Socket s , HashMap<Str ing , Integer> hm) {

this . s = s ;

this .hm = hm;

}

publ i c void run () {

Str ing cabId ;

Str ing input ;

i n t popu lar i ty ;

i n t count ;

Str ing c l i e n t = s . get InetAddres s () . t oS t r i ng () ;

System . out . p r i n t l n (”Connected to ”+ c l i e n t) ;

try { . . . s ee f o l l ow i ng f i g u r e

} catch (Exception e) {

e . pr intStackTrace () ;

}

System . out . p r i n t l n (”Closed connect i on to ” + c l i e n t) ;

}

}

Figure 1.2: The server class (2)

8

try {

Scanner in = new Scanner (s . getInputStream ()) ;

Pr intWriter out = new PrintWriter (s . getOutputStream () , true) ;

System . out . p r i n t l n (”Welcome to Taxi Server\n”) ;

cabId = in . nextLine () ; // ge t cab id

while (! endOfSess ion) {

i f (cabId . equa l s Ignor eCase (”bye”)) {

endOfSess ion = true ;

} else {

input = in . nextLine () ; // ge t Action

i f (input . equa l s Ignor eCase (” con su l t ”)) {

i f (hm. containsKey (cabId)) {

popu lar i ty = hm. get (cabId) ;

out . p r i n t l n (” Popu lar i ty i s : ”+popu lar i ty) ;

} else {

out . p r i n t l n (”New dr i v e r : popu lar i ty not yet eva luated . ”) ;

}

} else {

i f (input . equa l s Ignor eCase (” g ive ”)) {

input = in . nextLine () ; // ge t score

i f (hm. containsKey (cabId)) {

count = hm. get (cabId) ;

count = count + In t eg e r . par s e Int (input) ;

hm. put (cabId , count) ;

out . p r i n t l n (”Evaluation r eg i s t e r ed , thank you . ”) ;

} else {

count = In t eg e r . par s e Int (input) ;

hm. put (cabId , count) ;

out . p r i n t l n (”Evaluation r eg i s t e r ed , thank you . ”) ;

}

} else {

i f (input . equa l s Ignor eCase (”bye”)) {

endOfSess ion = true ;

} else {

out . p r i n t l n (”Entry e r r o r ”) ;

}

}

}

}

}

s . c l o s e () ;

Figure 1.3: The server class (3)

9

The second file Client.java contains the class that describes the behaviour of any client of a

taxi cab, and that connects to the server. The main method of the class first prints the different

possible actions provided to a client: consult, give and bye. It also asks the client to provide

the Internet adress of the server he wants to get into contact. This connection is performed by

a private method getSocket, that returns the socket in charge of the connection. The client has

then to provide the identifier of its taxi cab. With this piece of information as long as the client

does not signal the end of the session, he has the choice between asking to obtain the actual

popularity of the taxi driver, or to give its score about the quality of service. Figures 1.4 to 1.6

list the code of the client class.

10

import java . i o . ∗ ;

import java . net . ∗ ;

import java . u t i l . Scanner ;

import java . i o . IOException ;

import java . i o . Pr intWriter ;

import java . i o . Buf feredReader ;

pub l i c class Cl i ent {

publ i c s t a t i c void main (Str ing [] a rgs) {

i n t port = 2009;

boolean endOfSess ion = fa l se ;

S t r ing command ;

Str ing popular i tyMessage ;

Str ing s co r e ;

Str ing r eg i s t r a t i onMes s age ;

Str ing errorMessage ;

System . out . p r i n t l n (”Welcome to the Taxi C l i ent \n”) ;

System . out . p r i n t l n (”Type ”) ;

System . out . p r i n t l n (” ´ con su l t to con su l t the popu lar i ty o f a tax i ”) ;

System . out . p r i n t l n (” ´ g ive to provide the popu lar i ty o f a tax i (2 exc e l l en t , 1 good) ”)

System . out . p r i n t l n (” ´ bye to l eave the s e r v i c e \n”) ;

try { . . . s ee f o l l ow i ng f i g u r e

} catch (Exception e) {

e . pr intStackTrace () ;

}

}

Figure 1.4: The client class (1)

11

try {

Socket s = getSocket (port) ;

System . out . p r i n t l n (”Connected on port ” + port) ;

Scanner in = new Scanner (s . getInputStream ()) ;

Pr intWriter out = new PrintWriter (s . getOutputStream () , true) ;

Scanner i nC l i = new Scanner (System . in) ;

System . out . p r i n t (”\nEnter the cab id : ”) ;

St r ing cabId = inC l i . nextLine () ;

out . p r i n t l n (cabId) ;

while (! endOfSess ion) {

i f (cabId . equa l s Ignor eCase (”bye”)) {

endOfSess ion = true ;

} else {

System . out . p r i n t (”Command : ”) ;

command = inC l i . nextLine () ;

out . p r i n t l n (command) ;

i f (command . equa l s Ignor eCase (” con su l t ”)) {

popular i tyMessage = in . nextLine () ;

System . out . p r i n t l n (popular i tyMessage) ;

} else {

i f (command . equa l s Ignor eCase (” g ive ”)) {

System . out . p r i n t (”Provide s co r e : ”) ;

s c o r e = inC l i . nextLine () ;

out . p r i n t l n (s co r e) ;

r e g i s t r a t i onMes s age = in . nextLine () ;

System . out . p r i n t l n (r eg i s t r a t i onMes s age) ;

} else {

i f (command . equa l s Ignor eCase (”bye”)) {

endOfSess ion = true ;

} else {

errorMessage = in . nextLine () ;

System . out . p r i n t l n (er rorMessage) ;

}

}

}

}

}

s . c l o s e () ;

}

Figure 1.5: The client class (2)

12

private s t a t i c Socket getSocket (i n t port) {

Socket s ;

St r ing host ;

InetAddress ip ;

Scanner sc = new Scanner (System . in) ;

while (true) {

System . out . p r i n t (”To which Taxi Server do you want to connect ? ”) ;

host = sc . nextLine () ;

try {

i p = InetAddress . getByName (host) ;

s = new Socket (ip , port) ;

return s ;

}

catch (UnknownHostException e) {

System . out . p r i n t l n (”The host i s unknown”) ;

}

catch (IOException e) {

System . out . p r i n t l n (”Network e r r o r ”) ;

}

}

}

}

Figure 1.6: The client class (3)

13

As for the implementation in Bach, we present hereafter screenshots of the execution of the

java program. The first screenshot shows the connection established between the taxi server

and a client, on a specific port 2009.

Taxi server is listening on port 2009

Connection established to a client

Connected to /127.0.0.1

Welcome to Taxi Server

The second screenshot shows the informations provided by the client : the Internet adress

of the server (on localhost) and the identifier of the taxi cab, in this case cab01.

Welcome to the Taxi Client

Type

- consult to consult the popularity of a taxi

- give to provide the popularity of a taxi (2 excellent, 1 good)

- bye to leave the service

To which Taxi Server do you want to connect ? localhost

Connected on port 2009

Enter the cab id : cab01

Client and server being now connected, the client has now to choose between the different

commands : consult, give and bye.

Welcome to the Taxi Client

Type

- consult to consult the popularity of a taxi

- give to provide the popularity of a taxi (2 excellent, 1 good)

- bye to leave the service

To which Taxi Server do you want to connect ? localhost

Connected on port 2009

Enter the cab id : cab01

Command :

If the client chooses to first consult the popularity of its taxi cab, he types in consult. As

the driver has not yet been evaluated, the answer of the server specifies it.

14

Welcome to the Taxi Client

Type

- consult to consult the popularity of a taxi

- give to provide the popularity of a taxi (2 excellent, 1 good)

- bye to leave the service

To which Taxi Server do you want to connect ? localhost

Connected on port 2009

Enter the cab id : cab01

Command : consult

New driver : popularity not yet evaluated.

Command :

Now the client chooses to give its appreciation, by typing in give. He is then asked to provide

a score, say for instance 2. When acted, the score is registered, and confirmed by the server.

Welcome to the Taxi Client

Type

- consult to consult the popularity of a taxi

- give to provide the popularity of a taxi (2 excellent, 1 good)

- bye to leave the service

To which Taxi Server do you want to connect ? localhost

Connected on port 2009

Enter the cab id : cab01

Command : consult

New driver : popularity not yet evaluated.

Command : give

Provide score : 2

Evaluation registered, thank you.

Command :

If the client wants to check again the global popularity of its taxi cab, he types again consult,

with an answer now equal to 2.

15

Welcome to the Taxi Client

Type

- consult to consult the popularity of a taxi

- give to provide the popularity of a taxi (2 excellent, 1 good)

- bye to leave the service

To which Taxi Server do you want to connect ? localhost

Connected on port 2009

Enter the cab id : cab01

Command : consult

New driver : popularity not yet evaluated.

Command : give

Provide score : 2

Evaluation registered, thank you.

Command : consult

Popularity is : 2

Command :

Finally the client signals to the server the end of the communication, with the bye command.

From his part, the server prints the closure of the connection.

Welcome to the Taxi Client

Type

- consult to consult the popularity of a taxi

- give to provide the popularity of a taxi (2 excellent, 1 good)

- bye to leave the service

To which Taxi Server do you want to connect ? localhost

Connected on port 2009

Enter the cab id : cab01

Command : consult

New driver : popularity not yet evaluated.

Command : give

Provide score : 2

Evaluation registered, thank you.

Command : consult

Popularity is : 2

Command : bye

16

Connection established to a client

Connected to /127.0.0.1

Welcome to Taxi Server

Closed connection to /127.0.0.1

As the reader will immediately notice, the code to deploy the taxi application is much smaller

with our approach than by using Java. This is essentially due to two factors. On the one

hand, the shared space offered by coordination languages like Bach dispenses the programmer

from writing explicitly a server and from handling the exchange of messages. In particular,

information is searched on the basis of its contents and not through a predefined protocol of

messages being exchanged. On the other hand, concurrency is provided directly without the

need to cope for threads.

1.1.3 Other applications

Other applications can be coded similarly to the taxi application. In the security field, many

potentially critical situations can be managed by information systems coordinated with dynamic

centralised data centres. Examples of such situations concern the emergence of saturation of

crowds, in metro stations, in shopping malls, in airports or even in cultural or sports events. In

all these situations, one could imagine to count on the one hand the number of people entering

a sensitive zone, with regards to a maximum in capacity acceptance, and on the other hand the

number of people leaving the same zone. If the entering process exceeds the leaving one, this

can lead to an overflow with regard to a certain threshold. An alarm could then be sent to the

people in the zone, for instance by means of their smart phones, inviting them to avoid the zone,

and to move to another safer place. For instance for the metro station, the smartphone could

guide its owner to another entry/exit. The same holds for buildings like stadiums or museums

involved in a special exhibition or match. In the field of tourism, a smart application could

inform its user about the density of the queue of tourists as they want to visit some museum.

A message is sent when a certain threshold is reached, meaning a too long waiting time before

entering the museum. Technically the primitive tell(t(1)) can simulate somebody entering the

zone or the queue, whereas the get(t(1)) primitive can simulate its exit of the same zone or

queue. The overtaking of a definite threshold, i.e. 100, is obtained by a successful execution of

an ask(t(100)) primitive.

The same reasoning can be used for a smart traffic management in cities. Most of them face

an important incoming traffic in the morning, followed by a just as important outgoing one in

17

the evening. To tackle such traffic, a good strategy is to transform some road in a one way entry

road in the morning and in a one way exit road in the evening. This requires to evaluate the

density of traffic in both directions and to suggest to adapt the usage of a traffic line when a

certain threshold is reached. Technically, the method to simulate the entering or leaving of one

vehicle in the city can be established as in the previous example, with respectively the tell(v(1))

and get(v(1)) primitives. The overtaking of the threshold, for instance with a value of 500, can

be tested with the ask(v(500)) primitive, in parallel to the tell and get primitives. Moreover,

it is possible to distinguish the vehicles following their types, i.e. as they are cars, motorcycles,

lorries or busses. For each type, the system could manage the traffic lights in order to drive

them to some specific and more adapted roads. This could be typically the case for lorries

transporting dangerous goods. In some circumstances, the intervention of the police could be

requested.

In the field of public health, the capacity to measure the evolution of contamination is a key

point for controling epidemics. In case of high-risk communities like elderly people, the fact to

register the sick and healthy members and to measure their respective density when present in

a common room permits to send warning messages to some of them, inviting them to leave the

room. The message could consist in a colour code: red for danger of contamination, orange for a

situation needing a careful attention, and green for an absence of danger. Technically the choice

of the colour can be done with the following agent, working with the density of contaminated

people in a room:

nask(t(10));tell(green) + ask(t(10));(nask(t(50));tell(orange) + ask(t(50));tell(red))

In this agent the success of the nask(t(10)) means that the number of sick people present is less

than 10, and represents a weak possibility of contamination. Green is then the selected colour.

A failure of the nask means a success for the ask(t(10)), meaning that there are at least 10

seak people present in the room. If the threshold for a definite contamination is fixed to 50, a

success for nask(t(50)) means that the number of contaminated people has a value between 10

and 50. This situation means an average probability of contamination and requests a careful

attention, which is expressed by the choice of an orange colour. On the other hand, a success

of the ask(t(50)) means that the threshold is exceeded, and that the sanitary context is with

high probability in red condition.

18

1.2 The thesis

The purpose of this thesis is to extend the Bach Language, a Linda-like language developed

by the Coordinam Research Group of the University of Namur, with a notion of multiplicity,

and to establish that the new obtained language has a net benefit able to meet the needs in

development in certain domains as for instance service oriented computing, or recommendation

systems, or measure of popularity.

Our thesis is that the introduction of the concept of density in the Bach language and the

distribution of this density over a finite set of tuples produce new languages that are more

expressive than Bach. More precisely, we claim that it is possible to enrich Bach with simple

mechanisms, like the incorporation of a multiplicity of occurences of tokens manipulated by

Linda on the one hand, and the distribution of this multiplicity on a list of tokens on the other

hand. In spite of their simplicity, these operations provide new languages, that are strictly more

expressive than Linda, but less than Gamma, a well-known coordination language inspired by

a chemical metaphor. Nevertheless, the newly obtained languages preserve the advantage of

an easier implementation than Gamma. The way we establish this increase of expressiveness

provides us with a methodological framework that permits us to reason and establish the impact

of a new language evolution.

1.3 Structure

The thesis is organized in four main parts. The first one presents the background material.

It is itself composed of three chapters. After this introductory chapter, chapter 2 presents

an overview of the family of coordination languages. Chapter 3 then introduces and studies

the expressiveness of two coordination languages based on tokens, one, named BachT, being a

variant of Linda and the other, named MRT, embodying the chemical metaphore.

The second part proposes and studies two languages. It is composed of four chapters.

Chapter 4 defines our first language Dense Bach and provides several applications to evidence

the interest of the language. The main feature of this language is to allow primitive operations to

manipulate tokens in multiple instances. Chapter 5 defines our second language, named Dense

Bach with Distributed Density. Its main feature is to equip primitives with means to distribute

a number of instances on a list of tokens. After having identified the core mechanisms, different

variants are there defined and applications are given to support their interest. The next two

chapters study the expressiveness of the new languages. Chapter 6 studies the expressiveness of

the Dense Bach language and relates it to the BachT and MRT languages. Chapter 7 studies

19

the expressiveness of Dense Bach with Distributed Density and relates it to Dense Bach and to

MRT.

The third part focusses on programming aspects. It is composed of four chapters. The first

two provide interpreters and command line simulators for four classes of languages. Chapter 8

deals with BachT and Dense Bach whereas chapter 9 refers to Distributed Dense Bach and

MRT. A graphical simulator is then proposed in chapter 10 to provide the user with a support to

experiment interactively with the executions of agents written in Dense Bach. Finally, through

a modeling using Open Petri Nets, chapter 11 presents a framework to study the properties of

programs written in Dense Bach, in particular to detect deadlocks.

The fourth part is composed of one chapter, which draws our conclusions and sketches future

work.

1.4 Publications

Parts of this thesis have been the subject of three publications:

1. D. Darquennes, J-M. Jacquet and I. Linden. On Density in Coordination Languages.

In C. Canal and M. Villari (eds), Proceedings of the ESOCC workshop on Advances in

Service-Oriented and Cloud Computing, Series in Communications in Computer and In-

formation Science, vol. 393, Springer-Verlag, pp. 189–203, 2013. [DJL13a].

In this first paper, we propose an extension of Bach, aiming at promoting the notion of

density associated with tokens and representing the simultaneous presence of a positive

number of them. Based on De Boer and Palamidessi’s notion of modular embedding, we

establish that it strictly increases the expressiveness of Linda, while keeping the same

implementation efficiency. We also study the hierarchy of the sublanguages induced by

considering subsets of tuple primitives.

2. D. Darquennes, J-M. Jacquet and I. Linden. On Distributed Density in Tuple-based Coor-

dination Languages. In J. Camara and J. Proenca (eds), Proceedings of the 13th Interna-

tional Workshop on Foundations of Coordination Languages and Self-Adaptive Systems,

EPTCS, vol. 175, pp. 36–53, 2015. [DJL13b].

In this second paper, we additionnally compare the Dense Bach language introduced in

the previous paper with Gamma a language based on multiset rewriting. We establish

20

that, although it is less expressive, it benefits from a much more efficient implementation

scheme. We study the hierarchy of the sublanguages induced by considering subsets of

tuple primitives and prove that it follows that of the Linda family of languages.

3. D. Darquennes, J-M. Jacquet and I. Linden. On the Introduction of Density in Tuple-

Space Coordination Languages. In Science of Computer Programming, vol. 115-116, pp.

149–176, 2016. [DJL14].

In this third paper, we define a new extension of a Linda-like language in the aim of

modeling the coordination of complex distributed systems. This language, called Bach

with Distributed Density, manipulates finite sets of tuples and distributes a density among

them. This new concept adds to the non-determinism inherent in the selection of matched

tuples a non-determinism to the tell, ask and get primitives on the consideration of dif-

ferent tuples. Furthermore, like in the two previous articles, we establish that this new

language strictly increases the expressiveness of the Dense Bach language previously in-

troduced and, consequently, Linda-like languages.

21

22

Chapter 2

Coordination Languages and Models

2.1 Coordination as a natural evolution in Computer

Science

Since its very beginning Computer Science has improved in many fields, like the reduction of the

size of the hardware components and the increase in their speed of execution. Another natural

axis of development has been the increasing degree of complexity. Indeed, the need to efficiently

share limited and expensive computer resources and data between many users, or to increase

the speed of computation, have contributed to bring to the foreground the development of more

and more complex operating systems, and the parallelization of tasks on several processors. The

emergence of the Internet and the connection of many dedicated networks have reinforced that

trends. In turn, Internet applications – like web services – require to revisit traditional software

architecture patterns, which results in a re-use and cooperation of distributed heterogeneous

components.

Complexity arises when simple processes run in parallel to perform a joint task. It directly

results from the communication those processes have to establish between them, in order to

perform their tasks. This communication expresses a need of coordination between the different

components acting concurrently. Gelernter and Carriero [GC92] postulate that the computa-

tion necessary for the tasks to be performed, and the communication required to coordinate

the components, are orthogonal, meaning that they do not need to be incorporated in the same

model. This introduces the concept of a programming model, constitued, in one part, by a

coordination model, whose role is to glue together activities in an ensemble, and, in another

part, by a computational model, whose role is to effectively perform the specifications of the

23

components. This is summed up in the following “equation”:

Programming = Coordination + Computation

This vision facilitates, on the one hand, the re-use of a component, and on the other hand

the re-use of patterns of coordination. Gelernter and Carriero proposed a communication model

called the generative model ([Gel85]), and its implementation in Linda. In this generative model,

communication of data is performed by generating new data objects, and by placing them in a

shared dataspace from which the receiver can retrieve them.

Since the claim of Carriero and Gelernter, many coordination languages and models have

been developed. To support their thesis Carriero and Gelernter themself proposed a language

of coordination called Linda. But other languages have also been proposed, that are based on

different approaches. To draw the broader setting of the thesis, we present subsequently the

main properties of Linda and other languages, and classify them following [PA98].

The rest of the chapter is thus organized as follows. Section 2.2 concentrates on the Linda

language as the first development in coordination. Section 2.3 provides a survey of the family of

the coordination models and languages. Finally Section 2.4 concludes the chapter by a synthesis

of its content, of its references and with a short supplement that extends the main presented

languages.

2.2 Linda as the first coordination language

Linda is the first language that has been classified as a coordination language, i.e. being an

embodiment of a coordination model, expressing the interaction of autonomous agents within

some environment and other agents that are included in. Despite the fact that it provides only

four primitives, Linda is able to deal with the complexity of coordination, to build parallel

applications, to design distributed computing platforms, and to program agent based systems.

To start, this section briefly presents the notion of tuple. Then a description of the four

basic primitives that constitute Linda is provided. Finally, the section concludes by highlighting

24

the characteristics of the generative model.

2.2.1 The tuples

At the base of Linda is the shared dataspace model, also called the coordination medium. It

contains tuples, that are ordered sequences of data. Those tuples constitute messages, around

which the communication and cooperation is organized. In Linda the communication is per-

formed asynchronously. Messages produced by a sender are collected in the dataspace, and are

made equally available to any other consulting agent. The latter can then access it by reading

or removing it from the dataspace, by means of a template specifying the kind of messages it is

interested in. One available tuple matching the template is retrieved or read from the dataspace.

2.2.2 The primitives

Linda provides a set of four primitives. Three of them (out, in, rd) are grouped in a category

for managing the messages: out, rd and in are respectively responsible for inserting tuples on

the dataspace, for reading them on the dataspace, and for retrieving them out of the dataspace.

In case the required tuple is not available on the dataspace, the in and rd operations adopt a

blocking behaviour, until it is present. It can be argued that the read operation can be consid-

ered as semantically redundant as it can be modelled by an input in(a) immediately followed

by an output out(a) of the same datum a. Although this first view looks intuitive, we shall

nevertheless see that it needs to be revisited when we shall study the expressiveness of languages.

The last primitive (eval) is part of the second category and is responsible for agent and pro-

cess generation. More precisely, with such a primitive, tuples that are basically passive entities,

can now acquire an active behaviour. These tuples contain one or more functions as parameters.

When eval is invoked, an active tuple is created and its parameters functions are evaluated in

parallel with each other and with the calling process. When the computation of the function is

finished, the results are inserted in the tuple, that then becomes a passive one, which is placed

into the tuple space.

Two characteristics of the tuple access are worth being emphasized. Firstly, the out, in and

read primitives access the tuples in an associative way. This means that the search relies on the

use of a template, that expresses the kind of tuples an agent is interested in. There is thus no

25

need to specify a memory address. Secondly, any emitted message placed in the dataspace has

an independant existence since it is retrieved asynchronously by a receiver. Until that moment,

the message is in fact equally accessible to all agents. This implies that in case of the simulta-

neous presence of multiple identical tuples on the dataspace, any consultation or withdrawing

of one instance of this kind of message, is done in a random way.

2.2.3 The generative communication model

In place of the simple approach of considering some low level primitives like send and receive to

transmit messages over channels, communication in Linda is based on a shared space of data,

accessible to any agent accessing it. In this sense, Linda is said to be generative, as the agents

communicate by generating data on the shared space. As a result, in Linda every agent is poten-

tially able to communicate with all the others, at the contrary of the message-passing paradigm,

that is a private act between some participating agents, having to share some channels. As well

as third-party agents, the dataspace itself is also able to manipulate the messages present in

itself. The dataspace can have a complex structure, for instance in the form of multiple nested

dataspaces, and, in most cases, is complemented by event-based mechanisms.

2.3 A survey of the family of coordination models and languages

2.3.1 General concerns

Many coordination models and languages have been developed after Linda. A great number

of conferences (e.g.,[Sha92, GFM04, JP05, CW006, CA10, MR11a, Sir12, NJ13, KP14, HV15,

LP16, JM17]), conference tracks (e.g.,[Pan02, CDH00, CW111, SM113, WC115]), workshops

(e.g.,[BJ03a, BJ03b, BJP04, CV06, MS10, MR11b, KR12, CV13, CP15]) and journal special

issues (e.g., [BJKP06, BJK06, JLD16]) attest of the enormous amount of research in this area.

In [PA98], Arbab and Papadopoulos have proposed to classify coordination languages into two

main categories: the first one works through an exchange of data through a shared memory and

is called the “data-driven” category. The second one works through an exchange of messages

between the entities and is called the “control-driven” one, or also the process- or task-oriented

one.

Data-driven coordination models and languages are characterized by the fact that the state

of the computation at any moment in time is defined in terms of both the values of the data

26

being received or sent and the actual state of the coordinated components. In other words it is

the availability of the data produced and consumed by the data-driven coordinated computa-

tion that determines its progress. Regarding the equation proposed by Carriero and Gelernter

[CG89], the separation between computation and coordination is done at the level of function-

ality. Those can be of two types: either purely coordinational, with the use of coordination

primitives, or purely computational, both types being possibly used by the same process. Two

of the most famous languages of this family are Linda, already presented in the previous section,

and Gamma that will be presented in section 2.3.3.

Control-driven coordination models and languages are characterized by the fact that coor-

dination and computation are achieved by distinct agents. In opposition with the data-driven

family, the value of the data being manipulated by the processes are of no more importance in

the definition of the state of the computation, that is only defined in terms of the coordinated

patterns. Manifold and its successor Reo are two representatives of this family of coordination

languages, and will be presented in section 2.3.2

In a more constructive perspective, and following [BCGZ01], the design of a coordination

language has to meet three kinds of issues: the coordination of the entities, the determination

of the media for coordination, and the protocols and rules used for coordination.

The first one concerns the necessity to coordinate entities, also called agents or processes,

that are usually actively computing entities programmed in many different languages. Despite

this variety, the coordination of the agents should not require their re-programming, but in place

should wrap them all in an ensemble. The second issue to be encountered is to determine the

media for coordination. In place of the simple approach of considering some low level primitives

like send and receive to transmit messages over channels, the communication proposed by

Linda is based on a shared space of data, accessible to any agent accessing it. The third and

last issue concerns the protocols and rules that are used for coordination. Those coordination

rules regulate the relationship between the coordinable agents and the coordination media, and

may be expressed either in an operational way, or in a more abstract and declarative way. Linda

proposes a minimal set of primitives, implemented as library routines invoqued by some host

programming languages.

Those three issues help to consider three key concepts for the definition of a coordination

model. They are at the basis of the three following questions :

1. What are the entities to be coordinated ?

27

2. What is the considered coordination medium ?

3. What are the corresponding coordination rules ?

Those three concepts - respectivelly the coordinables, the coordination medium and the

coordination rules - can be represented in a formal framework, that can be instantiated to a

variety of coordination models and languages for agents. In order to capture the main aspects of

many other models, the dataspace-based model of Linda will be extended in the three following

directions:

1. the more advanced coordination primitives exploitable by the coordinables,

2. the reshaping of the coordination medium, and,

3. the programming of the coordination rules.

With respect to the coordinables, three kinds of new primitives can be added to the four basic

ones of Linda. The first type is the one that permits the computation of transaction operations

involving more than one datum. They can be transactions, that are implemented for instance

in JavaSpaces ([FHA99]), or multiset primitives, that atomically produce and /or consume

multiset of data, as the multiwrite primitive in TSPaces ([Wyc98]), or reactions resulting from

the inspiration of the chemical metaphor, considering the items in the dataspace as molecules

moving freely in a chemical solution. Gamma is an example of language resulting from that

natural science inspiration.

The second type of new primitives is the one that requires for the primitive to be executed,

a global vision of the state of the shared repository. Examples of such primitives are given by

the count operation that, in TSpaces, returns the actual number of data inside the repository

satisfying a given condition, or by a test-for-absence of data, that verifies the non-availability of

data of a certain kind. In order to bypass the limitation of the blocking bevaviour of its in and

read primitives, Linda itself has been extended with their nonblocking version, respectivelly inp

and readp, both requiring a global view of the datapsace.

Finally the third type results from a combination of the two previous ones, providing global

operations able to perform tests on the global state of the shared repository. The collect primi-

tive, which removes all the data satisfying a specified pattern, is an example of such an operation.

As for the coordinables, a re-shaping of the coordination medium in the form of a collection of

either named independant spaces as in KLAIM ([RDP98]) and TuCSoN ([OD01]), or structured

nested spaces as in Bauhaus Linda ([CGZ95]), or merged spaces as in LIME [GPR99], is the

28

second possible way for extensions of coordination models or languages. The introduction of

multiple spaces has the advantage of providing modularity by restricting the visibility to data

present in a particular dataspace. Allowing a network-aware style of programming by allocating

spaces to a particular node of the net, is a second advantage.

Finally, allowing a dynamic modification of the coordination rules to obtain a programmable

coordination medium is a third way to introduce new extensions in the coordination models.

Such an introduction of programmability has always for objective to enable some form of the

control of the access to the shared repository, and to allow for reactions in case of violation of

contracts. TuCSoN is again an example of a language providing this capability.

The next sections are dedicated to the presentation of some principal languages, among the

wide variety of the coordination language family. In a first step, we present the languages Man-

ifold and its successor Reo, as typical examples of the process-oriented models. Then Gamma

and TuCSoN will be briefly explored, as examples of languages based on the tuple-space model,

Gamma illustrating the chemical reaction model and TuCSoN, the enhancement of coordi-

nation rules by programming the dataspace. KLAIM and LIME are presented as examples of

formalisms aiming at tackling mobility. Thereafter, we consider the introduction of quantitative

information in the tuple spaces, and extension of Linda with priorities or probabilities.

2.3.2 Manifold and its successor Reo

2.3.2.1 Manifold

Channels of communication are used as an alternative to the shared dataspace of Linda in some

coordination models. These models rest on the idea of an Idealized Worker and an Idealized

Manager (IWIM) ([Arb96]). The language Manifold is an illustration of this approach and con-

sequently is an example of a control-driven language. Making a clear and complete separation

between computation and coordination at the level of modules or processes, it provides on the

one hand “worker” entities, that are responsible for the computation, and on the other hand

“manager” entities, that are responsible for communication and cooperation. The manager is

the only one to know all the workers, to dynamically connect output ports of workers to their

input ports and to modify these connections. This exclusive property makes possible a complete

anonymity at the worker level, which can then perform computations without taking care of

other components.

29

Manifold uses input and output ports to organize communications between different pro-

cesses and their environment. Asynchronous channels called streams create the links between

output and input ports of worker entities. Coordinator processes are able to dynamically mod-

ify these streams between the workers. The information exchange is taken in charge by an

event mechanism. The occurrence of some relevant events triggers the concerned coordination

processes, placing them in a state to perform some actions.

2.3.2.2 Reo

Still in the world of channel-based coordination models, Reo ([Arb04]) is the successor of Man-

ifold. It is used as a language for the coordination of concurrent processes, or to orchestrate

component instances, like fragments of sequential code, threads, objects, agents, in a component-

based system. Most of the time, the interfaces of these components do not fit perfectly with

each other. For this reason there is a need for a so called specific “glue code” to permit a correct

matching. The idea of Reo is to construct this glue code in a compositional way, using atomic

primitives. Channels constitute those primitives. Every channel is a point-to-point medium of

communication, caracterised by its own unique identity and by two ends, that can be either a

source or a sink. A source channel end accepts data into its channel, and a sink channel end

dispenses them out of it. Moreover to be communication paths, channels also impose relational

constraints, like synchronisation, buffering, mutual exclusion, or even lost on the data flowing

through their ends. From [Pro11], we present in Figure 2.1 some of the most commonly used

Reo primitives.

In addition Reo defines the operations that permit to plug together the ends of the channels,

in order to form complex connectors. A connector is a set of channel ends and their connecting

channels organized in a graph of nodes and edges. A node is a logical place where channel ends

coincide. Due to the existence of two types for the channels, a node can consist of a sink end,

or a source end, or both a sink and a source ends. Following Proença ([Pro11]), nodes with a

single end are called boundary nodes, and are represented by ˝ . Nodes with both a sink and

a source ends are called mixed nodes, and are represented by ‚. Within a connector, data will

flow from primitive to primitive through nodes, without being buffered by them. This means

that both ends in a node are synchronised and have the same dataflow.

30

a
b

c

Replicator. This channel replicates the data (without cor-

rupting them) in a to all of its ends (namely b and c) or

nowhere. Here represented as a 2 -replicator, it can be ex-

tended to an n-replicator, with n sink ends.

a

b

c

Merger. The function of this channel is to copy data syn-

chronously from a or b to c, excluding a simultaneous in-

coming from a and b. If this situation occurs, the origin of

the data flow is then chosen in a non-deterministic way.

a b

Sync. This primitive represents a synchronous channel. It

accepts data at its source end if it can simultaneously trans-

fer them at its sink end.

a b

LossySync. This primitive differs from the synchronous

channel by the fact that it always accepts any data coming

into its source channel. Nevertheless the transfer of the data

to the sink end is done only if they can be dispensed through.

a b

SyncDrain. The function of this channel is to synchronise

both source ends a and b. Data will flow at one end if and

only if they also flow on the other end.

a b

FIFO1. This primitive represents a one-place buffer chan-

nel, caracterised by two possible states : empty or full. If

empty, the buffer can receive a data item from a, changing

its state to full. Then no more data can be received any-

more, but the channel can transfer the previously received

data to its end b, resseting the state back to empty.

Figure 2.1: The most commonly used Reo primitives.

31

a

b

c

d

e

f

g

h

i

j

k

Figure 2.2: Representation of an exclusive rooter.

In the following we present some simple examples of connectors built thanks to the previously

introduced primitives. The first example (from [Pro11]) in Figure 2.2 describes an exclusive

router. It is made of three replicator primitives represented by a-b-c-d, e-h-j and g-i-k, of

two LossySync channels represented by b-e and d-g, of one Merger h-i-f and one SyncDrain

c-f. Every data A entering the router in a is first replicated on b, c and d. If the data crosses

through the LossySync channel b-e, the synchronisation with the SyncDrain channel c-f permits

to transfer the data A to j. A symmetric behaviour is also possible with the LossySync channel

d-g, leading to produce the data A at k. In case data A crosses simultaneously through both

LossySync channels b-e and d-g, then the Merger h-i-f makes a non-deterministic choice. In

every case, data can never flow from a to both j and k.

The second example uses the previous exclusive router and represents a connector that

eliminates one element over two in a string of characters. Figure 2.3 represents the schema of

this connector, with the exclusive router represented by a circle in place b. When a string of

characters “AB” presents itself at the boundary node a, the first letter A is sent either to the

node c, or to the node d, by the exclusive router located in b. In case the letter A is sent to

d then it is stored in the FIFO1 buffer d-f and is blocked this way. The second letter B can

then only be sent through Sync channels b-c and c-e. At node e it waits for the SyncDrain

channel e-f. The only possiblity for continuing is then to wait for the buffer to liberate the letter

A. The letter B can then continue after the action of the SyncDrain channel e-f. If the letter

A is sent to c, the process will work the same way, but now producing the letter A on channel e-g.

2.3.3 Gamma

The chemical metaphor has been used as a basis of inspiration to develop coordination models.

Gamma ([BL93, BM96]) embodies this metaphor. It considers the items in the dataspace as

32

a
b

d

c

f

e
g

Figure 2.3: Connector eliminating one element over two.

ChemicalReaction(M) = Γ((R,A))(M) where

R(x,y,z) = (x = y = H2, z = O2)

A(x,y,z) = { H2O, H2O }

Figure 2.4: The chemical reaction 2H2 `O2 ÝÑ 2H2O in Gamma.

molecules that freely move in a chemical solution. Reactions between those molecules can

happen, when they come in contact, and also satisfy certain constraints. Gamma programming

style sees atomic values regrouped in one single bag, and computes the results of their individual

interactions, following the locality principle. This stipulates the independance of reactions

between values to produce new ones. As a consequence, Gamma programs are caracterized by

a minimum of explicit control.

More explicitely, a Gamma program is a pair (R,A), with R a reaction condition, namely

a boolean function on multisets of data, and A a rewriting action, namely a function from

multisets to multisets of data. Following this language, any group of molecules satisfying the

reaction condition can be rewritten according to the corresponding rewriting action.

An example of program written in Gamma is the one describing the chemical reaction of

production of water molecules, using molecules of hydrogen and oxygen. The full program is

presented in Figure 2.4. In this program, M is a multiset of data that are molecules composed

of a certain number of atoms. The reaction R needs a certain number of molecules, each of

them being allocated to variables.

The reaction condition R expresses that two molecules of hydrogen and one molecule of

oxygen are necessary to activate a chemical reaction. R has then three variables x, y and z,

where x and y receive the same molecule of hydrogen H2 and z receives the molecule of oxygen

33

O2. Under these conditions, the rewriting action A transforms the two molecules of hydrogen

and the molecule of oxygen in two molecules of water.

2.3.4 TuCSoN

TuCSoN ([OZ]) is based on the same set of primitives as Linda to act on a tuple space, either

for putting (out) a tuple, or for reading it with or without suspension (rd, rdp), or for retrieving

it, still with or without suspension (in, inp). TuCSoN extends Linda in two ways: firstly

by introducing multiple tuple spaces, referred to as tuple centers, and secondly by providing

the possibility to program them, in order to define locally the way in which agents interact

with them. The consequences of these extensions are respectively the parameterization of

classical primitives to the particular tuple center which is being accessed, and the handling of

the queries by the medium, in addition to its access by the agents. In TuCSoN, coordination

is expressed by the specification of the reactions of the tuple center to some events. ReSpecT

(Reaction Specification Tuples) ([OD01]) is a logic-based language that specifies these reactions.

Two primitives are used to program a tuple center behaviour: they are set spec and get spec,

respectively responsible for adding and removing logic tuples. The syntax of these tuples is

reaction(Op,(Body)), expressing the association of a communication operation Op to the Body

reaction body. Every performed operation Op sees all its corresponding reactions triggered,

and their reaction bodies executed. The reaction Op is defined on the one hand for ReSpecT

primitives like out r, rd r, in r and no r, where out r works as a conventional out, while rd r

and in r have the same non-blocking effect as rdp and inp, and finally no r acts as a test

for absence. On the other hand, it is also defined for operations over tuple spaces performed

inside reactions. The reaction Body is a sequence of ReSpecT predicates with a failure/success

transactional semantics. Among those predicates are internal primitives like out r, rd r, in r

and no r, as well as constructs such as also pre, post and ‘X is expression’. Both predicates pre

and post succeed in their respective pre and post phases of any operation. The is predicate is

an assignment.

A first example of the use of TuCSoN (from [Tuc04]) consists in writing reaction rules for

keeping track of the number of tuples inside the tuple centre. This is achieved by maintaining

on the data space a tuple n tuples(N), with N indicating the numbers of tuples present in the

tuple centre. Every tuple added or removed from the space must trigger an update of N, with

respect to the specifications of the following rules:

34

reaction(out(X), (in r(n tuples(N)), N1 is N+1, out r(n tuples(N1)))).

reaction(in(X), (in r(n tuples(N)), N1 is N-1, out r(n tuples(N1)))).

reaction(inp(X), (in r(n tuples(N)), N1 is N-1, out r(n tuples(N1)))).

The second example, also taken from [Tuc04] concerns a coordination artifact needed in

concurrent systems, called the synchronisation barrier. In this example, N agents have first to

synchronise before to continue their individual activities. Basically every agent executing its

task and reaching the synchronisation point has to wait for all the other agents to reach the

same point before to continue. A solution consists for an agent to insert a ready tuple when

finishing its activity, and then to wait for a ready all tuple before continuing. This is expressed

by the following protocol:

out(ready).rd(ready all).

Then the tuple centre acting as a synchronisation barrier obeys the two following specifications:

reaction (out(ready),

(in r(ready),

in r(ready agents(N)),

N1 is N+1,

out r(ready agents(N1)))).

reaction (out r(ready agents(N)),

(rd r(barrier size(N)),

in r(ready agents(N)),

out r(ready agents(0)),

out r(ready all))).

The first rule clarifies the reaction of the tuple centre when an agent inserts a ready tuple

as he finishes his activity. The tuple centre simply increases the number N of ready agents,

and then invokes the second rule, with this new value for N. The second rule first questions the

tuple barrier size, that contains the current number of agents needed to be synchronised. Then

it takes a tuple ready agent that contains the dynamic counts of agents already synchronised.

The last two steps reset to 0 the number of ready agents, and publishes on the tuple centre the

tuple ready all.

35

TuCSoN has been designed for the development of efficient applications for the access to

heterogeneous and dynamic information distributed over Internet. The reader interested in

more details is referred to [OD01].

2.3.5 Klaim

Mobilty can be understood both from the logical and physical points of view. The first aspect

reflects the migration of code or data through networks. The second is concerned with applica-

tions distributed on mobile devices. In the following two sections we consider two coordination

languages that respectively encounter those two understandings of mobility: KLAIM and LIME.

KLAIM is designed to handle the physical distribution of processes through a wired network.

LIME is designed to manage the coordination of communicating mobile applications over both

wired and ad hoc networks.

KLAIM is the abreviation for the Kernel Language for Agents Interaction and Mobility

([RDP98]). It consists of a Linda variant with multiple tuple spaces. KLAIM is able to manage

the physical distribution of processes over networks, as well as to control changes in their

configuration. To that end, KLAIM considers a finite set of physical localities and associates

nodes with them. These nodes are composed of three elements: a site, a process and an allocation

environment. Inside this triple, every site component is associated with a tuple space. As regards

the allocation environment, its function is to associate some (logical) localities with (physical)

sites. KLAIM extends the classical Linda primitives out, in, read and eval as they not only can

be invoked locally on the tuple space located on the same site, but also on a tuple space of a

remote site specified by providing the locality of a node to the primitive invocation. KLAIM

provides also a specific primitive newloc(u) for binding a fresh site with a variable u. The

implementation of the mobile code paradigms is obtained by a combination of newloc with a

remote invocation of primitives as eval.

2.3.6 Lime

In a mobile environment, the shared tuple space properties of persistency, global accessibility

and static creation are no longer maintained. The model of LIME ([GPR99]) adapts the basic

philosophy of Linda to mobility, by transforming the shared tuple space into a transient shared

tuple space (TSTS), and by associating an interface tuple space (ITS) with each process. The

ITS contains the information that the process is willing to share with others; it is accessible by

means of the classical Linda primitives out, in and read. It is the combination of the ITS of

36

the currently co-located mobile processes that constitutes the TSTS seen by all those processes.

During the computation, the content of the TSTS is dynamically modified, as the co-located

agents become different. The management of this dynamic recomposition of the TSTS due to

the change of connectivity is taken in charge by the Lime middelware and is completely hidden

to the processes.

LIME also proposes, for some extended primitives, to specify the interface tuple space with

which they want to interact. As a result a process can write on the interface of another distant

process, by putting on its own interface tuple space the tuple to be sent, tagged with the

destination process identifier. Under the condition that the target interface is reachable, the

LIME middleware migrates the tuple. Otherwise the tuple stays on the interface of the sending

processes until the target becomes reachable. For the in and rd primitives, it is also possible

to restrict their search to the actual contents of some specified interface tuple space, or to

tuples with, as destination, a specific interface tuple space, both criteria being simultaneoulsy

applicable.

2.3.7 Linda with priorities or probabilities

Several pieces of work have investigated the introduction of quantitative information in the

tuple spaces. In this section, we present the most relevant ones for our work and compare their

method with the one we follow.

Some authors ([BGLZ04, BGLG05]) have investigated the impact of the introduction of

quantitative information in the tuple space coordination model in order to quantify the relevance

or importance of each tuple. They do this at the syntactical level by decorating each tuple with

an extra field and at the semantical level by providing two possible interpretations for this

information. On the one hand, the field quantifies a weight indicating how frequently each

tuple should be retrieved, while on the other hand, it expresses a priority level for the tuples.

An example (from [BGLG05]) concerns a master-worker application, with a master produc-

ing jobs executed by workers. The master produces job requests and stores them as tuples in

the tuple space. The workers then question the same space, in order to retrieve the description

of jobs to be executed. However due to non-determinism, it is possible to observe some jobs that

will never be selected. Moreover this way to work also ignores a natural priority for execution

that is requested by some specific jobs, with regards of every all other jobs. These two scenarios

find an easy solution within the possibility of decorating tuples with an urgency level.

Other authors ([VC09, VC10]) have proposed a stochastic extension of the Linda framework.

This model associates tuples with an activity/pertinency value, similar to the notion of chemical

37

concentration. It measures to which extent the tuple can influence the coordination state. The

syntax of this tuple space is modeled by means of a calculus, with an operational semantics

given as an hybrid CTMC/DTMC model.

An example developed in [VC09] proposes a model of chemical tuple space. In this model an

integer value called concentration is attached to each tuple, measuring its pertinency/activity,

i.e. the frequency with which it can influence the system coordination. The out primitive serves

to inject a tuple with any initial concentration. In the presence of the same tuple in the space,

both tuples join and their concentration are summed. The in primitive is either able to entirely

retrieve a tuple, or to decrease the concentration of an existing tuple. The first situation occurs

when there is no specified concentration with the primitive, and the other when there is well a

specified fixed concentration. The read primitive rd acts as the in primitive, in order to discover

the concentration associated with a tuple.

For instance the following instruction expresses the retrieval of 10 tuples among three differ-

ent ones, a or b or c. Those tuples are present on a store σ , respectively with a concentration

of x20y, x10y and x5y. The primitive questions the store σ for every name, as the latter is

represented by variable X, and with a concentration of x10y.

vtpaq x20y |tpbq x10y |tpcq x5ywσ|inpσ, tpXq x10yq.0

As the concentration of c is only of 5, this latter tuple cannot match the request. For a and

b, the decrease will be of 10 units. As a is present two times more than b, the probability for a

to be concerned is two times higher than for b, i.e. in this case respectively of 2/3 and 1/3.

The aim to entirely remove a tuple is reached by introducing inside the primitive in a

variable v for the concentration. For instance

vtpaq x20y |tpbq x5ywσ|inpσ, tpXq xvyq.0

means that it is equally probable to totally remove t(a) unifying v with 20 and X with a, or to

remove t(b) unifying v with 5 and X with b.

S. Mariani and A. Omicini ([MO13]) have introduced the concept of uniform primitives.

Their analysis concerns the data-retrieval primitives, i.e in and read primitives - also called getter

primitives, that are shared by all tuple-based coordination models. The uniform primitives are a

response to the inherent don’t know non-deterministic character of the getter primitives. Indeed

for the latter, which tuple among the matching ones is actually retrieved can be neither specified,

nor predicted. In other words, they only ensure a point-wise property for a tuple retrieval, both

38

in space and time. In terms of spatial context, a single getter operation can return a matching

tuple independently of the other tuples currently in the same space. For the time context, a

sequence of getter operations presents no meaningful properties.

Instead, the uniform coordination primitives uin and urd are a specialisation of the getter

primitives of Linda, but still compliant with their standard semantics. In place of the don’t

know non-determinism, they feature a probabilistic non-determinism with uniform distribution,

ensuring global system properties in place of point-wise ones. For a single getter operation,

they return matching tuples based on the overall state of the tuple space, and for a sequence of

getter operations, they tend to a uniform distribution over time.

A. Di Pierro and al ([PHW05b]) have considered how probabilities or quantities may be

added to a Linda-like language. Their analysis follows the classification of the coordination

languages into the two categories presented in section 2.3.1 : on the one hand the “data-

driven” category and on the other hand the “control-driven” category. For the first category,

positive natural numbers called priorities, or positive real numbers called weights are added

as an attribute of tuples. Based on this attribute, a retrieved tuple is the one with the higher

priority for the priority approach, or is the one selected with a probability proportional to its

weight for the probability approach.

In a dual way, the control-driven approach proceeds by adding priorities or probabilities to

the operators, in particular to the parallel operator. This approach requires to define the notion

of “active state”, which identifies the processes that are able to make a transition, i.e. that are

not blocked awaiting for a tuple to become available. Replacing the parallel composition P |P

by a prioritised parallel operator, p1 : P1|p2 : P2, with p1 and p2 positive natural numbers, a

scheduler will non-deterministically select the state with higher priority among the active ones.

2.4 Conclusion

This chapter has sketched various coordination languages. The need for these languages stems

from the growing complexity of Computer Science, mainly characterized by a concurrent col-

laboration of communicating processes in order to perform a joint task. Gelernter and Carriero

[GC92] have postulated a clear separation between the computation activities of each compo-

nents, and the coordination dialog between them in order to glue their activities in an ensemble.

Since this original proposal many languages of coordination have been developped.

We have presented a non exhaustive review of the principal ones. Based on the work “Coor-

dination of Internet Agents” [BCGZ01], we have listed the most representative languages among

39

the family of coordination. Despite their great number, and following [PA98] the languages can

be regrouped in two main categories : the “data-driven” one, and the “control-driven” one.

The data-driven category makes use of a shared memory to exchange data between the pro-

cesses, while the control-driven category exchanges messages directly between the entities to be

coordinated.

Linda [Gel85] is the first coordination language and belongs to the first category. It is car-

acterised by a basic set of four primitives, mainly responsible for managing the exchanges with

the shared data-space. Gamma [BL93, BM96] is another language of this family, inspired by a

chemical metaphor. It is based on a data structure which is a multiset, and is mainly carac-

terised by a high level nature, with a very abstract description of programming and a natural

construction of parallel programs. TuCSoN [OZ, OD01] extends Linda by introducing multiple

tuple spaces, and by giving the possibility to program them, in order to define locally the way

in which agents interacts with them. Klaim [RDP98] and Lime [GPR99] are concerned with

mobility. The first one handles the physical distribution of processes through a wired network.

The second one is more concerned with the management of the coordination of communicating

mobile applications over both wired and ad hoc networks.

Reo [Arb96, Arb04, Pro11] is certainly the most representative language in the control-

driven category. It is a channel-based coordination language, where channels are point-to-point

medium of communication. Complex connectors are built in a compositional way out of these

simple channels.

The last subsection of our survey has explored some extensions of Linda aiming at intro-

ducing the concepts of priorities or probabilities. Bravetti and all [BGLZ04, BGLG05] add

quantitative information in the tuple space in order to quantify the importance of each tuple.

Viroli and Casadei [VC09, VC10] have proposed a stochastic extension of Linda. Both their

approach need to add an extra field to the tuple structure. Mariani and Omicini [MO13] have

introduced the concept of uniform primitives, essentially for the in and read primitives. In

response to the non-deterministic behaviour of the latter, they propose respectively two prim-

itives uin and urd featuring a probabilistic non-determinism. Di Pierro et al [PHW05a] have

also investigated how to introduce priority or probability to languages from both families: the

data-driven and the control-driven. For the first category, positive natural numbers or positive

real numbers are added to the tuples; they are respectively called priorities and weights. The

choice of the selected tuple is based on the highest priority, or is probabilistically selected based

on the weight. For the control-driven approach, the same pieces of information are added to the

parallel operator. The most active state is then selected based on these pieces of information.

40

As the reader will appreciate in the next chapters, we shall introduce a notion of multiplicity

for Linda-like languages, similar to the above notions of priorities or probabilities. However,

several differences will be pointed out, one of which being the fact that we do not add an extra

attribute to the tuples.

Other developments of coordination languages have been proposed, for instance in the

domain of the introduction of temporal modalities in coordination languages. The arti-

cles [LJBB04, LJ04, LJ07, Lin07, JBB00, JL07, JL09, ILJ11] are examples of this trend, mainly

based on the so-called two-phase time approach.

The next chapter concentrates on the scientific material necessary to understand the thesis:

it details a version of Linda and Gamma and introduces our methodology to compare the

expressiveness of languages while applying it to versions of Linda and Gamma.

41

42

Chapter 3

Variants of Linda and Gamma

In order to subsequently introduce the languages we shall study in the thesis (both from the

design and the semantical points of view), this chapter introduces two simplified coordination

languages: a Linda-like one and a Gamma-like one. Both use tokens instead of tuples in the

aim of highlighting the core features of our work. We also introduce a methodology to compare

the expressiveness of languages and apply it on the coordination languages just introduced.

3.1 BachT and MRT: two coordination languages

We first consider a simplified version of a dialect of Linda, developed at the University of Namur,

named Bach (see [JL07]). This language is based on four primitives for accessing a tuple space.

The tell(t) primitive puts an occurrence of the tuple t on the tuple space. The ask(t) primitive

checks the presence of the tuple t on the tuple space while the nask(t) primitive checks its ab-

sence. Finally, the get(t) primitive removes an occurrence of the tuple t on the tuple space. It is

worth noting that the tell primitive always succeeds whereas the last three primitives suspend

as long as the presence/absence of the tuple t is not met. Moreover, the tuple space is seen as

a multiset of tuples, which naturally leaves room for multiple occurrences.

The simplified version we shall use is based on tokens instead of more structured tuples to

strenghten our focus on the coordination patterns. As a result, to further stress this point, we

shall use store for the corresponding tuple space, as it is actually composed of tokens. The

resulting language is subsequently denoted as BachT. It is formally defined as follows.

Definition 1. Let Stoken be an enumerable set, the elements of which are subsequently called

tokens and are typically represented by the letters t and u. Let define the set of stores Sstore

as the set of finite multisets with elements from Stoken.

43

Definition 2. Define the set T of the token-based primitives as the set of primitives Tb generated

by the following grammar:

Tb ::“ tellptq | askptq | getptq | naskptq

where t represents a token.

The second language is a Gamma-like one. As noted in chapter 2, this approach is inspired

by a chemical reaction metaphor, where the perception of the data is more global.

Gamma considers communication primitives as the rewriting of pre-condition multi-sets into

post-condition multi-sets. Intuitively, the operational effect of a multi-set rewriting (pre,post)

consists in inserting all the positive post-conditions, and in deleting all the negative post-

conditions from the current space σ, provided that σ contains all positive pre-conditions and

does not meet any of the negative pre-conditions. Formally, these rewritings are specified as

follows.

Definition 3. Define the set of multi-set rewriting primitives TMR as the set of primitives TMR

generated by the following grammar:

TMR ::“ ptMu, tMuq

M ::“ λ | ` t | ´ t | M,M

where λ indicates an empty multi-set and where t denotes a token.

It is worth observing that not all pairs of preconditions and postconditions correspond to

reasonable computations. Indeed, as stated above, it is possible to require in a precondition

that the same token is present and absent or to require in the postcondition the removal of a

token which has not been tested for presence in the precondition. We subsequently define such

reasonable pairs of pre- and post-conditions as respectively consistent and valid. To that end,

we first introduce some notations.

Definition 4. Given a multi-set rewriting pair pPre, Postq, denote by Pre` the multi-set

tt | ` t P Preu of tokens positively appearing in the precondition and by Pre´ the multi-set

tt| ´ t P Preu negatively appearing in it. Similarly, we shall denote by Post` and Post´ the

multiset of tokens appearing positively and negatively in the postcondition.

A multi-set rewriting pair (Pre,Post) is said to be consistent if Pre` X Pre´ “ H. It is

said to be valid if Post´ Ď Pre`.

A consequence of consistency and validity is that four basic pairs of pre- and post-conditions

can be put forward: pt`tu, tuq, pt´tu, tuq, ptu, t`tuq, pt`tu, t´tuq. They correspond respectively

to the askptq, naskptq, tellptq and getptq of the BachT language.

44

We are now in a position to define the two languages BachT and MRT. To grasp their com-

plete version, we shall define them by considering as complex agents the statements obtained

by combining them by the non-deterministic choice operator “`” (used among others in CCS),

the parallel operator, denoted by the “ || ” symbol, and the sequential operator, denoted by the

“ ; ” symbol. The formal definitions are as follows.

Definition 5. Define the BachT language as the extended set of agents A generated by the

following grammar:

A ::“ Tb | A ; A | A || A | A ` A

where Tb represents a token-based primitive, and where “ ; ”, “ || ” and “ ` ” denote the se-

quential, parallel and choice compositional operators.

Similarly we define the multi-set rewriting language MRT by taking consistent and valid

multi-set-based primitives TMR:

Definition 6. Define the MRT language as the extended set of agents generated by the following

grammar:

A ::“ TMR | A ; A | A || A | A ` A

where TMR represents a valid and consistent primitive as defined in definitions 3 and 4, and

where “ ; ”, “ || ” and “ ` ” denote the sequential, parallel and choice compositional operators.

Subsequently, we shall consider sublanguages formed similarly but by considering only sub-

sets of primitives. In that case, if H denotes such a subset, then we shall write the induced

sublanguages as LBpHq and LMRpHq. Moreover we shall abuse language and also note LB and

LMR for the super languages containining all the primitives. As an example, if H is the subset

containing the get and tell primitives, then the agents of LBpHq are those that combine the get

and tell primitives with the sequential, parallel and choice compositional operators. The agents

of LMRpHq are those that combine, with the same compositional operators, elementary agents

whose pre and post conditions obey to the correspondance mentioned after definition 4. For

instance, ({+t},{+u,-t}) is such an agent of LMRpttell, getuq whereas ({+t,-u},{+u,-t}) is not.

3.1.1 Transition system

To study our two languages, a semantics needs to be defined. To that end, we shall use an

operational one in the style of Plotkin ([Plo81]), based on a transition system. The configura-

tions to be considered consist of an agent, summarizing the current state of the agents running

45

pTq x tellptq | σ y ÝÑ x E | σ Y ttu y

pAq x askptq | σ Y ttu y ÝÑ x E | σ Y ttu y

pGq x getptq | σ Y ttu y ÝÑ x E | σ y

pNq
t R σ

x naskptq | σ y ÝÑ x E | σ y

Figure 3.1: Transition rules for token-based primitives (BachT)

on the store, and a multi-set of tokens, denoting the current state of the store. In order to

express the termination of the computation of an agent, we extend the set of agents by adding a

special terminating symbol E that can be seen as a completely computed agent. For uniformity

purpose, we abuse the language by qualifying E as an agent. To meet the intuition of this

terminating agent E, we shall always rewrite agents of the form (E;A), (E || A) and (A || E)

as A. This is technically achieved by defining the extended sets of agents as LB Y tEu and

LMR Y tEu, and by justifying the simplifications by imposing a bimonoid structure.

Figure 3.1 specifies the transition rules for the primitives of the BachT language. The first

rule (T) expresses that an atomic agent tell(t) can be executed in any store σ, and that its action

has the effect of adding the token t to the same store. The second rule (A) states that an atomic

agent ask(t) can be executed in any store σ containing the token t, however leaving the store σ

unaltered after its execution. The third rule (G) works similarly to the previous rule (A), but

with the difference of retrieving the token t initially present on the store σ after the execution of

the agent get(t). Finally, the fourth rule (N) establishes that an atomic agent nask(t) can be ex-

ecuted in any store σ not containing the token t, leaving the store σ unaltered after its execution.

For MRT, the semantics is also defined by a transition system. It turns out that it is possible

to define it by one rule. To express it, an auxiliary notion is however needed. It extends the

notations of definition 4 to capture the fact that, for each token, the tokens mentioned negatively

in the definition are not with their multiplicity on the current store σ.

46

pCMq

pre` Ď σ, pre´K σ,

σ1 “ pσz post´q Y post`

xppre, postq | σy ÝÑ xE | σ1y

Figure 3.2: Transition rules for multi-set rewriting-based primitives (MR)

pSq
xA | σy ÝÑ xA1 | σ1y

xA ; B | σy ÝÑ xA1 ; B | σ1y

pPq

xA | σy ÝÑ xA1 | σ1y

xA || B | σy ÝÑ xA1 || B | σ1y

xB || A | σy ÝÑ xB || A1 | σ1y

pCq

xA | σy ÝÑ xA1 | σ1y

xA ` B | σy ÝÑ xA1 | σ1y

xB ` A | σy ÝÑ xA1 | σ1y

Figure 3.3: Transition rules for the operators

Definition 7. For any token t, define Pre´rts as the multiset of negatively marked tokens t in

the precondition Pre:

Pre´rts “ tt : ´t P Pre´u.

Given a precondition Pre and a store σ, we then define the non element-wise inclusion operator

K as follows:

Pre´K σ iff Pre´rts Ę σ, for any token t.

With this notation, rule (CM) of Figure 3.2 states that a multi-set rewriting pPre, Postq can

be executed in a store σ if the multi-set Pre` is included in σ and if no negative pre-condition

occurs with the required multiplicity in σ. Under these conditions, the effect of the rewriting is

to delete from σ all the negative post-conditions and to add to σ all the positive post-conditions.

Finally, figure 3.3 details the usual rules for sequential composition, parallel composition,

interpreted in an interleaved fashion, and CCS-like choice.

The first rule (S) describes the sequential composition of two agents A and B. If the agent A

makes a first step to A1, transforming the store σ in a store σ1, then the global composition moves

to A1 followed by B, with σ1 as resulting store. If A terminates successfully, the composition

47

is written E ; B which is equal to B. Intuitively, this means that the second agent B will only

compute after the full execution of the first agent A. Rule (P) describes the parallel composition

of two agents A and B, which is computed in an interleaved way. At every moment one of the

two agents may compute, but not both synchronously. After a first step of execution of agent

A, both compositions pA1 || Bq and pB || A1q indicate that A1 and B must continue their

computation in a parallel way. The succesful execution of the global agent A || B is reached

when all of its components have finished their own computation. Finally transition rule (C)

indicates that a choice between two agents A and B must compute like either A or B , but only

one of them, and that the alternative is chosen in view of the first step.

3.1.2 Observables and operational semantics

We are now in a position to define what we want to observe from the computations. Following

previous work of the Namur research team on coordination (see eg [BJ99, BJ03a, BJ03b, LJ04,

LJ07, LJBB04]), we shall actually take an operational semantics recording the final state of the

computations. This is understood as the final store coupled to a mark indicating whether the

considered computation is successful or not. Such marks are respectively denoted as δ` (for the

successful computations) and δ´ (for failed computations). The following definition is valid for

BachT and for MRT.

Definition 8.

1. Let δ` and δ´ be two fresh symbols denoting respectively success and failure. Define the

set of computations Scomp as the cartesian product Sstoreˆ tδ`, δ´u.

2. Define the operational semantics O : LB Ñ PpScompq as the following function: for any

agent A P LB

OpAq “ tpσ, δ`q : xA|Hy Ñ˚ xE|σyu

Ytpσ, δ´q : xA|Hy Ñ˚ xB|σy Û, B ‰ Eu

where Ñ˚ denotes the transitive closure of Ñ and where Û denotes the absence of a

transition step.

3.2 Expressiveness study

Since the beginning of Computer Science, thousands of programming languages have been

invented. They are considered equivalent as they express the same class of functions: the

recursive ones. But despite this first property, among them, some are considered to be more

48

L1

L

O1
s

Os

C

S1

D

S

Figure 3.4: Basic embedding.

powerful regarding their capability to express control and data structures. This has induced in

the field of sequential languages a line of research, with the goal of formalizing the notion of

“power” for a language, with regards to other languages. This “language power” is commonly

expressed on the basis of the expressibility or non-expressibility of programming constructs.

In this section, we introduce the notion of modular embedding and use it to compare the

different sublanguages of BachT and MRT.

3.2.1 Expressiveness and modular embedding

For comparing the expressiveness of languages, a natural way is to determine whether all pro-

grams written in one language can be easily and equivalently translated into the other language.

According to this intuition, Shapiro introduced in [Sha92] a first notion of embedding as follows.

Consider two languages L and L1. Assume given the semantic mappings (Observation criteria)

S : L Ñ Os and S1 : L1 Ñ O1
s, where Os and O1

s are on some suitable domains (typically set of

sets of elements). Then L can embed L1 if there exists a mapping C (coder) from the statements

of L1 to the statements of L, and a mapping D (decoder) from Os to O1
s, such that the diagram

of Figure 3.4 commutes, namely such that DpSpCpAqqq “ S1pAq for every statement A P L1.

This basic notion of embedding turns out however to be too weak since, for instance, the

above equation is satisfied by any pair of Turing-complete languages. De Boer and Palamidessi

hence proposed in [dBP94] to add constraints on the coder C and on the decoder D in order to

obtain a notion of a modular embedding usable for concurrent languages. Adopting their work

and following previous research in Namur [BJ98, BJ03a, BJ03b, LJ04, LJBB04, LJ07, Lin07],

we shall define these constraints as follows:

1. D should be defined in an element-wise way with respect to Os, namely for some appro-

priate mapping Del

DpXq “ tDelpxq | x P Xu for any X P Os (P1)

49

2. the coder C should be defined in a compositional way with respect to the sequential,

parallel and choice operators:

CpA ; Bq “ CpAq ; CpBq
CpA || Bq “ CpAq || CpBq

CpA ` Bq “ CpAq ` CpBq
(P2)

3. the embedding should preserve the behavior of the original processes with respect to fail-

ure and success (termination invariance):

tm1pDelpxqq “ tmpxq for any X P Os and x P X pP3)

where tm and tm’ extract the termination information (δ` or δ´) from the observables

of L and L1, respectively.

Note that the original formulation of [dBP94] does not impose in P2 the compositionality

property for the sequential operator.

An embedding is then called modular if it satisfies properties P1, P2, and P3. The existence

of a modular embedding from L1 into L is subsequently denoted by L1 ď L. It is easy to prove

that ď is a pre-order relation. Moreover if L1 Ď L then L1 ď L that is, any language embeds

all its sublanguages. This property descends immediately from the definition of embedding, by

setting C and D equal to the identity function.

3.2.2 Main results

In [BJ03a, BJ03b, BJ98], Jacquet and Brogi have studied the expressiveness hierarchies of,

among others, the different sublanguages of Bach, of a Multi-Set Rewriting language similar

to MRT, and the relation between these two families of coordination languages. Figure 3.5

summarizes the separation and equivalence results they obtained in the comparison of the

relative expressive power between the different non-trivial sublanguages that can be formed with

the primitives tell, ask, nask and get. In a similar way, Figure 3.6 summarizes the expressiveness

relations they obtained between the different sublanguages of Bach with the sublanguages of

the Multi-Set Rewriting formalism.

In these figures, an arrow from language L1 to language L2 means that L2 embeds L1, that

is L1 ď L2. If there is no arrow in the other direction, i.e, from L2 to L1 then L1 is strictly

less expressive than L2, which is noted L1 ă L2. Moreover, if L1 ę L2 and L2 ę L1 then the

50

LB(nask, get, tell)

LB(ask, nask, get, tell)

LB(ask, nask, tell)
LB(get, tell)

LB(ask, get, tell)

LB(nask, tell) LB(ask, tell)

LB(tell)

Figure 3.5: Embedding hierarchy of BachT Languages.

LMRpnask, get, tellq

LMRpask, nask, get, tellq

LMRpask, nask, tellq
LB(nask, get, tell)

LB(ask, nask, get, tell)

LMRpget, tellq

LMRpask, get, tellq

LMRpnask, tellq LB(ask, nask, tell)
LB(get, tell)

LB(ask, get, tell)
LMRpask, tellq

LB(nask, tell) LB(ask, tell)

LB(tell)

LMRptellq

Figure 3.6: Integrated embedding hierarchy of BachT and MRT languages.

languages are incomparable and no relation is drawn in the figures. This is denoted below by

L1 ≀ L2.

It is worth noting that Figures 3.5 and 3.6 are similar in their structures. This indicates that

the hierarchy of the different sublanguages inside the BachT and the MRT families is preserved

in the same way. Nevertheless, except for the sublanguages reduced to a tell primitive, it is

also worth observing that the MRT sublanguages are strictly more expressive than their BachT

counterparts. This is due to the capacity of MRT to manipulate atomicaly different tokens.

Expressiveness results will constitute an important part of our work. To provide a back-

ground for these results we present in the following subsections several key reasonings used by

Jacquet and Brogi in [BJ03a, BJ03b, BJ98]. A complete development is provided in annex (see

in sections A.1 and A.2 of Chapter A).

51

3.2.3 General patterns

We start by pointing out three general patterns. The first one consists in observing that any

language embeds its sublanguages.

Generic pattern 1 (Sublanguage inclusion). If L1 Ď L then L1 ď L.

Proof. This property descends immediately from the definition of embedding, by setting C and

D equal to the identity function.

Transitivity constitutes a second pattern.

Generic pattern 2 (Transitivity). If L1 ď L2 and L2 ď L3 then L1 ď L3

Proof. Indeed if C12 and D12 denote the coder and decoder for the embedding of L1 in L2 and

C23 and D23 the coder and decoder for the embedding of L2 in L3, then C23 ˝C12 and D12 ˝D23

are the coder and decoder that establish the embedding of L1 in L3.

This property can be used by contraposition to establish the non existence of an embedding.

Generic pattern 3 (Non embedding by transitivity). If L1 ď L2 and L1 ę L3 then L2 ę L3

Proof. Indeed, if L2 ď L3 then, thanks to the fact that L1 ď L2, the transitivity pattern leads

to the conclusion that L1 ď L3, which contradicts the second hypothesis.

3.2.4 Expressiveness relations between the BachT sublanguages

Considering the four primitives tell, ask, nask and get, it seems logical to classify the proofs

as follows. First we consider the sublanguages that provide tokens in the store with the tell

primitive, and that question the store about the presence or absence of tokens on it, respectively

with the ask and nask primitives. Then we enrich the language with a get primitive, that permits

to retrieve tokens from the store. Finally we consider all the languages that combine the get

primitive with the ask and nask primitives.

3.2.4.1 Sublanguages

As a first result, by sublanguage inclusion (pattern 1), a number of modular embeddings are

directly established.

52

Proposition 1. LBp ψq ď LBp χq, for any subsets of ψ,χ of primitives such that ψ Ď χ.

3.2.4.2 Checking for presence and/or absence when adding tokens

The language LBptellq is strictly less expressive than LBpask,tellq.

Proposition 2. LBptellq ă LBpask,tellq

Proof. The proof takes advantage of proposition 1 to establish that LBptellq ď LBpask,tellq and

uses a contradiction technique to establish that LBpask,tellq ę LBptellq. Indeed considering the

agent askptq with Opaskptqq “ tpH, δ´qu, a contradiction arises by property P3 of termination

invariance, as any agent in LBptellq has only successful computations.

Similarly, the language LBptellq is strictly less expressive than LBpnask,tellq.

Proposition 3. LBptellq ă LBpnask,tellq

Proof. The technique of the proof is analogous to the one of proposition 2. In particular the

contradiction is established by considering the failing behaviour of the agent tellptq ; naskptq,

whereas any agent in LBptellq has only successful computations.

The two sublanguages LBpask,tellq and LBpnask,tellq are not comparable with each other.

Proposition 4. LBpask,tellq ≀ LBpnask,tellq

Proof. (i) On the one hand, LBpask,tellq ę LBpnask,tellq can be established by contradiction

by considering the agent A “ tellptq ; askptq, for which one has OpAq “ tpttu, δ`qu and for

which it is possible to establish that, for any coder C, the coded agent CpAq has only failing

computations. The proof of this fact is particularly interesting since it evidences the property

that, under some hypothesis, failing computations from the empty store can also be repeated

from an non-empty store. In our case, as Opaskptqq “ tpH, δ´qu, any computation of Cpaskptqq

starting on the empty store fails. As Cpaskptqq is composed of nask and tell primitives, this

can only occur by having a nask primitive preceded by a tell primitive. As enriching the initial

content of the store leads to the same result, any computation starting on any (arbitrary)

store fails. As a consequence, even if Cptellptqq has a successful computation, this computation

cannot be continued by a successful computation of Cpaskptqq. Consequently any computation

of Cptellptq; askptqq fails, which produces the announced contradiction.

(ii) On the other hand, LBpnask,tellq ę LBpask,tellq is established similarly but, this time,

by lifting successful computations on the empty store to successful computations on a non-

empty store. More concretely, assume a coder C and consider A “ tellptq ; naskptq. One has

OpAq “ tpttu, δ´qu. By P3, the agent CpAq fails, whereas we shall establish that it has a

53

successful computation. Indeed, since Optellptqq “ tpttu, δ`qu, any computation of Cptellptqq

starting on the empty store is successful. Similarly, it follows from Opnaskptqq “ tpH, δ`qu

that any computation of Cpnaskptqq starting on the empty store is successful. Consequently,

so does any computation starting from any store, since Cpnaskptqq is composed of ask and tell

primitives. Summing up, any (successful) computation of Cptellptqq starting on the empty store

can be continued by a (successful) computation of Cpnaskptqq, which leads to the announced

contradiction.

It is here worth noting that the reasoning used in the second part of proposition 4 can

be used for establishing that LBpnask,tellq ę LBpget,tellq, which is the result of proposition 8.

Indeed, replacing ask by get in the LBpask,tellq sublanguage does not change the fact that, with

Opnaskptqq “ tpH, δ`qu, any computation of Cpnaskptqq is successful starting from any store.

This then insures that any successful computation of Cptellptqq can be followed by a successful

computation of Cpnaskptqq, this leading to an obvious contradiction.

Let us now consider the language Lpask, nask, tellq. The two next following propositions

establish that it is strictly more expressive than both Lpnask, tellq and Lpask, tellq.

Proposition 5. LBpnask,tellq ă LBpask,nask,tellq

Proof. (i) On the one hand, LBpnask,tellq ď LBpask,nask,tellq directly results from proposi-

tion 1. (ii) On the other hand, LBpask,nask,tellq ę LBpnask,tellq is established by pattern 3

on non embedding by transitivity.

The proof of proposition 6 is established in a similar way to the proof of proposition 5.

Proposition 6. LBpask,tellq ă LBpask,nask,tellq

3.2.4.3 Retrieving tokens from the store

The next important step in the exploration of the different sublanguages is the introduction of

the get primitive. The first result is that LBpask,tellq is strictly less expressive than LBpget,tellq.

Proposition 7. LBpask,tellq ă LBpget,tellq

Proof. (i) As done in [BJ98], the fact that LBpask,tellq ď LBpget,tellq can be established by

translating any askptq primitive as getptq ; tellptq.

(ii) On the other hand and as done in [BJ98], it is possible to establish that LBpget,tellq ę

LBpask,tellq by contradictory reasoning. However, differently from [BJ98], this contradiction

can be put forward by repeating part of the coding of an agent, while keeping the success of

the computation whereas this repetition leads to failure at the non-coded level. More con-

cretely, assume a coder C and consider A = tellptq ; getptq. One has OpAq “ tpH, δ`qu. By

54

P2 and P3, any computation of OpCptellptqq ; Cpgetptqq is thus successful. Such a computa-

tion is composed of a computation for Cptellptqq followed by a computation for Cpgetptqq. As

Cpgetptqq is composed of ask and tell primitives and since ask and tell primitives do not de-

stroy elements, this latter computation can be repeated, which yields successful computations

for OpCptellptqq ; Cpgetptqq ; Cpgetptqqq. However, Optellptq ; getptq ; getptqq “ tpH, δ´qu, which

leads to the contradiction.

It is worth observing that the reasoning used in the second part of proposition 7 can be

extended to establish that LBpget,tellq ę LBpask,nask,tellq, which is part of proposition 10.

Indeed, the same agent A “ tellptq ; getptq has now to be coded not only with primitives tell

and ask, but also with nask. Nevertheless, the presence of the nask primitive can be dealt with

by replacing the sequential composition of get(t) with itself, by a parallel composition, and by

mimicking each step of Cpgetptqq in the computation of the other instance of Cpgetptqq. This

proof method is also different from the one developped in [BJ98]. This technique will also be

used in proposition 27 of section 3.2.5.

The second important result is that LBpnask,tellq and LBpget,tellq are not comparable with

each other.

Proposition 8. LBpnask,tellq ≀ LBpget,tellq

Proof. The proposition directly results, on the one hand, from the same reasoning employed in

the second part of proposition 4 and, on the other hand, from pattern 3 coupled to proposition 4.

Without big surprise, by coding any ask primitive as a sequence of get followed by tell, the

sublanguages LBpget,tellq and LBpask,get,tellq appear to be equivalent.

Proposition 9. LBpget,tellq “ LBpask,get,tellq

The next proposition establishes that LBpget,tellq is not comparable with LBpask,nask,tellq.

Proposition 10. LBpask,nask,tellq ≀ LBpget,tellq

Proof. (i) On the one hand, LBpask,nask,tellq ę LBpget,tellq is established, as in [BJ98], by

pattern 3 of non embedding by transitivity.

(ii) On the other hand, LBpget,tellq ę LBpask,nask,tellq may be established by contradic-

tion, similarly to the second part of proposition 7, by replacing the sequential composition of

the two getptq primitives by a parallel one, in order to cope with the potential presence of nask

primitives. As the careful reader will have noticed, this proof technique is different from the

one used in [BJ98].

55

3.2.4.4 Checking for presence and/or absence when adding and/or retrieving to-

kens

The first observation is that the introduction of nask to LBpget,tellq increases the expressive

power of the new sublanguage. The proof methods of both parts are similar to those employed

previously and are thus not repeated here.

Proposition 11. LBpget,tellq ă LBpnask,get,tellq

LBpnask,get,tellq and LBpask,nask,get,tellq are equivalent. One of the proof method used

in [BJ98] to establish this result are worth stressing here. They highlight the fact that a token

can be coded by two tokens, thanks to the enumerably property of tokens.

Proposition 12. LBpnask,get,tellq “ LBpask,nask,get,tellq

Proof. (i) On the one hand, LBpnask,get,tellq ď LBpask,nask,get,tellq is established by propo-

sition 1 on language inclusion.

(ii) On the other hand, to establish LBpask,nask,get,tellq ď LBpnask,get,tellq we shall pro-

vide a coder such that the coding of the primitives askptq and naskptq manipulate different

tokens.

As the set of tokens is denumerable, it is possible 1 to associate each of them, say t, to a

pair pt1, t2q. Given such a coding of tokens, we define the compositional coder C as follows:

Cpaskptqq “ getpt2q ; tellpt2q

Cpnaskptqq “ naskpt1q

Cpgetptqq “ getpt2q ; getpt1q

Cptellptqq “ tellpt1q ; tellpt2q

The decoder D is defined as follows: Delppσ, δqq “ pσ, δq, where σ is composed of the tokens t

for which t1 and t2 are in σ, the multiplicity of t being that of pairs pt1, t2q in σ.

With those definitions of the coder C and the decoder D, properties P1 of element-wise

and P2 of compositionality are guaranteed. It remains to establish property P3 of termination

invariance and that OpAq “ DpOpCpAqqq for any agent A of LBpask,nask,get,tellq. The proof

consists of establishing that for any agent A and stores σ and τ :

1. xA|σy Ñ˚ xE|τy iff xCpAq|σy Ñ˚ xE|τy

2. there is some agent B such that xA|σy Ñ˚ xB|τy Û with B ‰ E

iff there is some agent B1 P LBpnask,get,tellq such that xCpAq|σy Ñ˚ xB1|τy Û

This is proved by induction on the structure of the agent.

1for instance it suffices to associate the token associated with the integer n to the tokens associated with the

integers 2n and 2n+1

56

Finally, as in [BJ98], it is possible to prove that LBpnask,get,tellq is strictly less expressive

than LBpask,nask,get,tellq. The proof does not highlight any new reasoning and is thus not

repeated here.

Proposition 13. LBpask,nask,tellq ă LBpask,nask,get,tellq

3.2.5 BachT in comparison with MRT

In [BJ99, BJ03b], BachT has also been compared to a multi-set rewriting language (MRT).

However, it is worth observing that the version of MRT that we consider in this thesis is

actually more expressive than the one studied by Brogi and Jacquet. Indeed, in their work,

a negatively annotated token t in a pre-condition is seen as stating that t is absent from the

store. Under that interpretation, it makes a priori no sense to consider two or more occurrences

of t negatively marked. However, our work on multiplicity of tokens sheds a new light for a

new interpretation. Indeed, as introduced in definition 7, specifying n occurrences of ´t in a

pre-condition allows t to appear on the store but with a multiplicity strictly less than n. The

interpretation used by Jacquet and Brogi follows as a particular case by using n “ 1. However,

no counterpart for n ą 1 can be found in [BJ99, BJ03b], which leads our language variant to

be strictly more powerful.

Nevertheless, the techniques used in [BJ99, BJ03b] to establish the expressiveness results

can also be directly reused to establish the same expressiveness results for our version of MRT.

Following what we did for BachT, we will only subsequently sketch the main reasonings. The

interested reader is referred to appendix A where all the expressiveness results are established,

evidencing thereby that the results of [BJ99, BJ03b] transpose to our MRT language.

In these lines, as a complement to the three patterns listed in subsection 3.2.2, two additional

patterns are worth being made explicit. Before presenting them, it is first necessary to define

what we shall call a normal form. As pointed out among others in [BJ98, BJ99, Lin07], a

classical result of concurrency theory is that modeling parallel composition by interleaving, as

we do, allows agents to be considered in a normal form. We first define what this actually

means, and then state the proposition that agents and their normal forms are equivalent in the

sense that they yield the same computations.

Definition 9. The set Snagent of agents in normal form is defined by the following rule, where

N is an agent in normal form, C denotes a communication action as defined by syntactic rules

57

in definitions 2 and 5 for BachT and definitions 3 and 6 for MRT and A is an agent as defined

in these definitions.

N ::“ C | C ; A | N ` N

This normal form is similar to the one proposed in the expansion theorem of Milner. Note

that the main idea of the normal form is to make explicit the first primitive steps as well as the

choices for these first steps. It is also worth observing that parallel composition does not appear

explicitly in the grammar rule of definition 9. In fact it can only appear through the agent A.

As a result, tellptq || tellpuq has to be rewritten as tellptq ; tellpuq ` tellpuq ; tellptq, which has

indeed the effect of pointing out the choices of primitives steps to be made in the computation

of tellptq || tellpuq. Other examples of normal forms are

tellptq ; paskpuq ` getpvqq

and

tellptq ; getpuq ` naskpvq ; ptellpwq ` tellpuqq

Proposition 14. For any agent A of BachT or MRT there is an agent in normal form N such

that O(N) = O(A).

Generic pattern 4 (Presence). In this pattern, the coded version of an agent expressed in a

multi-set rewrited form is written in a normal form. The key point of the demonstration con-

sists in proving that no alternative in this normal form exists, reducing the coder to an empty

statement. This is in contradiction with definition 6 which forces agents to contain at least one

primitive and thus to be non empty.

Generic pattern 5 (Absence). In this pattern, the coded version of any token results in the

association of a finite set of tokens. The proof works by contradiction. It supposes the existence

of a coder C, and associates to any tokens x and y their coded images, consisting in the finite

sets of tokens Sx and Sy respectively. The key point of the demonstration establishes on the

one hand that either there exist two tokens a and b such that Sa X Sb “ H, in which case a

contradiction can be produced directly, or that there is a token a for which any other token b

is such that Sa X Sb ‰ H. In that case, a series of tokens xi can be constructed, out of which a

contradiction arises.

In a way similar to the presentation of the main results of expressiveness relation between

the different sublanguages of BachT, the results of the comparison between BachT and the

multi-set rewriting language MRT are subsequently grouped together according to a logical

introduction of the different primitives. The first step consists in allowing to place tokens on

58

the store, with the tell primitive. The second step introduces ask and nask primitives, allowing

to question the store about the presence or absence of tokens on it. The third step introduces

the get primitive, for retrieving tokens from the store. Finally, the last propositions tackle all

the primitives. As before, we shall only detail proofs which contain interesting techniques and

refer the reader to annex A for a complete set of proofs.

3.2.5.1 Sublanguages

As a first result, in view of the correspondence between MRT primitives and their BachT coun-

terparts (see section 3.1, definition 4 and consequence), it is possible to establish that any

sublanguage of BachT is embedded in its correspondig sublanguage in MRT.

Proposition 15. LBp χq ď LMRp χq, for any subset of χ of primitives.

3.2.5.2 Putting tokens on the store

Proposition 16. LBptellq and LMRptellq are equivalent.

As a result of the expressiveness hierarchy studied in the previous section, and illustrated

in figure 3.5, it follows that both languages LBpask,tellq and LBpnask,tellq are strictly more ex-

pressive than LMRptellq since both have been established strictly more expressive than LBptellq.

Let us now introduce the ask and nask primitives. The next section compares the different

sublanguages between the BachT language and the multi-set rewriting.

3.2.5.3 Checking for presence and/or absence when adding tokens

The first proposition compares LBpask,tellq with its multiset counterpart.

Proposition 17. LBpask,tellq ă LMRpask,tellq

Proof technique 1. This method of demonstration is used to prove other propositions as well,

namely the propositions 22, 23, 24 and 30 respectively demonstrating that LMRpask,tellq ę

LBpget,tellq, LMRpask,tellq ę LBpnask,get,tellq, LMRpask,tellq ę LBpask,nask,tellq and

LMRpget,tellq ę LBpget,tellq. Indeed, in each case the intuition is that every BachT language in

those propositions is unable to atomically test the presence of two tokens. The demonstration

follows the same steps: an agent is expressed in a multi-set way, that expresses the simultaneous

59

testing of presence, or simultaneous retrieve of some tokens. The coded version of these agents

are expressed in a normal form and the technique of demonstration consists in establishing by

contradiction that none of the alternatives in these normal forms exist, which is impossible

since the coded version must contain at least one primitive, following definition 6. This method

inscribes itself in the pattern 4 of presence.

More concretely, given that LBpask,tellq ď LMRpask,tellq follows directly from propo-

sition 15, let us establish that LMRpask,tellq ę LBpask,tellq by contradiction. Consider

AB “ pt`a,`bu, tuq and assumes that CpABq is in normal form (see definition 9) and thus

is written as

tellpt1q;A1 ` ¨ ¨ ¨ ` tellptpq;Ap ` askpu1q;B1 ` ¨ ¨ ¨ ` askpuqq;Bq

In this expression, we will establish that there is no alternative guarded by a tellptiq operation

and no alternative guarded by an askpujq operation either, which is impossible since CpABq

must contain at least one primitive.

Let us first establish by contradiction that there is no alternative guarded by a tellptiq

operation. Indeed, if there is an alternative guarded, say by tellptiq, then

D “ xCpABq|Hy Ñ xAi|tiy

is a valid computation prefix of CpABq. It should deadlock afterwards since OpABq “ pH, δ´q.

However D is also a valid computation prefix of CpAB` ptu, t`auqq. Hence, CpAB` ptu, t`auqq

admits a failing computation which contradicts the fact that OpAB ` ptu, t`auqq “ tptau, δ`qu.

Secondly, we establish that there is also no alternative guarded by an askpujq operation. To

that end, let us first consider two auxiliary computations. As Opptu, t`auqq “ tptau, δ`qu, any

computation of Cpptu, t`auq starting in the empty store succeeds. Let

xCpptu, t`auqq|Hy Ñ ¨ ¨ ¨ Ñ xE|ta1, . . . , amuy

be such a computation. Similarly, let

xCpptu, t`buqq|Hy Ñ ¨ ¨ ¨ Ñ xE|tb1, . . . , bnuy

be one computation of Cpptu, t`buqq. The proof of the claim proceeds by first establishing that

none of the ui’s belong to ta1, . . . , amu Y tb1, . . . , bnu.

First let us prove that none of the uj ’s belong to ta1, . . . , amu. By contradiction, assume

that ui “ ak for some k. Then

D1 “ xCpptu, t`auq;ABq|Hy Ñ ¨ ¨ ¨ Ñ xAB|ta1, . . . , amuy Ñ xBj|ta1, . . . , amuy

is a valid computation prefix of Cpptu, t`auq;ABq, which can only be continued by failing suf-

fixes. However D1 induces the following computation prefix D2 for ptu, t`auq; pAB`pt`au, tuqq

60

which as just seen admits only successful computations:

D2 “ xCpptu, t`auq; pAB ` pt`au, tuqqq|Hy Ñ . . .

Ñ xAB ` pt`au, tuq|ta1, . . . , amuy Ñ xBj |ta1, . . . , amuy

The proof proceeds similarly in the case some uj P tb1, . . . , bnu for some j P t1, . . . , qu by then

considering ptu, t`buq;AB and ptu, t`buq; pAB ` pt`bu, tuqq.

Finally, the fact that the u1
js do not belong to ta1, . . . , amu Y tb1, . . . , bnu induces a contra-

diction. Indeed, if this is the case, then

xCpptu, t`auq; ptu, t`buq;ABq|Hy Ñ . . .

Ñ xptu, t`buq;ABq|ta1 , . . . , amuy Ñ

¨ ¨ ¨ Ñ xAB|ta1, . . . , am, b1, . . . , bnuy Û

is a valid failing computation prefix of Cpptu, t`auq; ptu, t`buq;ABq whereas

ptu, t`auq; ptu, t`buq;AB has only one successful computation.

Symmetrically to proposition 17, LBpnask,tellq is strictly less expressive than

LMRpnask,tellq. In order to establish this result, we first introduce the following lemma.

Lemma 1. Let f : Stoken Ñ Pf pStokenq be a function associating each token with a finite set

of tokens. Assume that fpaq X fpbq ‰ H, for any pair of distinct tokens a and b. Then there is

a denumerable sequence of distinct tokens xi’s and an integer N such that

N
č

i“1

fpxiq ‰ H

and
N
č

i“1

fpxiq “
N
č

i“1

fpxiq X fpxjq

for any j ą N .

Proof. The proof of this technical lemma has been established in [BJ03b], to which we refer the

reader. The intuition of the lemma is as follows. For any token t handled in a primitive, the

execution of the coding of the associated tell(t) primitive induces a coding of the token, in the

form of a finite set of tokens. If for any pair of distinct tokens, the intersection of the induced

codings is not empty, then for a denumerable sequence of distinct tokens, only a subsequence

will share a common intersection, while the remaining tokens of the sequence will share the

same intersection.

Let us now establish that LBpnask,tellq is strictly less expressive than LMRpnask,tellq.

61

Proposition 18. LBpnask,tellq ă LMRpnask,tellq.

Proof technique 2. This method of demonstration is also used to prove other propositions,

namely the propositions 21, and 26, where we respectively demonstrate that LMRpnask,tellq ę

LBpask,nask,tellq and LMRpnask,tellq ę LBpnask,get,tellq. The proof follows the same two

steps: on the one hand it considers that the codings Sa and Sb of two tokens a and b share

no elements, and on the other hand, it considers the contrary, i.e. that the codings share at

least one common element. In both cases, those two hypotheses produce a contradiction for

a certain agent, reducing the coding of this last one to an empty statement. Note that for

proposition 21 the presence of the nask primitives in the considered BachT languages imposes

to use the parallel operator to build the coding of some primitives. This corollary inscribes

itself in pattern 5 of absence.

More concretely, given that LBpnask,tellq ď LMRpnask,tellq holds by proposition 15, let us

establish that LMRpnask,tellq ę LBpnask,tellq by assuming the existence of a coder C, and by

establishing that it contains in fact no primitive, while it has to contain at least one.

The proof is similar to part (ii) of proposition 17, but this time by exploiting the inability

of LBpnask,tellq to atomically test the absence of two distinct tokens a and b, following the

schema of pattern 5 of absence.

To do so the construction of the tokens ta1, . . . , amu and tb1, . . . , bnu associated with the

coding of a and b is generalized by the definition of a function f : Stoken Ñ Pf pStokenq,

associating with each token a finite set of tokens.

For any token t, as Opptu, t`tuqq “ tpttu, δ`qu, any computation of Cpptu, t`tuqq starting in

the empty store succeeds. Let xpptu, t`tuqq|Hy Ñ ¨ ¨ ¨ Ñ xE|tt1, . . . , tmtuy be such a computation

and let St denote the resulting store tt1, ¨ ¨ ¨ , tmtu.

Then the proof of the claim proceeds by examining two cases: (I) either there exist two

(distinct) tokens a and b such that Sa X Sb “ H, (II) or Sa X Sb ‰ H for any pair of (distinct)

tokens a and b.

CASE I: Let us first suppose that there are two tokens a and b such that Sa XSb “ H. One

considers AB “ pt´a,´bu, tuq and CpABq in its normal form:

tellpv1q ; A1 ` ¨ ¨ ¨ ` tellpvpq ; Ap ` naskpu1q ; B1 ` ¨ ¨ ¨ ` naskpuqq ; Bq

The proof then proceeds by establishing that there are no alternatives guarded by tellpviq nor

by naskpujq. The absence of alternative guarded by a tellpviq primitive is established as in

part (ii) of proposition 17: if this was not the case, then AB would point out a deadlocking

computation for ptu, t`auq; pAB ` ptu, t`auqq which only admits successful computations. To

prove the absence of alternatives guarded by a naskpujq primitive, one establishes that the uj ’s

should belong to Sa and to Sb, which is impossible since Sa XSb “ H. By contradiction, assume

62

that uj R Sa for some j (the case where uj R Sb is treated similarly). Then

xCpptu, t`auq ; ABq | Hy ÝÑ ¨ ¨ ¨ ÝÑ xCpABq | Say ÝÑ xBj | Say

is a valid computation prefix of Cpptu, t`auq ; ABq which can only be continued by

failing suffixes. However, this prefix induces the following computation prefix D1 for

Cpptu, t`auq ; pAB ` ptu, t`auqq which should only admit successful computations:

xCpptu, t`auq ; pAB ` ptu, t`buqqq | Hy ÝÑ ¨ ¨ ¨

ÝÑ xAB ` ptu, t`buq | Say ÝÑ xBj | Say

CASE II: Let us now suppose that Sa XSb ‰ H for any pair of tokens a and b. As proved by

Lemma 1, it is possible to construct an infinite sequence of distinct tokens xi’s and to identify

an integer n such that
n

č

i“1

Sxi
‰ H

and
n

č

i“1

Sxi
“

n
č

i“1

Sxi
X Sxj

for any j ą n. Let us consider NT “ pt´x1, ¨ ¨ ¨ ,´xnu, tuq and CpNT q in its normal form

tellpv1q ; A1 ` ¨ ¨ ¨ ` tellpvpq ; Ap ` naskpu1q ; B1 ` ¨ ¨ ¨ ` naskpuqq ; Bq

By using a reasoning similar to the one employed for case I, one may prove that there are no

alternatives guarded by a tellpviq primitive and that tu1, ¨ ¨ ¨ , uqu Ď Sx1 X ¨ ¨ ¨ X Sxn . Therefore

Cpptu, t`xn`1uq ; NT q has a failing computation since Sx1 X ¨ ¨ ¨ XSxn XSxn`1 “ Sx1 X ¨ ¨ ¨ XSxn

and thus tu1, ¨ ¨ ¨ , uqu Ď Sx1 X ¨ ¨ ¨ X Sxn Ď Sxn`1 . However, this contradicts the fact that

ptu, t`xn`1uq ; NT has only one successful computation.

In conclusion, CpABq reduces to an empty statement, which is not possible since it should

contain at least one primitive.

LMRpask,tellq and LBpnask,tellq are not comparable with each other and so are LMRpnask,tellq

and LBpask,tellq.

Proposition 19. LMRpask,tellq ≀ LBpnask,tellq

Proposition 20. LMRpnask,tellq ≀ LBpask,tellq

The fact that LBpask,nask,tellq and LMRpnask,tellq are not comparable with each other can

be established by using the same proof technique as for proposition 18.

Proposition 21. LBpask,nask,tellq ≀ LMRpnask,tellq

63

3.2.5.4 Retrieving tokens from the store in the BachT language

By using previous reasoning patterns, the sublanguage LBpget,tellq is not comparable with the

sublanguage LMRpask,tellq.

Proposition 22. LBpget,tellq ≀ LMRpask,tellq

The language LMRpask,tellq turns out to be incomparable with LBpnask,get,tellq. The proof

of this fact uses a saturation technique that is worth exploring for further results.

Proposition 23. LBpnask,get,tellq ≀ LMRpask,tellq

Proof. (i) On the one hand, LBpnask,get,tellq ę LMRpask,tellq. Otherwise, by pattern 3 of non

embedding by transitivity, LBpnask,tellq ď LMRpask,tellq which has been proved impossible in

part (ii) of proposition 19.

(ii) On the other hand, LMRpask,tellq ę LBpnask,get,tellq is established as in [BJ99, BJ03b].

The intuition behind the proof is again that LBpnask,get,tellq is not able to test atomically the

presence of two distinct tokens a and b. Following pattern 4 of presence, we then proceed

by contradiction using these two tokens a and b. However, the destructive character of get

primitives coupled to the test for absence of nask slightly complicate our task of producing

a contradiction. To that end, we shall “saturate” their effect by taking as many instances of

codings in parallel and thereby by extending the sets Sb introduced in part (ii) of the proof of

proposition 18.

Let us thus proceed by contradiction by assuming the existence of a coder C. Take

two distinct tokens a and b. Let n be the number of occurences of nask and get prim-

itives of Cpptu, t`auqq. As Cpptu, t`auqq has only successful computations, let, as in the

part (ii) of the proof of proposition 18, Sa be the store resulting from one of them. As

p||n`2
k“1ptu, t`buqq ; ptu, t`auqq succeeds as well, let S1

b denote the store resulting from one suc-

cessful computation of its coding. Consider finally ABs “ pt`a,`b, ¨ ¨ ¨ ,`bu, tuq requesting one

a with n` 3 copies of b and CpABsq in its normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` getpu1q ; B1 ` ¨ ¨ ¨ ` getpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

Following proof technique 1, we shall establish (I) that there are no alternatives guarded by tell

and nask primitives, and (II) that tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. Assuming these two points

proved, a contradiction can be produced as follows. In view of the saturation provided by the

n` 2 copies of Cpptu, t`buqq, adding one more only adds tokens present in Sa YS1
b. As a result,

Cp||n`3
k“1ptu, t`buqq ; ptu, t`auq ; ABsq fails whereas ||n`3

k“1ptu, t`buqq ; ptu, t`auq ; ABs has only

one successful computation. Hence the contradiction.

64

STEP I: Let us first establish that there are no alternative guarded by a tellptiq primitive.

The proof proceeds by contradiction as in part (ii) of the proof of proposition 17, by pointing out

a failing computation for CpAB` ptu, t`auqq, contradicting the fact that OpAB ` ptu, t`auqq “

tptau, δ`qu.

In a similar way there are no alternative guarded by a nask primitive. Indeed assuming

the existence of a naskpviq ; Ci alternative again points out a failing computation for CpAB `

ptu, t`auqq, contradicting the fact that OpAB ` ptu, t`auqq “ tptau, δ`qu.

STEP II: Let us now establish that tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. This is proved in two

steps by establishing (1) that tu1, ¨ ¨ ¨ , uqu X Sa “ H, and (2) that tu1, ¨ ¨ ¨ , uqu X S1
b “ H.

First we have that tu1, ¨ ¨ ¨ , uqu X Sa “ H. By contradiction, assume that ui P Sa for some

i. Let us observe that each step of the considered computation of Cpptu, t`auqq can be repeated

in turn, in as many parallel occurences of it as needed, so that

P “ xCpp||qk“1ptu, t`auqq ; ABsq|Hy

Ñ ¨ ¨ ¨ Ñ xABs| Yq
k“1 Say

Ñ xBi|pYq
k“1Saqztuiuy

is a valid computation prefix of Cpp||qk“1ptu, t`auqq ; ABsq, which can only be con-

tinued by failing suffixes. However P induces the following computation prefix P 1 for

Cpp||qk“1ptu, t`auqq ; pABs` ptu, t`auqqq which admits only successful computations:

P 1 “ xCpp||qk“1ptu, t`auqq ; pABs` ptu, t`auqqq|Hy

Ñ ¨ ¨ ¨ Ñ xCpABs` ptu, t`auqq| Yq
k“1 Say

Ñ xBi|pYq
k“1Saqztuiuy

Hence the contradiction.

The fact that tu1, ¨ ¨ ¨ , uqu XS1
b “ H is proved similarly, by considering S1

b instead of Sa and

ptu, t`buq instead of ptu, t`auq.

By using similar reasonings as for the above proposition, it is possible to establish that

LMRpask,tellq is not comparable with LBpask,nask,tellq.

Proposition 24. LMRpask,tellq ≀ LBpask,nask,tellq

Similarly, by using previous reasonings, it is possible to establish that LBpask,nask,tellq is

stricly less expressive than LMRpask,nask,tellq.

65

Proposition 25. LBpask,nask,tellq ă LMRpask,nask,tellq

Additional incomparability results can be established using the reasonings exposed previ-

ously. The first one requires to extend lemma 1 as follows.

Lemma 2. Let S be a finite set of tokens. Let f : Stoken Ñ Pf pStokenq be a function

associating to each token a finite set of tokens. Assume that S X fpxq ‰ H, for any token x.

Then there is a denumerable sequence of distinct tokens xi’s and an integer N such that

N
č

i“1

pS X Sxi
q “ H

and
N
č

i“1

pS X Sxi
q “

N
č

i“1

pS X Sxi
q X Sxj

for any j ą N . In particular, p
ŞN

i“1pS X Sxi
qq X pS X Sxj

q “ H, for any j ą N .

Using this lemma and similar proofs as before, it is possible to establish the following results.

Proposition 26. LBpnask,get,tellq ≀ LMRpnask,tellq

Proposition 27. LMRpask,nask,tellq ≀ LBpnask,get,tellq

Proposition 28. LBpget,tellq ≀ LMRpnask,tellq

Proposition 29. LBpget,tellq ≀ LMRpask,nask,tellq

3.2.5.5 Retrieving tokens from the store in MRT

Previous reasonings allow to establish the following propositions.

Proposition 30. LBpget,tellq ă LMRpget,tellq

Proposition 31. LMRpget,tellq ≀ LBpnask,tellq

Proposition 32. LMRpget,tellq ≀ LBpnask,get,tellq

Proposition 33. LMRpget,tellq ≀ LBpask,nask,tellq

3.2.5.6 Checking for presence and/or absence when adding and/or retrieving to-

kens

Finally, it is possible to establish that LBpask,nask,get,tellq is strictly less expressive than

LMRpask,nask,get,tellq. The proof illustrates the coding of the BachT primitives in the MRT

ones.

66

Proposition 34. LBpask,nask,get,tellq ă LMRpask,nask,get,tellq

Proof. (i) On the one hand, LBpask,nask,get,tellq ď LMRpask,nask,get,tellq is immediate by

considering the following coder:

Cpaskptqq “ pt`tu, tuq

Cpgetptqq “ pt`tu, t´tuq

Cpnaskptqq “ pt´tu, tuq

Cptellptqq “ ptu, t`tuq

(ii) On the other hand, LMRpask,nask,get,tellq ę LBpask,nask,get,tellq is established by

contradiction, using pattern 3 of non embedding by transitivity. Indeed, assuming that

LMRpask,nask,get,tellq ď LBpask,nask,get,tellq, as LBpask,nask,get,tellq “ LBpnask,get,tellq,

one would have LMRpnask, tellq ď LMRpask,nask,get,tellq ď LBpask,nask,get,tellq ď

LBpnask,get,tellq which has been proved impossible in proposition 26.

3.3 BachT, MRT and the thesis

Figures 3.5 and 3.6 summarize the expressiveness results of BachT and MRT discussed in the

previous section. A more compact version is provided in Figure 3.7 by using a three dimensional

perspective. To further stress this perspective dashed arrows have been used instead of plain

ones, whereas the semantics (of embedding) behind them is unchanged.

Besides the compact perception, Figure 3.7 allows to present our thesis in a pictorial way.

Indeed, by introducing in several ways multiplicity on BachT, we shall actually design languages

that fits between the BachT and MRT languages while keeping the same hierarchy between

sublanguages, namely by keeping the geometry of the relations depicted in the figure. Figure 3.8

illustrates such an extension on the Dense Bach language which we will introduce in chapter 4.

3.4 Conclusion

In this chapter we have defined two languages BachT and MRT. The first one is a simplified

version of a dialect of Linda, developped in Namur. The second one is a Gamma-like language,

inspired by a chemical reaction metaphor, with a more global perception of the data. Both

languages manipulate tokens in place of more structured tuples in the aim of foccussing on the

core coordination features. The four primitives of BachT work with only one token at a time.

On the contrary, MRT is able to work atomically with many instances of different tokens. As

67

‚

‚ ‚

‚ ‚

‚

LB(tell)

LB(nask,tell)
LB(ask,tell)

LB(ask,nask,tell)
LB(get,tell)

LB(ask,nask,get,tell)

‚

‚ ‚

‚ ‚

‚

LMR(tell)

LMR(nask,tell)
LMR(ask,tell)

LMR(ask,nask,tell)
LMR(get,tell)

LMR(ask,nask,get,tell)

Figure 3.7: Three-dimensional representation of the expressiveness relations between the different

sublanguages of BachT and MRT.

will be appreciated in the next chapters, the languages we shall define consist of extensions of

BachT, with the capability to manipulate atomically many instances of a same token. In doing

so they sit in between the BachT language and the MRT language.

In a second section, we have analyzed the expressiveness of BachT and MRT. In order to

do so, we have used the notion of modular embedding introduced in [dBP94]. Following the

lines of [BJ03a, BJ98, BJ99], we have first compared the expressive power of sublanguages of

BachT with each other. Then we have proceeded with the expressiveness comparison between

BachT and MRT. The results of the comparisons depends upon the different considered sub-

languages. For the BachT language alone, starting from the sublanguage LBptellq one observes

an increase in expressiveness, when adding the primitives ask and nask. Nevertheless those

68

two are not comparable with each other. The introduction of the get primitive is more expres-

sive than the ask primitive when comparing LBpask,tellq and LBpget,tellq, but is equivalent

to LBpask,get,tellq. The introduction of the primitive ask in a language where get is already

present produces no specific increase of expressiveness. This equivalence is again observed in

the comparison of LBpask,nask,get,tellq with LBpnask,get,tellq. The introduction of the nask

primitive produces a more expressive version of the language. So is it for LBpask,nask,tellq

with regard to LBpask,tellq. But there is no comparison possible between LBpask,nask,tellq and

LBpget,tellq and its equivalent LBpask,get,tellq.

The comparison between the BachT language and the MRT language follows the same global

schema of expressive relations. However the MRT language is in general more expressive than

the BachT language.

Most of the propositions presented in this chapter are already exposed in previous work by

J.M. Jacquet and A. Brogi [BJ98, BJ99, BJ03a, BJ03b]. The proofs follow also their reason-

ing. For BachT the proof of proposition 10 is another way to establish the counter-example.

For MRT, proof of proposition 17 comes from [BJ03b]. It has inspired proofs of proposi-

tions 22, 23, 24 and 30, that have not been published before. Proof of proposition 18 is inspired

from [BJ03b], and is the basis of proofs of propositions 21 and 26 that have also not been

published before. Proofs of propositions 19 and 20, as well as those for propositions 27 to 29,

and those from 31 to 34 follow similar proof schema inspired from BachT, and have not been

published before. Finally, with respect to the work of Jacquet and Brogi, another contribution

is to have isolated generic patterns and proof techniques.

For BachT, we have introduced the patterns of sublanguage inclusion, of transitivity and of

non embedding by transitivity. The two last ones make use of the transitivity and of previous

results on the expressiveness relations between sublanguages in order to establish results more

easily. Those three patterns are also valid for the MRT language. However two other patterns

specific for this second language have been presented: the pattern of presence and the pattern

of absence. They work by contradiction, starting from a coded agent expressed in a normal

form. They establish that none of the alternatives in the normal form can exist, leading to an

empty form of the coded expression, which is impossible. The second pattern is a special case

of the first one. Considering two different elements, it establishes that, on the one hand, their

coding share no element, and, on the other hand, that they share at least one element. In both

cases this leads again to reduce the coding of a agent to an empty statement, which is absurd.

With respect to [BJ98, BJ99, BJ03a, BJ03b], we have also introduced two proof techniques

to highlight several reasonings common to various proofs.

69

Our goal in writing section 3.2 was to provide the reader with a background on the main

reasoning techniques that we shall use later to test the expressiveness of the languages we shall

propose. As a result, not all the details have been exposed in this chapter. However, the reader

interested by them is referred to appendix A where the proofs are presented extensively.

Nonetheless, as discussed in the third section, the expressiveness results sketched in this

chapter allow us to present our thesis pictorially : indeed, in subsequent chapters, we shall

introduce extensions of BachT aiming at tackling multiplicity and that fit in between BachT

and MRT while preserving the sublanguages hierarchies of BachT and MRT.

A tabulated result of the expressiveness studies between the different sublanguages of BachT

and MRT is presented in Table 3.1. All the possible sublanguages are written in line as well as

in column of this table. The intersection indicates for every pair their expressiveness relation,

as well as a reference to the proof. A number points to the proof developed in the thesis and a

reference indicates a publication from other authors.

70

‚

‚ ‚

‚ ‚

‚

LB(tell)

LB(nask,tell)
LB(ask,tell)

LB(ask,nask,tell)
LB(get,tell)

LB(ask,nask,get,tell)

‚

‚ ‚

‚ ‚

‚

LD(tell)

LD(nask,tell)
LD(ask,tell)

LD(ask,nask,tell)
LD(get,tell)

LD(ask,nask,get,tell)

‚

‚ ‚

‚ ‚

‚

LMR(tell)

LMR(nask,tell) LMR(ask,tell)

LMR(ask,nask,tell) LMR(get,tell)

LMR(ask,nask,get,tell)

Figure 3.8: Three-dimensional representation of the expressiveness relations between the different

sublanguages of BachT, Dense Bach and MRT.

71

P
u
t
re

d
u
c
e
d

fi
g
u
re

h
e
re

L
B

(t
e
ll
),

L
M

R
(t
e
ll
)

L
B

(a
sk

,t
e
ll
)

L
B

(n
a
sk

,t
e
ll
)

L
B

(g
e
t,
te

ll
)

L
B

(a
sk

,g
e
t,
te

ll
)

L
B
(a

sk
,n

a
sk

,t
e
ll
)

L
B

(n
a
sk

,g
e
t,
te

ll
)

L
B

(a
sk

,n
a
sk

,g
e
t,
te

ll
)

L
M

R
(a

sk
,t
e
ll
)

L
M

R
(n

a
sk

,t
e
ll
)

L
M

R
(g

e
t,
te

ll
)

L
M

R
(a

sk
,g
e
t,
te

ll
)

L
M

R
(a

sk
,n

a
sk

,t
e
ll
)

L
M

R
(n

a
sk

,g
e
t,
te

ll
)

L
M

R
(a

sk
,n

a
sk

,g
e
t,
te

ll
)

LB(tell),LMR(tell)
“

16

ă

2

ă

3

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

LB(ask,tell) “
≀

4

ă

7

ă

6

ă

2

ă

17

≀

20

ă

2

ă

2

ă

2

LB(nask,tell) “
≀

8

ă

5

ă

2

≀

19

ă

18

≀

31

ă

2

ă

2

LB(get,tell),LB(ask,get,tell)
“

9

≀

10

ă

11

≀

22

≀

28

ă

30

≀

29

ă

2

LB(ask,nask,tell) “
ă

13

≀

24

≀

21

≀

33

ă

25

ă

2

LB(nask,get,tell),LB(ask,nask,get,tell)
“

12

≀

23

≀

26

≀

32

≀

27

ă

34

LMR(ask,tell) “
≀

rBJ03bs

ă

rBJ03bs

ă

rBJ03bs

ă

rBJ03bs

LMR(nask,tell) “
≀

rBJ03bs

ă

rBJ03bs

ă

rBJ03bs

LMR(get,tell),LMR(ask,get,tell) “
≀

rBJ03bs

ă

rBJ03bs

LMR(ask,nask,tell) “
ă

rBJ03bs

LMR(nask,get,tell),LMR(ask,nask,get,tell) “

Table 3.1: Table summarizing the expressiveness comparisons between the different sublanguages of BachT and MRT.

72

Part II

Language Design

73

Chapter 4

The Dense Bach Language

After having introduced the background material of the thesis, we now present our family of

languages. In a first one, we complement the BachT language by the deposit and/or retrieval of

multiple occurrences of tuples in a shared space. This concretely amounts to enriching the four

primitives of BachT with a notion of density. We call this language Dense Bach. It is presented

in a similar way to Bach. We first formally define this notion of density as well as the new

primitives and grammar of the language. Then, we propose an operational semantics based

on a transition system. Examples of possible applications of the language are subsequently

described. They tackle such various domains as commerce, security and smart cities. Finally,

in a conclusion section, we compare our new language with related work.

4.1 Definition of the language

4.1.1 Language issues

As mentioned before, in the thesis we focus on tuples without structures, called tokens. It is

however worth noting that by following the developments of [BJL06] the next results can be

lifted to more general structures involving enhanced matching techniques.

The following definition formalizes the tokens and the way to attach a density to them.

Definition 10. Let Stoken be a enumerable set, the elements of which are subsequently called

tokens and are typically represented by the letters t and u.

Define the association of a token t and a strictly positive number n P N0 as a dense token.

Such an association is typically denoted as tpnq. Define then the set of dense tokens as the

set SDtoken. Note that since Stoken and N are both enumerable, the set SDtoken is also

enumerable.

75

Intuitively, a dense token tpmq represents the simultaneous presence of m occurrences of t.

As a result, ttpmqu is subsequently used to represent the multiset tt, ¨ ¨ ¨ , tu composed of these

m occurrences. Moreover, given two multisets of tokens σ and τ , we shall use σ Y τ to denote

the multiset union of elements of σ and τ . As a particular case, by slightly abusing the syntax

in writing ttpmq, tpnqu, we have that ttpmqu Y ttpnqu “ ttpmq, tpnqu “ ttpm ` nqu. Finally, we

shall use σ Z ttpmqu to denote, on the one hand, the multiset union of σ and ttpmqu, and, on

the other hand, the fact that t does not belong to σ.

The primitives of the language under consideration extend those of the BachT language

to dense tokens. Accordingly, tellptpmqq atomically puts m occurrences of t on the store and

askptpmqq together with getptpmqq require the presence of at least m occurrences of t with the

latter removing m of them. Dually, naskptpmqq verifies that there are less than m occurrences

of t.

The following definition provides a formal grammar for the extended language.

Definition 11. Define the set of dense token-based primitives Td as the set of primitives Td

generated by the following grammar:

Td ::“ tellptpmqq | askptpmqq | getptpmqq | naskptpmqq

where t represents a token and m a strictly positive natural number.

With this definition, we are now in a position to define the language we shall consider. The

statements of this language, also called agents, are defined from the tell, ask, get and nask

primitives by possibly combining them by the non-deterministic choice operator `, the parallel

operator, denoted by the || symbol, and the sequential operator, denoted by the ; symbol.

The formal definition is as follows.

Definition 12. Define the Dense Bach language LDB similarly to definition 5 of the BachT

language but by taking dense token-based primitives Td :

A ::“ Td | A ; A | A || A | A ` A

Subsequently, we shall consider sublanguages formed similarly but by considering only sub-

sets of these primitives. In that case, if H denotes such a subset, then we shall write the

induced sublanguages as LDBpHq. Note that for the latter sublanguages, the tell, ask, nask and

get primitives are associated with the basic pairs described above.

4.1.2 Transition system

As for BachT, a semantics is defined on the basis of a transition system. Our configuration

consists of agents (summarizing the current state of the agents running on the store) and a

76

pTdq
m P N0

x tellptpmqq | σ y ÝÑ x E | σ Y ttpmqu y

pAdq
m P N0

x askptpmqq | σ Y ttpmqu y ÝÑ x E | σ Y ttpmqu y

pGdq
m P N0

x getptpmqq | σ Y ttpmqu y ÝÑ x E | σ y

pNdq
n ă m

x naskptpmqq | σ Z ttpnqu y ÝÑ x E | σ Z ttpnqu y

Figure 4.1: Transition rules for dense token-based primitives (Dense Bach)

multi-set of tokens (denoting the current state of the store). In order to express the termination

of the computation of an agent, we also extend as before the set of agents by adding a special

terminating symbol E that can be seen as a completely computed agent. For uniformity pur-

poses, we also abuse the language by qualifying E as an agent and to meet the intuition, we

shall again simplify agents of the form (E;A), (E || A) and (A || E) as A. This is technically

achieved by defining the extended sets of agents as LDB Y tEu and by justifying the simplifi-

cations by imposing a bimonoid structure. Note that no transition rules are therefore used to

express these properties.

Figure 4.1 provides the transitions for the dense token-based primitives. Rule pTdq states

that for any store σ and any token t with density m, the effect of the tell primitive is to enrich

the current set of tokens with m occurrences of token t. Note that Y denotes multi-set union.

Rules pAdq and pGdq specify the effect of ask and get primitives, both requiring the presence

of at least m occurrences of t, but the latter also consuming them. Rule pNdq defines the nask

primitive, which tests for the absence of m occurrences of t. The rule is successful for any

occurences of the token t, provided that they are less than m. It is also worth observing that

thanks to the notation σ Z ttpmqu one is sure that t does not occur in σ and consequently that

there are exactly n occurrences of t. This does not apply for rules pAdq and pGdq for which it

is sufficient to assume the presence of at least m occurrences, allowing σ to contain others.

For the sake of completeness, Figure 4.2 recalls the transition rules for the BachT language.

As easily observed, they amount to the rules of Figure 4.1 where the density m is taken to be

1, and the union symbol is interpreted on multi-sets.

Finally, Figure 4.3 details the usual rules for sequential composition, parallel composition,

77

pTq x tellptq | σ y ÝÑ x E | σ Y ttu y

pAq x askptq | σ Y ttu y ÝÑ x E | σ Y ttu y

pGq x getptq | σ Y ttu y ÝÑ x E | σ y

pNq
t R σ

x naskptq | σ y ÝÑ x E | σ y

Figure 4.2: Transition rules for token-based primitives (BachT)

pSq
xA | σy ÝÑ xA1 | σ1y

xA ; B | σy ÝÑ xA1 ; B | σ1y

pPq

xA | σy ÝÑ xA1 | σ1y

xA || B | σy ÝÑ xA1 || B | σ1y

xB || A | σy ÝÑ xB || A1 | σ1y

pCq

xA | σy ÝÑ xA1 | σ1y

xA ` B | σy ÝÑ xA1 | σ1y

xB ` A | σy ÝÑ xA1 | σ1y

Figure 4.3: Transition rules for the operators

interpreted in an interleaving fashion, and non-deterministic choice.

4.2 Applications

Several potential applications of Dense Bach have been suggested in chapter 1. As a proof of

concept, we now encode them following the syntax of the new language.

4.2.1 Commerce

Different fields of application have been considered, mainly in the commercial, security and

public health fields. Concerning the commercial context, let us suppose available an application

proposing to evaluate the quality of service offered by a plumber. Let us assume that only

positive appreciations are taken into account and that the choice must be made between good

or excellent. If a first plumber is identified by a token of the form plumber id 1, then a client

could assess it by inserting two times the token on the store if he considers the service as

excellent, and only once in case his appreciation is good. Using the primitives of our Dense

78

Bach language, the process of appreciation for an excellent service is then represented by the

following instruction:

tellpplumber id1p2qq

whereas in the case of a good one, it is represented by the following instruction:

tellpplumber id1p1qq

Supposing the threshold of quality being fixed at 100, a new client consulting the store to

obtain information about this plumber will introduce the following request:

askpplumber id1p100qq

Any positive answer would mean that the global appreciation of the plumber is at least of

100. If the application permits to introduce negative appreciations too, a client could express

his dissatisfaction by retrieving one token plumber id 1 if the service is bad, or two in case of

a terrible one. The corresponding instructions are then the following:

getpplumber id1p1qq

and

getpplumber id1p2qq

This application has the disadvantage to propose a global appreciation, by totalizing the

good and excellent appreciations for every plumber. Perhaps a new customer could be interested

to obtain more finely-shaded answers. For instance the customer could build his opinion by

considering a plumber as relevant if he has at least 20 excellent appreciations, or at least 50

good appreciations. The tokens to be considered on the store must reflect this new point of

view, for instance by representing the good appreciation of a plumber with plumber id1 good

and with plumber id1 excellent in case of excellence. Every plumber is then represented on

the store by two kinds of tokens. On this basis the evaluation of an excellent plumber could be

done through the following instruction:

tellpplumber id1 excellentp2qq

79

A plumber could then be relevant to the positive opinion as previously defined if he satifies

the following request:

askpplumber id1 goodp50qq ` askpplumber id1 excellentp20qq

In this new representation, it is still possible to permit the customer to express its dis-

satisfaction. Moreover by associating with the plumber a token plumber id1 bad for the bad

appreciations and plumber id1 terrible for a terrible one, it becomes also possible to refine

the opinion, for instance by asking the plumber to have less than 5 bad appreciations, in addition

to the criteria for the positive appreciations. The global request is then the following:

naskpplumber id1 badp5qq ` askpplumber id1 goodp50qq ` askpplumber id1 excellentp20qq

Finally, a customer would also like to verify if two plumbers could satisfy to a same set

of minimum criteria to be selected, keeping the final choice of selection between those two

equivalent workers. For instance if the criteria is to have less than 2 terrible appreciations and

more than 30 excellent appreciations, the request is:

naskpplumber id1 terriblep2qq ; askpplumber id1 excellentp30qq ||

naskpplumber id2 terriblep2qq ; askpplumber id2 excellentp30qq

This example can easily be adapted for the evaluation of a taxi driver, as the one exposed

in section 1.1 of chapter 1 of introduction.

4.2.2 Security

In the security field, let us imagine an application that informs a customer of the underground

about the motion conditions in its usual metro station during a peak hour. Let us assume that

that can be evaluated through the periodic measure of the number of metro users present in

the station, represented by a token number. For a no-saturation condition fixed to a maximum

threshold of 500 people, then the decision of the client to enter the station could be subject to

the answer to the following request:

naskpnumberp500qq

Let us now imagine a user, present in the station, who will leave out quickly this space. This

user is interested to know the entering flux of travellers for every exit . If this is represented

80

for a specific entry by the token entry id, the best exit to be chosen is the one satisfying the

following request, for a fixed threshold of easiness of 50 entering people, and for three available

exits:

naskpentry id1 p50qq ` naskpentry id2 p50qq ` naskpentry id3 p50qq

Let us imagine that a security guard wants to be informed of the global safety conditions

in the station, these conditions being measured from the incoming and outgoing flux in flux

and out flux of users through the entry doors. If a door is considered to be safe when both

flux are less than 30, then for two doors and with the colour codes green for a safe condition,

orange for a light heavy condition and red for an overloaded condition, the global situation

can be evaluated with the following request:

pnaskpdoor1 in fluxp30qq ; pnaskpdoor1 out f luxp30qq ; tellpgreenq

`askpdoor1 out f luxp30qq ; tellporangeqqq

`paskpdoor1 in fluxp30qq ; pnaskpdoor1 out f luxp30qq ; tellporangeq

`askpdoor1 out f luxp30qq ; tellpredqqq

||

pnaskpdoor2 in fluxp30qq ; pnaskpdoor2 out f luxp30qq ; tellpgreenq

`askpdoor2 out f luxp30qq ; tellporangeqqq

`paskpdoor2 in fluxp30qq ; pnaskpdoor2 out f luxp30qq ; tellporangeq

`askpdoor2 out f luxp30qq ; tellpredqqq

4.2.3 Smart cities

In the field of the management of smart cities, let us imagine an application that can divert

the flux of vehicles following their type and their number. Let us suppose that every speedway

entering a city is equipped with a gate that can register and count every type of vehicle. With

the tokens motorbike, car and lorry, every positive counting is obtained by the following

instruction:

tellpmotorbikep1qq ` tellpcarp1qq ` tellplorryp1qq

If the number of counted vehicles becomes higher than a certain threshold, i.e. 50, the

following instruction can divert the flux in some specific direction, for every type of vehicle:

81

askpmotorbikep50qq ; tellpturn rightq ` askpcarp50qq ; tellpstraight onq `

askplorryp50qq ; tellpturn leftq

with the tokens turn right, straight on and turn left indicating the respective directions.

4.3 Conclusion

In this chapter we have presented an extension of the Linda-like language Bach, aiming at

introducing a notion of density to the tuples. The intuition behind is that, on the one hand,

the more a tuple appears on a tuple space, the more it is of interest. On the other hand, tuples

are of interest for the test of their presence or absence only if they appear in a sufficient number

of occurences. The new resulting language has been named Dense Bach. Examples have been

presented to describe the possible uses of the language in concrete situations.

In the literature, several pieces of work have tackled similar issues : [BKZ99, BGZ97, BGZ,

Zav98a, Zav98b]. However, they do not deal with the notion of density that we have introduced.

The articles [BGLZ04, BGLG05] introduce the multiplicity of tokens by decorating them

with an extra field in order to investigate how probabilities and priorities can be introduced

in the Linda coordination model. The notion of density resembles but is not identical to the

association of weights to tuple. Indeed density does not modify the tokens on the store, as it

does not modify the matching function so as to retrieve the token with the highest weight. In

contrast, it modifies the tokens primitives so as to be able to atomically put several occurrences

of a tuple on the store and check for the presence or absence of a number of occurrences. This

facility of handling atomically several occurrences produces a real increase in expressiveness, as

it will be established in chapter 6.

Similarly to the weight of [BGLZ04, BGLG05] and our notion of density, Viroli and

Casadei [VC09] propose a stochastic extension of the Linda framework, with a notion of tuple

concentration. The syntax of the token space is modeled by means of a calculus, with an

operational semantics given as an hybrid CTMC/DTMC model. It describes the behavior of

tell, ask and get like primitives, but no equivalent of nask.

82

Chapter 5

Dense Bach with Distributed

Density

In an attempt to provide Dense Bach with the same property of MRT to handle many tokens

at once, a natural extension consists in replacing in the primitives a token by a list of tokens,

each with its own density. For instance, the primitive askptp1q, up2q, vp3qq would succeed on

a store containing one occurrence of t, two of u and three of v. Dually, the computation of

tellptp1q, up2q, vp3qq would result in adding one occurrence of t on the store, two of u and three

of v.

The first section of this chapter formally defines this extension of Dense Bach, subsequently

named Vectorized Dense Bach or more simply VD-Bach. It additionnally specifies the cor-

responding transition rules and provides an example of application aiming at modeling the

problem of migrants in direct drive with the current events.

It turns out that VD-Bach can be used to encode more powerful versions distributing a

density on a list of tokens possibly under cardinality constraints. This will be particularly

useful in the coding of the migrant problem. The second section of this chapter tackles this new

extension. Finally the third section concludes and introduces the following chapters, concerned

with the comparison of the expressiveness study of the languages.

5.1 Definition of VD-Bach

5.1.1 Language issues

As underlined in the introduction, a natural extension to the dense tokens introduced in defini-

tion 10 consists in considering sets of such tokens. To avoid using unnecessary brackets, we shall

83

slightly abuse notations and use lists of dense tokens, which we shall subsequently designate as

vectors of dense tokens. The intuition remains however that of sets, with the order of the dense

tokens being meaningless.

Definition 13. Define a vector of dense tokens as a list t1pm1q, ¨ ¨ ¨ , tnpmnq of dense tokens.

Such a vector is subsequently denoted as
ÝÝÑ
tpmq. Define SV Dtoken as the set of vectors of dense

tokens.

With this definition in mind, a natural extension of Dense Bach consists in lifting the

arguments of the primitives to vectors of dense tokens, with the intuition that what was required

in chapter 4 has now to be required for all the elements of the vectors. We are thus led to the

following definitions.

Definition 14. Define the set of vectorized dense token-based primitives Tv as the set of

primitives Tv generated by the following grammar:

Tv ::“ tellp
ÝÝÑ
tpmqq | askp

ÝÝÑ
tpmqq | getp

ÝÝÑ
tpmqq | naskp

ÝÝÑ
tpmqq

where
ÝÝÑ
tpmq represents a vector of dense tokens.

Definition 15. Define the Vectorized Dense Bach language similarly to definition 5 of the

BachT language but by taking vector of dense token-based primitives Tv :

A ::“ Tv | A ; A | A || A | A ` A

Subsequently, we shall consider sublanguages formed similarly but by considering only subsets

of these primitives. In that case, if H denotes such a subset, then we shall write the induced

sublanguages as LV (H). Moreover we shall abuse language and also note LV for the super

language containining all the primitives.

5.1.2 Transition system

As for Dense Bach, a semantics is defined on the basis of a transition system. Our configuration

consists again of agents (summarizing the current state of the agents running on the store)

and a multi-set of tokens (denoting the current state of the store). In order to express the

termination of the computation of an agent, we also extend as before the set of agents by

adding a special terminating symbol E that can be seen as a completely computed agent. For

uniformity purposes, we also abuse the language by qualifying E as an agent and to meet the

intuition, we shall again simplify agents of the form (E;A), (E || A) and (A || E) as A. This is

technically achieved by defining the extended sets of agents as LV Y tEu and by justifying the

simplifications by imposing a bimonoid structure. Note that no transition rules are therefore

used to express these properties.

84

pTvq
m1, ¨ ¨ ¨ ,mn P N0

x tellpt1pm1q, ¨ ¨ ¨ , tnpmnqq | σ y ÝÑ x E | σ Y tt1pm1q, ¨ ¨ ¨ , tnpmnqu y

pAvq
m1, ¨ ¨ ¨ ,mn P N0

x askpt1pm1q, ¨ ¨ ¨ , tnpmnqq | σ Y tt1pm1q, ¨ ¨ ¨ , tnpmnqu y ÝÑ x E | σ Y tt1pm1q, ¨ ¨ ¨ , tnpmnqu y

pGvq
m1, ¨ ¨ ¨ ,mn P N0

x getpt1pm1q, ¨ ¨ ¨ , tnpmnqq | σ Y tt1pm1q, ¨ ¨ ¨ , tnpmnqu y ÝÑ x E | σ y

pNvq
m1, ¨ ¨ ¨ ,mn P N0, p1 ă m1, ¨ ¨ ¨ , pn ă mn

x naskpt1pm1q, ¨ ¨ ¨ , tnpmnqq | σ Z tt1pp1q, ¨ ¨ ¨ , tnppnqu y ÝÑ x E | σ Z tt1pp1q, ¨ ¨ ¨ , tnppnqu y

Figure 5.1: Transition rules for vectorized dense token-based primitives (VD-Bach)

Figure 5.1 provides the transitions for the vectorized dense token-based primitives. For

readability purposes, in contrast to definition 14, we have written the arguments of primitives

as explicit vectors of dense tokens, in the form of t1pm1q, ¨ ¨ ¨ , tnpmnq.

Rule pTvq, pAvq and pGvq generalize the corresponding rules pTdq, pAdq and pGdq of chapter 4

from dense tokens to vectors of dense tokens. As a result, rule pTvq asserts that telling a vector

of dense tokens amounts to adding each of them with the corresponding density on the store.

Similarly, rule pAvq requires for an ask primitive to succeed the presence, for each token ti, of

at least mi occurrences on the store. According to rule pGvq the behavior of a get primitive

performs such a test for presence but also removes mi occurrences of ti on the store. Finally,

rule pNvq requires, for each token ti, the absence of mi occurrences. It is here worth noting that,

in contrast to BachT and Dense Bach, the behavior of the nask primitive is not the negation of

that of the ask primitive. Indeed, this interpretation would have required for the nask primitive

that, for some token ti, less than mi occurrences are present on the store. It will however be

handful to have such a nask primitive. The next subsection introduces it and shows how it can

be simulated by ask and nask primitives, just introduced.

For the sake of completeness, Figure 5.2 reminds the reader with the usual rules for sequential

composition, parallel composition, interpreted in an interleaving fashion, and non-deterministic

choice.

5.1.3 Weak negative ask

As just mentioned, rule pNvq does not give to the nask primitive a dual behavior of the ask

primitive. To that end, a new nask primitive, subsequently called weak nask primitive, may be

85

pSq
xA | σy ÝÑ xA1 | σ1y

xA ; B | σy ÝÑ xA1 ; B | σ1y

pPq

xA | σy ÝÑ xA1 | σ1y

xA || B | σy ÝÑ xA1 || B | σ1y

xB || A | σy ÝÑ xB || A1 | σ1y

pCq

xA | σy ÝÑ xA1 | σ1y

xA ` B | σy ÝÑ xA1 | σ1y

xB ` A | σy ÝÑ xA1 | σ1y

Figure 5.2: Transition rules for the operators

pWvq
m1, ¨ ¨ ¨ ,mn P N0, tt1pp1q, ¨ ¨ ¨ , tnppnqu Ę σ

x wnaskpt1pm1q, ¨ ¨ ¨ , tnpmnqq | σq y ÝÑ x E | σ y

Figure 5.3: Transition rule for the weak nask

introduced. It is referred to as the wnask primitive, takes a vector of dense tokens as argument

and is defined by rule pWvq of figure 5.3.

Note that with such a definition, wnaskp
ÝÝÑ
tpmqq succeeds whenever naskp

ÝÝÑ
tpmqq succeeds.

However, the converse is not true. Consider, for instance, the store composed of 2 occurrences

of t and 4 of u. In that context, naskptp1q, up5qq does not succeed since, although 4 ă 5

the inequality 2 ă 1 does not hold. However, wnaskptp1q, up5qq succeeds since, as multisets,

ttp2q, up4qu Ę ttp1q, up5qu. Rephrased using the notation of rule pNvq, it it required for nask

that

p1 ă m1 ^ ¨ ¨ ¨ ^ pn ă mn

whereas wnask only requires that

p1 ă m1 _ ¨ ¨ ¨ _ pn ă mn

In view of that, it is easy to verify that wnaskpt1pm1q, ¨ ¨ ¨ , tnpmnqq can be encoded as follows :

naskpt1pm1qq ` ¨ ¨ ¨ ` naskptnpmnqq

As a result, wnask does not bring an increase of expressiveness.

86

5.1.4 Application

In order to illustrate a use of this newly defined language, let us imagine the example of an

online shopping system. Let us imagine a sporting goods store that is present in five different

cities in Belgium : Brussels, Namur, Nivelles, Antwerp and Louvain. All these shops propose

the same articles. In order to manage efficiently the number of orders that arrive through the

online system, these are distributed on the different shops present in the five cities. Assume

that a group of 50 orders arrive and has to be distributed equally between the different shops.

This can be achieved through the execution of the following tell primitive :

tell(Brussels(10), Namur(10), Nivelles(10), Antwerp(10), Louvain(10)).

Assume now that the following maxima of orders to be processed have been imposed for

the shops : 200 orders for Brussels, 75 for Namur, 50 for Nivelles, 150 for Antwerp and 70 for

Louvain. A check whether these maxima have not been reached can be simulated by executing

the following nask primitive :

nask(Brussels(200), Namur(75), Nivelles(50), Antwerp(150), Louvain(70)).

5.2 On Distributed Density

5.2.1 Definition of a distributed density

In the online shopping problem, we have explicitly distributed the arrival of 50 orders on the

shops. A natural extension is to let the execution of the primitive non-deterministically choose

the distribution. We are then lead to consider a list of tokens together with a density and to

distribute it on the tokens. The following definition formalizes such an association.

Definition 16. Let Snlt denote the set of non-empty lists of tokens in which, for simplicity

purposes, each token differs from the others. Such a list is typically denoted as L “ rt1, . . . , tps

and is thus such that ti ‰ tj for i ‰ j. Define a dense list of tokens as a list of Snlt associated

with a strictly positive integer. Such a dense list is typically represented as Lpmq, with L the

list of tokens and m an integer.

Definition 17. Define the association of a token and a positive integer of N as an extended

dense token.

87

Note that in contrast to definition 10, we allow here for the association of a token with 0.

The distribution of the density over a list of tokens is formalized through the following dis-

tribution function.

Definition 18. Define the distribution of tokens from dense lists of tokens to sets of tuples of

extended dense tokens as follows:

Diprt1, ¨ ¨ ¨ , tpspmqq “ tpt1pm1q, ¨ ¨ ¨ , tppmpqq : m1 ` ¨ ¨ ¨ `mp “ mu

Note that, thanks to the definition of extended dense tokens, we assume above that the mi’s

are positive integers. For the sake of simplicity, we shall call the set Diprt1, ¨ ¨ ¨ , tpspmqq the

distribution of m over rt1, ¨ ¨ ¨ , tps.

The distribution of an integer m over a list of tokens L has the potential to express the

behavior of the BachT primitives extended with dense lists of tokens as arguments. Indeed,

telling a dense list amounts to telling atomically the tirmis’s of a tuple defined above. Asking

or getting a dense list requires to check that a tuple of Diprt1, ¨ ¨ ¨ , tpspmqq is present on the

considered store. For the negative ask, the requirement is that none of the tuple is present. For

the ease of writing and to make this latter concept clear, we introduce the following concept of

intersection.

Definition 19. Let m be a positive integer, L “ rt1, ¨ ¨ ¨ , tps be a list of tokens and σ a store.

We define DipLpmqq [σ as the following set of tuples of dense tokens :

DipLpmqq [σ “ tpt1pm1q, . . . , tppmpqq P DipLpmqq : ttipmiqu Ď σu

From an implementation point of view, it is worth observing that one may give a syntactical

characterization of the emptyness of such an intersection.

Definition 20. Given a store σ and a dense list Lpmq, with L “ rt1, ¨ ¨ ¨ , tps, we denote by

Maxpσ,Lpmqq the tuple pt1pm1q, . . . , tppmpqq where the mi’s denote the number of occurrences

of ti in σ. Moreover, we denote by SMaxpσ,Lpmqq the sum m1 ` ¨ ¨ ¨ `mp

It is easy to establish the following proposition.

Theorem 1. For any dense list of tokens Lpmq and any store σ, one has DipLpmqq [σ “ H iff

SMaxpσ,Lpmqq ă m.

Proof. Simple verification.

88

pTdbdq
pt1pm1q, ¨ ¨ ¨ , tppmpqq P DipLpmqq

x tellpLpmqq | σ y ÝÑ x E | σ Y tt1pm1q, ¨ ¨ ¨ , tppmpqu y

pAdbdq
DipLpmqq [σ “ H

x askpLpmqq | σ y ÝÑ x E | σ y

pGdbdq
pt1pm1q, ¨ ¨ ¨ , tppmpqq P DipLpmqq

x getpLpmqq | σ Y tt1pm1q, ¨ ¨ ¨ , tppmpqu y ÝÑ x E | σ y

pNdbdq
m ą 0 and DipLpmqq [σ “ H

x naskpLpmqq | σ y ÝÑ x E | σ y

Figure 5.4: Transition rules for list of token-based primitives (Dense Bach with distributed Density)

5.2.2 Definition of DBD-Bach

We are now in a position to specify the language extension handling dense lists of tokens.

Definition 21. Define the set of dense lists primitives Tdbd as the set of primitives Tdbd generated

by the following grammar:

Tdbd ::“ tellpLpmqq | askpLpmqq | getpLpmqq | naskpLpmqq

where Lpmq represents a dense list of tokens.

The transition steps for these primitives are defined in figure 5.4. As suggested above,

rule pTdbdq specifies that telling a dense list Lpmq of tokens amounts to atomically adding the

multiple occurrences tipmiq’s of the tokens of a tuple of the distribution of m over L. Note

that the selected tuple is chosen non-deterministically, which gives to a tell primitive a non-

deterministic behavior as opposed to the tell primitives of BachT and Dense Bach. Rule pAdbdq

states that asking for the dense list Lpmq amounts to testing that a tuple of the distribution ofm

over L is in the store, which is technically stated through the non-emptyness of the intersection

of the distribution and the store. Rule pGdbdq requires that the tokens of the tuples are removed

in the considered multiplicity. Finally, rule pNdbdq specifies that negatively asking Lpmq succeeds

if m is strictly positive and no tuple of the distribution of m over L is present on the current

store.

We are now in a position to define the language Dense Bach with a distribution of the

density over a list of tokens. The statements of this language, also called agents, are defined

89

pSq
xA | σy ÝÑ xA1 | σ1y

xA ; B | σy ÝÑ xA1 ; B | σ1y

pPq

xA | σy ÝÑ xA1 | σ1y

xA || B | σy ÝÑ xA1 || B | σ1y

xB || A | σy ÝÑ xB || A1 | σ1y

pCq

xA | σy ÝÑ xA1 | σ1y

xA ` B | σy ÝÑ xA1 | σ1y

xB ` A | σy ÝÑ xA1 | σ1y

Figure 5.5: Transition rules for the operators

from the tell, ask, get and nask primitives by possibly combining them by the classical choice

operator `, used among others in CCS, parallel operator (denoted by the || symbol) and the

sequential operator (denoted by the ; symbol). The formal definition is as follows.

Definition 22. Similarly to the definitions 5 and 12, define the Dense Bach with distributed

Density language or DBD-Bach for short by taking lists of token-based primitives Tdbd:

A ::“ Tdbd | A ; A | A || A | A ` A

Subsequently, we shall consider sublanguages formed similarly but by considering only subsets

of these primitives. In that case, if H denotes such a subset, then we shall write the induced

sublanguages as LDBDpHq. Moreover we shall abuse language and also note LDBD for the super

language containining all the primitives.

To study the expressiveness of the languages, a semantics needs to be defined. As done

in the previous chapters, we shall use an operational one, based on transition systems and for

which the configuration consists of agents (summarizing the current state of the agents running

on the store) and a multi-set of tokens (denoting the current state of the store). In order to

express the termination of the computation of an agent, we also extend the set of agents by

adding a special terminating symbol E that can be seen as a completely computed agent. For

uniformity purpose, we abuse the language by qualifying E as an agent. To meet the intuition,

we shall always rewrite agents of the form (E;A), (E || A) and (A || E) as A. This is technically

achieved by justifying the simplifications by imposing a bimonoid structure.

The rules for the primitives of the languages have been given in Figures 5.1 to 5.4. Fig-

ure 5.5 details the usual rules for sequential composition, parallel composition, interpreted in

an interleaving fashion, and non-deterministic choice.

90

5.2.3 Application

To illustrate the DBD-Bach language, let us consider again the online shopping problem and

handle the non-deterministic distribution of the orders between the different shops. Assume

a group of m orders is to be split into different shops. This can be modeled by the primitive

tellpLpmqq with L = [Brussels,Namur,Nivelles,Antwerp,Louvain] being the list of shops.

Indeed, remember that this amounts to identify m1,m2,m3,m4 and m5 such that m1 ` m2 `

m3`m4`m5 “ m and consequently to tell m1 orders in Brussels, m2 in Namur, m3 in Nivelles,

m4 in Antwerp and m5 in Louvain.

Let us suppose that the orders are grouped in three different services by the online system.

Every group of selected n orders for processing may be constitued by a non-deterministic se-

lection inside the different services, with the primitive getpLpnqq. To that end, it is here worth

remembering that the execution of this primitive amounts to identifying n1, n2 and n3 such that

n1 ` n2 ` n3 “ n and consequently to get n1 orders in the first service, n2 orders in the second

service and n3 orders in third service.

Let us finally suppose that Brussels has dispatched its own orders between five internal

departments in the shop and that it wants to know whether the number of incoming orders

does not exceed the total capacity fixed to 200. The resquest to answer such a question may be

modelled by the following primitive:

naskprpBrussels dept1, ¨ ¨ ¨ , Brussels dept5sp200qq.

The general direction could ask the same question to measure the situation in some shops,

taking into account their respective maximum capacity. Consider, for instance, Nivelles and

Antwerp and assume that L Nivelles and L Antwerp are their respective lists of departments

and that the maximum capacities are respectively 50 and 150 orders. Then the question may

be modeled by the following agent :

naskpL Nivellesp50qq || naskpL Antwerpp150qq.

5.2.4 Cardinality on tokens

Coding the online shopping problem suggests the further extension of requiring a shop to fulfill

a minimal processing of orders while guaranteeing a maximal processing. This can be coded by

slightly extending the tokens of a dense list with minimal and maximal numbers. The formal

definition is as follows.

91

Definition 23. Define the association of a token and two positive integers of N as a capacity

dense token. Such a token is typically denoted as tpm,nq where t is the token and m, n are the

integers.

Definition 24. Let Snlct denote the set of non-empty lists of capacity dense tokens in which,

for simplicity purposes, each token differs from the others. Such a list is typically denoted as

L “ rt1pm1, n1q, . . . , tppmp, npqs and is thus such that ti ‰ tj for i “ j. Define a dense list of

capacity dense tokens as a list of Snlct associated with a strictly positive integer. Such a list is

typically represented as Lpmq, with L the list of capacity dense tokens and m an integer.

The expected extended language is simply obtained by slightly modifying the notion of

distribution introduced in definition 18.

Definition 25. Define the cardinality based distribution of tokens from dense lists of capacity

tokens to sets of tuples of extended dense tokens as follows:

Dcprt1pm1, n1q, ¨ ¨ ¨ , tppmp, npqspqqq “ tpt1pq1q, ¨ ¨ ¨ , tppqpqq : q1 ` ¨ ¨ ¨ ` qp “ q

and mi ď qi ď ni for any i P t1, ¨ ¨ ¨ , puu

Note that nothing guarantees that the above set is non empty. We shall subsequently called

coherent those dense lists of capacity based tokens such that their cardinality based distribution

is non empty and restrict ourselves to such coherent dense lists in the following.

It is now easy to extend the primitives of the DBD-Bach language.

Definition 26. Define the set of capacity based list primitives Tc as the set of primitives Tc

generated by the following grammar:

Tc ::“ tellpLpmqq | askpLpmqq | getpLpmqq | naskpLpmqq

where Lpmq represents a dense list of capacity based tokens.

Definition 27. Define the Capacity based Dense Bach as the language of agents engendered

by the following grammar where Tc denotes a capacity based list primitive :

A ::“ Tc | A ; A | A || A | A ` A

The transition rules derive directly from those of figure 5.4 by replacing the set DipLpmqq

by the corresponding set DcpLpmqq. They are listed in figure 5.6 for the sake of completion.

Equipped with the Capacity based Dense Bach language, it is quite easy to model that upon

the arrival of m orders the shops take their possibility without going further than some limits.

This is indeed coded by a primitive of the form :

tellprBrusselsp100, 200q, Namurp30, 75q, Nivellesp25, 50q, Antwerpp45, 150q, Louvainp25, 70qspmqq

92

pTcq
pt1pm1q, ¨ ¨ ¨ , tppmpqq P DcpLpmqq

x tellpLpmqq | σ y ÝÑ x E | σ Y tt1pm1q, ¨ ¨ ¨ , tppmpqu y

pAcq
DcpLpmqq [σ “ H

x askpLpmqq | σ y ÝÑ x E | σ y

pGcq
pt1pm1q, ¨ ¨ ¨ , tppmpqq P DcpLpmqq

x getpLpmqq | σ Y tt1pm1q, ¨ ¨ ¨ , tppmpqu y ÝÑ x E | σ y

pNcq
m ą 0 and DcpLpmqq [σ “ H

x naskpLpmqq | σ y ÝÑ x E | σ y

Figure 5.6: Transition rules for capacity based primitives

5.2.5 Translation in VD-Bach

It is quite easy to translate the positive version of DBD-Bach and CD-Bach in terms of VD-Bach.

Indeed, as easily observed, one can code the tell, ask and get primitives of DBD-Bach as

follows :

tellpLpmqq “
ÿ

~vPDipLpmqq

tellp~v rq

askpLpmqq “
ÿ

~vPDipLpmqq

askp~v rq

getpLpmqq “
ÿ

~vPDipLpmqq

getp~v rq

where ~v r denotes the vector ~v restricted to its strictly positive dense tokens.

Translating the nask primitive is slightly more complicated in requiring the parallel compo-

sition of the weak form of nask of vectors:

naskpLpmqq “ ||~vPDipLpmqqwnaskp~v rq

Translating the CD-Bach language proceeds similarly by usingDcpLpmqq instead ofDipLpmqq.

5.3 Conclusion

In this chapter, we have defined an extension of the language Dense Bach, with the property

of distributing density on a finite list of tokens. The idea of this extension is to provide the

93

language with a feature similar to a multi-set language, regarding the capacity to atomically

manipulate not only many instances of a same token, as Dense Bach does, but also different

tokens.

It is worth stressing that the idea of distributing the density on a vector of tokens is new

and, to the best of our knowledge, has never been the object of any proposal in the literature.

Combined with the notion of minimum and maximum, it proposes an elegant way to model

real-life problems, as our example about the migrants.

The next step is to study the expressiveness of the languages we have proposed. Obviously,

in view of the translations we have provided in this chapter, two languages have mainly to be

compared : Dense Bach and Vectorized Dense Bach. We shall do so in the next two chapters

by comparing these two languages with the BachT and MRT languages presented in chapter 3.

94

Chapter 6

Expressiveness Study of Dense Bach

This chapter positions Dense Bach from an expressiveness point of view. The first section

compares it with BachT. The second section compares it with MRT.

In both cases, we shall use the modular embedding technique proposed by De Boer and

Palamidessi (see [dBP94]), in the form slightly redefined in section 3.2.1, and already employed

in sections 3.2.4 and 3.2.5.

In both cases, we shall also restrict to the relevant sublanguages, namely those that embody

the tell primitive.

6.1 Comparison with BachT

6.1.1 Generic patterns and results

It is first worth observing that the generic patterns introduced in section 3.2.2 also apply in

the context of Dense Bach. As a reminder, they embody the following reasonings. The first

pattern, named the pattern of sublanguage inclusion, establishes that any language embeds its

sublanguages. The second pattern, named pattern of transitivity, takes advantage of transition

to establish that L1 ď L3 from the facts that L1 ď L2 and L2 ď L3. The third pattern relies

on the contraposition of the second pattern, to establish the non existence of the embedding of

L2 in L3, namely L2 ę L3, from the facts that L1 ď L2 and L1 ę L3.

For what concerns the Dense Bach language alone, it is clear by the first pattern (pattern 1

of sublanguage inclusion) that a number of modular embeddings are directly established. This

first property is formally expressed into the following proposition.

95

Proposition 35. LDBp ψq ď LDBp χq, for any subsets of ψ,χ of primitives such that ψ Ď χ.

As a second result, it is also clear that a simple relation exists between the BachT primi-

tives and their equivalent form in Dense Bach, simply by taking single occurrences, namely a

density of 1. As a result, BachT sublanguages are embedded in the corresponding Dense Bach

sublanguages, as expressed into the following proposition.

Proposition 36. LBp χq ď LDBp χq, for any subset of χ of primitives.

Proof. The proof is immediate by defining the coder as follows:

Cptellptqq “ tellptp1qq

Cpaskptqq “ askptp1qq

Cpgetptqq “ getptp1qq

Cpnaskptqq “ naskptp1qq

More deeply this expresses that BachT is a special case of Dense Bach. As the introduction

of density cannot alter the very nature of the four primitives tell, ask, nask and get, a similar-

ity between the respective hierarchies of Dense Bach sublanguages and of Bach sublanguages,

is to be expected, as showned in Figure 3.5 of Section 3.2.2. Nevertheless, even if the global

expressive behaviour stays the same, it is also expected that the complete picture of the two

hierarchies will reflect an increase in expressiveness in favour of Dense Bach with regard to

BachT. Indeed, apart for the tell primitive, the introduction of density gives to ask, nask and

get a more efficient atomic behaviour than for their BachT corresponding primitives. As an

example the ask(t(m)) primitive could not be simulated by m times an ask(t) primitive, as this

one could select m times the same token t, while ask(t(m)) requires at least m instances of t.

The same reasoning is valid for the get(t(m)) primitive. Concerning the nask(t(m)) primitive,

a succesful result could be obtained even in case of the presence of some tokens t, since they

are present in a number smaller than m.

After those general and intuitive results, the next subsections present the detailed proofs

of the different embedding relations existing, on the one hand, between all the sublanguages of

Dense Bach and, on the other hand, between the respective sublanguages of BachT and Dense

Bach. We shall proceed to the end according to the logical introduction of primitives already

used for studying the expressiveness of BachT and MRT. As a result, we first consider placing

(by tell) some tokens on the store. Then we allow the sublanguages to question the state of the

store by introducing ask and nask primitives. We thereafter allow to retrieve (by means of get

primitives) some tokens. Finally, we study the combination of the removal of tokens with the

96

check for their presence and/or absence.

6.1.2 Adding tokens on the store

Proposition 37. LDBptellq and LBptellq are equivalent.

Proof. Indeed, thanks to proposition 36, LBptellq ď LDBptellq. Furthermore, by coding any

tellptpmqq primitive as m successive tellptq primitives, and by using the identity as decoder, one

establishes that LDBptellq ď LBptellq.

6.1.3 Checking for presence and/or absence when adding tokens

As a result of the expressiveness hierarchy [BJ98] (see Figure 3.5 in section 3.2.2), it also comes

that both languages LBpask,tellq and LBpnask,tellq are strictly more expressive than LDBptellq

since both have been established strictly more expressive than LBptellq. Let us now compare

LBpask,tellq with its dense counterpart.

Proposition 38. LBpask,tellq ă LDBpask,tellq

Proof. (i) On the one hand, LBpask,tellq ď LDBpask,tellq holds by proposition 36. (ii) On

the other hand, LDBpask,tellq ę LBpask,tellq may be established by contradiction. Con-

sider A “ tellptp1qq; askptp2qq. As OpAq “ tpttp1qu, δ´qu, any computation of CpAq fails,

by P2 and P3. However, it is possible to construct a successful computation for CpAq. In-

deed, Optellptp1qq ; tellptp1qq ; askptp2qqq “ tpttp2qu, δ`qu. Therefore any computation of B =

Cptellptp1qq; tellptp1qq; askptp2qqq starting on the empty store is successful, and hence so does

any computation of Cptellptp1qqq. Consider such a computation and let σ denote the final store.

Given that Cptellptp1qq is composed of ask and tell primitives, it is possible to repeat the com-

putation in order to deliver a successful computation for Cptellptp1qq ; tellptp1qqq ending in σYσ

as final store. In view of the agent B and its successful computations, this computation can be

continued by a successful computation for Cpaskptp2qqq. However, as Cpaskptp2qqq is composed

of ask and tell primitives only, this continuation succeeds also starting on σ (instead of σ Y σ),

which induces a successful computation for Cptellptp1qq; askptp2qqq.

It is worth noting that the key point in the previous proof consists in the fact that the

ingredients of the coding of ask(t(2)), namely tell and ask primitives, manipulate only one

token at a time. Then putting only one token on the store in place of two has no influence

on the action of ask and tell primitives, as they can select twice the same token. Hence this

97

absence of discrimination in the re-used token permits to generate a successful computation of

the coded version of agent tellptp1qq ; askptp2qq, even if this agent must obviously fail.

It turns out that the same mechanism can be used to establish that LDBpask,nask,tellq ę

LBpask,nask,tellq. To stress this similarity, this result is established now.

Proposition 39. LDBpask,nask,tellq ę LBpask,nask,tellq

Proof. Similar to the second part of the proof of proposition 38 but, by using,

ptellptp1qq || tellptp1qqq ; askptp2qq, instead of ptellptp1qq; tellptp1qq; askptp2qqq to cope with the

potential presence of nask primtives.

Symmetrically to proposition 38, LBpnask,tellq is strictly less expressive than LDBpnask,tellq.

Proposition 40. LBpnask,tellq ă LDBpnask,tellq.

Proof. (i) On the one hand, LBpnask,tellq ď LDBpnask,tellq holds by proposition 36. (ii)

On the other hand, LDBpnask,tellq ę LBpnask,tellq may be obtained by contradiction. To

that end, consider tellptp1qq;naskptp2qq. Since Optellptp1qq ; naskptp2qqq “ tpttp1qu, δ`qu, any

computation of A = pCptellptp1qq ; Cpnaskptp2qqq starting on the empty store is successful, by

P2 and P3. As a result, any computation of Cptellptp1qqq succeeds. Consider one of them, say

ending in the store σ. In view of agent A above, it can be continued by a successful computation,

say C, of Cpnaskptp2qqq. By duplicating each of its steps, one creates a successful computation

for D = (Cptellptp1qqq || Cptellptp1qqqq ending in σ Y σ. As C = Cpnaskptp2qqq is composed of

nask and tell primitives only, D can be continued successfully by computation C, which yields

a successful computation for (Cptellptp1qqq || Cptellptp1qqqq ; Cpnaskptp2qqq. Then by P3, the

contradiction comes from the fact that pptellptp1qq || tellptp1qqq ; naskptp2qqq fails.

As proposition 39 can be proved by the reasoning employed in proposition 38, so does

LDBpnask,tellq ę LBpask,nask,tellq result from the reasoning used for previous proposition.

Proposition 41. LDBpnask,tellq ę LBpask,nask,tellq

Proof. By using the same reasoning as for the second part of proof of proposition 40 and by

noting that the presence of the ask primitive in LB does not destroy elements and so does not

modify the state of the store σ.

98

LDBpnask,tellq and LBpask,tellq are not comparable with each other, as well as LDBpask,tellq

with regards to LBpnask,tellq.

Proposition 42. LDBpnask,tellq ≀ LBpask,tellq

Proof. (i) On the one hand, we have that LDBpnask,tellq ę LBpask,tellq. Otherwise, by pat-

tern 2 of transitivity and proposition 36, we have LBpnask,tellq ď LBpask,tellq, which has been

proved impossible in proposition 4.

(ii) On the other hand, one establishes that LBpask,tellq ę LDBpnask,tellq by contradiction.

Consider A “ tellptq ; askptq. One has OpAq “ tpttu, δ`qu. Hence, by P3, CpAq succeeds

whereas we shall establish that it has failing computations. Indeed, since Opaskptqq “ tpH, δ´qu,

any computation of Cpaskptqq starting on the empty store fails. As Cpaskptqq is composed of

nask and tell primitives, this can only occur by having a nask primitive preceded by a tell

primitive. As enriching the initial content of the store does not change the behaviour of the

nask primitive, any computation starting on any (arbitrary) store fails. As a consequence,

even if Cptellptqq has a successful computation, this computation cannot be continued by a

successful computation of Cpaskptqq. Consequently any computation of Cptellptq; askptqq fails,

which produces a contradiction.

The next proposition establishes that LDBpask,tellq ≀ LBpnask,tellq.

Proposition 43. LDBpask,tellq ≀ LBpnask,tellq

Proof. (i)On the one hand, we have that LDBpask,tellq ę LBpnask,tellq. Otherwise by pattern 2

of transitivity, LBpask,tellq ď LBpnask,tellq which has been proved impossible in proposition 4.

(ii) On the other hand, one establishes that LBpnask,tellq ę LDBpask,tellq by contradiction.

Consider A “ tellptq ; naskptq. One has OpAq “ tpttu, δ´qu. By P3, CpAq fails, whereas we

shall establish that it has a successful computation. Indeed, since Optellptqq “ tpttu, δ`qu, any

computation of Cptellptqq starting on the empty store is successful. Similarly, it follows from

Opnaskptqq “ tpH, δ`qu that any computation of Cpnaskptqq starting on the empty store is

successful, and, consequently, is any computation starting from any store, since Cpnaskptqq is

composed of ask and tell primitives. Summing up, any (successful) computation of Cptellptqq

starting on the empty store can be continued by a (successful) computation of Cpnaskptqq, which

leads to the contradiction.

It is worth noting that the reasoning used in the second part of the proof will also be used

to establish propositions 60 and 61.

99

LDBpnask,tellq and LDBpask,tellq are not comparable with each other, as well as LDBpnask,tellq

with regards to LBpask,nask,tellq.

Proposition 44. LDBpnask,tellq ≀ LDBpask,tellq

Proof. On the one hand, we have that LDBpnask,tellq ę LDBpask,tellq. Otherwise by pattern 2

of transitivity, LBpnask,tellq ď LDBpask,tellq, which contradicts proposition 43. On the other

hand, we have that LDBpask,tellq ę LDBpnask,tellq. Otherwise by pattern 2, LBpask,tellq ď

LDBpnask,tellq, which contradicts proposition 42.

Proposition 45. LBpask,nask,tellq ≀ LDBpnask,tellq

Proof. On the one hand, we have that LBpask,nask,tellq ę LDBpnask,tellq. Otherwise by pat-

tern 2 of transitivity LBpask,tellq ď LDBpnask,tellq, which contradicts proposition 42. On the

other hand, proposition 41 establishes that LDBpnask,tellq ę LBpask,nask,tellq.

LBpget,tellq and LDBpask,tellq are not comparable with each other.

Proposition 46. LBpget,tellq ≀ LDBpask,tellq

Proof. (i) On the one hand, one establishes that LBpget,tellq ę LDBpask,tellq by contradiction.

Consider tellptq ; getptq. One has Optellptq ; getptqq “ tpH, δ`qu. By P2 and P3, any computa-

tion of OpCptellptqq ; Cpgetptqqq is thus successful. Since Cpgetptqq is composed of ask and tell

primitives only and since ask and tell primitives do not destroy elements, at least one compu-

tation of OpCptellptqq ; Cpgetptqq ; Cpgetptqqq is successful. However, Optellptq ; getptq ; getptqq “

tpH, δ´qu, which provides the contradiction.

(ii) On the other hand, LDBpask,tellq ę LBpget,tellq is established by contradiction. Con-

sider A “ tellptp1qq ; paskptp2qq ` tellptp1qqq. One has OpAq “ tpttp2qu, δ`qu. By P3, any

computation of CpAq thus succeeds. However it is possible to construct a failing computation.

Indeed, let first observe that Optellptp1qq ; tellptp1qq ; askptp2qqq succeeds. Therefore by P3 any

computation of B = Cptellptp1qq ; tellptp1qq ; askptp2qqq starting on the empty store is successful,

and so does any computation of Cptellptp1qqq. Consider such a computation C and let σ denote

the final store. Given that Cptellptp1qqq is composed of get and tell primitives, it is possible to

repeat the computation in order to deliver a successful computation for Cptellptp1qq ; tellptp1qqq

ending in σ Y σ as final store. In view of agent B above, this computation can be continued by

a successful computation C 1 for Cpaskptp2qqq. The first step s of C 1 is either a (single) tell which

always succeeds or a (single) get which also succeeds on σ Y σ, and therefore on σ. This leads

to a first successful step s of Cpaskptp2qqq after the computation C. As ptellptp1qq ; askptp2qqq

100

fails, this computation prefix C.s has only failing computations. Nevertheless, C.s is a com-

putation prefix of Cptellptp1qq ; paskptp2qq ` tellptp1qqqq, which leads to a failure and to the

contradiction.

The above proof can be repeated to deliver the four following propositions 47, 48, 49 and 50

as well as two propositions 62 and 63, of section 6.1.4.

Proposition 47. LBpnask,get,tellq ę LDBpask,nask,tellq

Proof. By using the reasoning of the first part of the proof of proposition 46 and by replacing

the sequential composition of the two getptq primitives by a parallel one, in order to cope with

the potential presence of nask primitives.

Proposition 48. LBpget,tellq ę LDBpask,nask,tellq

Proof. By using the reasoning of the first part of the proof of proposition 46 and by replacing

the sequential composition of the two getptq primitives by a parallel one, in order to cope with

the potential presence of nask primitives.

Proposition 49. LDBpask,tellq ę LBpnask,get,tellq

Proof. By employing the reasoning of the second part of the proof of proposition 46 where the

sequential composition of tellptp1qq with itself is replaced by a parallel one in order to cope with

the potential presence of nask primitives.

Proposition 50. LDBpask,tellq ę LBpask,nask,tellq

Proof. By employing the reasoning of the second part of the proof of proposition 46 where the

sequential composition of tellptp1qq with itself is replaced by a parallel one in order to cope with

the potential presence of nask primitives.

To complete proposition 48, we now establish that LDBpask,nask,tellq ę LBpget,tellq leading

to the result that LBpget,tellq ≀ LDBpask,nask,tellq.

Proposition 51. LBpget,tellq ≀ LDBpask,nask,tellq

Proof. On the one hand, LBpget,tellq ę LDBpask,nask,tellq is established by proposition 48.

On the other hand, LDBpask,nask,tellq ę LBpget,tellq is established by contradiction. Other-

wise by the pattern 1 of sublanguage inclusion, LDBpask,tellq ď LDBpask,nask,tellq and then

LDBpask,tellq ď LBpget,tellq holds, which contradicts proposition 46.

101

Similarly, to complete proposition 50, we now establish that LBpask,nask,tellq ę LDBpask,tellq

leading to the result that LBpask,nask,tellq ≀ LDBpask,tellq.

Proposition 52. LBpask,nask,tellq ≀ LDBpask,tellq

Proof. On the one hand, LDBpask,tellq ę LBpask,nask,tellq is established by proposition 50.

On the other hand, LBpask,nask,tellq ę LDBpask,tellq is established by contradiction. Oth-

erwise by the pattern 1 of sublanguage inclusion, LBpnask,tellq ď LBpask,nask,tellq and then

LBpnask,tellq ď LDBpask,tellq holds, which contradicts proposition 43.

We now establish that LDBpask,tellq is not comparable with LBpnask,get,tellq.

Proposition 53. LDBpask,tellq ≀ LBpnask,get,tellq

Proof. On the one hand, LDBpask,tellq ď LBpnask,get,tellq is established by proposition 49.

On the other hand, LBpnask,get,tellq ę LDBpask,tellq is established by contradiction. Other-

wise by the pattern 2 of transitivity, LBpnask,tellq ď LDBpask,tellq holds, which contradicts

proposition 43.

Let us now establish that LDBpnask,tellq and LBpask,nask,tellq are strictly less expressive

than LDBpask,nask,tellq.

Proposition 54. LDBpnask,tellq ă LDBpask,nask,tellq

Proof. By sublanguage inclusion, one has LDBpnask,tellq ď LDBpask,nask,tellq. Moreover, if we

had LDBpask,nask,tellq ď LDBpnask,tellq, then we would have LDBpask,tellq ď LDBpnask,tellq,

which contradicts proposition 44.

Proposition 55. LBpask,nask,tellq ă LDBpask,nask,tellq

Proof. It follows from proposition 36 that LBpask,nask,tellq ď LDBpask,nask,tellq. Moreover,

it follows from proposition 39 that LDBpask,nask,tellq ę LBpask,nask,tellq.

LDBpask,tellq is strictly less expressive than LDBpask,nask,tellq.

Proposition 56. LDBpask,tellq ă LDBpask,nask,tellq

Proof. On the one hand, LDBpask,tellq ď LDBpask,nask,tellq results from language inclusion.

On the other hand, one has LDBpask,nask,tellq ę LBpask,tellq since otherwise, by the pattern 2

of transitivity, LDBpnask,tellq ď LDBpask,tellq, which contradicts proposition 44.

102

Symmetrically to proposition 53, LBpnask,get,tellq is not comparable with LDBpnask,tellq.

Proposition 57. LBpnask,get,tellq ≀ LDBpnask,tellq

Proof. (i) On the one hand, LBpnask,get,tellq ę LDBpnask,tellq. Otherwise, by the pattern 2

of transitivity, LBpask,tellq ď LDBpnask,tellq which contradicts proposition 42.

(ii) On the other hand, LDBpnask,tellq ę LBpnask,get,tellq is established by contradiction.

Consider T2NoT “ ptellptp1qq || tellptp1qqq ; pnaskptp2qq ` tellptp1qqq. It has just a successful

computation. Nevertheless we shall construct a failing computation for its coder. To that

end, consider T “ Cptellptp1qqq. Given that tellptp1qq succeeds, its coder T has only successful

computations starting on the empty store. Consider one of them, say C, ending in the store σ.

By repeating in turn each of its steps, it is possible to construct a successful computation, say

CC, for Cptellptp1qq || tellptp1qqq ending in the store σ Y σ. Consider now

T2N “ Cpptellptp1qq || tellptp1qqq ; naskptp2qqq

“ pCptellptp1qqq || Cptellptp1qqqq ; Cpnaskptp2qqq

As tellptp1qq ; naskptp2qq succeeds, the computation C of Cptellptp1qqq can be continued by a

successful computation for Cpnaskptp2qqq. Consider such a computation and let s denote its first

step. As C ends in the store σ, step s can also be successfully performed after CC, which ends

in store σY σ. However, CC.s is a computation prefix for T2N , which, in view of the fact that

ptellptp1qq || tellptp1qqq ; naskptp2qq fails, can only be continued by failing computations. How-

ever, these computations are also computations of T2NoT , which, thus provide the announced

failing computation.

LBpnask,get,tellq is not comparable with LDBpask,nask,tellq.

Proposition 58. LDBpask,nask,tellq ≀ LBpnask,get,tellq

Proof. On the one hand, LDBpask,nask,tellq ę LBpnask,get,tellq otherwise, by the pattern 3

of non embedding by transitivity, LDBpask,tellq ď LBpnask,get,tellq which contradicts proposi-

tion 53. On the other hand, LBpnask,get,tellq ę LDBpask,nask,tellq is established by proposi-

tion 47.

LDBpnask,tellq is not comparable with LBpget,tellq.

Proposition 59. LDBpnask,tellq ≀ LBpget,tellq

103

LDBpask, nask, tellq
LB(nask, get, tell)

LB(ask, nask, get, tell)

LDBpnask, tellq LB(ask, nask, tell)
LB(get, tell)

LB(ask, get, tell)
LDBpask, tellq

LB(nask, tell) LB(ask, tell)

LB(tell)

LDBptellq

Figure 6.1: Embedding hierarchy of BachT and Dense Bach languages for the tell, ask and nask

primitives in Dense Bach.

Proof. On the one hand, LDBpnask,tellq ę LBpget,tellq. Otherwise, by the pattern 2 of tran-

sitivity, LBpnask,tellq ď LBpget,tellq which contradicts proposition 8. On the other hand,

LBpget,tellq ę LDBpnask,tellq. Otherwise LBpask,tellq ď LDBpnask,tellq which contradicts

proposition 42.

In order to illustrate the results obtained so far, Figure 6.1 presents a synthesis of the ex-

pressive relations proved in the two previous subsections. Note that only the strict relations of

expressiveness are shown: the absence of arrow between two languages means that there is no

relation of expressiveness between them.

6.1.4 Retrieving tokens from the store

Let us now include the get primitive in the Dense Bach language. As previously announced the

reasoning employed in the second part of the proof of proposition 43 can be used to establish

the two following inequalities.

Proposition 60. LBpnask,tellq ę LDBpget,tellq

Proof. Indeed, replacing ask by get in the Dense Bach language does not modify the successful

behaviour of Cpnaskptqq not only when starting on the empty store, but also from any store.

This still ensures that any successful computation of Cptellptqq can be followed by a successful

computation of Cpnaskptqq, leading to an obvious contradiction.

Proposition 61. LDBpnask,get,tellq ę LDBpget,tellq

104

Proof. The proof proceeds as the second part of the proof of proposition 43 by considering

tellptp1qq and naskptp1qq instead of tellptq and naskptq. Moreover, as noticed for proposition 60,

the introduction of get primitives does not alter the reasoning.

The two following propositions reuse the reasoning of proposition 46.

Proposition 62. LDBpget,tellq ę LDBpask,tellq

Proof. By using the reasoning of the first part of the proof of proposition 46 to getptp1qq and

tellptp1qq primitives.

Proposition 63. LDBpget,tellq ę LBpget,tellq

Proof. By using the reasoning of the second part of the proof of proposition 46 in which the

askptp2qq primitive is replaced by getptp2qq.

We now prove that LDBpget,tellq and LDBpask,get,tellq are equivalent.

Proposition 64. LDBpget,tellq “ LDBpask,get,tellq

Proof. On the one hand, one has LDBpget,tellq ď LDBpask,get,tellq by pattern 1 of sublanguage

inclusion. On the other hand, by coding askptpmqq as getptpmqq ; tellptpmqq and by using the

identity as decoder, one has LDBpask,get,tellq ď LDBpget,tellq.

Let us now establish that LBpget,tellq is strictly less expressive than LDBpget,tellq.

Proposition 65. LBpget,tellq ă LDBpget,tellq

Proof. On the one hand, LBpget,tellq ď LDBpget,tellq holds by proposition 36. On the other

hand, LDBpget,tellq ę LBpget,tellq is established in proposition 63.

We now establish that LDBpask,tellq is strictly less expressive than LDBpget,tellq.

Proposition 66. LDBpask,tellq ă LDBpget,tellq.

Proof. On the one hand, LDBpask,tellq ď LDBpget,tellq follows directly by coding askptpmqq

as getptpmqq ; tellptpmqq. On the other hand, LDBpget,tellq ę LDBpask,tellq is established by

proposition 62.

105

We can now prove that LDBpget,tellq is not comparable with respect to LBpnask,tellq,

LDBpnask,tellq, LBpnask,get,tellq,LDBpask,nask,tellq and LBpask,nask,tellq.

Proposition 67. LDBpget,tellq ≀ LBpnask,tellq

Proof. On the one hand, one has LDBpget,tellq ę LBpnask,tellq. Indeed, otherwise, by the

pattern 2 of transitivity LDBpask,tellq ď LDBpnask,tellq which contradicts proposition 44. On

the other hand, LBpnask,tellq ę LDBpget,tellq is established by proposition 60.

Proposition 68. LDBpget,tellq ≀ LDBpnask,tellq

Proof. On the one hand, LDBpget,tellq ę LDBpnask,tellq is established by contradiction. Indeed,

otherwise, by pattern 2, LBpask,tellq ď LDBpnask,tellq which contradicts proposition 42. On the

other hand, LDBpnask,tellq ę LDBpget,tellq is established similarly by contradiction. Otherwise,

again by pattern 2, LBpnask,tellq ď LDBpget,tellq which contradicts proposition 67.

Proposition 69. LDBpget,tellq ≀ LBpnask,get,tellq

Proof. On the one hand, LDBpget,tellq ę LBpnask,get,tellq holds. Indeed, otherwise by the

pattern 2 and with the result of proposition 66, we have LDBpask,tellq ď LBpnask,get,tellq

which contradicts proposition 53. On the other hand, LBpnask,get,tellq ę LDBpget,tellq is

established by contradiction. Indeed, otherwise by the pattern 3 LBpnask,tellq ď LDBpget,tellq

which contradicts proposition 67.

Proposition 70. LDBpget,tellq ≀ LDBpask,nask,tellq

Proof. On the one hand, LDBpget,tellq ę LDBpask,nask,tellq is established by using the reason-

ing of the first part of the proof of proposition 46 to getptp1qq and tellptp1qq primitives, and by

replacing the sequential composition of the two getptp1qq primitives by a parallel one, in order to

cope with the potential presence of nask primitives. On the other hand, LDBpask,nask,tellq ę

LDBpget,tellq holds. Otherwise by the pattern 2, LDBpnask,tellq ď LDBpget,tellq which contra-

dicts proposition 68.

Proposition 71. LDBpget,tellq ≀ LBpask,nask,tellq

Proof. On the one hand, LDBpget,tellq ę LBpask,nask,tellq holds. Otherwise by pattern 2,

LDBpget,tellq ď LDBpask,nask,tellq which contradicts proposition 70. On the other hand,

LBpask,nask,tellq ę LDBpget,tellq is directly established by contradiction. Otherwise, by the

pattern 2, LBpnask,tellq ď LDBpget,tellq which contradicts proposition 67.

106

LDBpask, nask, tellq
LB(nask, get, tell)

LB(ask, nask, get, tell)

LDBpget, tellq

LDBpask, get, tellq

LDBpnask, tellq LB(ask, nask, tell)
LB(get, tell)

LB(ask, get, tell)
LDBpask, tellq

LB(nask, tell) LB(ask, tell)

LB(tell)

LDBptellq

Figure 6.2: Embedding hierarchy of BachT and Dense Bach languages for the get primitive in

Dense Bach.

Figure 6.2 adds the expressive relations related to the get primitive in Dense Bach to the

figure obtained with the tell, ask and nask primitives.

6.1.5 Checking for the presence and/or absence when adding and/or retriev-

ing tokens

LDBpnask,get,tellq and LDBpask,nask,get,tellq are equivalent.

Proposition 72. LDBpnask,get,tellq “ LDBpask,nask,get,tellq

Proof. (i) On the one hand, LDBpnask,get,tellq ď LDBpask,nask,get,tellq is established

by language inclusion. (ii) On the other hand, to establish LDBpask,nask,get,tellq ď

LDBpnask,get,tellq we shall provide a coder such that the coding of the primitives askptpnqq

and naskptpnqq manipulate different tokens. To that end, as the set of tokens is enumerable, it

is possible to associate each of them, say t(n), with a pair pt1pnq, t2pnqq. Given such a coding

of tokens, we define the compositional coder C as follows:

Cpaskptpnqqq “ getpt2pnqq ; tellpt2pnqq

Cpnaskptpnqqq “ naskpt1pnqq

Cpgetptpnqqq “ getpt2pnqq ; getpt1pnqq

Cptellptpnqqq “ tellpt1pnqq ; tellpt2pnqq

The decoder D is defined as follows: Delppσ, δqq “ pσ, δq, where σ is composed of the tokens

tpnq for which t1pnq and t2pnq are in σ, the multiplicity of tpnq being that of pairs pt1pnq, t2pnqq

in σ.

107

LDBpask,nask,tellq is strictly less expressive than LDBpask,nask,get,tellq, and is consequently

less expressive than LDBpnask,get,tellq, by proposition 72.

Proposition 73. LDBpask,nask,tellq ă LDBpask,nask,get,tellq

Proof. On the one hand, LDBpask,nask,tellq ď LDBpask,nask,get,tellq results from language

inclusion. On the other hand one has LDBpask,nask,get,tellq ę LDBpask,nask,tellq. Otherwise

by pattern 2 of transitivity, LDBpget,tellq ď LDBpask,nask,tellq, which contradicts proposi-

tion 70.

LDBpget,tellq is strictly less expressive than LDBpnask,get,tellq.

Proposition 74. LDBpget,tellq ă LDBpnask,get,tellq

Proof. On the one hand, LDBpget,tellq ď LDBpnask,get,tellq results from language inclusion.

On the other hand, LDBpnask,get,tellq ę LDBpget,tellq results from proposition 61.

Finally, LBpask,nask,get,tellq can be proved strictly less expressive than

LDBpask,nask,get,tellq.

Proposition 75. LBpask,nask,get,tellq ă LDBpask,nask,get,tellq

Proof. (i) On the one hand, LBpask,nask,get,tellq ď LDBpask,nask,get,tellq is directly deduced

from proposition 36. (ii) On the other hand, using the pattern 2 of transitivity, if one had

LDBpask,nask,get,tellq ď LBpask,nask,get,tellq then LDBpget,tellq ď LBpnask,get,tellq would

hold, which contradicts proposition 69.

Figure 6.3 presents the full expressive relations related to the ask, nask, get and tell primi-

tives. It is worth observing that apart from LBptellq = LDBptellq, any sublanguage of BachT is

strictly less expressive than the corresponding sublanguage of Dense Bach. Moreover, the very

nature of the tell, ask, nask and get primitives is kept by Dense Bach, which leads Dense Bach

to share the sublanguage hierarchy of the sublanguages of BachT.

108

LDBpnask, get, tellq

LDBpask, nask, get, tellq

LDBpask, nask, tellq
LB(nask, get, tell)

LB(ask, nask, get, tell)

LDBpget, tellq

LDBpask, get, tellq

LDBpnask, tellq LB(ask, nask, tell)
LB(get, tell)

LB(ask, get, tell)
LDBpask, tellq

LB(nask, tell) LB(ask, tell)

LB(tell)

LDBptellq

Figure 6.3: Embedding hierarchy of BachT and Dense Bach languages for all the primitives in

Dense Bach.

6.2 Comparison with MRT

This section studies the expressiveness relations between the Dense Bach language LDB and the

multi-set rewriting language LMR. As for the study comparing Bach and Dense Bach, to treat

relevant sublanguages, we shall restrict our attention to those that embody the tell primitive. In

this comparison, only the relations of the expressiveness between the Dense Bach sublanguages

and those for the multi-set rewriting language are taken into account, as the relations at the

level of the language LMR have already been established.

We shall also structure this section as the previous one. After generic results, we first start

the exhaustive expressiveness comparison of the sublanguages that use the tell primitive to

provide tokens in the tokenspace, and that question it about the presence or absence of tokens,

respectively with the ask and nask primitives. Then we enrich the language with a get primi-

tive, that permits to retrieve tokens from the tuplespace. Finally we consider all the languages

that combine the get primitive with the ask and nask primitives. For this classification, the

addition of the primitives is done with the point of view of the multi-set rewriting language.

The text emphasizes the techniques of demonstration that are used in many propositions.

6.2.1 Generic patterns and results

Similarly to the comparison of BachT and Dense Bach, the three patterns permits to establish

a number of propositions.

109

A first observation establishes that Dense Bach sublanguages are embedded in the corre-

sponding multi-set rewriting sublanguages.

Proposition 76. LDBp χq ď LMRp χq, for any subset of χ of primitives.

Proof. Immediate by defining the coder as follows:

Cptellptpmqqq “ ptu, t`t,`t, ¨ ¨ ¨ ,`t
loooooooomoooooooon

m times

uq

Cpaskptpmqqq “ pt`t,`t, ¨ ¨ ¨ ,`t
loooooooomoooooooon

m times

u, tuq

Cpgetptpmqqq “ pt`t, `t, ¨ ¨ ¨ ,`t
loooooooomoooooooon

m times

u, t´t,´t, ¨ ¨ ¨ ,´t
loooooooomoooooooon

m times

uq

Cpnaskptpmqqq “ pt´t, ´t, ¨ ¨ ¨ ,´t
loooooooomoooooooon

m times

u, tuq

and using the identity as decoder.

6.2.2 Adding tokens on the store

When reduced to the tell primitive, Dense Bach and MRT are equivalent.

Proposition 77. LMRptellq = LDBptellq

Proof. We have LDBptellq ď LMRptellq by proposition 76. Furthermore, LMRptellq ď LDBptellq

is established by coding any tell primitive of LMRptellq as the parallel composition of their dense

versions: Cptu, t`t1, ¨ ¨ ¨ ,`t1
loooooomoooooon

m1 times

, ¨ ¨ ¨ ,`tk, ¨ ¨ ¨ ,`tk
loooooomoooooon

mk times

uq “ || k
i“1tellptipmiqq.

6.2.3 Checking for the presence and/or absence when adding tokens

Let us now consider the introduction of questioning the state of the store, regarding the pres-

ence or the absence of tokens on it. As a result of the expressiveness hierarchy obtained in

section 6.1.3 and synthesized in Figure 6.3, it also comes that both languages LDBpask,tellq and

LDBpnask,tellq are strictly more expressive than LMRptellq since both have been established

strictly more expressive than LDBptellq. Let us now compare LDBpask,tellq with its multiset

counterpart.

Proposition 78. LDBpask,tellq ă LMRpask,tellq

Proof. (i) On the one hand, LDBpask,tellq ď LMRpask,tellq, by proposition 76. (ii) On the

other hand, LMRpask,tellq ę LDBpask,tellq may be established by exploiting the inability of

LDBpask,tellq to atomically test the presence of two distinct tokens a and b. To do so, one

considers AB “ pt`a,`bu, tuq and assumes that CpABq is in normal form and thus is written

as tellpt1q;A1 ` ¨ ¨ ¨ ` tellptpq;Ap ` askpu1q;B1 ` ¨ ¨ ¨ ` askpuqq;Bq, where ti and uj denote the

110

token ti and uj associated with a density. In this normal form, we will establish that there is no

alternative guarded by a tellptiq operation and no alternative guarded by an askpujq operation

either, which is impossible since CpABq must contain at least one primitive.

Let us first establish by contradiction that there is no alternative guarded by a tellptiq

operation. Indeed, if there is an alternative guarded, say by tellptiq, then D “ xCpABq|Hy Ñ

xAi|tiy is a valid computation prefix of CpABq. It should deadlock afterwards since OpABq “

tpH, δ´qu. Let us denote by FP the failing computation. Now, as CpAB` ptu, t`auqq = CpABq

+ Cpptu, t`auqq by P2, FP is also a valid computation prefix of CpAB ` ptu, t`auqq, and thus,

as FP is a failing computation, CpAB ` ptu, t`auqq admits a failing computation which, by P3,

contradicts the fact that OpAB ` ptu, t`auqq “ tptau, δ`qu.

Secondly, we establish that there is also no alternative guarded by an askpujq operation.

To that end, let us first consider two auxiliary computations. As Opptu, t`auqq “ ptau, δ`q,

any computation of Cpptu, t`auq starting in the empty store succeeds. Let xCpptu, t`auqq|Hy Ñ

¨ ¨ ¨ Ñ xE|ta1, . . . , amuy be such a computation. Similarly, let xCpptu, t`buqq|Hy Ñ ¨ ¨ ¨ Ñ

xE|tb1, . . . , bnuy be one computation of Cpptu, t`buqq. The proof of the claim proceeds in two

steps: none of the ui’s belong to ta1, . . . , amu Y tb1, . . . , bnu. First let us prove that none of the

ui’s belong to ta1, . . . , amu. By contradiction, assume that ui “ ak for some k and that q is the

density associated with ui, namely, ui “ uipqq. Let us observe that, since it is in LDBpask,tellq,

the considered computation of Cpptu, t`auqq can be repeated sequentially, as many times as

needed. As a result, if, for an agent A and integer n, the notation An denotes the sequential com-

position of n copies of A and if for a token t, the notation tn in a multiset denotes n occurrences

of t, then D1 “ xCpptu, t`auqq ;ABq|Hy Ñ ¨ ¨ ¨ Ñ xCpABq|taq1, . . . , a
q
muy Ñ xBj|ta

q
1, . . . , a

q
muy is a

valid computation prefix of Cpptu, t`auqq ;ABq, which can only be continued by failing suffixes.

However D1 induces the following computation prefixD2 for ptu, t`auqq ; pAB`pt`au, tuqq which

as just seen admits only successful computations: D2 “ xCpptu, t`auqq ; pAB`pt`au, tuqqq|Hy Ñ

¨ ¨ ¨ Ñ xCpAB ` pt`au, tuqq|taq1 , . . . , a
q
muy Ñ xBj |taq1, . . . , a

q
muy. The proof proceeds similarly in

the case uj P tb1, . . . , bnu for some j P t1, . . . , qu by then considering ptu, t`buqp;AB and

ptu, t`buqp; pAB ` pt`bu, tuqq.

Finally, the fact that the u1
is do not belong to ta1, . . . , amu Y tb1, . . . , bnu induces a

contradiction. Indeed, if this is the case then xCpptu, t`auq; ptu, t`buq;ABq|Hy Ñ ¨ ¨ ¨ Ñ

xCpptu, t`buq;ABq|ta1 , . . . , amuy Ñ ¨ ¨ ¨ Ñ xCpABq|ta1, . . . , am, b1, . . . , bnuy Û is a valid fail-

ing computation prefix of Cpptu, t`auq; ptu, t`buq;ABq whereas ptu, t`auq; ptu, t`buq;AB has

only one successful computation.

Proof technique 3. The reasoning used to establish the above proposition is used once more

to prove propositions 83, 85, 87, and 91, which respectively demonstrate that LMRpask,tellq ę

LDBpask,nask,tellq, LMRpask,tellq ę LDBpget,tellq, LMRpask,tellq ę LDBpnask,get,tellq and

LMRpget,tellq ę LDBpget,tellq. Indeed, for each of these propositions, the intuition behind the

111

results is that the considered Dense Bach language is unable to atomically test the presence

of two tokens or to remove those tokens. As a result, the same steps can be followed. An

agent is first defined in a multi-set way to express the simultaneous testing of presence, or

simultaneaous retrieval of some tokens. The coded version of this agent is then considered in

a normal form and the proof technique consists in establishing by contradiction that actually

none of the alternatives in this normal form exists. Hence the contradiction since by definition

any agent is non-empty.

Symmetrically, LDBpnask,tellq is strictly less expressive than LMRpnask,tellq. In order to

establish this result, we use again lemma 1 of section 3.2.5.

Proposition 79. LDBpnask,tellq ă LMRpnask,tellq.

Proof. (i) On the one hand, LDBpnask,tellq ď LMRpnask,tellq holds by proposition 76.

(ii)On the other hand, LMRpnask,tellq ę LDBpnask,tellq is proved by assuming the existence

of a coder C, and by establishing that it contains in fact no primitive, while it has to contain at

least one. The proof proceeds as in proposition 78 but this time by exploiting the inability of

LDBpnask,tellq to atomically test the absence of two distinct tokens a and b.

In the following, the construction of the tokens ta1, . . . , amu and tb1, . . . , bnu associated

with the coding of a and b will be generalized by the definition of a function f : Stoken Ñ

Pf pStokenq, associating with each token a finite set of tokens. So for any token t, as

Opptu, t`tuqq “ tpttu, δ`qu, any computation of Cpptu, t`tuqq starting in the empty store suc-

ceeds, let xpptu, t`tuqq|Hy Ñ ¨ ¨ ¨ Ñ xE|tt1, . . . , tmtuy be such a computation and let St denote

the resulting store tt1, ¨ ¨ ¨ tmtu.

Then the proof of the claim proceeds by examining two cases: (I) either there exist two

tokens a and b such that Sa X Sb “ H, (II) or Sa X Sb ‰ H for any pair of tokens a and b.

CASE I: Let us first suppose that there are two tokens a and b such that Sa X Sb “ H.

Consider AB “ pt´a,´bu, tuq and CpABq in its normal form:

tellpv1q ; A1 ` ¨ ¨ ¨ ` tellpvpq ; Ap ` naskpu1q ; B1 ` ¨ ¨ ¨ ` naskpuqq ; Bq

The proof then proceeds by establishing that there are no alternatives guarded by tellpviq nor

by naskpujq. The absence of alternative guarded by a tellpviq primitive is established as the

proof of the second part of proposition 78: if this was not the case, then AB would point

out a deadlocking computation for ptu, t`auq; pAB ` ptu, t`auqq which only admits successful

computations. To prove the absence of an alternative guarded by a naskpujq primitive, one

establishes that the uj’s should belong to Sa and to Sb, which is impossible since Sa X Sb “ H.

By contradiction, assume that uj R Sa for some j (the case where uj R Sb is treated similarly).

Then

xCpptu, t`auq ; ABq | Hy ÝÑ ¨ ¨ ¨ ÝÑ xCpABq | Say ÝÑ xBj | Say

112

is a valid computation prefix of Cpptu, t`auq ; ABq which can only be continued by

failing suffixes. However, this prefix induces the following computation prefix D1 for

Cpptu, t`auq ; pAB ` ptu, t`auqq which should only admit successful computations:

xCpptu, t`auq ; pAB ` ptu, t`auqqq | Hy ÝÑ ¨ ¨ ¨

ÝÑ xCpAB ` ptu, t`auqq | Say ÝÑ xBj | Say

CASE II: Let us now suppose that Sa XSb ‰ H for any pair of tokens a and b. As proved by

Lemma 1, it is possible to construct an infinite sequence of distinct tokens xi’s and to identify

an integer n such that
n

č

i“1

Sxi
“ H

and
n

č

i“1

Sxi
“

n
č

i“1

Sxi
X Sxj

for any j ą n. Let us consider NT “ pt´x1, ¨ ¨ ¨ ,´xnu, tuq and CpNT q in its normal form

tellpv1q ; A1 ` ¨ ¨ ¨ ` tellpvpq ; Ap ` naskpu1q ; B1 ` ¨ ¨ ¨ ` naskpuqq ; Bq

By using a reasoning similar to the one employed for case I, one may prove that there are no

alternatives guarded by a tellpviq primitive and that tu1, ¨ ¨ ¨ , uqu Ď Sx1 X ¨ ¨ ¨ X Sxn . Therefore

Cpptu, t`xn`1uq ; NT q has a failing computation since Sx1 X ¨ ¨ ¨ XSxn XSxn`1 “ Sx1 X ¨ ¨ ¨ XSxn

and thus tu1, ¨ ¨ ¨ , uqu Ď Sx1 X ¨ ¨ ¨ X Sxn Ď Sxn`1 . However, this contradicts the fact that

ptu, t`xn`1uq ; NT has only one successful computation.

In conclusion, CpABq reduces to an empty statement, which is not possible since it should

contain at most one primitive.

Proof technique 4. The reasoning used to establish the previous proposition is also used

to prove propositions 82 and 88, where it is stated that LMRpnask,tellq ę LDBpask,nask,tellq

and LMRpnask,tellq ę LDBpnask,get,tellq. Indeed, for these proofs, the reasoning amounts to

consider the codings Sa and Sb of two tokens a and b and to distinguish whether they share or

not a common element. In both cases, it is however proved that the coding of an agent has to

be empty, which introduces a contradiction. Technically, it is worth noting that the presence

of the nask primitive requires to consider a parallel composition instead of a sequential one in

the coding of some primitives.

LMRpnask,tellq and LDBpask,tellq are not comparable with each other, and so are LMRpask,tellq

and LDBpnask,tellq.

Proposition 80. LMRpask,tellq ≀ LDBpnask,tellq

113

Proof. On the one hand, we have that LMRpask,tellq ę LDBpnask,tellq. Otherwise, by pattern 2

of transitivity, we have LDBpask,tellq ď LDBpnask,tellq which has been proved impossible in

proposition 44. On the other hand, LDBpnask,tellq ę LMRpask,tellq is established by employing

the same reasoning as the one used in the second part of the proof of proposition 43.

Proposition 81. LMRpnask,tellq ≀ LDBpask,tellq

Proof. On the one hand, LMRpnask,tellq ę LDBpask,tellq holds. Otherwise, by pattern 2 of

transitivity, we have LDBpnask,tellq ď LDBpask,tellq which has been proved impossible in propo-

sition 44.

On the other hand, LDBpask,tellq ę LMRpnask,tellq is established by contradiction by con-

sidering tellptp1qq ; askptp1qqq. Indeed, by noting that Optellptp1qq ; askptp1qqq “ tpttp1qu, δ`qu,

the reasoning developped in proposition 42 can be followed, which leads to the contradiction.

We now prove that LDBpask,nask,tellq and LMRpnask,tellq are not comparable with each

other.

Proposition 82. LDBpask,nask,tellq ≀ LMRpnask,tellq

Proof. (i) We have that LDBpask,nask,tellq ę LMRpnask,tellq. Otherwise, by pattern 2 of

transitivity, LDBpask,tellq ď LMRpnask,tellq, which has been proved impossible in proposition

81.

(ii) We have that LMRpnask,tellq ę LDBpask,nask,tellq. The proof is an extension of the

proof used in proposition 79 with normal forms extended with ask primitives.

Using the notations of this proof and following proof technique 4, we thus examine two cases

and conclude for each one by a contradiction: (I) either there exist two tokens a and b such

that Sa X Sb “ H, (II) or Sa X Sb ‰ H for any pair of tokens a and b.

CASE I: Let us suppose that there are two tokens a and b such Sa X Sb “ H. Consider

AB “ pt´a,´bu, tuq and CpABq in its normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` askpu1q ; B1 ` ¨ ¨ ¨ ` askpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

The proof then proceeds by establishing that there are no alternatives guarded by tell and nask

primitives. In that case, CpABq reduces to

askpu1q ; B1 ` ¨ ¨ ¨ ` askpuqq ; Bq

which thus fails on the empty store whereas OpABq “ tpH, δ`qu, providing the contradiction.

The absence of alternatives guarded by a tellptiq primitive is established as the proof of the

114

second part of proposition 79: if this was not the case then AB would point out a deadlocking

computation for ptu, t`auq; pAB ` ptu, t`auqq which only admits successful computations. The

absence of alternatives guarded by a naskpviq primitive is established as the proof of the second

part of proposition 79, namely by establishing that the vi’s should belong to Sa and to Sb, which

is impossible since Sa X Sb “ H.

CASE II: In the case where Sa XSb ‰ H for any pair of tokens a and b, as proved by lemma

1, it is possible to construct an infinite sequence of distinct tokens xi’s and to identify an integer

N such that
N
č

i“1

Sxi
‰ H

and
N
č

i“1

Sxi
“

N
č

i“1

Sxi
X Sxj

for any j ą N . Consider now NT “ pt´x1, ¨ ¨ ¨ ,´xnu, tuq and CpNT q in its normal form

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` askpu1q ; B1 ` ¨ ¨ ¨ ` askpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

By reasoning similarly to case I, one may prove that there are no alternatives guarded by a

tellptiq primitive. As regards the ask and nask primitives, the proof proceeds by contradiction

and establishes successively that

tu1, ¨ ¨ ¨ , uqu X pSx1 Y ¨ ¨ ¨ Y Sxnq “ H,

and that

tv1, ¨ ¨ ¨ , vru Ď pSx1 X ¨ ¨ ¨ X Sxnq

and derive a contradiction therefrom.

Let us first establish that tu1, ¨ ¨ ¨ , uqu X pSx1 Y ¨ ¨ ¨ Y Sxnq “ H. By contradiction, assume

uj P Sxi
, for some i, j and let uj “ ujppq. By using p instances of Cpptu, t`xiuqq and repeating

in turn in each of the instances the step of Cpptu, t`xiuqq, one may produce p duplications of

Sxi
. Consequently,

F “ xp||pk“1Cpptu, t`xiuqqq ; CpNT q | Hy ÝÑ ¨ ¨ ¨

ÝÑ xCpNT q | Yp
k“1Sxi

y ÝÑ xBj | Yp
k“1Sxi

y

is a valid computation prefix for p||pk“1Cpptu, t`xiuqqq ; CpNT qq which can only be continued by

failing suffixes. However, F is also a computation prefix for Cpptu, t`xiuq ; pNT ` pt`xiu, tuqqq

which thus induces a failing computation for it whereas ptu, t`xiuq ; pNT ` pt`xiu, tuqqq has

only one successful computation.

115

Let us now establish that tv1, ¨ ¨ ¨ , vru Ď pSx1 X ¨ ¨ ¨ X Sxnq. Assume vk R Sxi
, for some k, i.

Then

F 1 “ xCpptu, t`xiuqq ; CpNT q | Hy ÝÑ ¨ ¨ ¨ ÝÑ xCpNT q | Sxi
y ÝÑ xCk | Sxi

y

is a valid computation prefix for Cpptu, t`xiuq ; NT q which, can only be continued by failing

suffixes. However, it is also a computation prefix for ptu, t`xiuq ; pNT `pt`xiu, tuqqq, for which

it thus induces a failing computation whereas ptu, t`xiuq ; pNT ` pt`xiu, tuqqq has only one

successful computation.

In order to establish the final contradiction, let us consider Cpptu, t`xn`1uq ; NT q. A pos-

sible computation prefix is as follows:

xCpptu, t`xn`1uqq ; CpNT q | Hy ÝÑ ¨ ¨ ¨ ÝÑ xCpNT q | Sxn`1y.

Since ptu, t`xn`1uq ; NT has a successful computation and since, tv1, ¨ ¨ ¨ , vru Ď Sx1 X ¨ ¨ ¨ X

Sxn Ď Sxn`1 by the choice of the xi’s and the above inclusion, one may think of excluding

the execution of a nask primitive and therefore of forcing the execution of an ask primitive

and thus the existence of a j such that uj P Sxn`1 . This is almost true except for the density

of tokens, which may lead a nask primitive to succeed even if the corresponding token is

present on the blackboard. This problem can be circumvented by using d parallel compositions

of ptu, t`xn`1uq, where d is the maximal density of the tokens in the primitives naskpv1q,

. . . ,naskpvrq. This thus leads to consider Cpp||dk“1ptu, t`xn`1uqq ; NT q, for which the following

is a valid computation prefix

xCpp||dk“1ptu, t`xn`1uqqq ; CpNT q | Hy ÝÑ ¨ ¨ ¨ ÝÑ xCpNT q | Yd
k“1Sxn`1y.

and which induces the existence of some j such that uj P Sxn`1 . Now consider

p||dk“1ptu, t`xn`1uqq ; ptu, t`x1uq ; NT which has failing computations only. At the coded

level, since LDBpask,nask,tellq does not contain any destructive primitive, the computation

of Cpptu, t`x1uqq can only enrich the store resulting from the d parallel computations of

Cpptu, t`xn`1uqq, say by some set of tokens σ. Consequently, the following derivation sequence

G is a valid computation prefix for Cpp||dk“1ptu, t`xn`1uqq ; ptu, t`x1uq ; NT q, which should be

continued by failing suffixes only:

G “ xCpp||dk“1ptu, t`xn`1uqqq ; Cpptu, t`x1uqq ; CpNT q | Hy ÝÑ ¨ ¨ ¨

ÝÑ xCpptu, t`x1uqq ; CpNT q | Yd
k“1Sxn`1y ÝÑ ¨ ¨ ¨

ÝÑ xCpNT q | pYd
k“1Sxn`1q Y σy ÝÑ xBj | pYd

k“1Sxn`1q Y σy

However, G is also a computation prefix G1 for Cpp||dk“1ptu, t`xn`1uqq ; ptu, t`x1uq ; pNT `

pt`xn`1u, tuqqq, which thus induces a failing computation for

p||dk“1ptu, t`xn`1uqq ; ptu, t`x1uq ; pNT ` pt`xn`1u, tuqqq which is impossible since it ad-

mits only a successful computation.

116

Let us now prove that LMRpask,tellq is not comparable with LDBpask,nask,tellq.

Proposition 83. LMRpask,tellq ≀ LDBpask,nask,tellq

Proof. (i) Otherwise, LDBpnask,tellq ď LDBpask,nask,tellq ď LMRpask,tellq which has been

proved impossible in proposition 80.

(ii) Let us proceed by contradiction by assuming the existence of a coder C. Let us fix two

distinct tokens a and b. Let n be the cumulative occurrences of tokens in the nask primitives

of Cpptu, t`auqq.

As Cpptu, t`auqq has only successful computations, let, as in the proof of the second part

of proposition 79, Sa be the store resulting from one of them. As p||n`2
k“1ptu, t`buqq ; ptu, t`auqq

succeeds as well, let S1
b denote the store resulting from one successful computation of its coding.

Consider finally ABs “ pt`a,`b, ¨ ¨ ¨ ,`bu, tuq requesting one a with n ` 3 copies of b and

CpABsq in its normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` askpu1q ; B1 ` ¨ ¨ ¨ ` askpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

We shall establish, as explained in proof technique 3, (I) that there are no alternatives guarded

by tellptiq and naskpvjq primitives, and (II) that tu1, ¨ ¨ ¨ , uqu X pSa YS1
bq “ H. Assuming these

facts proved, as repeating once more Cpptu, t`buqq just add copies of tokens already present in

Sa YS1
b, it follows that Cp||n`3

k“1ptu, t`buqq ; ptu, t`auq ; ABsq fails, which is absurd by P3, since,

by construction, ||n`3
k“1ptu, t`buqq ; ptu, t`auq ; ABs has one successful computation. Hence the

announced contradiction.

STEP I: As for proposition 79, the proof establishes, by contradiction, that there are neither

alternatives guarded by a tell primitive, nor alternatives guarded by a nask primitive. Indeed

assuming respectively the existence of a tellptiq ; Ai alternative or a naskpviq ; Ci alternative

points out in both cases a failing computation for CpAB ` ptu, t`auqq. This clearly contradicts

the fact that OpAB ` ptu, t`auqq “ ptau, δ`q.

STEP II: Let us now prove that tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. This is established in two

steps by demonstrating (1) that tu1, ¨ ¨ ¨ , uqu X Sa “ H, and (2) that tu1, ¨ ¨ ¨ , uqu X S1
b “ H.

First let us prove that tu1, ¨ ¨ ¨ , uqu XSa “ H. Assume ui P Sa and let q be the density asso-

ciated with ui, namely, ui “ uipqq. Let us observe that each step of the considered computation

of Cpptu, t`auqq can be repeated in turn, in as many parallel occurences of it as needed, so that

P “ xCpp||qk“1ptu, t`auqq ; ABsq|Hy

Ñ ¨ ¨ ¨ Ñ xCpABsq| Yq
k“1 Say

Ñ xBi|pYq
k“1Saqy

117

is a valid computation prefix of Cpp||qk“1ptu, t`auqq ; ABsq, which can only be contin-

ued by failing suffixes. However P induces the following computation prefix P 1 for

Cpp||qk“1ptu, t`auqq ; pABs` ptu, t`auqqq which admits only successful computations:

P 1 “ xCpp||qk“1ptu, t`auqq ; pABs` ptu, t`auqqq|Hy

Ñ ¨ ¨ ¨ Ñ xCpABs` ptu, t`auqq| Yq
k“1 Say

Ñ xBi|pYq
k“1Saqy

Hence the contradiction.

Secondly, the proof that tu1, ¨ ¨ ¨ , uqu X S1
b “ H is established similarly by considering S1

b

instead of Sa and ptu, t`buq instead of ptu, t`auq.

We now prove that LDBpask,nask,tellq is stricly less expressive than LMRpask,nask,tellq.

Proposition 84. LDBpask,nask,tellq ă LMRpask,nask,tellq

Proof. (i) On the one hand, the fact that LDBpask,nask,tellq ď LMRpask,nask,tellq is immediate

by proposition 76. (ii) On the other hand, LMRpask,nask,tellq ę LDBpask,nask,tellq. Other-

wise, by pattern 2 of transitivity, from LMRpnask,tellq ď LMRpask,nask,tellq, one would get

LMRpnask,tellq ď LDBpask,nask,tellq, which has been proved impossible in proposition 82.

Proposition 85. LDBpget,tellq ≀ LMRpask,tellq

Proof. (i) The reasoning used to prove that LDBpget,tellq ę LMRpask,tellq is the same

as the one used in the first part of the proof of proposition 46. It works by contradic-

tion and by establishing that tellptp1qq ; getptp1qq can produce a successful computation for

Cptellptp1qqq ; Cpgetptp1qqq ; Cpgetptp1qqqq, which can obviously not be the case.

(ii) Intuitively, LDBpget,tellq is unable to atomically test the presence of a and b. Let us

thus consider AB “ pt`a,`bu, tuq and assume that CpABq is in normal form and thus can be

rewritten as

tellpt1q;A1 ` ¨ ¨ ¨ ` tellptpq;Ap ` getpu1q;B1 ` ¨ ¨ ¨ ` getpuqq;Bq

where ti and uj denote the token ti and uj associated with a density.

The proof proceeds as explained in proof technique 3 by establishing (I) that there is no

alternative guarded by a tellptiq operation, and (II) that there is no alternative guarded by a

getpujq operation, in which case, CpABq is equivalent to an empty statement, which is impossible

since it is composed of at least one primitive.

118

STEP I: Let us first establish that there is no existence of an alternative guarded by a

tellptiq operation. Otherwise it would point out a failing computation for CpAB ` ptu, t`auqq,

contradicting the fact that OpAB ` ptu, t`auqq “ ptau, δ`q.

STEP II: Let us now establish that there is no alternative guarded by a getpujq operation. To

that end, let us first consider two auxiliary computations. As Opptu, t`auqq “ tptau, δ`qu, any

computation of Cpptu, t`auqq starting in the empty store succeeds. Let xpptu, t`auqq|Hy Ñ

¨ ¨ ¨ Ñ xE|ta1, . . . , amuy be such a computation. Similarly, let xpptu, t`buqq|Hy Ñ ¨ ¨ ¨ Ñ

xE|tb1, . . . , bnuy be one computation of Cpptu, t`buqq.

The proof of the claim proceeds in two steps as for proposition 78: none of the ui’s belong

to ta1, . . . , amu Y tb1, . . . , bnu but, in that case, a contradiction occurs from the analysis of

Cpptu, t`auq; ptu, t`buq;ABq. As a result, none of the ui’s exist, namely there is no alternative

guarded by a getpujq operation.

We have that LDBpget,tellq is not comparable with LMRpask,nask,tellq.

Proposition 86. LDBpget,tellq ≀ LMRpask,nask,tellq

Proof. On the one hand, LDBpget,tellq ę LMRpask,nask,tellq. The proof proceeds as

for establishing that LDBpget,tellq ę LMRpask,tellq (see proposition 85) by consider-

ing tellptp1qq ; getptp1qq and tellptp1qq ; pgetptp1qq || getptp1qqq, the parallel composition

Cpgetptp1qqq || Cpgetptp1qqq repeating in turn each step of Cpgetptp1qqq.

On the other hand, LMRpask,nask,tellq ę LDBpget,tellq. Otherwise, by pattern 2, one

would have that LMRpask,tellq ď LMRpask,nask,tellq ď LDBpget,tellq which has been proved

impossible in proposition 85.

We now prove that LMRpask,tellq is not comparable with LDBpnask,get,tellq.

Proposition 87. LDBpnask,get,tellq ≀ LMRpask,tellq

Proof. (i) On the one hand, LDBpnask,get,tellq ę LMRpask,tellq. Otherwise, by the pattern 3

of non embedding by transitivity, LDBpnask,tellq ď LMRpask,tellq which has been proved im-

possible in the proof of the second part of proposition 80.

(ii) The intuition behind the proof is again that LDBpnask,get,tellq is not able to test

atomically the presence of two distinct tokens a and b. We then proceed by contradiction using

these two tokens. However, the destructive character of get primitives coupled to the test for

absence of nask slightly complicate our task of producing a contradiction. To that end, we

shall “saturate” their effect by taking as many instances of codings in parallel and thereby by

extending the sets Sb introduced in the proof of the second part of proposition 79.

119

Let us thus proceed by contradiction by assuming the existence of a coder C. Take two

distinct tokens a and b. Let n be the cumulative sum of the densities associated with the nask

and get primitives of Cpptu, t`auqq. As Cpptu, t`auqq has only successful computations, let, as

in the proof of the second part of proposition 79, Sa be the store resulting from one of them.

As p||n`2
k“1ptu, t`buqq ; ptu, t`auqq succeeds as well, let S1

b denote the store resulting from one

successful computation of its coding. Consider finally ABs “ pt`a,`b, ¨ ¨ ¨ ,`bu, tuq requesting

one a with n` 3 copies of b and CpABsq in its normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` getpu1q ; B1 ` ¨ ¨ ¨ ` getpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

Following proof technique 3, we shall establish (I) that there are no alternatives guarded by tell

and nask primitives, and (II) that tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. Assuming these two points

proved, a contradiction can be produced as follows. Indeed, in view of the saturation provided

by the n` 2 copies of Cpptu, t`buqq, adding one more, only adds tokens present in Sa Y S1
b. As

a result, Cp||n`3
k“1ptu, t`buqq ; ptu, t`auq ; ABsq fails whereas ||n`3

k“1ptu, t`buqq ; ptu, t`auq ; ABs

has only one successful computation. Hence the contradiction.

STEP I: Let us first establish that there are no alternative guarded by a tellptiq primitive.

The proof proceeds by contradiction as in the proof of the second part of proposition 78, by

pointing out a failing computation for CpAB ` ptu, t`auqq, contradicting the fact that OpAB `

ptu, t`auqq “ ptau, δ`q.

In a similar way there are no alternative guarded by a nask primitive. Indeed assuming

the existence of a naskpviq ; Ci alternative again points out a failing computation for CpAB `

ptu, t`auqq, contradicting the fact that OpAB ` ptu, t`auqq “ ptau, δ`q.

STEP II: Let us now establish that tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. This is proved in two

steps by establishing (1) that tu1, ¨ ¨ ¨ , uqu X Sa “ H, and (2) that tu1, ¨ ¨ ¨ , uqu X S1
b “ H.

First we have that tu1, ¨ ¨ ¨ , uqu X Sa “ H. By contradiction, assume that ui P Sa for some

i and let q be the density associated with ui, namely, ui “ uipqq. Let us observe that each step

of the considered computation of Cpptu, t`auqq can be repeated in turn, in as many parallel

occurences of it as needed, so that

P “ xCpp||qk“1ptu, t`auqq ; ABsq|Hy

Ñ ¨ ¨ ¨ Ñ xCpABsq| Yq
k“1 Say

Ñ xBi|pYq
k“1Saqztuiuy

is a valid computation prefix of Cpp||qk“1ptu, t`auqq ; ABsq, which can only be contin-

ued by failing suffixes. However P induces the following computation prefix P 1 for

120

Cpp||qk“1ptu, t`auqq ; pABs` ptu, t`auqqq which admits only successful computations:

P 1 “ xCpp||qk“1ptu, t`auqq ; pABs` ptu, t`auqqq|Hy

Ñ ¨ ¨ ¨ Ñ xCpABs` ptu, t`auqq| Yq
k“1 Say

Ñ xBi|pYq
k“1Saqztuiuy

Hence the contradiction.

The fact that tu1, ¨ ¨ ¨ , uqu XS1
b “ H is proved similarly, by considering S1

b instead of Sa and

ptu, t`buq instead of ptu, t`auq.

In order to prove the next proposition, we need to use the lemma 2 of section 3.2.5.

Proposition 88. LDBpnask,get,tellq ≀ LMRpnask,tellq

Proof. (i) On the one hand, LDBpnask,get,tellq ę LMRpnask,tellq. Otherwise, by the pattern 2

of transitivity, LDBpask,tellq ď LMRpnask,tellq which contradicts proposition 81.

(ii) On the other hand, LMRpnask,tellq ę LDBpnask,get,tellq is established by contradiction,

similarly to the proofs of LMRpnask,tellq ę LDBpask,nask,tellq of proposition 82, which itself

extends that of the proof of the second part of proposition 79.

Given the destructive character of get primitives, we shall enrich them with the saturation

technique of the proof of the second part of proposition 87 which technically leads to considering

the set S1
b instead of the set Sb defined in the second part of the proof of proposition 79. Using

these notations and following proof technique 4, we thus fix a token a and reason on two cases,

both leading to a contradiction: (I) either there exists a token b such that Sa XS1
b “ H, (II) or,

for any token b, one has Sa X S1
b ‰ H.

CASE I: there is a token b such that Sa X S1
b “ H. Consider then AB “ pt´a,´bu, tuq and

CpABq in its normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` getpu1q ; B1 ` ¨ ¨ ¨ ` getpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

As in the proof of the second part of proposition 79, it is possible to establish that there are

no alternatives guarded by a tellptiq primitive : if this was the case then, by posing A “

ptu, t`auq, the agent AB would point out a deadlock for A ; pAB ` Aq which only admits

successful computations. As in the proof of the second part of proposition 79 also, it is possible

to establish that the vi’s should belong to Sa and to S1
b, which amounts to stating that there

are no alternatives guarded by a naskpvjq primitive.

121

Consequently, CpABq rewrites as

getpu1q ; B1 ` ¨ ¨ ¨ ` getpuqq ; Bq

and thus OpCpABqq “ tpH, δ´qu which, by P3, contradicts the fact that OpABq “ tpH, δ`qu.

CASE II: for any token b, one has Sa XS1
b ‰ H. By Lemma 2 (where Sa plays the role of S

and f is defined by fpxq “ S1
x), there exists a denumerable set of distinct tokens xi, also distinct

from a, and an integer m, such that Xm
i“1pSa XS1

xi
q “ H and rXm

i“1pSa XS1
xi

qsXpSa XS1
xj

q “ H,

for j ą m.

Consider NT “ pt´a,´x1, ¨ ¨ ¨ ,´xmu, tuq and CpNT q in the following normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` getpu1q ; B1 ` ¨ ¨ ¨ ` getpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

As for case I, it is possible to prove that there are no alternatives guarded by a tellptiq primitive.

It is also possible to establish that

tv1, ¨ ¨ ¨ , vru Ď Sa X S1
x1

X ¨ ¨ ¨ X S1
xm

Firstly, we have that vk P Sa, for any k. Otherwise, assume vk R Sa, for some k. Then

F “ xCpptu, t`auqq ; CpNT q | Hy ÝÑ ¨ ¨ ¨

ÝÑ xCpNT q | Say ÝÑ xCk | Say

would be a valid computation prefix for Cpptu, t`auq ; NT q which, by property P3, can only

be continued by failing suffixes. However F induces the following computation prefix F 1 for

Cpptu, t`auq ; pNT `ptu, t`auqqq, and thus a failing computation for it, which by P3 contradicts

the fact that ptu, t`auq ; pNT ` ptu, t`auqqq has only one successful computation.

Secondly, we have that vk P S1
xi
, for any k and i. By contradiction, assume that vk R

S1
xi
, for some k and i. The proof proceeds similarly by considering pPP ; NT q instead of

ptu, t`auq ; NT q and PP ; pNT ` ptu, t`xiuqq instead of ptu, t`auq ; pNT ` ptu, t`auqq with

PP being defined as the parallel composition of n ` 2 occurrences of ptu, t`xiuq followed by

ptu, t`auq. To that end, note that the computation of CpPP q leads to the store S1
xi

(see the

proof of the second part of proposition 83).

Consider now ptu, t`xm`1uq ; NT . A possible computation prefix for Cpptu, t`xm`1uq ; NT q

is, by P2, as follows:

xCpptu, t`xm`1uqq ; CpNT q | Hy ÝÑ˚ xCpNT q | Sxm`1y

Since ptu, t`xm`1uq ; NT has a successful computation, and since tv1, ¨ ¨ ¨ , vru Ď Sa X Sx1 X

¨ ¨ ¨ X Sxm Ď Sxm`1 there should exist j such that uj P Sxm`1 .

122

Therefore, as Sxm`1 Ď S1
xm`1

, the following derivation is valid:

H “ xCpp || n`2
k“1ptu, t`xm`1uqqq ; Cpptu, t`auqq ; CpNT q | Hy

ÝÑ˚ xCpNT q | S1
xm`1

y

ÝÑ xBj | S1
xm`1

ztujuy

Moreover, H should be continued by failing suffixes only since

p || n`2
k“1ptu, t`xm`1uqq ; ptu, t`auq ; NT fails. However, by P3, this introduces failing

computations for p || n`2
k“1ptu, t`xm`1uqq ; ptu, t`auq ; pNT ` ptu, t`auqq whereas this agent has

only one successful computation.

We have that LDBpget,tellq is not comparable with LMRpnask,tellq.

Proposition 89. LDBpget,tellq ≀ LMRpnask,tellq

Proof. On the one hand, LDBpget,tellq ę LMRpnask,tellq. Otherwise, by pattern 2,

as LDBpask,tellq ă LDBpget,tellq (see proposition 66), one would have LDBpask,tellq ď

LDBpget,tellq ď LMRpnask,tellq which has been proved impossible in proposition 81.

On the other hand, LMRpnask,tellq ę LDBpget,tellq. Otherwise, by pattern 2, we would

have LMRpnask,tellq ď LDBpget,tellq ď LDBpnask,get,tellq which has been proved impossible

in proposition 88.

LDBpnask,get,tellq is not comparable with LMRpask,nask,tellq.

Proposition 90. LMRpask,nask,tellq ≀ LDBpnask,get,tellq

Proof. (i) Otherwise, LMRpask,tellq ď LDBpnask,get,tellq which contradicts proposition 87.

(ii) By contradiction, consider tellptp1qq ; getptp1qq. Opptellptp1qq ; getptp1qqq “ tpH, δ`qu.

Hence any computation of Cptellptp1qqq ; Cpgetptp1qqq is successful. Such a computation is

composed of a computation for Cptellptp1qqq followed by a computation for Cpgetptp1qqq. As

Cpgetptp1qqq is composed of ask, nask, tell primitives which do not destroy elements on the

store, the latter computation can be repeated step by step which yields successful computation

for Cptellptp1qqq ; pCpgetptp1qqq || Cpgetptp1qqqq. However, Optellptp1qq ; pgetptp1qq || getptp1qqq “

tpH, δ´qu.

Figure 6.4 presents the expressive relations established up to now, with only considering the

three primitives tell, ask and nask in the multi-set rewriting language MRT.

123

LMR(ask,nask,tell)
LDB(nask, get, tell)

LDB(ask, nask, get, tell)

LMR(nask,tell) LDB(ask, nask, tell)
LDB(get, tell)

LDB(ask, get, tell)
LMR(ask,tell)

LDB(nask, tell) LDB(ask, tell)

LDB(tell)

LMR(tell)

Figure 6.4: Embedding hierarchy of Dense Bach and a multi-set rewriting language, considering

the presence of the tell, ask and nask primitives in the mutli-set rewriting language.

6.2.4 Retrieving tokens from the store

This section studies presents the expressiveness relations when introducing the get primitive in

the sublanguages of MRT. The first proposition establishes that LDBpget,tellq is strictly less

expressive than LMRpget,tellq.

Proposition 91. LDBpget,tellq ă LMRpget,tellq

Proof. (i) On the one hand, LDBpget,tellq ď LMRpget,tellq holds by proposition 76.

(ii) On the other hand, LMRpget,tellq ę LDBpget,tellq may be proved as for LMRpask,tellq ę

LDBpask,tellq in the proof of the second part of proposition 78. This amounts to considering

some of the askpuiq to be getpuiq but does not affect the proof further. Intuitively, LDBpget,tellq

is unable to atomically retrieve a and b. Let us thus consider AB “ pt`a,`bu, t´a,´buq and

assume that CpABq is in normal form and thus is written as

tellpt1q;A1 ` ¨ ¨ ¨ ` tellptpq;Ap ` getpu1q;B1 ` ¨ ¨ ¨ ` getpuqq;Bq

where ti and uj denote the token ti and uj associated with a density.

The proof proceeds as explained in proof technique 3 by establishing (I) that there is no

alternative guarded by a tellptiq operation, and (II) that there is no alternative guarded by

a getpujq operation, in which case, CpABq is equivalent to an empty statement, which is not

possible since it should contain at least one primitive.

STEP I: Let us first establish that there is no existence of an alternative guarded by a

tellptiq operation. Otherwise it would point out a failing computation for CpAB ` ptu, t`auqq,

contradicting the fact that OpAB ` ptu, t`auqq “ ptau, δ`q.

STEP II: Let us now establish that there is no alternative guarded by a getpujq operation. To

that end, let us first consider two auxiliary computations: as Opptu, t`auqq “ tptau, δ`qu, any

124

computation of Cpptu, t`auqq starting in the empty store succeeds. Let xpptu, t`auqq|Hy Ñ

¨ ¨ ¨ Ñ xE|ta1, . . . , amuy be such a computation. Similarly, let xpptu, t`buqq|Hy Ñ ¨ ¨ ¨ Ñ

xE|tb1, . . . , bnuy be one computation of Cpptu, t`buqq. The proof of the claim proceeds by es-

tablishing, as for proposition 78, that none of the ui’s belong to ta1, . . . , amu Y tb1, . . . , bnu, in

which case a contradiction occurs from the analysis of Cpptu, t`auq; ptu, t`buq;ABq. As a result,

none of the ui’s exist, namely there is no alternative guarded by a getpujq operation.

We can now prove that LMRpget,tellq is not comparable with respect to LDBpnask,tellq,

LDBpnask,get,tellq and LDBpask,nask,tellq.

Proposition 92. LMRpget,tellq ≀ LDBpnask,tellq

Proof. On the one hand, LMRpget,tellq ę LDBpnask,tellq. Otherwise, by pattern 2 of transitiv-

ity, LMRpask,tellq ď LMRpnask,tellq which has been proved impossible in [BJ03b].

On the other hand, LDBpnask,tellq ę LMRpget,tellq is established by contradiction, by

considering tellptp1qq ; naskptp1qq. Indeed, one has Optellptp1qq ; naskptp1qqq “ tpttp1qu, δ´qu

whereas it is possible to establish that Cptellptp1qqq ; Cpnaskptp1qqq has a successful computation.

This is proved by using a reasoning similar to the one used for the second part of proposition 67.

Proposition 93. LMRpget,tellq ≀ LDBpnask,get,tellq

Proof. On the one hand, LMRpget,tellq ę LDBpnask,get,tellq. Otherwise, by pattern 2 of tran-

sitivity, as LMRpask,tellq ď LMRpget,tellq, we then have LMRpask,tellq ď LDBpnask,get,tellq

which has been proved impossible in proposition 87. On the other hand, LDBpnask,get,tellq ę

LMRpget,tellq. Otherwise, by pattern 2, we would have LDBpnask,tellq ď LMRpget,tellq which

has been proved impossible in proposition 92.

Proposition 94. LMRpget,tellq ≀ LDBpask,nask,tellq

Proof. On the one hand, LMRpget,tellq ę LDBpask,nask,tellq. Otherwise, by pattern 2, one

has LMRpask,tellq ď LMRpget,tellq ď LDBpask,nask,tellq which has been proved impossible in

proposition 83.

On the other hand, LDBpask,nask,tellq ę LMRpget,tellq. Otherwise, by pattern 2, one would

have LMRpask,tellq ď LMRpask,nask,tellq ď LDBpget,tellq which has been proved impossible in

proposition 85.

Figure 6.5 complements Figure 6.4 with the introduction of the get primitive inside the

subset of the multi-set rewriting language, relating them with the languages of the Dense Bach

125

LMR(ask,nask,tell)
LDB(nask, get, tell)

LDB(ask, nask, get, tell)

LMR(get,tell)

LMR(ask,get,tell)

LMR(nask,tell) LDB(ask, nask, tell)
LDB(get, tell)

LDB(ask, get, tell)
LMR(ask,tell)

LDB(nask, tell) LDB(ask, tell)

LDB(tell)

LMR(tell)

Figure 6.5: Embedding hierarchy of Dense Bach and a multi-set rewriting language, considering

the presence of the get primitive in the mutli-set rewriting language.

hierarchy.

6.2.5 Checking for the presence and/or absence when adding and/or retriev-

ing tokens

We now prove that LDBpask,nask,get,tellq is strictly less expressive than LMRpask,nask,get,tellq.

Proposition 95. LDBpask,nask,get,tellq ă LMRpask,nask,get,tellq

Proof. (i) On the one hand, LDBpask,nask,get,tellq ď LMRpask,nask,get,tellq is immediate

by proposition 76. (ii) On the other hand, LMRpask,nask,get,tellq ę LDBpask,nask,get,tellq

is established by contradiction, using pattern 2 of transitivity. Indeed, assum-

ing that LMRpask,nask,get,tellq ď LDBpask,nask,get,tellq, as LDBpask,nask,get,tellq “

LDBpnask,get,tellq, one would have LMRpnask, tellq ď LMRpask,nask,get,tellq ď

LDBpask,nask,get,tellq ď LDBpnask,get,tellq which has been proved impossible in proposition

88.

Figure 6.6 presents the most complete view of all the expressiveness relations between the

different sublanguages of Dense Bach and of the multi-set rewriting language. As for the relation

between BachT and Dense Bach, it is worth observing that apart from LDBptellq = LMRptellq,

any sublanguage of Dense Bach is strictly less expressive than the corresponding sublanguage

of MRT. Moreover, the very nature of the tell, ask, nask and get primitives is kept by MRT,

which leads MRT to share the sublanguage hierarchy of the sublanguages of Dense Bach.

126

LMR(nask,get,tell)

LMR(ask,nask,get,tell)

LMR(ask,nask,tell)
LDB(nask, get, tell)

LDB(ask, nask, get, tell)

LMR(get,tell)

LMR(ask,get,tell)

LMR(nask,tell) LDB(ask, nask, tell)
LDB(get, tell)

LDB(ask, get, tell)
LMR(ask,tell)

LDB(nask, tell) LDB(ask, tell)

LDB(tell)

LMR(tell)

Figure 6.6: Embedding hierarchy of Dense Bach and a multi-set rewriting language, considering

the presence of all the primitives in the mutli-set rewriting language.

‚

‚ ‚

‚ ‚

‚

LD(tell)

LD(nask,tell)
LD(ask,tell)

LD(ask,nask,tell)
LD(get,tell)

LD(get,tell,ask)

LD(nask,get,tell)

LD(ask,nask,get,tell)

Figure 6.7: Three-dimensional representation of the expressiveness relations between the different

sublanguages of Dense Bach.

Figure 6.7 shows a 3-dimension view of the expressiveness relations between the different

Dense Bach sublanguages. Figure 6.8 sums up all the relations obtained in this chapter by

combining Figures 6.3 and 6.6. Again, to ease the reading, it is drawn in a 3-dimension flavour.

6.3 Conclusion

This chapter has developped a full study of the expressiveness relations between the different

sublanguages of Dense Bach and with respect to the BachT and MRT languages. For both

studies, the different proposals have been grouped by following a logical approach consisting first

in considering the feeding of the shared store with the tell primitive, secondly the questioning

127

of the same store about the presence and or absence of tokens on it, thirdly the retrieval of

tokens through the get primitive, and finally the consideration of the most complete languages,

regrouping all the primitives.

Apart for the tell primitive with which BachT, Dense Bach and MRT match, it results

from both studies that Dense Bach is strictly more expressive than BachT, but is strictly less

expressive than the multi-set rewriting language MRT. In the last case, this results from the

possibility for the multi-set rewriting language not only to atomically manipulate many instances

of a same token, just as Dense Bach does, but also to manipulate at the same time different

tokens. This possibility is clearly out of the scope of the Dense Bach definition language.

The introduction of the density does not alter the very nature of the tell, ask, get and

nask primitives. As a consequence, the hierarchies of the expressiveness relations between the

different sublanguages is similar for BachT, Dense Bach and MRT. This is summarized in the

tri-dimensional Figure 6.8.

Our expressiveness studies have been made on the basis of a fixed operational semantics,

in contrast with some other work [dBP94] considering different semantics. Moreover the com-

parison criteria used in [Zav98a, Zav98b] are different from ours, as it is performed on the

compositionality of the encoding with respect to parallel composition, the preservaion of paral-

lel and deadlock and a symmetry condition.

A tabulated result of the expressiveness studies between the different sublanguages of BachT,

Dense Bach and MRT is presented in Table 6.1. All the possible sublanguages are written in line

as well as in column of this table. The intersection indicates for every pair their expressiveness

relation, as well as a reference to the proof. A number points to the proof developed in the

thesis and a reference indicates a publication from other authors.

128

‚

‚ ‚

‚ ‚

‚

LB(tell)

LB(nask,tell)
LB(ask,tell)

LB(ask,nask,tell)
LB(get,tell)

LB(ask,nask,get,tell)

‚

‚ ‚

‚ ‚

‚

LD(tell)

LD(nask,tell)
LD(ask,tell)

LD(ask,nask,tell)
LD(get,tell)

LD(ask,nask,get,tell)

‚

‚ ‚

‚ ‚

‚

LMR(tell)

LMR(nask,tell) LMR(ask,tell)

LMR(ask,nask,tell) LMR(get,tell)

LMR(ask,nask,get,tell)

Figure 6.8: Three-dimensional representation of the expressiveness relations between the different

sublanguages of BachT, Dense Bach and MRT.

129

P
u
t
re

d
u
c
e
d

fi
g
u
re

h
e
re

L
B

(t
e
ll
),

L
D

B
(t
e
ll
)

L
M

R
(t
e
ll
)

L
B

(a
sk

,t
e
ll
)

L
B
(n

a
sk

,t
e
ll
)

L
B

(g
e
t,
te

ll
)

L
B

(a
sk

,g
e
t,
te

ll
)

L
B
(a

sk
,n

a
sk

,t
e
ll
)

L
B

(n
a
sk

,g
e
t,
te

ll
)

L
B

(a
sk

,n
a
sk

,g
e
t,
te

ll
)

L
D

B
(a

sk
,t
e
ll
)

L
D

B
(n

a
sk

,t
e
ll
)

L
D

B
(g

e
t,
te

ll
)

L
D

B
(a

sk
,g
e
t,
te

ll
)

L
D

B
(a

sk
,n

a
sk

,t
e
ll
)

L
D

B
(n

a
sk

,g
e
t,
te

ll
)

L
D

B
(a

sk
,n

a
sk

,g
e
t,
te

ll
)

L
M

R
(a

sk
,t
e
ll
)

L
M

R
(n

a
sk

,t
e
ll
)

L
M

R
(g

e
t,
te

ll
)

L
M

R
(a

sk
,g
e
t,
te

ll
)

L
M

R
(a

sk
,n

a
sk

,t
e
ll
)

L
M

R
(n

a
sk

,g
e
t,
te

ll
)

L
M

R
(a

sk
,n

a
sk

,g
e
t,
te

ll
)

LB(tell),LDB(tell),LMR(tell)
“

rBJ03bs, 37, 77

ă

rBJ98s

ă

rBJ98s

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

LB(ask,tell) “
≀

rBJ98s

ă

rBJ98s

ă

rBJ98s

ă

2

ă

38

≀

42

ă

2

ă

2

ă

2

ă

rBJ03bs

≀

rBJ03bs

ă

2

ă

2

ă

2

LB(nask,tell) “
≀

rBJ98s

ă

rBJ98s

ă

2

≀

43

ă

40

≀

67

ă

2

ă

2

≀

rBJ03bs

ă

rBJ03bs

≀

rBJ03bs

ă

rBJ03bs

ă

rBJ03bs

LB(get,tell),LB(ask,get,tell)
“

rBJ98s

≀

rBJ98s

ă

rBJ98s

≀

46

≀

59

ă

65

≀

51

ă

2

≀

rBJ03bs

≀

rBJ03bs

ă

rBJ03bs

≀

rBJ03bs

ă

2

LB(ask,nask,tell) “
ă

rBJ98s

≀

52

≀

45

≀

71

ă

56

ă

2

≀

rBJ03bs

≀

rBJ03bs

≀

rBJ03bs

ă

rBJ03bs

ă

2

LB(nask,get,tell),LB(ask,nask,get,tell)
“

rBJ98s

≀

53

≀

57

≀

69

≀

58

ă

75

≀

rBJ03bs

≀

rBJ03bs

≀

rBJ03bs

≀

rBJ03bs

ă

rBJ03bs

LDB(ask,tell) “
≀

44

ă

66

ă

56

ă

2

ă

78

≀

81

ă

2

ă

2

ă

2

LDB(nask,tell) “
≀

68

ă

54

ă

2

≀

80

ă

79

≀

92

ă

2

ă

2

LDB(get,tell),LDB(ask,get,tell)
“

64

≀

70

ă

74

≀

85

≀

89

ă

91

≀

86

ă

2

LDB(ask,nask,tell) “
ă

73

≀

83

≀

82

≀

94

ă

84

ă

2

LDB(nask,get,tell),LDB(ask,nask,get,tell)
“

72

≀

87

≀

88

≀

93

≀

90

ă

95

LMR(ask,tell) “
≀

rBJ03bs

ă

rBJ03bs

ă

rBJ03bs

ă

rBJ03bs

LMR(nask,tell) “
≀

rBJ03bs

ă

rBJ03bs

ă

rBJ03bs

LMR(get,tell),LMR(ask,get,tell) “
≀

rBJ03bs

ă

rBJ03bs

LMR(ask,nask,tell) “
ă

rBJ03bs

LMR(nask,get,tell),LMR(ask,nask,get,tell) “

Table 6.1: Table summarizing the expressiveness comparisons between the different sublanguages of BachT, Dense Bach and MRT.

130

Chapter 7

Expressiveness Study of Vectorized

Dense Bach

This chapter positions the Vectorized Dense Bach language from an expressiveness point of

view. The first section compares it with Dense Bach. The second section compares it with

MRT.

As for the expressiveness studies conducted before in the thesis, we shall use to that end

the modular embedding technique proposed by De Boer and Palamidessi (see [dBP94]), in the

form slightly redefined in section 3.2.1, and already employed in sections 3.2.4 and 3.2.5.

In both case, we shall also restrict to the relevant sublanguages, namely those that embody

the tell primitive.

7.1 Comparison with Dense Bach

7.1.1 Generic patterns and results

It is first worth observing that the generic patterns introduced in section 3.2.2 also applies in

the context of Vectorized Dense Bach. As a reminder, they embody the following reasonings.

The first pattern, named the pattern of sublanguage inclusion, establishes that any language

embeds its sublanguages. The second pattern, named pattern of transitivity, takes advantage

of transition to establish that L1 ď L3 from the facts that L1 ď L2 and L2 ď L3. The third

pattern relies on the contraposition of the second pattern, to establish the non existence of the

embedding of L2 in L3, namely L2 ę L3, from the facts that L1 ď L2 and L1 ę L3.

For what concerns the Vector Dense Bach language alone, it is clear by the first pattern

131

LDBpnask, get, tellq

LDBpask, nask, get, tellq

LDBpask, nask, tellq
LDBpget, tellq

LDBpask, get, tellq

LDBpnask, tellq LDBpask, tellq

LDBptellq

Figure 7.1: Embedding hierarchy of Dense Bach Languages.

LV (nask,get,tell)

LV (ask,nask,get,tell)

LV (ask,nask,tell)
LDBpnask, get, tellq

LDBpask, nask, get, tellq

LV (get,tell)

LV (ask,get,tell)

LV (nask,tell) LDBpask, nask, tellq
LDBpget, tellq

LDBpask, get, tellq
LV (ask,tell)

LDBpnask, tellq LDBpask, tellq

LDBptellq

LV (tell)

Figure 7.2: Integrated hierarchies of Dense Bach and Dense Bach with Distributed Density.

(pattern 1 of sublanguage inclusion) that a number of modular embeddings are directly estab-

lished. This first property is formally expressed into the following proposition.

Proposition 96. LV (ψ) ď LV (χ), for any subsets of ψ,χ of primitives such that ψ Ď χ.

As a second result, it is also clear that a simple relation exists between the Dense Bach

primitives and their equivalent form in Vectorized Dense Bach, simply by taking a list contain-

ing only one token. As a result, Dense Bach sublanguages are embedded in the corresponding

Vectorized Dense Bach sublanguages, as expressed into the following proposition.

Proposition 97. LDBp χq ď LV (χ), for any subset of χ of primitives.

Proof. Immediate by defining the coder as follows:

Cptellptpmqqq “ tellp
ÝÝÑ
tpmqq

Cpaskptpmqqq “ askp
ÝÝÑ
tpmqq

Cpgetptpmqqq “ getp
ÝÝÑ
tpmqq

Cpnaskptpmqqq “ naskp
ÝÝÑ
tpmqq

More deeply this expresses that Dense Bach is a special case of Vectorized Dense Bach.

As the introduction of a list of tokens cannot alter the very nature of the four primitives tell,

132

ask, nask and get, a similarity between the respective hierarchies of Vectorized Dense Bach

sublanguages and of Dense Bach sublanguages, is to be expected, as showned in Figure 3.5 of

Section 3.2.2. Nevertheless, even if the global expressive behaviour stays the same, it is also

expected that the complete picture of the two hierarchies will reflect an increase in expressive-

ness in favour of Vectorized Dense Bach with regard to Dense Bach. Indeed, apart for the tell

primitive, the introduction of a list of tokens gives to ask, nask and get a more efficient atomic

behaviour than for their Dense Bach corresponding primitives.

After those general and intuitive results, the next subsections present the detailed proofs

of the different embedding relations existing, on the one hand, between all the sublanguages of

Vectorized Dense Bach and, on the other hand, between the respective sublanguages of Dense

Bach and Vectorized Dense Bach. We shall proceed to the end according to the logical introduc-

tion of primitives already used for studying the expressiveness of BachT and MRT. As a result,

we first consider placing (by tell) some tokens on the store. Then we allow the sublanguages

to question the state of the store by introducing ask and nask primitives. We thereafter allow

to retrieve (by means of get primitives) some tokens. Finally, we study the combination of the

removal of tokens with the check for their presence and/or absence.

7.1.2 Adding tokens on the store

Proposition 98. LDBptellq and LV (tell) are equivalent.

Proof. Indeed, thanks to proposition 97, LDBptellq ď LV (tell). Furthermore, it is possible to

translate any tellp
ÝÝÑ
tpmqq primitive in the following way. Following Definition 13, a vector of

dense tokens is a list of dense tokens. Assuming that this list associated to
ÝÝÑ
tpmq is equal to

t1pm1q, ¨ ¨ ¨ , tnpmnq, then the coding of tellp
ÝÝÑ
tpmqq can be defined as the sequential composition

of n tell Dense Bach primitives:

Cptellp
ÝÝÑ
tpmqqq “ tellpt1pm1qq; ¨ ¨ ¨ ; tellptnpmnqq

To complete the embedding, it is sufficient to take the identity function as decoder.

7.1.3 Checking for presence and/or absence when adding tokens

As a result of the expressiveness hierarchy [DJL13a] (see figure 7.1), it also comes that both

languages LDBpask,tellq and LDBpnask,tellq are strictly more expressive than LV (tell) since

both have been established strictly more expressive than LDBptellq.

133

Let us now compare LDBpask,tellq with its vectorized dense counterpart.

Proposition 99. LDBpask,tellq ă LV (ask,tell)

Proof. On the one hand, LDBpask,tellq ď LV (ask,tell), by proposition 97. On the other

hand, LV (ask,tell) ę LDBpask,tellq can be established by contradiction. The proof proceeds

by exploiting the inability of LDBpask,tellq to atomically test the presence of two distinct

tokens a and b. Assume thus the existence of a coder C : LV (ask,tell) Ñ LDBpask,tellq

and consider AB “ askppap1q, bp1qqq. Let us prove that its coder is empty, which is ab-

surd since, by Definition 22 in section 5.2.2, it should contain at least one primitive. To

that end, one may assume that CpABq is in normal form [BJ98] and thus is written as

tellpt1q;A1 ` ¨ ¨ ¨ ` tellptpq;Ap ` askpu1q;B1 ` ¨ ¨ ¨ ` askpuqq;Bq, where ti and uj denote the

token ti and uj associated with a density. In this expression, we will establish that there is no

alternative guarded by a tellptiq operation, and no alternative guarded by a askpujq operation

either, in which case CpABq is empty.

Let us first establish by contradiction that there is no alternative guarded by a tellptiq

operation. Assume there is one, say guarded by tellptiq. Then D “ xCpABq|Hy Ñ xAi|ttiuy is

a valid computation prefix of CpABq. It should deadlocks afterwards since OpABq “ pH, δ´q.

However D is also a valid computation prefix of CpAB ` tellpap1qqq. Hence, CpAB ` tellpap1qqq

admits a failing computation which contradicts the fact that OpAB ` tellpap1qqq “ ptau, δ`q.

Secondly we establish that there is also no alternative guarded by an askpujq operation. To

that end, let us first consider two auxiliary computations. As Optellpap1qqq “ ptau, δ`q, any

computation of Cptellpap1qqq starting in the empty store succeeds. Let xCptellpap1qqq|Hy Ñ

¨ ¨ ¨ Ñ xE|ta1, . . . , amuy be such a computation. Similarly, let xCptellpbp1qqq|Hy Ñ ¨ ¨ ¨ Ñ

xE|tb1, . . . , bnuy be one computation of Cptellpbp1qq. The proof of the claim proceeds in two

steps. First let us prove that none of the ui’s belong to ta1, . . . , amu. By contradiction, assume

that ui “ ak for some k and that d is the density associated with ui, namely, ui “ uipdq. Let

us observe that, since it is in LDBpask,tellq, the considered computation of Cptellpap1qq can

be repeated sequentially, as many times as needed. As a result, by using Ad to denote the

sequential composition of d instances of A, the sequence D1 “ xCptellpap1qqd;ABq|Hy Ñ ¨ ¨ ¨ Ñ

xCpABq|tad1, . . . , a
d
muy Ñ xBj|ta

d
1, . . . , a

d
muy is a valid computation prefix of Cptellpap1qqd;ABq,

which can only be continued by failing suffixes. However D1 induces the following compu-

tation prefix D2 for tellpap1qqd; pAB ` askpap1qq which admits only successful computations:

D2 “ xCptellpap1qqd; pAB ` askpap1qqqq|Hy Ñ ¨ ¨ ¨ Ñ xCpAB ` askpap1qqq|tad1 , . . . , a
d
muy Ñ

xBj|ta
d
1, . . . , a

d
muy.

The proof proceeds similarly in the case uj P tb1, . . . , bnu for some j P 1, . . . , q by then

considering tellpbp1qqd;AB and tellpbp1qqd; pAB ` askpbp1qqq.

Finally, the fact that the u1
is do not belong to ta1, . . . , amu Y tb1, . . . , bnu induces a

134

contradiction. Indeed, if this is the case then xCptellpap1qq; tellpbp1qq;ABq|Hy Ñ ¨ ¨ ¨ Ñ

xCptellpbp1qq;ABq|ta1, . . . , amuy Ñ ¨ ¨ ¨ Ñ xCpABq|ta1, . . . , am, b1, . . . , bnuy Û is a valid fail-

ing computation prefix of Cptellpap1qq; tellpbp1qq;ABq whereas tellpap1qq; tellpbp1qq;AB has only

one successful computation. As a conclusion, CpABq is equivalent to an empty statement, which

is absurd by definition 22.

Symmetrically, LDBpnask,tellq is strictly less expressive than LV (nask,tell). To establish

this result we shall use again Lemma 1 of Section 3.2.5.

Proposition 100. LDBpnask,tellq ă LV (nask,tell).

Proof. On the one hand, LDBpnask,tellq ď LV (nask,tell) holds by proposition 97. On the other

hand, LV (nask,tell) ę LDBpnask,tellq is proved by contradiction, assuming the existence of a

coder C. The proof proceeds as in proposition 99 but this time by exploiting the inability of

LDBpnask,tellq to atomically test the absence of two distinct tokens a and b. In the following,

the construction of the tokens ta1, . . . , amu and tb1, . . . , bnu associated with the coding of a and

b will be generalized by the definition of a function f : Stoken Ñ Pf pStokenq, associating to

each token a finite set of tokens. To that end, as Optellptp1qqq “ tpttu, δ`qu, for any token t,

any computation of Cptellptp1qqq starting in the empty store succeeds. Let xCptellptp1qqq|Hy Ñ

¨ ¨ ¨ Ñ xE|tt1, . . . , tmtuy be such a computation and let St denote the resulting store tt1, ¨ ¨ ¨ , tmtu.

Then the proof of the claim proceeds by examining two cases: (I) either there exist two tokens

a and b such that Sa X Sb “ H, (II) or Sa X Sb ‰ H for any pair of tokens a and b.

CASE I: Let us suppose first that there are two tokens a and b such Sa XSb “ H. Consider

AB “ naskppap1q, bp1qqq and CpABq in its normal form:

tellpv1q ; A1 ` ¨ ¨ ¨ ` tellpvpq ; Ap ` naskpu1q ; B1 ` ¨ ¨ ¨ ` naskpuqq ; Bq

The proof then proceeds by establishing that there are no alternatives guarded by tellpviq nor

by naskpujq. The absence of alternative guarded by a tellpviq primitive is established as in

proposition 99(ii): if this was not the case then AB would point out a deadlocking computation

for tellpap1qq; pAB`tellpap1qqq which only admits successful computations. To prove the absence

of an alternative guarded by a naskpujq primitive, let us establish that the uj ’s should belong

to Sa and to Sb, which is impossible since Sa X Sb “ H. By contradiction, assume that uj R Sa

for some j (the case where uj R Sb is treated similarly). Then

xCptellpap1qq ; ABq | Hy ÝÑ ¨ ¨ ¨ ÝÑ xCpABq | Say ÝÑ xBj | Say

is a valid computation prefix of Cptellpap1qq ; ABq which can only be continued by fail-

ing suffixes. However, this prefix induces the following computation prefix D1 for

Cptellpap1qq ; pAB ` tellpap1qqq which should only admit successful computations:

xCptellpap1qq ; pAB ` tellpbp1qqqq | Hy ÝÑ ¨ ¨ ¨

135

ÝÑ xCpAB ` tellpbp1qqq | Say ÝÑ xBj | Say

CASE II: les us now suppose that Sa XSb ‰ H for any pair of tokens a and b. As proved by

Lemma 1, it is possible to construct an infinite sequence of distinct tokens xi’s and to identify

an integer n such that
n

č

i“1

Sxi
‰ H

and
n

č

i“1

Sxi
“

n
č

i“1

Sxi
X Sxj

for any j ą n. Let us consider now NT “ naskppx1pnq, ¨ ¨ ¨ , xnpnqqq and CpNT q in its normal

form

tellpv1q ; A1 ` ¨ ¨ ¨ ` tellpvpq ; Ap ` naskpu1q ; B1 ` ¨ ¨ ¨ ` naskpuqq ; Bq

Using similar reasoning as for case I, one may prove that there are no alternatives guarded

by a tellpviq primitive and that tu1, ¨ ¨ ¨ , uqu Ď Sx1 X ¨ ¨ ¨ X Sxn . In this situation, one may

hope to conclude that Cptellppxn`1qp1qq ; NT q has a failing computation since Sx1 X ¨ ¨ ¨ XSxn X

Sxn`1 “ Sx1 X ¨ ¨ ¨ X Sxn and thus tu1, ¨ ¨ ¨ , uqu Ď Sx1 X ¨ ¨ ¨ X Sxn Ď Sxn`1 . However, this

could actually not be the case because of the multiplicity inside the naskpujq primitives, which

allow these primitives to succeed even though uj is present on the store but in not enough

occurences. This may be solved by putting multiple copies of tellpxn`1q in parallel. Let α

be the addition of the multiplicity of the tokens u1, . . . , uq and let TTα denote the parallel

composition of α copies of tellpxn`1q. Then, by repeating in turn the execution of the primitives

of Cptellppxn`1qp1qqq, one reaches the store consisting of α occurrences of Sxn`1 , which allows to

conclude that CpTTα ; NT q has a failing computation whereas TTα ; NT has only one successful

computation.

In conclusion, CpABq reduces to an empty statement, which implies that there is no coder

C.

LV (nask,tell) and LDBpask,tellq are not comparable with each other.

Proposition 101. LV (nask,tell) ≀ LDBpask,tellq.

Proof. (i) LV (nask,tell) ę LDBpask,tellq, otherwise by pattern 3 of non embedding by transi-

tivity, we have LDBpnask,tellq ď LDBpask,tellq which has been proved impossible in propo-

sition 44. (ii) LDBpask,tellq ę LV (nask,tell) is proved by contradiction. Consider A “

tellptp1qq ; askptp1qqq. One has OpAq “ tpttp1qu, δ`qu. Hence, by P3, CpAq succeeds whereas we

shall establish that it has failing computations. Indeed, since Opaskptp1qqq “ tpH, δ´qu, any

computation of Cpaskptp1qqq starting on the empty store fails. As Cpaskptp1qqq is composed

of nask and tell primitives, this can only occur by having a nask primitive preceded by a tell

136

primitive. As enriching the initial content of the store leads to the same result, any compu-

tation starting on any (arbitrary) store fails. As a consequence, even if Cptellptp1qqq has a

successful computation, this computation cannot be continued by a successful computation of

Cpaskptp1qqq. Consequently any computation of Cptellptp1qq; askptp1qqq fails, which produces a

contradiction.

LV (ask,tell) and LDBpnask,tellq are not comparable with each other.

Proposition 102. LV (ask,tell) ≀ LDBpnask,tellq.

Proof. (i) LV (ask,tell) ę LDBpnask,tellq, otherwise by pattern 3 of non embedding by tran-

sitivity, we would have LDBpask,tellq ď LDBpnask,tellq which has been proved impossible

in proposition 44. (ii) LDBpnask,tellq ę LV (ask,tell) is proved by contradiction. Consider

A “ tellptp1qq ; naskptp1qqq. One has OpAq “ tpttu, δ´qu. By P3, CpAq fails, whereas we shall

establish that it has a successful computation. Indeed, since Optellptp1qqq “ tpttp1qu, δ`qu, any

computation of Cptellptp1qqq starting on the empty store is successful. Similarly, it follows from

Opnaskptp1qqq “ tpH, δ`qu that any computation of Cpnaskptp1qqq starting on the empty store is

successful, and, consequently, is any computation starting from any store, since Cpnaskptp1qqq is

composed of ask and tell primitives. Summing up, any (successful) computation of Cptellptp1qqq

starting on the empty store can be continued by a (successful) computation of Cpnaskptp1qqq,

which leads to the contradiction.

LV (nask,tell) and LV (ask,tell) are not comparable with each other.

Proposition 103. LV (nask,tell) ≀ LV (ask,tell).

Proof. (i) LV (nask,tell) ę LV (ask,tell), otherwise by pattern 3 of non embedding by transi-

tivity LDBpnask,tellq ď LV (ask,tell), which contradicts proposition 102. (ii) LV (ask,tell) ę

LV (nask,tell), otherwise by the same pattern 3, LDBpask,tellq ď LV (nask,tell), which contra-

dicts proposition 101.

LV (nask,tell) and LDBpask,nask,tellq are not comparable with each other.

Proposition 104. LV (nask,tell) ≀ LDBpask,nask,tellq.

Proof. (i) LDBpask,nask,tellq ę LV (nask,tell), otherwise by pattern 3 of non embedding by

transitivity, LDBpask,tellq ď LV (nask,tell), which contradicts proposition 101(ii). (ii) For

137

LV (nask,tell) ę LDBpask,nask,tellq, the proof proceeds as in proposition 100(ii). The pres-

ence of the ask primitive in LDB does not modify the reasoning, as it does not destroy elements

and so does not modify the state of the store σ.

Symmetrically, LDBpget,tellq and LV (ask,tell) are not comparable with each other.

Proposition 105. LDBpget,tellq ≀ LV (ask,tell).

Proof. (i) LDBpget,tellq ę LV (ask,tell) is proved by contradiction. Consider

tellptp1qq ; getptp1qq. One has Optellptp1qq ; getptp1qqq “ tpH, δ`qu. By P2 and P3, any com-

putation of OpCptellptp1qqq ; Cpgetptp1qqqq is thus successful. Since Cpgetptp1qqq is composed

of ask and tell primitives only and since ask and tell primitives do not destroy elements, at

least one computation of OpCptellptp1qqq ; Cpgetptp1qqq ; Cpgetptp1qqqq is successful. However,

Optellptp1qq ; getptp1qq ; getptp1qqq “ tpH, δ´qu, which provides the contradiction.

(ii) The proof that LV (ask,tell) ę LDBpget,tellq is established by contradiction. Intu-

itively, LDBpget,tellq is unable to atomically test the presence of a and b. Let us thus consider

AB “ askppap1q, bp1qqq and prove that its coder has a successful computation. This leads to a

contradiction since AB has just one failing computation. To that end, one may assume that

CpABq is in normal form (see [BJ98]) and thus is written as tellpt1q;A1 ` ¨ ¨ ¨ ` tellptpq;Ap `

getpu1q;B1`¨ ¨ ¨`getpuqq;Bq, where ti and uj denote the token ti and uj associated to a density.

The proof proceeds by establishing that (I) there is no alternative guarded by a tellptiq

operation, and (II) there is no alternative guarded by a getpujq operation. In which case,

CpABq is equivalent to an empty statement, which is not possible in view of definition 22.

CASE I: there is no alternative guarded by a tellptiq operation. Otherwise, D “

xCpABq|Hy Ñ xAi|ttiuy would be a valid computation prefix of CpABq which should dead-

locks afterwards since OpABq “ tpH, δ´qu. However D is also a valid computation prefix of

CpAB ` tellpap1qqq. Hence, CpAB ` tellpap1qqq admits a failing computation which contradicts

the fact that OpAB ` tellpap1qqq “ ptau, δ`q.

CASE II: there is no alternative guarded by a getpujq operation. To that end, let

us first consider two auxiliary computations: as Optellpap1qqq “ tptau, δ`qu, any computa-

tion of Cptellpap1qqq starting in the empty store succeeds. Let xCptellpap1qqq|Hy Ñ ¨ ¨ ¨ Ñ

xE|ta1, . . . , amuy be such a computation. Similarly, let xptellpbp1qqq|Hy Ñ ¨ ¨ ¨ Ñ xE|tb1, . . . , bnuy

be one computation of Cptellpbp1qqq. As these two computations start by assuming no token on

the store and since LDBpget,tellq does not contain negative tests, it is easy to verify that they

138

can be put in sequence so as to establish the following computations:

xCptellpap1qq; tellpbp1qqq|Hy Ñ ¨ ¨ ¨ Ñ xCptellpbp1qqq|ta1 , . . . , amuy

Ñ ¨ ¨ ¨ Ñ xE|ta1, . . . , amu Y tb1, . . . , bnuy

xCptellpbp1qq; tellpap1qqq|Hy Ñ ¨ ¨ ¨ Ñ xCptellpap1qqq|tb1 , . . . , bnuy

Ñ ¨ ¨ ¨ Ñ xE|ta1, . . . , amu Y tb1, . . . , bnuy

As Cptellpap1qq; tellpbp1qq;ABq has a successful computation, one of the getpuiq succeeds, and,

consequently, one has tuju Ď ta1, . . . , amu Y tb1, . . . , bnu for some j. Assume uj “ ak for k and

let d be the density associated to uj, namely, uj “ akpdq. Then

D1 “ xCptellpap1qq;ABq|Hy Ñ ¨ ¨ ¨ Ñ xCpABq|ta1, . . . , amuy Ñ xBj|ta1, . . . , amuztujuy

is a valid computation prefix of Cptellpap1qq;ABq. It can only be continued by failing suf-

fixes since tellpap1qq;AB fails. However, this induces the following computation prefix D2

for Cptellpap1qq; pAB ` askpap1qqqq and thus a failing computation whereas tellpap1qq; pAB `

askpap1qqq only admits a successful computation:

D2 “ xCptellpap1qq; pAB ` askpap1qqqq|Hy Ñ ¨ ¨ ¨ Ñ xCpAB ` askpap1qqq|ta1, . . . , amuy

Ñ xBj |ta1, . . . , amuztujuy.

The proof proceeds similarly in the case uj “ bk for some k by then considering tellpbp1qq;AB

and tellpbp1qq; pAB ` askpbp1qqq.

We now establish that LDBpget,tellq ≀ LV (ask,nask,tell).

Proposition 106. LDBpget,tellq ≀ LV (ask,nask,tell)

Proof. On the one hand, LDBpget,tellq ę LV (ask,nask,tell). This is established by using the

reasoning of the first part of the proof of proposition 105 and by replacing the sequential com-

position of the two getptp1qq primitives by a parallel one, in order to cope with the potential

presence of nask primitives. On the other hand, LV (ask,nask,tell) ę LDBpget,tellq is estab-

lished by contradiction. Otherwise by the pattern 1 of sublanguage inclusion, LV (ask,tell) ď

LV (ask,nask,tell) and then LV (ask,tell) ď LDBpget,tellq holds, which contradicts proposi-

tion 105.

LDBpask,nask,tellq is not comparable with LV (ask,tell).

Proposition 107. LDBpask,nask,tellq ≀ LV (ask,tell)

139

Proof. (i) On the one hand, LDBpask,nask,tellq ę LV (ask,tell) is established by contradiction.

Otherwise by the pattern 1 of sublanguage inclusion, LDBpnask,tellq ď LDBpask,nask,tellq and

then LDBpnask,tellq ď LV (ask,tell) holds, which contradicts proposition 102.

(ii) On the other hand, LV (ask,tell) ę LDBpask,nask,tellq is established by contradiction,

by assuming the existence of a coder C from LV (ask,tell) to LDBpask,nask,tellq. Let n be the

cumulative occurrences of tokens in nask primitives of Cptellpap1qqq.

As Cptellpap1qqq has only successful computations, let, as in the proof of proposition 100(ii),

Sa be the store resulting from one of them. Moreover, as a matter of notation, let the con-

struction A||q denote the parallel composition of q copies of A. As ptellpbp1qqq||pn`2q ; tellpap1qqq

succeeds as well, let S1
b denote the store resulting from one successful computation of its coding.

Consider now ABs “ askpap1q, bpn ` 3qq and CpABsq in its normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` askpu1q ; B1 ` ¨ ¨ ¨ ` askpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

We shall establish that: (I) there are no alternatives guarded by tellptiq and naskpvjq prim-

itives, and that (II) tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. Therefore, as computing once more an

instance of Cptellpbp1qq in parallel just add copies of tokens already present in Sa YS1
b, it follows

that Cpptellpbp1qq||pn`3q ; tellpap1qq ; ABsq fails, which is absurd by P3, since, by construction,

ptellpbp1qq||pn`3q ; tellpap1qq ; ABs has one successful computation.

CASE I: There are no alternatives guarded by a tell primitive. The proof proceeds by

contradiction as in proposition 99(ii). Assume thus the existence of a tellptiq ; Ai alternative.

Then D “ xCpABsq|Hy Ñ xAi|ttiuy is a valid computation prefix of CpABsq which should

deadlock afterwards since OpABsq “ tpH, δ´qu. However D is also a valid computation prefix of

CpABs`tellpap1qqq. Hence, CpABs`tellpap1qqq admits a failing computation which contradicts

the fact that OpABs` tellpap1qqq “ tptau, δ`qu.

Moreover, there are no alternatives guarded by a nask primitive. In a similar way, assume

thus the existence of a naskpviq ; Ci alternative. Then D1 “ xCpABsq|Hy Ñ xCi|Hy is a valid

computation prefix of CpABsq which should deadlock afterwards since OpABsq “ tH, δ´u.

However D1 is also a valid computation prefix of CpABs`tellpap1qqq. Hence, CpABs`tellpap1qqq

admits a failing computation which contradicts the fact that OpABs` tellpap1qqq “ ptau, δ`q.

CASE II: Let us now prove that tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. This is proved in two steps

by establishing that (1) tu1, ¨ ¨ ¨ , uqu X Sa “ H, and that (2) tu1, ¨ ¨ ¨ , uqu X S1
b “ H.

First let us prove that tu1, ¨ ¨ ¨ , uqu X Sa “ H. Assume ui P Sa and let d be the density

associated to ui, namely, ui “ uipdq. Let us observe that each step of the considered computation

140

of Cptellpap1qqq can be repeated in turn, in as many parallel occurences of it as needed, so that

P “ xCptellpap1qq||d ; ABsq|Hy

Ñ ¨ ¨ ¨ Ñ xCpABsq| Yd
k“1 Say

Ñ xBi|pYd
k“1Saqy

is a valid computation prefix of Cptellpap1qq||q ; ABsq, which can only be continued by failing

suffixes. However P induces the following computation prefix P 1 for Cptellpap1qq||q ; pABs `

tellpap1qqqq which admits only successful computations:

P 1 “ xCptellpap1qq||d ; pABs` tellpap1qqqq|Hy

Ñ ¨ ¨ ¨ Ñ xCpABs` tellpap1qqq| Yd
k“1 Say

Ñ xBi|pYd
k“1Saqy

leading to the contradiction.

Secondly, the proof that tu1, ¨ ¨ ¨ , uqu X S1
b “ H is established similarly by considering S1

b

instead of Sa and tellpbp1qq instead of tellpap1qq.

Let us now establish that LV (nask,tell) is strictly less expressive than LV (ask,nask,tell).

Proposition 108. LV (nask,tell) ă LV (ask,nask,tell).

Proof. By pattern 1 of sublanguage inclusion, one has LV (nask,tell) ď LV (ask,nask,tell). More-

over, if we had LV (ask,nask,tell) ď LV (nask,tell), then by pattern 3 of non embedding by

transitivity we would have LV (ask,tell) ď LV (nask,tell), which contradicts proposition 103.

Let us now establish that LDBpask,nask,tellq is strictly less expressive than

LV (ask,nask,tell).

Proposition 109. LDBpask,nask,tellq ă LV (ask,nask,tell).

Proof. (i) LDBpask,nask,tellq ď LV (ask,nask,tell) results from proposition 97. (ii) Let us

proceed by contradiction by assuming the existence of a coder C from LV (ask,nask,tell) to

LDBpask,nask,tellq. Let n be the cumulative occurrences of tokens in nask primitives of

Cptellpap1qqq.

As Cptellpap1qqq has only successful computations, let, as in the proof of proposition 100(ii),

Sa be the store resulting from one of them. Moreover, as a matter of notation, let the con-

struction A||q denote the parallel composition of q copies of A. As ptellpbp1qqq||pn`2q ; tellpap1qqq

141

succeeds as well, let S1
b denote the store resulting from one successful computation of its coding.

Consider finally ABs “ askppap1q, bpn ` 3qqq and consider CpABsq in its normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` askpu1q ; B1 ` ¨ ¨ ¨ ` askpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

We shall establish that: (I) there are no alternatives guarded by tellptiq and naskpvjq prim-

itives, and that (II) tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. Therefore, as computing once more an

instance of Cptellpbp1qq in parallel just add copies of tokens already present in Sa YS1
b, it follows

that Cpptellpbp1qq||pn`3q ; tellpap1qq ; ABsq fails, which is absurd by P3, since, by construction,

ptellpbp1qq||pn`3q ; tellpap1qq ; ABs has one successful computation.

CASE I: There are no alternatives guarded by a tell primitive. The proof proceeds by

contradiction as in proposition 105(ii). Assume thus the existence of a tellptiq ; Ai alternative.

Then D “ xCpABsq|Hy Ñ xAi|ttiuy is a valid computation prefix of CpABsq which should

deadlock afterwards since OpABsq “ tpH, δ´qu. However D is also a valid computation prefix of

CpABs`tellpap1qqq. Hence, CpABs`tellpap1qqq admits a failing computation which contradicts

the fact that OpABs` tellpap1qqq “ tptau, δ`qu.

Moreover, there are no alternatives guarded by a nask primitive. In a similar way, assume

thus the existence of a naskpviq ; Ci alternative. Then D1 “ xCpABsq|Hy Ñ xCi|Hy is a valid

computation prefix of CpABsq which should deadlock afterwards since OpABsq “ tH, δ´u.

However D1 is also a valid computation prefix of CpABs`tellpap1qqq. Hence, CpABs`tellpap1qqq

admits a failing computation which contradicts the fact that OpABs` tellpap1qqq “ ptau, δ`q.

CASE II: Let us now prove that tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. This is proved in two steps

by establishing that (1) tu1, ¨ ¨ ¨ , uqu X Sa “ H, and that (2) tu1, ¨ ¨ ¨ , uqu X S1
b “ H.

First let us prove that tu1, ¨ ¨ ¨ , uqu X Sa “ H. Assume ui P Sa and let d be the density

associated to ui, namely, ui “ uipdq. Let us observe that each step of the considered computation

of Cptellpap1qqq can be repeated in turn, in as many parallel occurences of it as needed, so that

P “ xCptellpap1qq||d ; ABsq|Hy

Ñ ¨ ¨ ¨ Ñ xCpABsq| Yd
k“1 Say

Ñ xBi|pYd
k“1Saqy

is a valid computation prefix of Cptellpap1qq||d ; ABsq, which can only be continued by failing

suffixes. However P induces the following computation prefix P 1 for Cptellpap1qq||d ; pABs `

tellpap1qqqq which admits only successful computations:

P 1 “ xCptellpap1qq||d ; pABs` tellpap1qqqq|Hy

Ñ ¨ ¨ ¨ Ñ xCpABs` tellpap1qqq| Yd
k“1 Say

Ñ xBi|pYd
k“1Saqy

142

leading to the contradiction.

Secondly, the proof that tu1, ¨ ¨ ¨ , uqu X S1
b “ H is established similarly by considering S1

b

instead of Sa and tellpbp1qq instead of tellpap1qq.

LV (ask,tell) is strictly less expressive than LV (ask,nask,tell).

Proposition 110. LV (ask,tell) ă LV (ask,nask,tell)

Proof. On the one hand, LV (ask,tell) ď LV (ask,nask,tell) results from pattern 1 of sublanguage

inclusion. On the other hand, one has LV (ask,nask,tell) ę LV (ask,tell) since otherwise by

pattern 3 of non embedding by transitivity LV (nask,tell) ď LV (ask,tell), which contradicts

proposition 103.

We now prove that LDBpnask,get,tellq is not comparable to LV (nask,tell).

Proposition 111. LDBpnask,get,tellq ≀ LV (nask,tell)

Proof. (i) LDBpnask,get,tellq ę LV (nask,tell), otherwise by pattern 3 of non embedding by

transitivity, LDBpask,tellq ď LV (nask,tell) which contradicts proposition 101.

(ii) LV (nask,tell) ę LDBpnask,get,tellq is proved by contradiction, similarly to the

proof of LV (nask,tell) ę LDBpask,nask,tellq of proposition 104, which itself extends that of

LV (nask,tell) ę LDBpnask,tellq of proposition 100.

Given the destructive character of get primitives, we shall enrich them with the saturation

technique of the proof of proposition 109, which technically leads to considering the set S1
b

instead of the set Sb. Using these notations, we thus fix a token a and reason on two cases,

both leading to a contradiction: (I) either there exists a token b such that Sa XS1
b “ H, (II) or,

for any token b, one has Sa X S1
b ‰ H.

CASE I: there is a token b such that Sa X S1
b “ H. Consider AB “ naskppap1q, bp1qqq and

CpABq in its normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` getpu1q ; B1 ` ¨ ¨ ¨ ` getpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

As in proposition 109(ii), it is possible to establish that there are no alternatives guarded by a

tellptiq primitive : if this was the case then, by posing A “ tellpap1qq then AB would point out a

deadlock for A ; pAB`Aq which only admits successful computations. As in proposition 109(ii)

also, it is possible to establish that the vi’s should belong to Sa and to S1
b, which amounts to

stating that there are no alternatives guarded by a naskpvjq primitive.

143

Consequently, CpABq rewrites as

getpu1q ; B1 ` ¨ ¨ ¨ ` getpuqq ; Bq

and thus OpCpABqq “ tpH, δ´qu which, by P3, contradicts the fact that OpABq “ tpH, δ`qu.

CASE II: for any token b, one has Sa X S1
b ‰ H. By lemma 1, there exists a denumerable

set of distinct tokens xi, also distinct from a, and an integer m, such that Xm
i“1pSa X S1

xi
q “ H

and rXm
i“1pSa X S1

xi
qs X pSa X S1

xj
q “ H, for j ą m.

Consider NT “ naskpap1q, x1p1q, ¨ ¨ ¨ , xmp1qq and CpNT q in the following normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` getpu1q ; B1 ` ¨ ¨ ¨ ` getpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

As for case I, it is possible to prove that there are no alternatives guarded by a tellptiq

primitive. It is also possible to establish that

tv1, ¨ ¨ ¨ , vru Ď Sa X S1
x1

X ¨ ¨ ¨ X S1
xm

Firstly, we have that tvku Ď Sa, for any k. Otherwise, assume tvku Ę Sa, for some k. Then

F “ xCptellpap1qq ; CpNT q | Hy ÝÑ ¨ ¨ ¨

ÝÑ xCpNT q | Say ÝÑ xCk | Say

would be a valid computation prefix for Cptellpap1qq ; NT q which, by property P3, can only

be continued by failing suffixes. However F induces the following computation prefix F 1 for

Cptellpap1qq ; pNT ` tellpap1qqqq, and thus a failing computation for it, which by P3 contradicts

the fact that tellpap1qq ; pNT ` tellpap1qqqq has only one successful computation.

Secondly, we have that tvku Ď S1
xi
, for any k and i. By contradiction, assume that tvku Ę

S1
xi
, for some k and i. The proof proceeds similarly by considering pPP ; NT q instead of

tellpap1qq ; NT and PP ; pNT ` tellpxip1qqq instead of tellpap1qq ; pNT ` tellpap1qqq with PP

being defined as the parallel composition of n`2 occurrences of tellpxip1qq followed by tellpap1qq.

To that end, note that the computation of CpPP q leads to the store S1
xi

(see propositions 87

and 88)

Consider now tellpxm`1p1qq ; NT and let ui “ uipqiq for any i. A possible computation

prefix for Cptellpxm`1p1qq ; NT q is, by P2, as follows:

xCptellpxm`1p1qq ; CpNT q | Hy ÝÑ˚ xCpNT q | Sxm`1y

Since tellpxm`1p1qq ; NT has a successful computation, and since tv1, ¨ ¨ ¨ , vru Ď Sa X Sx1 X

¨ ¨ ¨Sxm Ď Sxm`1 there should exist j such that tujpqjqu Ď Sxm`1 .

144

Therefore, as Sxm`1 Ď S1
xm`1

, the following derivation is valid:

H “ xCptellpxm`1p1qq||pn`2qq ; Cptellpap1qqq ; CpNT q | Hy

ÝÑ˚ xCpNT q | S1
xm`1

y

ÝÑ xBj | S1
xm`1

ztujpqjquy

Moreover, H should be continued by failing suffixes only since

tellpxm`1p1qq||pn`2q ; tellpap1qq ; NT fails. However, by P3, this introduces failing compu-

tations for tellpxm`1p1qq||pn`2q ; tellpap1qq ; pNT ` tellpap1qqq whereas this agent has only one

successful computation.

In order to use once more the reasoning of proposition 105, and to make some result

available for further proposition 120, we now prove that LV (ask,tell) is not comparable with

LDBpnask,get,tellq.

Proposition 112. LV (ask,tell) ≀ LDBpnask,get,tellq

Proof. (i) The proof proceeds as in proposition 105, by constructing a successful coded computa-

tion for the same failing agent askppap1q, bp1qqq with the alternatives guarded by a nask primitive

of the normal form of the coded version treated as the alternatives guarded by a tell primitive.

(ii) Otherwise by pattern 3 of non embedding by transitivity, LDBpnask,tellq ď LV (ask,tell)

which contradicts proposition 102.

LDBpnask,get,tellq is not comparable with LV (ask,nask,tell).

Proposition 113. LDBpnask,get,tellq ≀ LV (ask,nask,tell)

Proof. (i) LV (ask,nask,tell) ę LDBpnask,get,tellq, otherwise by pattern 3 of non em-

bedding by transitivity, LV (ask,tell) ď LDBpnask,get,tellq which contradicts proposi-

tion 112. (ii) LDBpnask,get,tellq ę LV (ask,nask,tell) is proved by contradiction. Consider

tellptp1qq ; getptp1qq, for which Opptellptp1qq ; getptp1qqq “ tpH, δ`qu. Hence, by P2 and P3,

any computation of Cptellptp1qqq ; Cpgetptp1qqq is successful. Such a computation is composed

of a computation for Cptellptp1qqq followed by a computation for Cpgetptp1qqq. As the lat-

ter is composed of ask, nask, tell primitives which do not destroy elements on the store, the

latter computation can be repeated step by step which yields a successful computation for

Cptellptp1qqq ; pCpgetptp1qqq || Cpgetptp1qqqq. However, Optellptp1qq ; pgetptp1qq || getptp1qqq “

tpH, δ´qu, which produces the announced contradiction.

LV (nask,tell) is not comparable with LDBpget,tellq.

145

LV (ask,nask,tell)
LDBpnask, get, tellq

LDBpask, nask, get, tellq

LV (nask,tell) LDBpask, nask, tellq
LDBpget, tellq

LDBpask, get, tellq
LV (ask,tell)

LDBpnask, tellq LDBpask, tellq

LDBptellq

LV (tell)

Figure 7.3: Embedding hierarchy of Dense Bach and Vectorized Dense Bach for the tell, ask and

nask primitives.

Proposition 114. LV (nask,tell) ≀ LDBpget,tellq

Proof. On the one hand, LV (nask,tell) ę LDBpget,tellq. Otherwise, by the pattern 2 of tran-

sitivity, LDBpnask,tellq ď LDBpget,tellq which contradicts proposition 68. On the other hand,

LDBpget,tellq ę LV (nask,tell). Otherwise LDBpask,tellq ď LV (nask,tell) which contradicts

proposition 101.

Figure 7.3 presents a synthesis of the previoulsy obtained expressive relations proved in the

two previous subsections. Only the strict relations of expressiveness are shown in the figure.

The absence of arrow between two languages means that there is no relation of expressiveness

between them.

7.1.4 Retrieving tokens from the store

Let us now include the get primitive in the Vectorized Dense Bach. We first prove that

LV (get,tell) and LV (ask,get,tell) are equivalent.

Proposition 115. LV (get,tell) “ LV (ask,get,tell)

Proof. On the one hand, one has LV (get,tell) ď LV (ask,get,tell) by pattern 1 of sublanguage

inclusion. On the other, by coding askp
ÝÝÑ
tpmqq as getp

ÝÝÑ
tpmqq ; tellp

ÝÝÑ
tpmqq and by using the identity

as decoder, one has LV (ask,get,tell) ď LV (get,tell).

Let us now establish that LDBpget,tellq is strictly less expressive than LV (get,tell).

146

Proposition 116. LDBpget,tellq ă LV (get,tell)

Proof. On the one hand, LDBpget,tellq ď LV (get,tell) holds by proposition 97. On the other

hand, LV (get,tell) ę LDBpget,tellq may be proved exactly as in proposition 105(ii), where we

replace any occurrence of ask((a(1),b(1))) by get((a(1),b(1))).

We now prove that LV (ask,tell) is strictly less expressive than LV (get,tell).

Proposition 117. LV (ask,tell) ă LV (get,tell)

Proof. (i) Immediate by coding askptpmqq as getptpmqq ; tellptpmqq. (ii) By contradiction,

consider A = tellptp1qq ; getptp1qq. One has OpAq “ tpH, δ`qu. By P2 and P3, any com-

putation of OpCptellptp1qqq ; Cpgetptp1qqqq is thus successful. Such a computation is com-

posed of a computation for Cptellptp1qqq followed by a computation for Cpgetptp1qqq. As

Cpgetptp1qqq is composed of ask and tell primitives and since ask and tell primitives do not

destroy elements, this latter computation can be repeated, which yields successful computations

for OpCptellptp1qqq ; Cpgetptp1qqq ; Cpgetptp1qqqq. However, Optellptp1qq ; getptp1qq ; getptp1qqq “

tpH, δ´qu, which leads to the contradiction.

The five next propositions establish that LV (get,tell) is not comparable with respectively

LDBpnask,tellq, LV (nask,tell), LDBpnask,get,tellq,LV (ask,nask,tell) and LDBpask,nask,tellq.

Let us first prove that LV (get,tell) is not comparable with LDBpnask,tellq.

Proposition 118. LV (get,tell) ≀ LDBpnask,tellq

Proof. (i) LV (get,tell) ę LDBpnask,tellq, otherwise by pattern 3 of non embedding by

transitivity, we have LDBpask,tellq ď LDBpnask,tellq which has been proved impossible

in proposition 44. (ii) LDBpnask,tellq ę LV (get,tell) is proved by contradiction. Con-

sider A “ tellptp1qq ; naskptp1qq, for which OpAq “ tpttp1qu, δ´qu. Then, by P2 and

P3, any computation of Cptellptp1qqq ; Cpnaskptp1qqq must fail whereas we shall establish

that Cptellptp1qqq ; Cpnaskptp1qqq has a successful computation. Indeed, let us observe that

Optellptp1qqq “ tpttp1qu, δ`qu and Opnaskptp1qqq “ tpH, δ`qu. For both cases, by P3, any

computation of Cptellptp1qqq and Cpnaskptp1qqq starting on the empty store is successful. Con-

sequently, since Cptellptp1qqq and Cpnaskptp1qqq are composed of get and tell primitives, so are

all of their computations starting from any store. Therefore, any (successful) computation of

Cptellptp1qqq starting on the empty store can be continued by a (successful) computation of

Cpnaskptp1qqq, which leads to the contradiction.

147

The second proposition proves that LV (get,tell) is not comparable with LV (nask,tell).

Proposition 119. LV (get,tell) ≀ LV (nask,tell)

Proof. (i) LV (get,tell) ę LV (nask,tell), otherwise by pattern 3 of non embedding by transitivity,

we have LDBpask,tellq ď LV (nask,tell) which contradicts proposition 101. (ii) LV (nask,tell) ę

LV (get,tell), otherwise by the same pattern 3 we have LDBpnask,tellq ď LV (get,tell) which

contradicts proposition 118 above.

The third proposition establishes that LV (get,tell) is not comparable with

LDBpnask,get,tellq.

Proposition 120. LV (get,tell) ≀ LDBpnask,get,tellq

Proof. (i) LV (get,tell) ę LDBpnask,get,tellq, otherwise by proposition 117 we have

LV (ask,tell) ď LDBpnask,get,tellq which contradicts proposition 112. (ii) LDBpnask,get,tellq ę

LV (get,tell), otherwise by pattern 3 of non embedding by transitivity, LDBpnask,tellq ď

LV (get,tell) which contradicts proposition 118 above.

The fourth proposition establishes that LV (get,tell) is not comparable with

LV (ask,nask,tell).

Proposition 121. LV (get,tell) ≀ LV (ask,nask,tell)

Proof. (i) LV (get,tell) ę LV (ask,nask,tell) is proved by contradiction. Let us first ob-

serve that Optellptp1qq ; getptp1qqq “ tpH, δ`qu. By P2 and P3 any computation of

pCptellptp1qqq ; Cpgetptp1qqqq starting in the empty store is thus successful. By repeat-

ing step by step the computation of Cpgetptp1qqq, this leads to a successful computa-

tion of pCptellptp1qqq ; pCpgetptp1qq || Cpgetptp1qqqqq starting in the empty store. However,

Optellptp1qq ; pgetptp1qq || getptp1qqqq “ tpH, δ´qu, which leads to the contradiction. (ii)

LV (ask,nask,tell) ę LV (get,tell), otherwise by pattern 3 of non embedding by transitivity,

LV (nask,tell) ď LV (get,tell) which contradicts proposition 119 above.

The fifth proposition establishes that LV (get,tell) is not comparable with LDBpask,nask,tellq.

Proposition 122. LV (get,tell) ≀ LDBpask,nask,tellq

148

LV (ask,nask,tell)
LDBpnask, get, tellq

LDBpask, nask, get, tellq

LV (get,tell)

LV (ask,get,tell)

LV (nask,tell) LDBpask, nask, tellq
LDBpget, tellq

LDBpask, get, tellq
LV (ask,tell)

LDBpnask, tellq LDBpask, tellq

LDBptellq

LV (tell)

Figure 7.4: Embedding hierarchy of Bach and Vectorized Dense Bach languages for the get prim-

itive in Dense Bach.

Proof. (i) LV (get,tell) ę LDBpask,nask,tellq, otherwise by pattern 3 of non embedding

by transitivity, LV (get,tell) ď LV (ask,nask,tell) which contradicts proposition 121 above.

(ii) LDBpask,nask,tellq ę LV (get,tell), otherwise by the same pattern 3 LDBpnask,tellq ď

LV (get,tell) which contradicts proposition 118 above.

Figure 7.4 adds the expressive relations related to the get primitive in Vectorized Dense

Bach to the Figure 7.3 obtained with the tell, ask and nask primitives.

7.1.5 Checking for presence and/or absence when adding and/or retrieving

tokens

LV (nask,get,tell) and LV (ask,nask,get,tell) are equivalent.

Proposition 123. LV (nask,get,tell) “ LV (ask,nask,get,tell)

Proof. On the one hand, LV (nask,get,tell) ď LV (ask,nask,get,tell) is established by pat-

tern 1 of sublanguage inclusion. On the other hand, to establish LV (ask,nask,get,tell) ď

LV (nask,get,tell) we shall provide a coder such that the coding of the primitives askp
ÝÝÑ
tpmqq

and naskp
ÝÝÑ
tpmqq manipulate different tokens. To that end, as the set of tokens is enumerable,

it is possible to associate each of them, say (
ÝÝÑ
tpmq), to a pair pp

ÝÝÝÑ
t1pmqq, p

ÝÝÝÑ
t2pmqqq. Given such a

coding of tokens, we define the compositional coder C as follows:

Cpaskp
ÝÝÑ
tpmqqq “ getp

ÝÝÝÑ
t2pmqq ; tellp

ÝÝÝÑ
t2pmqq

Cpnaskp
ÝÝÑ
tpmqqq “ naskp

ÝÝÝÑ
t1pmqq

Cpgetp
ÝÝÑ
tpmqqq “ getp

ÝÝÝÑ
t2pmqq ; getp

ÝÝÝÑ
t1pmqq

Cptellp
ÝÝÑ
tpmqqq “ tellp

ÝÝÝÑ
t1pmqq ; tellp

ÝÝÝÑ
t2pmqq

149

The decoder Dc is defined as follows: Delppσ, δqq “ pσ, δq, where σ is composed of the tokens

p
ÝÝÑ
tpmqq for which p

ÝÝÝÑ
t1pmqq and p

ÝÝÝÑ
t2pmqq are in σ, the multiplicity of p

ÝÝÑ
tpmqq being that of pairs

p
ÝÝÝÑ
t1pmqq, p

ÝÝÝÑ
t2pmqq in σ.

LV (ask,nask,tell) is strictly less expressive than LV (ask,nask,get,tell), and then from

LV (nask,get,tell), by proposition 123.

Proposition 124. LV (ask,nask,tell) ă LV (ask,nask,get,tell)

Proof. On the one hand, LV (ask,nask,tell) ď LV (ask,nask,get,tell) results from pattern 1 of

sublanguage inclusion. On the other hand, LV (ask,nask,get,tell) ę LV (ask,nask,tell). Other-

wise by pattern 3 of non embedding by transitivity, LV (get,tell) ď LV (ask,nask,tell), which

contradicts proposition 121.

LV (get,tell) is strictly less expressive than LV (nask,get,tell).

Proposition 125. LV (get,tell) ă LV (nask,get,tell)

Proof. On the one hand, LV (get,tell) ď LV (nask,get,tell) results from language inclusion. On

the other hand, LV (nask,get,tell) ę LV (get,tell) is established by contradiction. Consider

tellptp1qq ; naskptp1qq, for which Optellptp1qq ; naskptp1qq “ tpttp1qu, δ´qu. Hence, by P2 and

P3, Cptellptp1qqq ; Cpnaskptp1qqq fails. The contradiction comes then from the fact that at least

one computation of Cptellptp1qqq ; Cpnaskptp1qqq starting on the empty store is successful. In-

deed, as Optellptp1qqq “ tpttp1qu, δ`qu, any computation of Cptellptp1qqq starting on the empty

store succeeds. Similarly, any computation of Cpnaskptp1qqq starting on the empty store suc-

ceeds. Moreover, as Cpnaskptp1qqq is composed of get and tell primitives only, for any store

σ, Cpnaskptp1qqq admits at least one successful computation starting on σ. It follows that any

computation of Cptellptp1qqq starting on the empty store can be continued by a (successful)

computation of Cpnaskptp1qqq, which leads to the announced contradiction.

Finally, LDBpask,nask,get,tellq can be proved strictly less expressive than

LV (ask,nask,get,tell).

Proposition 126. LDBpask,nask,get,tellq ă LV (ask,nask,get,tell)

Proof. On the one hand, LDBpask,nask,get,tellq ď LV (ask,nask,get,tell) is directly deduced

from proposition 97. On the other hand, by pattern 3 of non embedding by transitivity, if

one had LV (ask,nask,get,tell) ď LDBpask,nask,get,tellq then LV (get,tell) ď LDBpnask,get,tellq

would hold, which contradicts proposition 120.

150

LV (nask,get,tell)

LV (ask,nask,get,tell)

LV (ask,nask,tell)
LDBpnask, get, tellq

LDBpask, nask, get, tellq

LV (get,tell)

LV (ask,get,tell)

LV (nask,tell) LDBpask, nask, tellq
LDBpget, tellq

LDBpask, get, tellq
LV (ask,tell)

LDBpnask, tellq LDBpask, tellq

LDBptellq

LV (tell)

Figure 7.5: Embedding hierarchy of Dense Bach and Vectorized Dense Bach for all the primitives

in Dense Bach.

Figure 7.5 presents the full expressive relations related to the ask, nask, get and tell primi-

tives.

7.2 Comparison with MRT

The previous section has studied the expressiveness comparison between the language Dense

Bach and the Vectorized Dense Bach language. With this property, this evolution of Dense

Bach provides the language with a property close to the capacity of the multi-set language to

manipulate atomically many tokens. It is then logical to compare those two languages from the

point of view of the expressiveness. This is the subject of this second section.

7.2.1 Generic patterns and results

To develop the different proofs, when possible, we make again use of the different patterns of

demonstration emphasized in our previous expressiveness studies, i.e. the pattern 1 of sublan-

guage inclusion, the pattern 2 of transitivity, and its contraposition in pattern 3, establishing

the non-embedding by transitivity.

Moreover, a first observation establishes that Dense Bach with Distributed Density sublan-

guages are embedded in the corresponding multi-set rewriting sublanguages.

Proposition 127. LV (χ) ď LMRpχq, for any subset of χ of primitives.

151

Proof. Immediate by defining the coder as follows:

Cptellppt1pm1q, . . . , tkpmkqqqq “ ptu, t`t1, ¨ ¨ ¨ ,`t1
looooooomooooooon

m1 times

, ¨ ¨ ¨ ,`tk , ¨ ¨ ¨ ,`tk
looooooomooooooon

mk times

uq

Cpaskppt1pm1q, . . . , tkpmkqqq “ pt`t1, ¨ ¨ ¨ ,`t1
looooooomooooooon

m1 times

, ¨ ¨ ¨ ,`tk , ¨ ¨ ¨ ,`tk
looooooomooooooon

mk times

u, tuq

Cpgetppt1pm1q, . . . , tkpmkqqqq “ pt`t1, ¨ ¨ ¨ ,`t1
looooooomooooooon

m1 times

, ¨ ¨ ¨ ,`tk , ¨ ¨ ¨ ,`tk
looooooomooooooon

mk times

u, t´t1, ¨ ¨ ¨ ,´t1
looooooomooooooon

m1 times

, ¨ ¨ ¨ ,´tk, ¨ ¨ ¨ ,´tk
looooooomooooooon

mk times

uq

Cpnaskppt1pm1q, . . . , tkpmkqqqq “ pt´t1, ¨ ¨ ¨ ,´t1
looooooomooooooon

m1 times

, ¨ ¨ ¨ ,´tk , ¨ ¨ ¨ ,´tk
looooooomooooooon

mk times

u, tuq

and using the identity as decoder.

Finally, as for all the previous expressiveness studies, the different propositions are logically

grouped following the same schema. We first consider the sublanguage constituted by the tell

primitive only. The store being feeded with tokens, the second step is to provide the language

with a possibility to question the store about the presence or the absence of tokens on it. Those

two capacities result from the introduction of the ask and nask primitives, in addition to the

tell primitive. A third important property is then to allow the language to retrieve tokens from

the store, by using the get primitive. Finally the last step studies the most complete language,

combining the get and tell primitives with the nask and/or ask primitives.

7.2.2 Adding tokens on the store

When only constituted of the tell primitive, LV (tell) and LMRptellq are equivalent.

Proposition 128. LMRptellq and LV (tell) are equivalent.

Proof. We have LV (tell) ď LMRptellq by proposition 127. Furthermore, LMRptellq ď LV (tell) is

established by coding any tell primitive of LMRptellq as the composition of their dense versions

: Cptu, t`t1, ¨ ¨ ¨ ,`t1
loooooomoooooon

m1 times

, ¨ ¨ ¨ ,`tk, ¨ ¨ ¨ ,`tk
loooooomoooooon

mk times

uq “ tellppt1pm1q, ¨ ¨ ¨ , tkpmkqqq.

7.2.3 Checking for presence and/or absence when adding tokens

Let us now consider the introduction of a questioning about the state of the store, regarding

the presence or the absence of tokens on it. As a result of the expressiveness hierarchy obtained

in section 7.1.1 and synthesized in Figure 7.5, it also comes that both languages LV (ask,tell)

and LV (nask,tell) are strictly more expressive than LMRptellq since both have been established

152

strictly more expressive than LV (tell).

An interesting result is that LV (ask,tell) is as expressive as LMRpask,tellq.

Proposition 129. LV (ask,tell) “ LMRpask,tellq

Proof. (i) On the one hand, LV (ask,tell) ď LMRpask,tellq, by proposition 127. (ii) On

the other hand, LMRpask,tellq ď LV (ask,tell) is established by noting that any agent of

LMRpask,tellq can be simulated by an agent of LMRpaskq followed by an agent of LMRptellq. For

instance, t`a1, ¨ ¨ ¨ ,`a1
looooooomooooooon

α1 times

, ¨ ¨ ¨ ,`an, ¨ ¨ ¨ ,`an
looooooomooooooon

αn times

u, t`b1, ¨ ¨ ¨ ,`b1
looooooomooooooon

β1 times

, ¨ ¨ ¨ ,`bm, ¨ ¨ ¨ ,`bm
loooooooomoooooooon

βm times

u can be simu-

lated by pt`a1, ¨ ¨ ¨ ,`a1
looooooomooooooon

α1 times

, ¨ ¨ ¨ ,`an, ¨ ¨ ¨ ,`an
looooooomooooooon

αn times

u, tuq; ptu, t`b1 , ¨ ¨ ¨ ,`b1
looooooomooooooon

β1 times

, ¨ ¨ ¨ ,`bm, ¨ ¨ ¨ ,`bm
loooooooomoooooooon

βm times

uq.

As the reader will easily check it, the crucial property is that no agent of LMRpask,tellq can

perturbate any other since its construction only consists in enriching the store, which does

not perturbate the atomicity of the test of any agent of LMRpask,tellq. As a result, by in-

verting the coding of the proof of the proposition 127, it is possible to simulate any agent of

LMRpask,tellq by a sequence of agents of LV (ask,tell) . For instance, the above agent is coded

as askppa1pα1q, ¨ ¨ ¨ , anpαnqqq; tellppb1pβ1q, ¨ ¨ ¨ , bmpβmqqq.

Proof technique 5. The reasoning used to establish the above proposition is used once more

to prove propositions 134, which demonstrates that LMRpask,tellq ă LV (ask,nask,tell).

In contrast, LV (nask,tell) is strictly less expressive than LMRpnask,tellq.

Proposition 130. LV (nask,tell) ă LMRpnask,tellq.

Proof. (i) On the one hand, LV (nask,tell) ď LMRpnask,tellq holds by proposition 127.

(ii) On the other hand, LMRpnask,tellq ę LV (nask,tell) is proved by considering agent AB =

pt´au, t`buq and agent BA = pt´bu, t`auq, with OpAB || BAq “ tpH, δ´qu. The proof proceeds

by contradiction, by assuming the existence of a coder C with CpABq in normal form [BJ98],

and thus written as tellp
ÝÑ
t1 q;A1 ` ¨ ¨ ¨ ` tellp

ÝÑ
tp q;Ap ` naskpÝÑu1q;B1 ` ¨ ¨ ¨ ` naskpÝÑuqq;Bq. In this

expression we will establish that there is no alternative guarded by a tellp
ÝÑ
ti q operation and

no alternative guarded by a naskpÝÑujq operation either, which is impossible since CpABq must

contain at least one primitive. We notice that the coding of CpAB || BAq can be written as

CpABq || CpBAq by P2.

Let us first establish that there is no alternative guarded by a tellp
ÝÑ
ti q operation. In-

deed if there is an alternative guarded, say by tellp
ÝÑ
ti q, then D “ xCpAB || BAq|Hy Ñ

153

xpAi || CpBAqq|t
ÝÑ
ti uy is a valid computation prefix of CpAB || BAq. It should deadlock af-

terwards since OpAB || BAq “ pH, δ´q. However D is also a valid computation prefix of

CppAB || BAq ` ptu, t`auqq. Hence, CppAB || BAq ` ptu, t`auqq admits a failing computation

which contradicts the fact that OppAB || BAq ` ptu, t`auqq “ ptau, δ`q.

Secondly we establish that there is no alternative guarded by a naskpÝÑujq operation. In-

deed starting from the empty store, if there is an alternative guarded, say by naskpÝÑujq, then

D “ xCpAB || BAq|Hy Ñ xpBj || CpBAqq|ttiuy is a valid computation prefix of CpAB || BAq. It

should deadlock afterwards since OpAB || BAq “ pH, δ´q. However D is also a valid computa-

tion prefix of CppAB || BAq ` ptu, t`auqq. Hence, CppAB || BAq ` ptu, t`auqq admits a failing

computation which contradicts the fact that OppAB || BAq ` ptu, t`auqq “ ptau, δ`q.

Proof technique 6. The reasoning used to establish the previous proposition is also used to

prove propositions 133 and 139, where it is stated that LMRpnask,tellq ę LV (ask,nask,tell) and

LMRpnask,tellq ę LV (nask,get,tell).

LMRpask,tellq and LV (nask,tell) are not comparable with each other, and so are LMRpnask,tellq

and LV (ask,tell).

Proposition 131. LMRpask,tellq ≀ LV (nask,tell)

Proof. On the one hand, we have that LMRpask,tellq ę LV (nask,tell). Otherwise, by pattern 3

of non embedding by transitivity, we have LV (ask,tell) ď LV (nask,tell) which has been proved

impossible in proposition 103. On the other hand, LV (nask,tell) ę LMRpask,tellq is estab-

lished by employing the same reasoning as the one used in the second part of the proof of

proposition 103, using dense vector notations.

Proposition 132. LMRpnask,tellq ≀ LV (ask,tell)

Proof. On the one hand, LMRpnask,tellq ę LV (ask,tell) holds. Otherwise, by pattern 3

of non embedding by transitivity, we have LV (nask,tell) ď LV (ask,tell) which has been

proved impossible in proposition 103. On the other hand, LV (ask,tell) ę LMRpnask,tellq

is established by contradiction by considering tellptp1qq ; askptp1qqq. Indeed, by noting that

Optellptp1qq ; askptp1qqq “ tpttp1qu, δ`qu, the reasoning developped in proposition 101 can be

followed, which leads to the contradiction.

We now prove that LV (ask,nask,tell) and LMRpnask,tellq are not comparable with each

other.

154

Proposition 133. LV (ask,nask,tell) ≀ LMRpnask,tellq

Proof. (i) We have that LV (ask,nask,tell) ę LMRpnask,tellq. Otherwise, by pattern 3 of non

embedding by transitivity, LV (ask,tell) ď LMRpnask,tellq, which has been proved impossible in

proposition 132.

(ii) On the other hand, the proof of LMRpnask,tellq ę LV (ask,nask,tell) is an extension

of the proof used in proposition 130 with normal forms extended with ask primitives. It

is established by considering agent AB = pt´au, t`buq and agent BA = pt´bu, t`auq, with

Oppt´au, t`buq || pt´bu, t`auqq “ tpH, δ´qu. The proof proceeds by contradiction, by as-

suming the existence of a coder C with CpABq in normal form [BJ98], and thus written as

tellp
ÝÑ
t1 q;A1`¨ ¨ ¨`tellp

ÝÑ
tp q;Ap`askpÝÑu1q;B1`¨ ¨ ¨`askpÝÑuqq;Bq`naskpÝÑv1q;C1`¨ ¨ ¨`naskpÝÑvr q;Cr.

In this expression we will establish that there is no alternative guarded by a tellp
ÝÑ
ti q operation

or guarded by a askpÝÑujq, or guarded by a naskpÝÑvkq operation either, which is impossible since

CpABq must contain at least one primitive. We notice that the coding of CpAB || BAq can be

written as CpABq || CpBAq by P2.

Let us first establish that there is no alternative guarded by a tellp
ÝÑ
ti q operation. In-

deed if there is an alternative guarded, say by tellp
ÝÑ
ti q, then D “ xCpAB || BAq|Hy Ñ

xpAi || CpBAqq|t
ÝÑ
ti uy is a valid computation prefix of CpAB || BAq. It should deadlock af-

terwards since OpAB || BAq “ tpH, δ´qu. However D is also a valid computation prefix of

CppAB || BAq ` ptu, t`auqq. Hence, CppAB || BAq ` ptu, t`auqq admits a failing computation

which contradicts the fact that OppAB || BAq ` ptu, t`auqq “ ptau, δ`q.

Secondly we establish that there is no alternative guarded by a naskpÝÑvj q operation. Indeed

starting from the empty store, if there is an alternative guarded, say by naskpÝÑvj q, then D “

xCpAB || BAq|Hy Ñ xpBj || CpBAqq|Hy is a valid computation prefix of CpAB || BAq. It should

deadlock afterwards since OpAB || BAq “ tpH, δ´qu. However D is also a valid computation

prefix of CppAB || BAq ` ptu, t`auqq. Hence, CppAB || BAq ` ptu, t`auqq admits a failing

computation which contradicts the fact that OppAB || BAq ` ptu, t`auqq “ ptau, δ`q.

Then CpABq reduces to

askpÝÑu1q ; B1 ` ¨ ¨ ¨ ` askpÝÑuqq ; Bq

which thus fails on the empty store whereas OpABq “ tpH, δ`qu, providing the contradiction.

Let us now prove that LMRpask,tellq is strictly less expressive than LV (ask,nask,tell).

Proposition 134. LMRpask,tellq ă LV (ask,nask,tell)

155

Proof. (i) On the one hand, thanks to proposition 129, LMRpask,tellq “ LV (ask,tell) ď

LV (ask,nask,tell) and thus LMRpask,tellq ď LV (ask,nask,tell).

(ii) On the other hand, LV (ask,nask,tell) ę LMRpask,tellq, since otherwise, LV (nask,tell) ď

LV (ask,nask,tell) ď LMRpask,tellq, which has been proved impossible in proposition 131.

We now prove that LV (ask,nask,tell) is stricly less expressive than LMRpask,nask,tellq.

Proposition 135. LV (ask,nask,tell) ă LMRpask,nask,tellq

Proof. (i) On the one hand, the fact that LV (ask,nask,tell) ď LMRpask,nask,tellq is immediate

by proposition 127. (ii) On the other hand, LMRpask,nask,tellq ę LV (ask,nask,tell). Other-

wise, by pattern 3 of non embedding by transitivity, from LMRpnask,tellq ď LMRpask,nask,tellq,

one would get LMRpnask,tellq ď LV (ask,nask,tell), which has been proved impossible in propo-

sition 133.

Proposition 136. LV (get,tell) ≀ LMRpask,tellq

Proof. (i) The reasoning used to prove that LV (get,tell) ę LMRpask,tellq is the same as the

one used in the first part of the proof of proposition 105, with dense vector notations. It

works by contradiction and by establishing that tellptp1qq ; getptp1qq can produce a successful

computation for Cptellptp1qqq ; Cpgetptp1qqq ; Cpgetptp1qqqq, which can obviously not be the case.

(ii) On the other hand, LMRpask,tellq ę LV (get,tell) is proved by considering agent AB

= pt`a,`bu, tuq, with Oppt`a,`bu, tuqq “ tpH, δ´qu. The proof proceeds by contradiction, by

assuming the existence of a coder C with CpABq in normal form [BJ98], and thus written as

tellp
ÝÑ
t1 q;A1 ` ¨ ¨ ¨ ` tellp

ÝÑ
tp q;Ap ` getpÝÑu1q;B1 ` ¨ ¨ ¨ ` getpÝÑuqq;Bq, where ti and uj denote dense

vectors
ÝÑ
ti and ÝÑuj associated with a density.

The proof proceeds by establishing (I) that there is no alternative guarded by a tellp
ÝÑ
ti q

operation, and (II) that there is no alternative guarded by a getpÝÑujq operation, in which case,

CpABq is equivalent to an empty statement, which is impossible since it is composed of at least

one primitive.

STEP I: Let us first establish that there is no alternative guarded by a tellp
ÝÑ
ti q opera-

tion. Otherwise such alternative would point out a failing computation for CpAB ` ptu, t`auqq,

contradicting the fact that OpAB ` ptu, t`auqq “ tptau, δ`qu.

STEP II: Let us now establish that there is no alternative guarded by a getpÝÑujq operation. To

that end, let us first consider two auxiliary computations. As Opptu, t`auqq “ tptau, δ`qu, any

computation of Cpptu, t`auqq starting in the empty store succeeds. Let xpptu, t`auqq|Hy Ñ

¨ ¨ ¨ Ñ xE|ta1, . . . , amuy be such a computation. Similarly, let xpptu, t`buqq|Hy Ñ ¨ ¨ ¨ Ñ

156

xE|tb1, . . . , bnuy be one computation of Cpptu, t`buqq. The proof of the claim proceeds in two

steps: first by establishing none of the ui’s belong to ta1, . . . , amu Y tb1, . . . , bnu and second by

deriving a contradiction therefrom.

First let us prove that none of the ui’s belong to ta1, . . . , amu (the proof for the bj ’s being

similar). By contradiction, assume that ui “ ak for some k and that q is the density associated

with ui, namely, ÝÑui “ uipqq. Let us observe that, since it is in LV (get,tell), the considered

computation of Cpptu, t`auqq can be repeated in parallel, as many times as needed. As a re-

sult, if, for an agent A and integer n, the notation A||n denotes the parallel composition of n

copies of A and if for a token t, the notation tn in a multiset denotes n occurrences of t, then

D1 “ xCpptu, t`auq||q ;ABq|Hy Ñ ¨ ¨ ¨ Ñ xCpABq|taq1, . . . , a
q
muy Ñ xBj|ta

q
1, . . . , a

q
muy is a valid

computation prefix of Cpptu, t`auq||q ;ABq, which can only be continued by failing suffixes. How-

ever D1 induces the following computation prefix D2 for ptu, t`auq||q ; pAB`pt`au, tuqq which as

just seen admits only successful computations: D2 “ xCpptu, t`auq||q ; pAB ` pt`au, tuqqq|Hy Ñ

¨ ¨ ¨ Ñ xCpAB ` pt`au, tuqq|taq1 , . . . , a
q
muy Ñ xBj |taq1, . . . , a

q
muy.

Second, the fact that the u1
is do not belong to ta1, . . . , amu Y tb1, . . . , bnu induces a

contradiction. Indeed, if this is the case then xCpptu, t`auq; ptu, t`buq;ABq|Hy Ñ ¨ ¨ ¨ Ñ

xCpptu, t`buq;ABq|ta1 , . . . , amuy Ñ ¨ ¨ ¨ Ñ xCpABq|ta1, . . . , am, b1, . . . , bnuy Û is a valid fail-

ing computation prefix of Cpptu, t`auq; ptu, t`buq;ABq whereas ptu, t`auq; ptu, t`buq;AB has

only one successful computation.

We have that LV (get,tell) is not comparable with LMRpask,nask,tellq

Proposition 137. LV (get,tell) ≀ LMRpask,nask,tellq

Proof. On the one hand, LV (get,tell) ę LMRpask,nask,tellq. The proof proceeds as for establish-

ing that LV (get,tell) ę LMRpask,tellq (see proposition 136) by considering tellptp1qq ; getptp1qq

and tellptp1qq ; pgetptp1qq || getptp1qqq, the parallel composition Cpgetptp1qqq || Cpgetptp1qqq re-

peating in turn each step of Cpgetptp1qqq.

On the other hand, LMRpask,nask,tellq ę LV (get,tell). Otherwise, by pattern 3, one would

have that LMRpask,tellq ď LMRpask,nask,tellq ď LV (get,tell) which has been proved impossible

in proposition 136.

We now prove that LMRpask,tellq is not comparable with LV (nask,get,tell).

Proposition 138. LV (nask,get,tell) ≀ LMRpask,tellq

Proof. (i) On the one hand, LV (nask,get,tell) ę LMRpask,tellq. Otherwise, by the pattern 3 of

non embedding by transitivity, LV (nask,tell) ď LMRpask,tellq which has been proved impossible

in proposition 131(ii).

157

(ii) On the other hand, LMRpask,tellq ę LV (nask,get,tell) is proved by considering the

agent AB = pt`a,`bu, tuq, for which Oppt`a,`bu, tuqq “ tpH, δ´qu. We then proceed by

contradiction using these two tokens. However, the destructive character of get primitives

coupled to the test for absence of nask slightly complicate our task of producing a contradiction.

To that end, we shall “saturate” their effect by taking as many instances of codings in parallel

and thereby by extending the sets Sb introduced as in the proof of proposition 83(ii).

Let us thus proceed by contradiction by assuming the existence of a coder C. Take two

distinct tokens a and b. Let n be the cumulative sum of the densities associated with the

nask and get primitives of Cpptu, t`auqq. As Cpptu, t`auqq has only successful computations,

let, as in the proof of proposition 83(ii), Sa be the store resulting from one of them. As

p||n`2
k“1ptu, t`buqq ; ptu, t`auqq succeeds as well, let S1

b denote the store resulting from one suc-

cessful computation of its coding. Consider finally ABs “ pt`a,`b, ¨ ¨ ¨ ,`bu, tuq requesting one

a with n` 3 copies of b and CpABsq in its normal form:

tellp
ÝÑ
t1 q ; A1 ` ¨ ¨ ¨ ` tellp

ÝÑ
tp q ; Ap

` getpÝÑu1q ; B1 ` ¨ ¨ ¨ ` getpÝÑuqq ; Bq

` naskpÝÑv1q ; C1 ` ¨ ¨ ¨ ` naskpÝÑvrq ; Cr

We shall establish (I) that there are no alternatives guarded by tell and nask primitives,

and (II) that tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. Assuming these two points proved, a contra-

diction can be produced as follows. Indeed, in view of the saturation provided by the n ` 2

copies of Cpptu, t`buqq, adding one more, only adds tokens present in Sa Y S1
b. As a result,

Cp||n`3
k“1ptu, t`buqq ; ptu, t`auq ; ABsq fails whereas ||n`3

k“1ptu, t`buqq ; ptu, t`auq ; ABs has only

one successful computation. Hence the contradiction.

STEP I: Let us first establish that there are no alternative guarded by a tellp
ÝÑ
ti q primitive.

The proof proceeds by contradiction as in proposition 136(ii), by pointing out a failing compu-

tation for CpAB ` ptu, t`auqq, contradicting the fact that OpAB ` ptu, t`auqq “ tptau, δ`qu.

In a similar way there are no alternative guarded by a nask primitive. Indeed assuming

the existence of a naskpviq ; Ci alternative again points out a failing computation for CpAB `

ptu, t`auqq, contradicting the fact that OpAB ` ptu, t`auqq “ tptau, δ`qu.

STEP II: Let us now establish that tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. This is proved in two

steps by establishing (1) that tu1, ¨ ¨ ¨ , uqu X Sa “ H, and (2) that tu1, ¨ ¨ ¨ , uqu X S1
b “ H.

First we have that tu1, ¨ ¨ ¨ , uqu X Sa “ H. By contradiction, assume that ui P Sa for some

i and let q be the density associated with ui, namely, ÝÑui “ uipqq. Let us observe that each step

of the considered computation of Cpptu, t`auqq can be repeated in turn, in as many parallel

158

occurences of it as needed, so that

P “ xCpp||qk“1ptu, t`auqq ; ABsq|Hy

Ñ ¨ ¨ ¨ Ñ xABs| Yq
k“1 Say

Ñ xBi|pYq
k“1SaqztÝÑuiuy

is a valid computation prefix of Cpp||qk“1ptu, t`auqq ; ABsq, which can only be contin-

ued by failing suffixes. However P induces the following computation prefix P 1 for

Cpp||qk“1ptu, t`auqq ; pABs` ptu, t`auqqq which admits only successful computations:

P 1 “ xCpp||qk“1ptu, t`auqq ; pABs` ptu, t`auqqq|Hy

Ñ ¨ ¨ ¨ Ñ xCpABs` ptu, t`auqq| Yq
k“1 Say

Ñ xBi|pYq
k“1SaqztÝÑuiuy

Hence the contradiction.

The fact that tu1, ¨ ¨ ¨ , uqu XS1
b “ H is proved similarly, by considering S1

b instead of Sa and

ptu, t`buq instead of ptu, t`auq.

In order to prove the next proposition, we need to use lemma 2 of Section 3.2.5.

Proposition 139. LV (nask,get,tell) ≀ LMRpnask,tellq

Proof. (i) On the one hand, LV (nask,get,tell) ę LMRpnask,tellq. Otherwise, by the pattern 3

on non embedding by transitivity, LV (ask,tell) ď LMRpnask,tellq which contradicts proposi-

tion 132.

(ii) On the other hand, LMRpnask,tellq ę LV (nask,get,tell) is established by contradiction.

Given the destructive character of get primitives, we shall enrich them with the saturation

technique of the proof of proposition 138 (ii) which technically leads to considering the set S1
b

instead of the set Sb defined in the second part of the proof of proposition 130. Using these

notations, we thus fix a token a and reason on two cases, both leading to a contradiction: (I)

either there exists a token b such that SaXS1
b “ H, (II) or, for any token b, one has SaXS1

b ‰ H.

CASE I: there is a token b such that Sa X S1
b “ H. Consider then AB “ pt´a,´bu, tuq and

CpABq in its normal form:

tellp
ÝÑ
t1 q ; A1 ` ¨ ¨ ¨ ` tellp

ÝÑ
tp q ; Ap

` getpÝÑu1q ; B1 ` ¨ ¨ ¨ ` getpÝÑuqq ; Bq

` naskpÝÑv1q ; C1 ` ¨ ¨ ¨ ` naskpÝÑvr q ; Cr

As in proposition 130(ii), it is possible to establish that there are no alternatives guarded by a

tellp
ÝÑ
ti q primitive : if this was the case then, by posing A “ ptu, t`auq, the agent AB would point

159

out a deadlock for A ; pAB `Aq which only admits successful computations. As in proposition

138(ii) also, it is possible to establish that the vi’s should belong to Sa and to S1
b, which amounts

to stating that there are no alternatives guarded by a naskpÝÑvj q primitive.

Consequently, CpABq rewrites as

getpÝÑu1q ; B1 ` ¨ ¨ ¨ ` getpÝÑuqq ; Bq

and thus OpCpABqq “ tpH, δ´qu which, by P3, contradicts the fact that OpABq “ tpH, δ`qu.

CASE II: for any token b, one has Sa XS1
b ‰ H. By Lemma 2 (where Sa plays the role of S

and f is defined by fpxq “ S1
x), there exists a denumerable set of distinct tokens xi, also distinct

from a, and an integer m, such that Xm
i“1pSa XS1

xi
q ‰ H and rXm

i“1pSa XS1
xi

qsXpSa XS1
xj

q ‰ H,

for j ą m.

Consider NT “ pt´a,´x1, ¨ ¨ ¨ ,´xmu, tuq and CpNT q in the following normal form:

tellp
ÝÑ
t1 q ; A1 ` ¨ ¨ ¨ ` tellp

ÝÑ
tp q ; Ap

` getpÝÑu1q ; B1 ` ¨ ¨ ¨ ` getpÝÑuqq ; Bq

` naskpÝÑv1q ; C1 ` ¨ ¨ ¨ ` naskpÝÑvrq ; Cr

As for case I, it is possible to prove that there are no alternatives guarded by a tellptiq primitive.

It is also possible to establish that

tv1, ¨ ¨ ¨ , vru Ď Sa X S1
x1

X ¨ ¨ ¨ X S1
xm

Firstly, we have that vk P Sa, for any k. Otherwise, assume vk R Sa, for some k. Then

F “ xCpptu, t`auqq ; CpNT q | Hy ÝÑ ¨ ¨ ¨

ÝÑ xCpNT q | Say ÝÑ xCk | Say

would be a valid computation prefix for Cpptu, t`auq ; NT q which, by property P3, can only

be continued by failing suffixes. However F induces the following computation prefix F 1 for

Cpptu, t`auq ; pNT `ptu, t`auqqq, and thus a failing computation for it, which by P3 contradicts

the fact that ptu, t`auq ; pNT ` ptu, t`auqqq has only one successful computation.

Secondly, we have that vk P S1
xi
, for any k and i. By contradiction, assume that vk R

S1
xi
, for some k and i. The proof proceeds similarly by considering pPP ; NT q instead of

ptu, t`auq ; NT q and PP ; pNT ` ptu, t`xiuqq instead of ptu, t`auq ; pNT ` ptu, t`auqq with

PP being defined as the parallel composition of n ` 2 occurrences of ptu, t`xiuq followed by

ptu, t`auq. To that end, note that the computation of CpPP q leads to the store S1
xi

(see the

proof of proposition 83(ii)).

Consider now ptu, t`xm`1uq ; NT . A possible computation prefix for Cpptu, t`xm`1uq ; NT q

is, by P2, as follows:

160

xCpptu, t`xm`1uqq ; CpNT q | Hy ÝÑ˚ xCpNT q | Sxm`1y

Since ptu, t`xm`1uq ; NT has a successful computation, and since tv1, ¨ ¨ ¨ , vru Ď Sa X Sx1 X

¨ ¨ ¨Sxm Ď Sxm`1 there should exist j such that uj P Sxm`1 .

Therefore, as Sxm`1 Ď S1
xm`1

, the following derivation is valid:

H “ xCpp || n`2
k“1ptu, t`xm`1uqqq ; Cpptu, t`auqq ; CpNT q | Hy

ÝÑ˚ xCpNT q | S1
xm`1

y

ÝÑ xBj | S1
xm`1

ztÝÑujuy

Moreover, H should be continued by failing suffixes only since

p || n`2
k“1ptu, t`xm`1uqq ; ptu, t`auq ; NT fails. However, by P3, this introduces failing

computations for p || n`2
k“1ptu, t`xm`1uqq ; ptu, t`auq ; pNT ` ptu, t`auqq whereas this agent has

only one successful computation.

We are now in a position to establish that LV (get,tell) is not comparable with LMRpnask,tellq.

Proposition 140. LV (get,tell) ≀ LMRpnask,tellq

Proof. On the one hand, LV (get,tell) ę LMRpnask,tellq. Otherwise, by pattern 3,

as LV (ask,tell) ă LV (get,tell) (see proposition 117(i)), one would have LV (ask,tell) ď

LV (get,tell) ď LMRpnask,tellq which has been proved impossible in proposition 132. On

the other hand, LMRpnask,tellq ę LV (get,tell). Otherwise, by pattern 3, we would have

LMRpnask,tellq ď LV (get,tell) ď LV (nask,get,tell) which has been proved impossible in propo-

sition 139.

LV (nask,get,tell) is not comparable with LMRpask,nask,tellq.

Proposition 141. LMRpask,nask,tellq ≀ LV (nask,get,tell)

Proof. (i) On the one hand LMRpask,nask,tellq ę LV (nask,get,tell). Otherwise,

LMRpask,tellq ď LV (nask,get,tell) which contradicts proposition 138. (ii) On the other

hand, LV (nask,get,tell) ę LMRpask,nask,tellq. By contradiction, consider tellptp1qq ; getptp1qq.

Opptellptp1qq ; getptp1qqq “ tpH, δ`qu. Hence any computation of Cptellptp1qqq ; Cpgetptp1qqq is

successful. Such a computation is composed of a computation for Cptellptp1qqq followed by a

computation for Cpgetptp1qqq. As Cpgetptp1qqq is composed of ask, nask, tell primitives which

do not destroy elements on the store, the latter computation can be repeated step by step

which yields successful computation for Cptellptp1qqq ; pCpgetptp1qqq || Cpgetptp1qqqq. However,

Optellptp1qq ; pgetptp1qq || getptp1qqq “ tpH, δ´qu.

161

LMR(ask,nask,tell)
LV (nask, get, tell)

LV (ask, nask, get, tell)

LMR(nask,tell) LV (ask, nask, tell)
LV (get, tell)

LV (ask, get, tell)

LV (nask, tell)
LV (ask, tell)

LMR(ask, tell)

LV (tell)

LMR(tell)

Figure 7.6: Embedding hierarchy of Vectorized Dense Bach and a multi-set rewriting language,

considering the presence of the tell, ask and nask primitives in the mutli-set rewriting language.

Figure 7.6 presents the expressive relations established up to now, when only considering

the three primitives tell, ask and nask in the multi-set rewriting language.

7.2.4 Retrieving tokens from the store

This section presents the expressive relations when introducing the get primitive in the sublan-

guages of the multi-set rewriting language. The first proposition establishes that LV (get,tell)

is strictly less expressive than LMRpget,tellq.

Proposition 142. LV (get,tell) ă LMRpget,tellq

Proof. (i) On the one hand, LV (get,tell) ď LMRpget,tellq holds by proposition 127. (ii) On the

other hand, LMRpget,tellq ę LV (get,tell) may be proved as for LMRpask,tellq ę LV (get,tell) in

proposition 136(ii). Let us thus consider AB “ pt`a,`bu, t´a,´buq and assume that CpABq is

in normal form (see [BJ98]) and thus is written as tellp
ÝÑ
t1 q;A1 `¨ ¨ ¨` tellp

ÝÑ
tp q;Ap `getpÝÑu1q;B1 `

¨ ¨ ¨ ` getpÝÑuqq;Bq, where ti and uj denote the token ti and uj associated with a density.

The proof proceeds by establishing (I) that there is no alternative guarded by a tellp
ÝÑ
ti q

operation, and (II) that there is no alternative guarded by a getpÝÑujq operation, in which case,

CpABq is equivalent to an empty statement, which is not possible since it should contain at

least one primitive.

STEP I: Let us first establish that there is no alternative guarded by a tellp
ÝÑ
ti q operation.

Otherwise it would point out a failing computation for CpAB ` ptu, t`auqq, contradicting the

fact that OpAB ` ptu, t`auqq “ tptau, δ`qu.

STEP II: Let us now establish that there is no alternative guarded by a getpÝÑujq operation. To

that end, let us first consider two auxiliary computations: as Opptu, t`auqq “ tptau, δ`qu, any

162

computation of Cpptu, t`auqq starting in the empty store succeeds. Let xpptu, t`auqq|Hy Ñ

¨ ¨ ¨ Ñ xE|ta1, . . . , amuy be such a computation. Similarly, let xpptu, t`buqq|Hy Ñ ¨ ¨ ¨ Ñ

xE|tb1, . . . , bnuy be one computation of Cpptu, t`buqq. The proof of the claim proceeds by es-

tablishing, as for proposition 136, that none of the ui’s belong to ta1, . . . , amu Y tb1, . . . , bnu,

in which case a contradiction occurs from the analysis of Cpptu, t`auq; ptu, t`buq;ABq. As a

result, none of the ui’s exist, namely there is no alternative guarded by a getpÝÑujq operation.

We can now prove that LMRpget,tellq is not comparable respectively with LV (nask,tell),

LV (nask,get,tell) and LV (ask,nask,tell).

Proposition 143. LMRpget,tellq ≀ LV (nask,tell)

Proof. On the one hand, LMRpget,tellq ę LV (nask,tell). Otherwise, by pattern 3 on non

embedding by transitivity, LMRpask,tellq ď LMRpnask,tellq which has been proved impossible

in [BJ03b]. On the other hand, LV (nask,tell) ę LMRpget,tellq is established by contradiction,

by considering tellptp1qq ; naskptp1qq. Indeed, one has Optellptp1qq ; naskptp1qqq “ tpttp1qu, δ´qu

whereas it is possible to establish that Cptellptp1qqq ; Cpnaskptp1qqq has a successful computation.

This is proved by using a reasoning similar to the one used for the second part of proposition 118.

Proposition 144. LMRpget,tellq ≀ LV (nask,get,tell)

Proof. On the one hand, LMRpget,tellq ę LV (nask,get,tell). Otherwise, by pattern 3 of non

embedding by transitivity, as LMRpask,tellq ď LMRpget,tellq, we then have LMRpask,tellq ď

LV (nask,get,tell) which has been proved impossible in proposition 138. On the other hand,

LV (nask,get,tell) ę LMRpget,tellq. Otherwise, by pattern 3, we would have LV (nask,tell) ď

LMRpget,tellq which has been proved impossible in proposition 143.

Proposition 145. LMRpget,tellq ≀ LV (ask,nask,tell)

Proof. On the one hand, LMRpget,tellq ę LV (ask,nask,tell). Otherwise, by pattern 3, one

has LMRpask,tellq ď LMRpget,tellq ď LV (ask,nask,tell) which has been proved impossible in

proposition 134.

On the other hand, LV (ask,nask,tell) ę LMRpget,tellq. Otherwise, by pattern 3, one would

have LMRpask,tellq ď LMRpask,nask,tellq ď LV (get,tell) which has been proved impossible in

proposition 136.

163

LMR(ask,nask,tell)
LV (nask, get, tell)

LV (ask, nask, get, tell)

LMR(get,tell)

LMR(ask,get,tell)

LMR(nask,tell) LV (ask, nask, tell)
LV (get, tell)

LV (ask, get, tell)

LV (nask, tell)
LV (ask, tell)

LMR(ask, tell)

LV (tell)

LMR(tell)

Figure 7.7: Embedding hierarchy of Vecorized Dense Bach and a multi-set rewriting language,

considering the presence of the get primitive in the mutli-set rewriting language.

LMR(nask,get,tell)

LMR(ask,nask,get,tell)

LMR(ask,nask,tell)
LV (nask, get, tell)

LV (ask, nask, get, tell)

LMR(get,tell)

LMR(ask,get,tell)

LMR(nask,tell) LV (ask, nask, tell)
LV (get, tell)

LV (ask, get, tell)

LV (nask, tell)
LV (ask, tell)

LMR(ask, tell)

LV (tell)

LMR(tell)

Figure 7.8: Embedding hierarchy of Vectorized Dense Bach and a multi-set rewriting language,

considering the presence of all the primitives in the mutli-set rewriting language.

Figure 7.7 complements the previous figure with the introduction of the get primitive inside

the subset of the multi-set rewriting language, relating them with the languages of the Dense

Bach hierarchy.

7.2.5 Checking for presence and/or absence when adding and/or retrieving

tokens

We now prove that LV (ask,nask,get,tell) is strictly less expressive than LMRpask,nask,get,tellq.

Proposition 146. LV (ask,nask,get,tell) ă LMRpask,nask,get,tellq

Proof. (i) On the one hand, LV (ask,nask,get,tell) ď LMRpask,nask,get,tellq is immediate by

proposition 127.

164

(ii) On the other hand, LMRpask,nask,get,tellq ę LV (ask,nask,get,tell) is established by

contradiction, using pattern 3 of non embedding by transitivity. Indeed, assuming that

LMRpask,nask,get,tellq ď LV (ask,nask,get,tell), as LV (ask,nask,get,tell) “ LV (nask,get,tell),

one would have LMRpnask, tellq ď LMRpask,nask,get,tellq ď LV (ask,nask,get,tell) ď

LV (nask,get,tell) which has been proved impossible in proposition 139.

Figure 7.8 presents the most complete view of all the expressiveness relations between the

different sublanguages of Vectorized Dense Bach and of the multi-set rewriting language.

7.3 Conclusion

This chapter has studied Vectorized Dense Bach from an expressiveness point of view in terms

of the relation of its sublanguages but also with respect to the Dense Bach and MRT languages.

The same logical approach as for Dense Bach has been followed. First the proposals have been

grouped by considering the feeding of the store with the tell primitive. Then the ask and nask

primitives have been introduced in the picture to allow to question the same store about the

presence or absence of tokens on it. The get primitive has subsequently been introduced pro-

viding the possibility of the retrieval of tokens. Finally the language grouping all the primitives

has been considered.

The Vectorized Dense Bach language extends the Dense Bach language by permitting to

manipulate atomicaly not only dense tokens, but also a list of dense tokens. With such a

new behaviour, an increase in expressiveness with respect to Dense Bach has been established.

Figure 7.9 illustrates it. The equality for the tell primitive is maintained, and we observe again

a preservation of the very nature of the tell, ask, get and nask primitives. This implies that the

hierarchies of the expressiveness relations between the different sublanguages stays similar for

Dense Bach and Vector Dense Bach.

Nevertheless concerning the expressiveness relations between Dense Bach and MRT, we

observe not only an equality regarding the tell primitive, but also between the sublanguages

constitued by the ask and tell primitives.

As for the expressiveness study between BachT, Dense Bach and MRT, a tabulated result

is presented in Table 7.1. For every family of language, the different sublanguages are written

in line as well as in column. Every intersection mentions the state of the relation, as well as a

reference to the proof. In particular, a number represents the number of the proof developed in

the thesis.

165

‚

‚ ‚

‚ ‚

‚

LD(tell)

LD(nask,tell)
LD(ask,tell)

LD(ask,nask,tell)
LD(get,tell)

LD(ask,nask,get,tell)

‚

‚ ‚

‚ ‚

‚

LV (tell)

LV (nask,tell)
LV (ask,tell)

LV (ask,nask,tell)
LV (get,tell)

LV (ask,nask,get,tell)

‚

‚ ‚

‚ ‚

‚

LMR(tell)

LMR(nask,tell) LMR(ask,tell)

LMR(ask,nask,tell)
LMR(get,tell)

LMR(ask,nask,get,tell)

Figure 7.9: Three-dimensional representation of the expressiveness relations between the different

sublanguages of Dense Bach, Vectorized Dense Bach and MRT.

166

P
u
t
re

d
u
c
e
d

fi
g
u
re

h
e
re

L
D

B
pt
e
ll

q,
L

V
(t
e
ll
)

L
M

R
(t
e
ll
)

L
D

B
pa

s
k
,
t
e
ll

q

L
D

B
pn

a
s
k
,
t
e
ll

q

L
D

B
pg

e
t
,
t
e
ll

q

L
D

B
pa

s
k
,
g
e
t
,
t
e
ll

q

L
D

B
pa

s
k
,
n
a
s
k
,
t
e
ll

q

L
D

B
pn

a
s
k
,
g
e
t
,
t
e
ll

q

L
D

B
pa

s
k
,
n
a
s
k
,
g
e
t
,
t
e
ll

q

L
V

(a
sk

,t
e
ll
)

L
V

(n
a
sk

,t
e
ll
)

L
V

(g
e
t,
te

ll
)

L
V

(a
sk

,g
e
t,
te

ll
)

L
V

(a
sk

,n
a
sk

,t
e
ll
)

L
V

(n
a
sk

,g
e
t,
te

ll
)

L
V

(a
sk

,n
a
sk

,g
e
t,
te

ll
)

L
M

R
(a

sk
,t
e
ll
)

L
M

R
(n

a
sk

,t
e
ll
)

L
M

R
(g

e
t,
te

ll
)

L
M

R
(a

sk
,g
e
t,
te

ll
)

L
M

R
(a

sk
,n

a
sk

,t
e
ll
)

L
M

R
(n

a
sk

,g
e
t,
te

ll
)

L
M

R
(a

sk
,n

a
sk

,g
e
t,
te

ll
)

LDB(tell),LV (tell),LMR(tell)
“

128, 98

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

ă

2

LDB(ask,tell) “
≀

44

ă

66

ă

56

ă

2

ă

99

≀

101

ă

2

ă

2

ă

2

ă

78

≀

81

ă

2

ă

2

ă

2

LDB(nask,tell) “
≀

68

ă

54

ă

2

≀

102

ă

100

≀

118

ă

2

ă

2

≀

80

ă

79

≀

92

ă

2

ă

2

LDB(get,tell),LDB(ask,get,tell)
“

64

≀

70

ă

74

≀

105

≀

114

ă

116

≀

106

ă

2

≀

85

≀

89

ă

91

≀

86

ă

2

LDB(ask,nask,tell) “
ă

73

≀

107

≀

104

≀

122

ă

109

ă

2

≀

83

≀

82

≀

94

ă

84

ă

2

LDB(nask,get,tell),LDB(ask,nask,get,tell)
“

72

≀

112

≀

111

≀

120

≀

113

ă

126

≀

87

≀

88

≀

93

≀

90

ă

95

LV (ask,tell) “
≀

103

ă

117

ă

110

ă

2

“

129

≀

132

ă

2

ă

2

ă

2

LV (nask,tell) “
≀

119

ă

108

ă

2

≀

131

ă

130

≀

143

ă

2

ă

2

LV (get,tell),LV (ask,get,tell)
“

115

≀

121

ă

125

≀

136

≀

140

ă

142

≀

137

ă

2

LV (ask,nask,tell) “
ă

124

≀

134

≀

133

≀

145

ă

135

ă

2

LV (nask,get,tell),LV (ask,nask,get,tell)
“

123

≀

138

≀

139

≀

144

≀

141

ă

146

LMR(ask,tell) “
≀

rBJ03bs

ă

rBJ03bs

ă

rBJ03bs

ă

rBJ03bs

LMR(nask,tell) “
≀

rBJ03bs

ă

rBJ03bs

ă

rBJ03bs

LMR(get,tell),LMR(ask,get,tell) “
≀

rBJ03bs

ă

rBJ03bs

LMR(ask,nask,tell) “
ă

rBJ03bs

LMR(nask,get,tell),LMR(ask,nask,get,tell) “

Table 7.1: Table summarizing the expressiveness comparisons between the different sublanguages of Dense Bach, Vectorized Dense Bach

and MRT.

167

168

Part III

Programming Aspects

169

Chapter 8

On the Implementation of Dense

Bach

In order to allow the reader to experiment with the dense languages we have introduced in

chapters 4 and 5 but also in the aim of arguing for their implementability, we have developed,

for each language, an interpreter and a command line simulator, both based on the Scala

language.

We turn in this chapter to Dense Bach. As it shares many of the features of BachT and since

this language is simpler, we first present in section 8.1 a command line interperter for BachT. We

then show in section 8.2 how it can be adapted to produce a command line simulator for BachT

and in section 8.3 how it can be extended to generate an interpreter for Dense Bach. Finally,

based on these results, a command line simulator for Dense Bach is presented in section 8.4.

8.1 A command-line interpreter for BachT

8.1.1 Introduction

As a first step, in order to allow the reader to experiment with BachT (and later with the other

dense languages), our goal is to provide him with a simple interface allowing him to ask for the

run of an agent expressed in BachT. As an example, we aim at something as follows :

171

> run "(tell(t);get(u)) || (get(t);tell(u))"

{ t }

{ }

{ u }

{ }

Success

Note that such a trace corresponds to the only possible execution. Indeed the computation

of the above parallel agent necessarily consists of executing in sequence the tellptq primitive,

yielding the store ttu, then the getptq primitive, yielding the empty store, then the tellpuq

primitive, yielding the store tuu and finally the getpuq primitive, yielding the empty store. In

doing so, all the four primitives have been successfully computed, which allows to conclude to

a successful computation.

The choice of programming languages to construct such an interface is huge. Two criteria

came however rapidly in our mind to select one : first to be able to use the power of functional

programming and second to benefit from the graphics facilities offered by object programming.

As regards the first criteria, it is worth observing that the definition of our languages (see

for instance definitions 2, 3, 5, 11 and 12) naturally lead to recursive reasonings, which are so

naturally handled by functional programming. For the second criteria, object programming has

been widely recognized as particularly well suited to build interfaces and moreover is largely

promoted by Java, one of the dominant languages.

Given these two criteria, Scala has appeared to us as a good choice since it combines object-

oriented programming and functional programming. Additionnally, the attention paid by its

developpers to avoid programmers to write what can be implicitly deduced by the type system

offers a very concise way of implementing languages.

More precisely, as noted in [MO06] and [MZ06], from the object-oriented flavor, Scala stays

close to conventional languages such as Java and C#, sharing with them most of the basic

operators, data types, and control structures. Thanks to this, Scala can seamlessly inter-operate

with code written in those two languages. Similarly to Smalltalk, Scala considers every value as

an object, and every operation as a message send, resulting from the invocation of a method.

Scala classes and objects can inherit from Java classes and implement Java interfaces. This

facilitates the use of Scala code inside Java framework. From the functional point of view, Scala

considers that every function is a value.

Scala supports both styles of abstraction for types and for values: parameterization and

abstract members. It has a mechanism of mixin-class composition, which is a form of multiple

172

class Expr

case class bacht as t empty agent () extends Expr

case class ba ch t a s t p r im i t i v e (p r im i t i v e : Str ing , token : Str ing) extends Expr

case class bach t a s t agen t (op : Str ing , agent i : Expr , a g en t i i : Expr) extends Expr

Figure 8.1: The abstract BachT data.scala file

inheritance. Finally Scala allows for decomposition of objects by pattern matching.

After this brief explanation of Scala, we are now ready to present our interpreter. It is

composed of three main components : a parser of agents, the implementation of the store and

finally a simulator which performs the execution of a BachT agent from the execution of basic

primitives. For that latter purpose, it is helpful to represent the structure of a parsed agent

in internal structures. This is the purpose of the following abstract data, also depicted in

Figure 8.1. Technically, an abstract class, called Expr, is first introduced. It is refined in three

ways :

• as a case class bacht ast empty agent to represent the empty agent E,

• as a case class bacht ast primitive to represent a primitive in the form of a pair com-

posed of primitive type (tell, ask, nask, get) and of a token

• as a case class bacht ast agent to represent a composed agent formed from an operator

applied to two sub-agents agenti and agentii.

8.1.2 The parser

As exposed in chapter 33 of [MO10], Scala offers facilities to parse languages. The main ingre-

dients to do so are, on the one hand, a library to define parsers, which subsequently basically

allows to define the class BachTParsers as inherited from the class RegexParsers, parsing reg-

ular expressions, and the possibility of applying functions to the result of strings having been

parsed. This is technically achieved in three ways :

• firstly, by considering parsers as functions that consume a reader and yield a parse result

and by sequencing these consumptions through the ~ operator. For instance, in

"tell(" ~ token ~ ")"

173

Scala tries to read the string tell(then what is defined by the function token and finally

the string). The value returned by this evaluation is formally an instance of the ~ class,

which here can be viewed as a pair, or, in our case, as two embedded pairs, namely a

triple.

It is worth noting that repetition can be specified by the rep operator. In that case, the

value returned is a list.

• secondly, by allowing, through the ^^ construction, to apply a function to the result of a

parser, as in

("[a-z][0-9a-zA-Z_]*").r ^^ {_.toString}

There the regular expression, obtained by [a-z][0-9a-zA-Z_]*, is passed to the toString

function, which transforms it to a string.

• thirdly, by examining a value through a case statement, which allows to perform a match-

ing, as illustrated as follows :

"tell("~token~")" ^^ {

case _ ~ vtoken ~ _ => bacht_ast_primitive("tell",vtoken) }

There a string composed of the string “tell(” followed by the result of the function token

– which turns out to return the string as just explained above with the regular expression

– followed by the string “)” is given as the corresponding threefold sequence of strings

to be matched to the expression _ ~ vtoken ~ _. It is worth noting that vtoken is

actually a variable which is matched with the corresponding token in case the matching is

successful. The underscores denotes different anonymous variables which are respectively

used to match the strings “tell(” and “)”. In case the matching is successful, the value

after the arrow => is given as a result of the parsing. In the above example, a new case

class is returned for the primitive tell with vtoken as token. It is worth noting that for

expressivity purpose, Scala permits to avoid to explicitly write the new statement (which

would have been written in Java for instance).

Writing the parser forces us to specify the priorities of the operators – which we have not

done when presenting the language in definition 5. Our choice is quite classical : we stipulate

that the sequential composition binds more than the parallel composition which itself binds more

than the non-deterministic choice operator. As a result and given the fact that left-recursion is

to be avoided by Scala parsers, we define agents as follows :

174

• an agent is a choice-like agent

• a choice-like agent is a parallel-like agent possibly followed by the choice operator followed

by a choice-like agent

• a parallel-like agent is a sequential-like agent possibly followed by the parallel operator

followed by a parallel-like agent

• a sequential-like agent is a simple agent possibly followed by the sequential operator

followed by a sequential-like agent

• a simple agent is either a primitive or an agent enclosed between parentheses.

The code for the parsing of the agents follows directly from this intuition. It is embodied

in the functions compositionChoice, compositionPara, compositionSeq, simpleAgent and

parenthesizedAgent. For them, it is worth noting that parsing is applied recursively which

forces variables to be instantiated to the result of the parsing of subexpressions. Take the

following function as an example :

def compositionPara : Parser[Expr] =

compositionSeq~rep(opPara~compositionPara) ^^ {

case ag ~ List() => ag

case agi ~ List(op~agii) => bacht_ast_agent(op,agi,agii) }

The first case of the matching ag ~ List() instantiates ag to the result of a sequential-like

agent which is followed by an empty list, namely which is followed by an empty repetition of

the parallel operator followed by a parallel-like agent. In the second case of the matching, agi

represents the parsing of the sequential-like agent (in a similar way ag does for the first case)

and agii represents the parsing of the repetition of the parallel operator followed by a parallel-

like agent. As an example, assume the agent ptellptq; getpuqq||pgetptq; tellpuqq is parsed by the

function compositionPara. Then the values for agi and agii are respectively

agi = bacht_ast_agent(";", bach_ast_primitive("tell", "t"),

bach_ast_primitive("get", "u"))

agii = bacht_ast_agent(";", bach_ast_primitive("get", "t"),

bach_ast_primitive("tell", "u"))

Consequently, it is sufficient to build the structure bach_ast_agent(op,agi,agii) to get

the expected internal form :

175

bach_ast_agent("||",

bacht_ast_agent(";", bach_ast_primitive("tell", "t"),

bach_ast_primitive("get", "u")),

agii = bacht_ast_agent(";", bach_ast_primitive("get", "t"),

bach_ast_primitive("tell", "u")))

The code of the parser is presented in Figure 8.2. Besides the functions described for

the agents, it consists of a function token for parsing tokens and of the definition of three

values to represent the three operators (non-deterministic choice operator, parallel operator

and sequential operator). As the reader will easily notice, we have defined a token as a string

composed of at least a small letter ranging between a and z, possibly followed by a composition

of figures between 0 and 9 and/or small or capital letters.

It is practical to define an object instantiating the BachTParsers so as to use it directly in

the command-line interpreter. This is achieved in the code of Figure 8.3. Two methods are

furthermore provided to parse primitives and compositionnally composed agents.

8.1.3 The store

The store is implemented as a mutable map in Scala. Initially empty, it is enriched for each told

token by an association of this token with a number representing the number of its occurrences

on the store. More precisely, the execution of a tell primitive, say tell(t) consists in checking

whether t is already in the map. If it is then the number of occurrences associated with it is

simply incremented by one. Otherwise a new association (t,1) is added to the map. Dually,

the execution of get(t) consists in checking first whether t is in the map and then whether it

is associated with a strictly positive integer. In this case, the execution of get(t) consists in

decrementing by one the number of associated occurrences. In case one of these two conditions

is not met then the get primitive cannot be executed. Note that with this simple strategy, a

token may appear in the map but with 0 as a number of occurrences associated with it. Hence

the implementation has not only to test whether the token appears in the map but also to test

whether the associated number of occurrences is more than one. The ask primitive has a similar

behaviour without removing an instance. Finally the nask primitive has an opposite behaviour,

succeeding in case the ask primitive fails and failing in case it succeeds.

The code for the primitives is presented in Figure 8.4. Two auxiliary functions are presented

in Figure 8.5. The first one, print store takes care of the printing of the contents of the store.

The second one, clear store aims at resetting the store to the empty map.

176

class BachTParsers extends RegexParsers {

def token : Parser [St r ing] = (” [a´z] [0´9a źA´Z]∗ ”) . r ˆˆ { . t oS t r i ng }

val opChoice : Parser [St r ing] = ”+”

val opPara : Parser [St r ing] = ” | | ”

val opSeq : Parser [St r ing] = ” ; ”

def pr im i t i v e : Parser [Expr] = ” t e l l (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => ba ch t a s t p r im i t i v e (” t e l l ” , vtoken) } |

” ask (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => ba ch t a s t p r im i t i v e (” ask” , vtoken) } |

” get (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => ba ch t a s t p r im i t i v e (” get ” , vtoken) } |

”nask (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => ba ch t a s t p r im i t i v e (”nask” , vtoken) }

def agent = compos i t ionChoice

def compos i t ionChoice : Parser [Expr] = compos i t ionPara˜ rep (opChoice ˜ compos i t ionChoice)

ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => bach t a s t agen t (op , agi , a g i i) }

def compos i t ionPara : Parser [Expr] = compos i t ionSeq˜ rep (opPara˜ compos i t ionPara) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => bach t a s t agen t (op , agi , a g i i) }

def compos i t ionSeq : Parser [Expr] = simpleAgent˜ rep (opSeq˜ compos i t ionSeq) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => bach t a s t agen t (op , agi , a g i i) }

def s impleAgent : Parser [Expr] = pr im i t i v e | parenthes izedAgent

def parenthes izedAgent : Parser [Expr] = ” (”˜>agent<˜”) ”

}

Figure 8.2: Parser: the class BachTParsers

177

object BachTSimulParser extends BachTParsers {

def pa r s e p r im i t i v e (prim : Str ing) = par seAl l (pr im i t i ve , prim) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e . msg)

}

def par se agent (ag : Str ing) = par seAl l (agent , ag) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e . msg)

}

}

Figure 8.3: Parser : the object BachTSimulParser

Finally, Figure 8.6 defines the object bb of type BachStore with a function reset as a synonym

for the clear store function. Both constructs will be handy for using the command line simulator.

8.1.4 The simulator

The simulator consists in repeatedly executing a transition step, as defined by the operational

semantics of section 3.1.2. In our implementation, this boils down to the definition of function

run one, which assumes an agent in a parsed form given and which returns a pair composed of

a boolean and an agent in parsed form. The boolean aims at specifying whether a transition

step has taken place. In this case, the associated agent consists of the agent obtained by the

transition step. Otherwise, failure is reported with the given agent as associated agent.

The function assumes a store. It is given as a parameter of the BachTSimul in which run one

is defined.

The function is defined inductively on the structure of its argument, say agent. If it is a

primitive, then the run one function simply consists in executing the primitive on the store.

This is technically achieved by the exec primitive function, which actually calls the associated

primitive function on the store.

If agent is a sequentially composed agent agi ; agii, then the transition step proceeds by

trying to execute the first subagent agi. Assume this succeeds and delivers ag1 as resulting

agent. Then the agent returned is ag1 ; agii in case ag1 is not empty or more simply agii in case

ag1 is empty. Of course, the whole computation fails in case agi cannot perform a transition

step, namely in case run one applied to agi fails.

The code for these two first cases is presented in Figure 8.7.

178

import s ca l a . c o l l e c t i o n . mutable .Map

class BachTStore {

var theStor e = Map[Str ing , Int] ()

def t e l l (token : Str ing) : Boolean = {

i f (theStor e . conta ins (token))

{ theStor e (token) = theStor e (token) + 1 }

else

{ theStor e = theStor e ++ Map(token >́ 1) }

true

}

def ask (token : Str ing) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= 1) { true }

else { fa l se }

else fa l se

}

def get (token : Str ing) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= 1)

{ theStor e (token) = theStor e (token) ´ 1

true

}

else { fa l se }

else fa l se

}

def nask (token : Str ing) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= 1) { fa l se }

else { true }

else true

}

. . .

Figure 8.4: The BachTStore class

179

class BachTStore {

. . .

def p r i n t s t o r e {

p r i n t l n (”{”)

for ((t , d) <́ theStor e)

p r i n t l n (t + ” (” + theStor e (t) + ”) ”)

p r i n t l n (”}”)

}

def c l e a r s t o r e {

theStor e = Map[Str ing , Int] ()

}

}

Figure 8.5: The BachTStore class continued

object bb extends BachTStore {

def r e s e t { c l e a r s t o r e }

}

Figure 8.6: The bb object

180

The cases of the composed agent by a parallel or choice operator are more subtle. Indeed for

both cases one should not always favour the first or second subagent. To avoid that behaviour,

we randomly assign 0 or 1 to the branch choice variable and depending upon this value we

start by evaluating the first or second subagent. In case of failure, we then evaluate the other

one and if both fails we report a failure. In case of success for the parallel composition we

determine the resulting agent in a similar way to what we did for the sequentially composed

agent. For a composition by the choice operator the tried alternative is simply selected. The

code for these two cases is reported in Figures 8.8 and 8.9.

With the one step transition function coded, the simulator mainly consists of a loop which

is executed while the current agent is non empty and while failure does not occur. This is

materialized in the bacht exec all function detailed in Figure 8.10. As for the previous com-

ponent, an object is created to ease the deployment of the command-line interpreter. It defines

an apply function which essentially consists of executing the function bacht exec all on the

parsed agent. Two other functions eval and run are used as synonyms for it. This code together

with the skeleton of the BachTSimul class is presented in Figure 8.11.

8.1.5 Using the command-line interperter

The complete code is listed in appendix B. It is organized in four files, one for each of the three

classes identified above together with one for the definition of the case classes. For the ease of

use, they have been concatenated to form a single file, called bacht-cli.scala, following our

aim to write a command-line interpreter for BachT.

Scala offers a very practical mechanism to write methods in a postfix form. As a result,

we shall subsequently write ag run "tell(t)" instead of ag.run("tell(t)"). Thanks to

this facility, the command-line interpreter can be used as illustrated in Figure 8.12 to run the

agent of subsection 8.1.1. There, after having launched the scala interpreter, we load the file

bacht-cli.scala and then evaluate the agent ptellptq; getpuqq||pgetptq; tellpuqq, after which we

empty the store by evaluating bb reset. As the reader will notice, this corresponds to what we

aimed at in subsection 8.1.1. Note that, for the ease of reading, we decorate tuples with their

number of occurrences instead of listing these occurrences in sequence.

As another example, we ask to the interpreter to evaluate the following expression:

paskptq ; tellpuqq ` ppnaskpsq; askptqq || ptellptq ; getptqqq

181

def run one (agent : Expr) : (Boolean , Expr) = {

agent match {

case ba ch t a s t p r im i t i v e (prim , token) =>

{ i f (ex e c p r im i t i v e (prim , token)) { (true , bacht as t empty agent ()) }

else { (fa lse , agent) }

}

case bach t a s t agen t (” ; ” , ag i , a g i i) =>

{ run one (a g i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , bacht as t empty agent ()) => (true , a g i i)

case (true , ag cont) => (true , b a ch t a s t agen t (” ; ” , ag cont , a g i i))

}

}

. . .

}

}

def exe c p r im i t i v e (prim : Str ing , token : Str ing) : Boolean = {

prim match

{ case ” t e l l ” => bb . t e l l (token)

case ”ask” => bb . ask (token)

case ” get ” => bb . get (token)

case ”nask” => bb . nask (token)

}

}

}

Figure 8.7: BachT-simulator: primitive and sequential composition

182

val bach random choice = new Random()

def run one (agent : Expr) : (Boolean , Expr) = {

agent match {

. . .

case bach t a s t agen t (” | | ” , ag i , a g i i) =>

{ var branch cho i ce = bach random choice . next Int (2)

i f (branch cho i ce == 0)

{ run one (a g i) match

{ case (fa lse ,) =>

{ run one (a g i i) match

{ case (fa lse ,)

=> (fa lse , agent)

case (true , bacht as t empty agent ())

=> (true , a g i)

case (true , ag cont)

=> (true , b a ch t a s t agen t (” | | ” , ag i , ag cont))

}

}

case (true , bacht as t empty agent ())

=> (true , a g i i)

case (true , ag cont)

=> (true , b a ch t a s t agen t (” | | ” , ag cont , a g i i))

}

}

else

{ run one (a g i i) match

{ case (fa lse ,) =>

{ run one (a g i) match

{ case (fa lse ,)

=> (fa lse , agent)

case (true , bacht as t empty agent ())

=> (true , a g i i)

case (true , ag cont)

=> (true , b a ch t a s t agen t (” | | ” , ag cont , a g i i))

}

}

case (true , bacht as t empty agent ())

=> (true , a g i)

case (true , ag cont)

=> (true , b a ch t a s t agen t (” | | ” , ag i , ag cont))

}

}

}

Figure 8.8: BachT-simulator: parallel composition

183

val bach random choice = new Random()

def run one (agent : Expr) : (Boolean , Expr) = {

agent match {

. . .

case bach t a s t agen t (”+” , ag i , a g i i) =>

{ var branch cho i ce = bach random choice . next Int (2)

i f (branch cho i ce == 0)

{ run one (a g i) match

{ case (fa lse ,) =>

{ run one (a g i i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , bacht as t empty agent ())

=> (true , bacht as t empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

case (true , bacht as t empty agent ())

=> (true , bacht as t empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

else

{ run one (a g i i) match

{ case (fa lse ,) =>

{ run one (a g i) match

{ case (fa lse ,)

=> (fa lse , agent)

case (true , bacht as t empty agent ())

=> (true , bacht as t empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

case (true , bacht as t empty agent ())

=> (true , bacht as t empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

}

Figure 8.9: BachT-simulator: non-deterministic choice

184

def ba ch t e x e c a l l (agent : Expr) : Boolean = {

var f a i l u r e = fa l se

var c agent = agent

while (c agent != bacht as t empty agent () && ! f a i l u r e) {

f a i l u r e = run one (c agent) match

{ case (fa lse ,) => true

case (true , new agent) =>

{ c agent = new agent

fa l se

}

}

bb . p r i n t s t o r e

p r i n t l n (”\n”)

}

i f (c agent == bacht as t empty agent ()) {

p r i n t l n (” Succes s\n”)

true }

else {

p r i n t l n (” Fa i l u r e \n”)

fa l se }

}

Figure 8.10: BachT-simulator: main loop

185

import s ca l a . u t i l .Random

import l anguage . postf ixOps

class BachTSimul(var bb : BachTStore) {

val bacht random choice = new Random()

def run one (agent : Expr) : (Boolean , Expr) = { . . . }

def ba ch t e x e c a l l (agent : Expr) : Boolean = { . . . }

def exe c p r im i t i v e (prim : Str ing , token : Str ing) : Boolean = { . . . }

}

object ag extends BachTSimul(bb) {

def apply (agent : Str ing) {

val agent par s ed = BachTSimulParser . par s e agent (agent)

ag . b a ch t e x e c a l l (agent par s ed)

}

def eva l (agent : Str ing) { apply (agent) }

def run (agent : Str ing) { apply (agent) }

}

Figure 8.11: BachT-simulator: the BachTSimul class and the object ag

186

dda$scala

Welcome to Scala version 2.11.7 (OpenJDK 64-Bit Server VM, Java 1.6.0_24).

Type in expressions to have them evaluated.

Type :help for more information.

scala> :load bacht-cli.scala

Loading bacht-cli.scala ...

...

scala>ag run "(tell(t);get(u)) || (get(t);tell(u))"

{ t(1) }

{ }

{ u(1) }

{ }

Success

scala>bb reset

scala>

Figure 8.12: Running the BachT command line interperter

dda$scala

Welcome to Scala version 2.11.7 (OpenJDK 64-Bit Server VM, Java 1.6.0_24).

Type in expressions to have them evaluated.

Type :help for more information.

scala> :load bacht-cli.scala

Loading bacht-cli.scala ...

...

scala>ag run "(ask(t);tell(u)) + ((nask(s);ask(t)) || (tell(t);get(t)))"

{ }

{ t(1) }

{ t(1) }

{ }

Success

scala>bb reset

scala>

Figure 8.13: Running the BachT command line interperter

187

dda$scala

Welcome to Scala version 2.11.7 (OpenJDK 64-Bit Server VM, Java 1.6.0_24).

Type in expressions to have them evaluated.

Type :help for more information.

scala> :load bacht-cli.scala

Loading bacht-cli.scala ...

...

scala>ag run "(ask(t);tell(u)) + (nask(s);ask(t) || (tell(t);get(t))"

{ t(1) }

{ t(1) }

{ t(1) }

{ }

Success

scala>bb reset

scala>

Figure 8.14: Running the BachT command line interperter

In this example, the ask(t) in the first part of the choice cannot be executed, as the store is

empty of any token. Only the second part of the choice can be executed. This can provide two

different results. Indeed, in the parallel composition, the left part as well as the right part can

start: nask(s) can be successful as well as tell(t). If the computation starts with the left part,

nask(s), then ask(t) must wait for tell(t) to deposit a token t on the store. Before the execution

of get(t), the procedure verifies if there is a pending primitive for t, which is the case with ask(t).

The ask(t) primitive being executed, get(t) can be invoked to retrieve t. This produces the first

trace of execution in Figure 8.13.

If the computation starts with the right part of the parallel composition, a token is first

placed on the store. Before executing get(t), the primitive nask(s) checks for the absence of s,

then ask(t) checks for the presence of t, and finally, get(t) retrieves the token t from the store.

This produces the second trace of execution in Figure 8.14.

As a third example more related to the common life, let us consider the following situation

of a holydaymaker that hesitates between two destinations for his next holidays: to the Canary

Islands or to some Mountains in France. His final choice is dictated by the local weather

conditions, namely by the confirmation of a sunny sky in the islands, or by a high fresh snowfall

in the mountains. Assume the two conditions are respectively represented by a token s and

188

a token f on the store consulted by the holidaymakers. Moreover let the two possibilities for

his choices be represented by tokens c and m. With these tokens, the questioning of the store

state about the weather conditions is done with the primitives ask(s) and ask(f). Then the final

decision is represented by the following process:

askpsq ; tellpcq ` askpfq ; tellpmq

8.2 A command line simulator for BachT

8.2.1 Introduction

Our BachT interpreter provides simulations of the execution of a BachT agent with as result

successful or failure. However, it does not allow for real parallel executions or real competition

of alternative in a choice. Moreover, once blocked a computation cannot be awakened by the

concurrent execution of another agent.

The command line simulator we shall design in this section allows to circumvent these

difficulties. Essentially, we shall (implictly) use threads to launch parallel execution and, on the

way, we shall directly code our REPL (read-eval-processing-loop) to offer the user a more direct

way of entering his agents. Before going into the technicalities, let us first show the interface

we would like to use.

Welcome to BachT version 1.

Type in agents to evaluate them.

BachT> tell(t).

BachT> >> Request 1 launched

BachT> >> tell(t) successfully terminated

>> store : { t(1) }

BachT> >> Request 1 successfully terminated

We thus want to provide the user with a specific environment for BachT, in which he

introduces directly the agents that are to be executed. A request is associated with every agent.

In case of a succesful execution, a specific answer is printed, together with the new state of the

store. If the state of the store does not permit the execution of the agent, a request is launched,

but no result is produced. This situation is shown in Figure 8.15. In this figure, a request

for the presence of a token u is launched. As the initial store is empty, the request cannot be

189

Welcome to BachT version 1.

Type in agents to evaluate them.

BachT> ask(u).

BachT> >> Request 1 launched

BachT>

Figure 8.15: The BachT simulator in command line with a waiting request

executed, and is placed in a waiting state. However a new prompt BachT is then printed, for

the introduction of a new agent.

In case a new agent tell(u) is launched, it generates a second request, that can be successfully

executed. The introduction of a token u on the store provides the condition for the first waiting

request to be executed. Both requests are then executed, with an indication of the state of the

store. Figure 8.16 shows this situation.

Let us suppose we want now to execute the following choice compositional agent ask(u);tell(u)

+ get(t);tell(t), starting from an empty store. This agent is composed of two sequential sub-

agents. Every subagent begins with a primitive than cannot be executed, as their conditions

of execution are not fulfilled by the store. Moreover the operator being a choice, the agent will

be completely executed if one of the subagent can be executed. The choice between these two

possibilities will be based on the first step of execution. If the conditions on the store change

in such a way that the first step ask(u) can be executed, then the first subagent will be chosen.

On the contrary if a new state of the store permits to execute the first step get(t), then the

second subagent is chosen. Figure 8.17 shows this situation, with a modification of the store

that permits the second subagent to execute.

Let us now present the different parts of the command line simulator. It is composed

of four main components : a parser of agents, an executable class, a representation of the

store and finally an object that performs the execution of a BachT agent. Identically to the

interpreter, the structure of a parsed agent is represented in internal structures, as case classes

of an abstract class called Expr. Figure 8.18 presents the abstract class Expr and the three case

classes corresponding to respectively an empty agent, a primitive, and a composed agent.

8.2.2 The parser

The parser used for the parsing of BachT agents is the same as the one used for the inter-

preter. It presents itself as a class BachTParsers inheriting the class RegexParsers useful for

190

Welcome to BachT version 1.

Type in agents to evaluate them.

BachT> ask(u).

BachT> >> Request 1 launched

BachT> tell(u).

BachT> >> Request 2 launched

BachT> >> tell(u) successfully terminated

>> store : { u(1) }

BachT> >> ask(u) successfully terminated

>> store : { u(1) }

BachT> >> Request 1 successfully terminated

BachT> >> Request 2 successfully terminated

BachT>

Figure 8.16: The BachT simulator in command line with a second request liberating the first one

the parsing of regular expressions. For every primitive a case class is returned. Concerning the

priorities of the operators, the sequential composition binds more than the parallel composition,

which itself binds more than the non-determinstic choice operator. This order is reflected in the

definition order of the functions responsible of the parsing of an agent : compositionChoice,

compositionPara, compositionSeq, simpleAgent and parenthesizedAgent. An object in-

stantiating the BachTParsers is also defined, with two methods to parse primitives and com-

positionnally composed agents. The codes of the parser an the object are available in annex

(see chapter B in section B.2.1).

8.2.3 Executing agents

The B exec class is in charge of the execution of a BachT agent. Starting from the parsed agent,

the class constructs a list of pairs expression-expression (Expr,Expr). The first element of the

pair is the first step to be executed, the second one is the continuation of this execution. The

function ag first steps constructs the list according to the nature of the parsed agent, i.e a

primitive, a choice agent, a sequential one, or a parallel one. Figure 8.19 shows its code.

For a primitive B AST Primitive(b prim, token) the list is obviously composed of the

191

Welcome to BachT version 1.

Type in agents to evaluate them.

BachT> ask(u);tell(u) + get(t);tell(t).

BachT> >> Request 1 launched

BachT> tell(t).

BachT> >> Request 2 launched

BachT> >> tell(t) successfully terminated

>> store : { t(1) }

BachT> >> get(t) successfully terminated

>> store : { t(0) }

BachT> >> tell(t) successfully terminated

>> store : { t(1) }

BachT> >> Request 1 successfully terminated

BachT> >> Request 2 successfully terminated

BachT>

Figure 8.17: The BachT simulator in command line with a choice between two subagents

192

class Expr

case class B_AST_Empty_Agent() extends Expr

case class B_AST_Primitive(primitive: String, token: String) extends Expr

case class B_AST_Agent(op: String, primitive: Expr, agent: Expr) extends Expr

Figure 8.18: The abstract BachT data class

primitive followed by the empty agent. For a choice agent B AST Agent("+",ag i,ag ii), the

list is constructed by a recursive call of the function ag first steps on the first agent ag i

concatenated with the same recursive call on the second agent ag ii. In case of a sequential

agent B AST Agent(";",ag i,ag ii), the list is composed of the first step of the first agent ag i,

followed as second element by the continuation of the first agent in sequential composition with

the second agent ag ii. Finally for a parallel composition B AST Agent("||",ag i,ag ii), the

list is obtained in the same way as for the sequential composition but here for both agents ag i

and ag ii.

The processing of a choice composition implies that only one of the subagent that is part of

the choice will be executed. The list of pairs of expressions obtained with the ag first steps

function is decomposed in two vectors. The first one contains the continuations of the first steps,

and the second one contains the pairs of first steps, associated with an integer that represents

the index of its associated continuation, in the vector of continuations. These vectors are the

results of two functions : vect ag first steps and linedx ag first steps. Their codes are

available in annex (see chapter B in section B.2.2).

When a choice agent has to be executed, the vector of continuations and the list of first

steps-index are constructed. The list is randomly permuted with a shuffle instruction, and the

result is transferd to a function exec l choice for execution. The is done by the following piece

of code.

case B_AST_Agent("+",ag_i,ag_ii) => {

var lstEE = ag_first_steps(B_AST_Agent("+",ag_i,ag_ii))

var lstEV = vect_ag_first_steps(lstEE)

var lstEI = lindex_ag_first_steps(lstEE,0)

var i = exec_l_choice(Random.shuffle(lstEI))

exec(lstEV(i))

true

}

193

This code is part of an exec function, that executes the agents following their nature, i.e a

primitive, a sequential composition, a parallel composition or a choice composition. Figure 8.20

shows the complete code of the exec funtion.

In case of a primitive, the function invokes a exec primitive function. This function uses

the functions associated with the primitive of the BachT language, i.e. tell, ask, nask and get.

These functions are defined in the store description, in section 8.2.4. Figure 8.21 shows the

code of this function. Following the nature of the primitive, it invokes a corresponding function

defined in the store.

For a sequential composition, the exec function is recursively called for both agent ag i and

ag ii. This is done by the following part of the code of the exec function.

case B_AST_Agent(";",ag_i,ag_ii) => {

if (exec(ag_i)) { exec(ag_ii) } else { false}

}

For a parallel composition, threads are associated with the execution to both agents part of

the composition. This is done by the following part of the code of the exec function.

case B_AST_Agent("||",ag_i,ag_ii) => {

val t1 = thread(exec(ag_i))

val t2 = thread(exec(ag_ii))

t1.join

t2.join

true

8.2.4 The store

As for the interpreter, the store is implemented as a mutable map in Scala. Every token added

on it is represented in the form of an association of this token with a number representing

the number of its occurrences on the store. In order to reach a more flexible behaviour the

four primitives tell, ask, nask and get are now associated with a thread. Every primitive that

executes has thus to take a lock on the store through a synchronized declaration. Following the

nature of the primitive, different behaviours are possible. A tell primitive is always succesful.

After having taken the lock, the primitive simply adds the token on the store. Following that it

is already present or not on the store, the primitive increases its number of occurrences by 1, or

creates a new registration (t,1) into the map. Finally, the primitive notifies this new situation

to other waiting processes. Figure 8.22 presents the code of the tell primitive.

194

def ag_first_steps(b_ag : Expr) : List[(Expr,Expr)] = {

b_ag match {

// a primitive is the first step followed by the empty agent

case B_AST_Primitive(b_prim,token) => {

(B_AST_Primitive(b_prim,token),B_AST_Empty_Agent())::Nil

}

// for choice agent, recursive call of the function for

// every element of the choice

case B_AST_Agent("+",ag_i,ag_ii) => {

ag_first_steps(ag_i):::ag_first_steps(ag_ii)

}

// a sequence distinguishes both parts of Expression-Expression

case B_AST_Agent(";",ag_i,ag_ii) => {

continuation(ag_first_steps(ag_i),ag_ii,";")

}

// for parallel agent, ag_i with its continuity in parallel with

// ag_ii, and vice versa

case B_AST_Agent("||",ag_i,ag_ii) => {

continuation(ag_first_steps(ag_i),ag_ii,"||"):::

continuation(ag_first_steps(ag_ii),ag_i,"||")

}

}

}

Figure 8.19: Command line simulator : the construction of the list of first steps followed by their

continuation

195

def exec(b_ag_parsed : Expr) : Boolean = {

b_ag_parsed match {

case B_AST_Empty_Agent() => {true}

case B_AST_Primitive(b_prim,token) => {

exec_primitive(b_prim,token);

}

case B_AST_Agent(";",ag_i,ag_ii) => { if (exec(ag_i)) { exec(ag_ii) } else { false} }

case B_AST_Agent("||",ag_i,ag_ii) => {

val t1 = thread(exec(ag_i))

val t2 = thread(exec(ag_ii))

t1.join

t2.join

true

}

case B_AST_Agent("+",ag_i,ag_ii) => {

var lstEE = ag_first_steps(B_AST_Agent("+",ag_i,ag_ii))

var lstEV = vect_ag_first_steps(lstEE)

var lstEI = lindex_ag_first_steps(lstEE,0)

var i = exec_l_choice(Random.shuffle(lstEI))

exec(lstEV(i))

true

}

}

}

Figure 8.20: Command line simulator : the exec function of a parsed agent

def exec_primitive(b_prim : String, token : String) = {

b_prim match

{ case "tell" => bb.tell(token)

case "ask" => bb.ask(token)

case "get" => bb.get(token)

case "nask" => bb.nask(token)

}

}

Figure 8.21: Command line simulator : the exec primitive function

196

def tell(str : String) = bb.synchronized {

if(mapTok contains str) {

mapTok(str) = mapTok(str) + 1

} else {

mapTok = mapTok ++ Map(str -> 1)

}

println(">> tell("+str+") successfully terminated")

print(" >> store :")

print_store

println()

print("BachT> ")

bb.notifyAll()

true

}

Figure 8.22: Command line simulator : the tell primitive

197

The get primitive has a similar behaviour to the tell primitive, except that the token to

be retrieved from the store must be present on it with an occurrence of at least one. If this

condition is not reached, the function will wait until a modification appears on the store that

makes the desired tokens appear in the map representing the store (test mapTok contains str

in the following piece of code). If the condition is met the get primitive reduced the number of

occurrences of the token to be retrieved by one. Then as for the tell primitive, the get primitive

notifies this new situation of the store. The code of the get primitive is as follows:

def get(str : String) = bb.synchronized {

while(!(mapTok contains str) || mapTok(str) == 0) {bb.wait()}

println(">> get("+str+") successfully terminated")

mapTok(str) = mapTok(str) - 1

print(" >> store :")

print_store

println()

print("BachT> ")

bb.notifyAll()

true

}

Differently from the tell and get primitives, the ask and nask primitives do not modify the

state of the store, as they only respectively check for the presence or absence of a specific token.

There is then no need for them to notify to every waiting primitive the end of their action. But

similarly to the get primitive, their execution depends on the state of the store. In particular

in case of the ask, it is necessary for the requested token to be present on the store with at

least one unit. In the case of the nask primitive, the condition is that no occurrence of the

token is present on the store, or with a number of occurrences equal to zero. If their respective

conditions are not met, the execution of these primitives will be suspended, until the action of

another agent modifies the state of the store in such a way that meets their respective request.

Figures 8.23 and 8.24 depict the code of these two primitives.

198

def ask(str : String) = bb.synchronized {

while(!(mapTok contains str) || mapTok(str) == 0) {bb.wait()}

println(">> ask("+str+") successfully terminated")

print(" >> store :")

print_store

println()

print("BachT> ")

true

}

Figure 8.23: Command line simulator : the ask primitive

def nask(str : String) = bb.synchronized {

while((mapTok contains str)) {bb.wait()}

if(!(mapTok contains str) || mapTok(str) == 0) {

println(">> nask("+str+") successfully terminated")

println(" >> " + "token not present ")

print(" >> store :")

print_store

println()

print("BachT> ")

}

true

}

Figure 8.24: Command line simulator : the nask primitive

The BachT interpreter manages the choice or parallel composition of two agents by attribut-

ing randomly a 0 or 1 value to a branch choice variable. Following this value, the evaluation

starts with the first or the second subagent. In the command line simulator, the random choice

is generalized by constituing a list with the different subagents that are part of the composi-

tional choice. Only the first step of the subagent is tested as executable or not. Four boolean

functions are in charge to test if the primitive constituing the first step is excecutable or not.

They are respectively test tell, test get, test ask and test nask. The content of their

code is the same as those developed for the threads. The only difference resides in the nature

of the returned response, which is now a boolean. Figure 8.25 shows for instance the code of

the test tell function. Running a choice is done with the function run l choice. The code

of this function is listed in Figure 8.26.

199

def test_tell(str : String) : Boolean = {

if(mapTok contains str) {

mapTok(str) = mapTok(str) + 1

} else {

mapTok = mapTok ++ Map(str -> 1)

}

println(">> tell("+str+") successfully terminated")

print(" >> store :")

print_store

println()

print("BachT> ")

true

}

Figure 8.25: Command line simulator : the Test tell primitive

def run_l_choice(lst : List[(Expr,Int)]) : Int = bb.synchronized {

var r = l_choice(lst)

while(! r._1) { // if no executable first step found in the list

bb.wait() // wait

r = l_choice(lst) // after a notify, restart the search

}

return r._2 // if first step found, return the associate integer

}

Figure 8.26: command line simulator : the run l choice function

A thread is associated with the function. The action of the function consists in receiving

the results of the tests of execution of the first steps, through the result of a function l choice.

If no executable first step is found in the list, the function will wait until a notify occurs, that

relaunches a new research. When an executable step is found, an integer is returned. This

integer represents the index in a table of the rest of the subagent for its execution.

8.2.5 The main object

The object MYSIMINLINE contains the main function of the command line simulator. It contains

a loop that processes the different instructions introduced by the user. Figure 8.27 shows the

200

try {

myag_parsed = BachTSimulParser.parse_agent(line)

val mysimul = new B_Exec(myag_parsed)

println("BachT> >> Request " + cpt + " launched")

val t = mysimul.thread(mysimul.exec_gen(myag_parsed,cpt))

bb.synchronized{

println()

print("BachT> ")

}

line = readLine()

}

Figure 8.27: Command line simulator : the main function for the execution of an agent

part of the code for the execution of a BachT agent. The agent is parsed and then a thread is

associated with its execution.

The object proposes some other functions, like a clear function to make the store empty,

or a print function to print its content. The function history is used to register up to the last

five commands that were introduced. Finally the halt function permits to end the session.

The complete code of the command line simulator is listed in section B.2.3 of Chapter B.

8.2.6 Using the BachT Command Line Simulator

Let us now present some examples of the execution of the BachT command line simulator.

Suppose we want the simulator to evaluate the following expression, starting from an empty

store:

paskptq ; tellpuqq ` ppnaskpsq; askptqq || ptellptq ; getptqqq

In this example, in the first subagent, the first step ask(t) cannot be executed. In the second

subagent, both first primitives of the parallel composition are executable: the nask(s) as well as

the tell(t). The second subagent will then be selected for execution. Two threads are associated

to both parts of the parallel composition. If the thread containing the nask primitive is executed

first, the nask(s)will be successful, but the ask(t) will wait until a token t is introduced on the

store. The second thread beginning with the tell(t) will start. The introduction of this token

t will be notified, and will permit to the waiting ask to execute successfully. Finaly the get(t)

201

Welcome to BachT version 1.

Type in agents to evaluate them.

BachT> (ask(t);tell(u)) + (nask(s);ask(t) || tell(t);get(t)).

BachT> >> Request 1 launched

BachT> >> nask(s) successfully terminated

>> token not present

>> store : { }

BachT> >> tell(t) successfully terminated

>> store : { t(1) }

BachT> >> ask(t) successfully terminated

>> store : { t(1) }

BachT> >> get(t) successfully terminated

>> store : { t(0) }

BachT> >> Request 1 successfully terminated

BachT>

Figure 8.28: Running the BachT command line simulator

executes and retrieves the token t from the store, producing a final empty store. The trace of

this execution is presented in Figure 8.28.

If the thread associated with the second subagent of the parallel composition begins first,

then both the tell(t) and get(t) primitives will be successfully executed. In the thread associated

with the first subagent, the nask(s) will be successfully executed. But the ask(t) will face a

store without any token t, resulting in a waiting state. Figure 8.29 shows the trace of execution

of this second possibility. The history command is used to recall the agent paskptq ; tellpuqq `

ppnaskpsq; askptqq || ptellptq ; getptqqq. A request numbered 2 is associated with the thread and

launched. As the ask(t) is waiting, the request is not indicated as successfully terminated.

The ask(t) primitive will wait until the introduction of a token t on the store is notified by

a new agent tell(t). This wakes up the thread and permits it to successfully finish. Figure 8.30

shows this final trace of execution. A request numbered 3 is launched with the new agent tell(t).

It has for consequence to make request number 2 successfull before finishing itself successfully.

202

BachT> history.

history

! :(ask(t);tell(u)) + (nask(s);ask(t) || tell(t);get(t))

!! :m4

!!! :m3

!v :m2

v :m1

BachT> !

BachT> history mode : (ask(t);tell(u)) + (nask(s);ask(t) || tell(t);get(t))

BachT>> execute (y/n) : y

BachT> >> Request 2 launched

BachT> >> nask(s) successfully terminated

>> token not present

>> store : { t(0) }

BachT> >> tell(t) successfully terminated

>> store : { t(1) }

BachT> >> get(t) successfully terminated

>> store : { t(0) }

BachT>

Figure 8.29: Running the BachT command line simulator

8.3 A command-line interpreter for Dense Bach

8.3.1 Introduction

The primitives of Dense Bach being of the same nature of those of BachT, with the difference

of manipulating several occurrences of token atomically, it is easy to extend the interpreter of

section 8.1 to Dense Bach. As a result, our command-line interpreter is based on the same four

components : a file of abstract data, a parser of agents, the implementation of the store, and

a simulator to perform the execution of a Dense Bach agent based on the execution of basic

Dense Bach primitives. As BachT and Dense Bach language definitions are very similar, with

the only difference due to the presence of an added density to the tokens, a few adaptations of

203

BachT> tell(t).

BachT> >> Request 3 launched

BachT> >> tell(t) successfully terminated

>> store : { t(1) }

BachT> >> ask(t) successfully terminated

>> store : { t(1) }

BachT> >> Request 2 successfully terminated

BachT> >> Request 3 successfully terminated

Figure 8.30: Running the BachT command line simulator

class Expr

case class dbach ast empty agent () extends Expr

case class dbach a s t p r im i t i v e (p r im i t i v e : Str ing , token : Str ing ,

dens i ty : Int) extends Expr

case class dbach as t agent (op : Str ing , agent i : Expr ,

a g e n t i i : Expr) extends Expr

Figure 8.31: The abstract Dense Bach data.scala file

the Scala code are only necessary.

The refinements of the Expr abstract class used to represent the structure of a parsed agent

is again composed of three classes:

• a case class bacht ast empty agent to represent the empty agent E,

• a case class bacht ast primitive to represent a primitive in the form of a triplet com-

posed of a primitive type (tell, ask, nask, get), a token and its density.

• a case class bacht ast agent to represent a composed agent formed from an operator

applied to two sub-agents agenti and agentii

Note however the presence of density in the second case. The code of the abstract Dense

Bach data file is depicted in Figure 8.31.

204

8.3.2 The parser

The parser defines the class DenseBachParsers as inherited from the class RegexParsers. The

two main differences with the parser developed for BachT lie on the one hand in the addition

of a definition of a regular expression for the density and, on the other hand, in the definitions

of the parsing of the primitives, that now take into account the presence of the density in the

examined value. Technically this is achieved as follows. The notion of density is defined as a

natural number:

def density : Parser[Int] = ("[1-9][0-9]*").r ^^ {_.toInt}

Moreover, the definition of a primitive is refined as follows:

def primitive : Parser[Expr] = "tell("~token~"("~density~"))" ^^ {

case _ ~ vtoken ~ _ ~ vdensity ~ _ =>

dbach_ast_primitive("tell",vtoken,vdensity) }

The priorities of the three operators stay unchanged, stipulating that the sequential com-

position binds more than the parallel composition, which itself binds more than the non-

deterministic choice operator. The definitions of the three functions of compositions takes

into account the abstract classes as defined in the Dense Bach abstract data file. The code of

the parser is presented in Figure 8.32.

Finally, the code of the parser provides also the definition of an object instanciating the

DenseBachParsers for using it directly in the command-line interpreter. This is represented in

the code of Figure 8.33.

8.3.3 The store

The implementation of the store has been adapted to take into account the density associated

with a token. It still consists in a mapping associating a token with a number representing the

number of its occurences on the store. The adaptation concerns the implementation of the four

primitives tell, get, ask and nask in the class DenseBachStore. For instance, the execution

of the tell(t(n)) primitive checks again for the presence of the token t on the store. In case

of a positive answer, it is now n instances of t that are added to the number of tokens t already

present on the store. If there is no token t present on the store, then a new association (t,n) is

added to the map. The get(t(n)) primitive checks for the presence of n tokens t on the store.

In case t is present with an occurence higher than n, then the get primitive decrements it by

205

class DenseBachParsers extends RegexParsers {

def token : Parser [St r ing] = (” [a´z] [0´9a źA´Z]∗ ”) . r ˆˆ { . t oS t r i ng }

def dens i ty : Parser [Int] = (” [1 ´9] [0 ´9]∗ ”) . r ˆˆ { . to Int }

val opChoice : Parser [St r ing] = ”+”

val opPara : Parser [St r ing] = ” | | ”

val opSeq : Parser [St r ing] = ” ; ”

def pr im i t i v e : Parser [Expr] = ” t e l l (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜ =>

dbach a s t p r im i t i v e (” t e l l ” , vtoken , vdens i ty)}

|

” ask (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜ =>

dbach a s t p r im i t i v e (”ask” , vtoken , vdens i ty) }

|

” get (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜ =>

dbach a s t p r im i t i v e (” get ” , vtoken , vdens i ty) }

|

”nask (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜ =>

dbach a s t p r im i t i v e (”nask” , vtoken , vdens i ty)}

def agent = compos i t ionChoice

def compos i t ionChoice : Parser [Expr] =

compos i t ionPara˜ rep (opChoice ˜ compos i t ionChoice)

ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => dbach as t agent (op , agi , a g i i) }

def compos i t ionPara : Parser [Expr] =

compos i t ionSeq˜ rep (opPara˜ compos i t ionPara) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => dbach as t agent (op , agi , a g i i) }

def compos i t ionSeq : Parser [Expr] =

simpleAgent˜ rep (opSeq˜ compos i t ionSeq) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => dbach as t agent (op , agi , a g i i) }

def s impleAgent : Parser [Expr] = pr im i t i v e | parenthes izedAgent

def parenthes izedAgent : Parser [Expr] = ” (”˜>agent<˜”) ”

}

Figure 8.32: Parser: the class DenseBachParsers

206

object DenseBachSimulParser extends DenseBachParsers {

def pa r s e p r im i t i v e (prim : Str ing) = par seAl l (pr im i t i ve , prim) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e . msg)

}

def par se agent (ag : Str ing) = par seAl l (agent , ag) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e . msg)

}

}

Figure 8.33: Parser : the object DenseBachSimulParser

n. The behaviour of the ask(t(n)) primitive is similar to the one of the get(t(n)) primitive

concerning the check for the presence of n instances of t, but without retrieving any occurrence

from the store. Finally the nask(t(n)) primitive succeeds in case of a presence of t with a

number strictly less than the density n, and fails in the other case. The code describing the

class DenseBachStore is presented in Figure 8.34.

As for the implementation of the store for BachT, the code provides two auxiliary func-

tions print store and clear store, for respectively printing the content of the store, and for

resetting it to the empty map. Moreover an object bb of type DenseBachStore, with a func-

tion reset as a synonym for clear store is also provided. These elements stay completely

unchanged with regard to the code of the store as developped in BachT. They are represented

in Figures 8.35 and 8.36.

8.3.4 The simulator

The simulator still consists in the implementation of a function run one, that performs a tran-

sition step but now with respect to the operational semantics of section 4.1.2. The strategy of

the implementation for the sequential, the parallel and the choice compositions stay unchanged

with regard to the one developped for the BachT language. In particular for the choice or

parallel operator, the first subagent to be executed is still selected on the base of a random

value assigned to a branch choice variable. Both subagents must be evaluated in case of the

parallel composition, while the evaluation is limited to the first selected subagent for the choice

composition. Function dbach exec all repeatedly executes run one until the empty agent is

reached or failure is produced. Because of the great similarity with the one of BachT, the code

207

import s ca l a . c o l l e c t i o n . mutable .Map

class DenseBachStore {

var theStor e = Map[Str ing , Int] ()

def t e l l (token : Str ing , dens i ty : Int) : Boolean = {

i f (theStor e . conta ins (token))

{ theStor e (token) = theStor e (token) + dens i ty }

else

{ theStor e = theStor e ++ Map(token >́ dens i ty) }

true

}

def ask (token : Str ing , dens i ty : Int) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= dens i ty) { true }

else { fa l se }

else fa l se

}

def get (token : Str ing , dens i ty : Int) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= dens i ty)

{ theStor e (token) = theStor e (token) ´ dens i ty

true

}

else { fa l se }

else fa l se

}

def nask (token : Str ing , dens i ty : Int) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= dens i ty) { fa l se }

else { true }

else true

}

. . .

Figure 8.34: The DenseBachStore class

208

class DenseBachStore {

. . .

def p r i n t s t o r e {

p r i n t l n (”{”)

for ((t , d) <́ theStor e)

p r i n t l n (t + ” (” + theStor e (t) + ”) ”)

p r i n t l n (”}”)

}

def c l e a r s t o r e {

theStor e = Map[Str ing , Int] ()

}

}

Figure 8.35: The DenseBachStore class continued

object bb extends DenseBachStore {

def r e s e t { c l e a r s t o r e }

}

Figure 8.36: The bb object

209

Welcome to Scala version 2.11.7 (OpenJDK Server VM, Java 1.7.0_95).

Type in expressions to have them evaluated.

Type :help for more information.

scala> :load dbach-cli.scala

Loading dbach-cli.scala...

...

scala> ag run "(get(t(2));tell(u(3)))||(tell(t(3));ask(u(2)))"

{ t(3) }

{ t(1) }

{ t(1) u(3) }

{ t(1) u(3) }

Success

scala>

Figure 8.37: Running the Dense Bach command line interperter (1)

is not reproduced inside the main text of this thesis. It is however listed in appendix C.

8.3.5 Using the command-line interpreter

The full code of the Dense Bach interpreter is listed in appendix C. As for BachT, it is presented

as a single file, called dbach-cli.scala, which is a concatenation of four files, three for the

parser, the store and the simulator, and one for the definition of the case classes.

Using the facilities provided by Scala to write postfix notation, Figure 8.37 presents the

result of the computation of the following expression:

pgetptp2qq ; tellpup3qqq || ptellptp3qq ; askpup2qqq

As second example, we propose to evaluate the following expression:

paskptp1qq ; tellpup3qqq ` pnaskpsp2qq ; getptp2qq || ptellptp3qq ; tellpsp1qqqq

The left part in the choice agent cannot be executed, due to the absence of any token t

on the store. The right part being a parallel composition, the computation can start randomly

with either nask(s(2)) or tell(t(3)). In the present case nask(s(2)) is the chosen first step,

that succeeds as the store is empty, and leaves it unchanged. As there is no token t on the

store, get(t(2)) cannot be executed. This is then tell(t(3)) that is executed, enriching the

210

Welcome to Scala version 2.11.7 (OpenJDK Server VM, Java 1.7.0_95).

Type in expressions to have them evaluated.

Type :help for more information.

scala> :load dbach-cli.scala

Loading dbach-cli.scala...

...

scala> ag run "(ask(t(1));tell(u(3))) +

(nask(s(2));get(t(2)) || tell(t(3));tell(s(1)))"

{ }

{ t(3) }

{ t(3) s(1) }

{ t(1) s(1) }

Success

Figure 8.38: Running the Dense Bach command line interpreter (2)

store with three tokens t. The next step can now be done by either get(t(2)) or tell(s(1)).

In this example, the choice has been made for tell(s(1)), enriching the store with one token

s. Finally, get(t(2)) is executed, retrieving two tokens t from the store. The total result of

the execution is available in Figure 8.38.

8.4 A Command Line Simulator for Dense Bach

8.4.1 Introduction

Similarly to what we did for BachT, we have developed a command line simulator for the

Dense Bach language. The primitives of Dense Bach differing from those of BachT only by the

atomic manipulation of several occurences of tokens, the code of this Dense Bach command line

simulator presents a few differences with the one for BachT. The global structure thus stays the

same: the definition of an abstract data, a parser of agents, a class managing the execution of

agents, an implementation of the store, and a global object containing the main method.

The refinement of the Expr abstract class used to represent the structure of a parsed agent

is again composed of three classes:

• a case class DB AST Empty Agent to represent the empty agent E,

• a case class DB AST Primitive to represent a primitive in the form of a triplet composed

of a primitive type (tell, ask, nask, get), a token and its density.

211

class Expr

case class DB_AST_Empty_Agent() extends Expr

case class DB_AST_Primitive(primitive: String,

token: String, density: Int) extends Expr

case class DB_AST_Agent(op: String, primitive: Expr,

agent: Expr) extends Expr

Figure 8.39: The abstract Dense Bach data class

• a case class DB AST Agent to represent a composed agent formed from an operator applied

to two sub-agents agenti and agentii

The code of the abstract Dense Bach data class is provided in annex (see chapter C.2.6 in

section C.2.1).

8.4.2 The parser

As in the case of BachT, the class DenseBachParsers inherits from the class RegexParsers. The

introduction of the density has for consequences on the one hand the need to define a regular

expression for it, and on the other hand, to adapt the definitions of the parsing of the primitives,

to take into account this density. These adaptations are exactly the same as those introduced

in the interpreter. The order of priority of the three operators stay unchanged : firstly the

sequentiality, then the parallelism and finally the choice. The definitions of the compositions

are based on the abstract classes of the Dense Bach data class. An object instanciating the

DenseBachParser is also available. It provides two functions for respectively parsing a primitive

and parsing an agent. The complete code of the parser is listed in annex (see chapter C.2.6 in

section C.2.2).

8.4.3 Executing agents

As for the BachT command line simulator, the DB-exec class is in charge of the execution

of the Dense Bach agents. Receiving a parsed agent, an exec function executes it according

to its nature : a primitive, a sequentialy composed agent, an agent resulting from a parallel

composition or finally from a choice composition. For the primitive, a specific exec primitive

function processes the parsed agent, with the following code:

case DB_AST_Primitive(db_prim,token,density) => {

212

def exec_primitive(db_prim : String, token : String, density : Int) = {

db_prim match

{ case "tell" => bb.tell(token,density)

case "ask" => bb.ask(token,density)

case "get" => bb.get(token,density)

case "nask" => bb.nask(token,density)

}

}

Figure 8.40: Command line simulator : the exec primitive function

exec_primitive(db_prim,token,density);

}

The function exec primitive invokes functions defined for the execution of the tell, the get,

ask or the nask. These functions are used for the management of the store and are presented

in section 8.4.4. Figure 8.41 presents the code of the exec primitive function.

In case of a parsed agent resulting from a parallel composition, threads are associated with

the execution of both agents ag i and ag ii that are part of the composition, following this code:

case DB_AST_Agent("||",ag_i,ag_ii) => {

val t1 = thread(exec(ag_i))

val t2 = thread(exec(ag_ii))

t1.join

t2.join

true

}

For the execution to be completed, both threads must be joined at the end of their executions.

For a sequential composition, the code proceeds with the execution of the first agent ag i.

When completed, it continues with the execution of the second agent ag ii. The code is the

following:

case DB_AST_Agent(";",ag_i,ag_ii) =>

{ if (exec(ag_i)) { exec(ag_ii) } else { false} }

For a choice composition, only one of the subagents that are parts of the choice will be

executed. The selection of an executable subagent is based on the first step. Every subagent is

213

presented as a first step primitive, followed by a continuation. These pairs (first step, continua-

tion) are grouped in a list constructed by a function ag first steps. To ease its manipulation,

this list is decomposed in two lists: one storing in a vector the previous continuations, and

another one of the pair constitued by the first steps, and the index in the vector pointing to the

associated continuation. This second list is randomly permutated and given as parameter to a

function exec l choice. This function returns the first subagent that can be executed based

on its first step. The code of the processing of a choice agent is as followed :

case DB_AST_Agent("+",ag_i,ag_ii) => {

var lstEE = ag_first_steps(DB_AST_Agent("+",ag_i,ag_ii))

var lstEV = vect_ag_first_steps(lstEE)

var lstEI = lindex_ag_first_steps(lstEE,0)

var i = exec_l_choice(Random.shuffle(lstEI))

exec(lstEV(i))

true

}

The complete code of the exec function is given in annex (see chapter C.2.6 in section C.2.4).

214

def exec(db_ag_parsed : Expr) : Boolean = {

db_ag_parsed match {

case DB_AST_Empty_Agent() => {true}

case DB_AST_Primitive(db_prim,token,density) => {

exec_primitive(db_prim,token,density);

}

case DB_AST_Agent(";",ag_i,ag_ii) => { if (exec(ag_i))

{ exec(ag_ii) } else { false} }

case DB_AST_Agent("||",ag_i,ag_ii) => {

val t1 = thread(exec(ag_i))

val t2 = thread(exec(ag_ii))

t1.join

t2.join

true

}

case DB_AST_Agent("+",ag_i,ag_ii) => {

var lstEE = ag_first_steps(DB_AST_Agent("+",ag_i,ag_ii))

var lstEV = vect_ag_first_steps(lstEE)

var lstEI = lindex_ag_first_steps(lstEE,0)

var i = exec_l_choice(Random.shuffle(lstEI))

exec(lstEV(i))

true

}

}

}

Figure 8.41: Command line simulator : the exec primitive function

The code of the function exec l choice invokes a function l choice defined in the store,

that we will now investigate.

8.4.4 The store

The store is again constitued of a mapping associating a token with a number representing the

number of its occurrences on the store. Four functions corresponding to the four primitives

tell, get, ask and nask are defined. In a logic of threads, every primitive has to take the lock

of the store. The tell(t(n)) primitive checks for the presence of a token t on the store. If not

present, a new association (t,n) is added to the map. If present, the number n is added to the

215

number of tokens t already present on the store. As the action of the tell primitive modifies

the store, it has to be notified. The get(t(n)) primitive checks for the presence of n tokens

t on the store. If this token is present with an occurrence higher than n, it is decremented by

n. If the token t is not present, or present with a density strictly less than n, the function will

wait until a modification of the store is notified. If this modification permits to the get(t(n))

to continue, it executes the retrieval of the n tokens. As this constitutes a modification of the

store, this successful action is also notified. The ask(t(n)) primitive is similar to the get(t(n))

primitive, but executes no retrieval. At the end of the execution, no notification is needed as

the content of the store is not modified. The nask(t(n)) primitive is succesful if the number

of token t on the store is strictly less then n. If not the primitive waits until a modification of

the store is notified. If this modification acts as required by the nask primitive, it can perform

fully its action. No notification is needed at the end of its execution. The code describing these

primitives is presented in annex (see chapter C.2.6 in section C.2.3).

In the case of the execution of an agent formed by a choice, we use the selection of subagents

presented in section 8.4.3. Every subagent is thus associated with its first step primitive, followed

by a continuation. Every first step, that is a primitive, must be checked as executable or not.

This is done by boolean test functions that check the same conditions for their execution as

the four previous primitive functions tell , get, ask and nask. As they are selected once

successful, they do more than a test and actually perform, if successfully selected, their action

on the content of the store.

Every first step primitive is tested as executable or not, with the function run l choice.

In case no first step is found executable, the process waits until a notified modification of the

store restarts the analysis of all the first steps. In case of a successful first step, then the index

of its corresponding continuation in the vector of continuation is returned. The following code

is responsible of this execution.

def l_choice(lst : List[(Expr,Int)]) : Int = bb.synchronized {

var r = run_l_choice(lst)

while(! r._1) {

bb.wait()

r = run_l_choice(lst)

}

return r._2

}

216

8.4.5 The main object

As for the BachT command line simulator, a main object called MYSimInLine contains the

main function that will execute a Dense Bach agent. The core of this function invokes the

DenseBachSimulParser object to parse the agent. A thread is associated with the execution

of the resulted parsing. For the ease of the presentation, a number is associated with every

launched thread. The following code presents the core of the main function:

try {

myag_parsed = DenseBachSimulParser.parse_agent(line)

val mysimul = new DB_Exec(myag_parsed)

println("DBach> >> Request " + cpt + " launched")

val t = mysimul.thread(mysimul.exec_gen(myag_parsed,cpt))

bb.synchronized{

println()

print("DBach> ")

}

line = readLine()

}

Other useful functionalities are added, as an history command that lists the last five

commands, a print command that prints the content of the store, and a clear command that

makes the store empty.

The complet code of the Dense Bach command line simulator is listed in section C.2.6 of

appendix C.

8.4.6 Using the Dense Bach Command Line Simulator

In this section we present some examples of the execution of the Dense Bach command line

simulator. Suppose we want the command line simulator to evaluate the following expression,

starting from an empty store:

paskptp2qq ; tellpup3qqq ` pnaskpsp1qq; askptp2qq

In this example, in the first subagent, the first step ask(t(2)) cannot be executed. In the

second subagent, the first primitive nask(s(1)) is executable. The second subagent in the choice

is thus to be selected for an execution. Concretely a first thread is launched, associated with the

agent paskptp2qq ; tellpup3qqq ` pnaskpsp1qq; askptp2qq. The nask(s(1)) primitive is successfully

217

Welcome to Dense Bach version 1.

Type in agents to evaluate them.

DBach> ask(t(2));tell(u(3)) + nask(s(1));ask(t(2)).

DBach> >> Request 1 launched

DBach> >> nask(s(1)) successfully terminated

>> token s not present

>> store : { }

DBach>

Figure 8.42: Using the Dense Bach command line simulator

executed, but the ask(t(2)) that follows in sequence is not executable, as the store is empty

from any token t. The trace of this first execution is presented in Figure 8.42.

In order to make the ask(t(2)) executable, we type in as a next request a tell(t(3)) primitive,

that introduces 3 tokens t on the store. A second request is indeed launched that places the

3 tokens t on the store. As the tell(t(3)) notifies the modification of the store, the waiting

ask(t(2)) is resumed and finishes successfully. The trace of this second execution is presented

in Figure 8.43.

As a second example, suppose we want to execute the following agent, starting from an

empty store.

pnaskpsp1qq ; getptp1qqq || paskpup2qq ; tellptp2qq ` tellptp2qq ; tellptp3qqq.

A first request is launched for the parallel composition. A thread is associated with every

both subagent: the sequential composition of naskpsp1qq ; getptp1qq on the one hand, and with

the choice composition askpup2qq ; tellptp2qq ` tellptp2qq ; tellptp3qq on the other hand. In the

first subagent, the nask(s(1)) produces a successful result. The get(t(1)) cannot be executed,

as the store does not contain any token t. In the second subagent, no alternative of the choice

can be executed, as the ask(u(2)) and the ask(s(2)) primitives cannot be executed. Figure 8.44

shows the trace of this first execution.

218

Welcome to Dense Bach version 1.

Type in agents to evaluate them.

DBach> ask(t(2));tell(u(3)) + nask(s(1));ask(t(2)).

DBach> >> Request 1 launched

DBach> >> nask(s(1)) successfully terminated

>> token s not present

>> store : { }

DBach> tell(t(3)).

DBach> >> Request 2 launched

DBach> >> tell(t(3)) successfully terminated

>> store : { t(3) }

DBach> >> ask(t(2)) successfully terminated

>> store : { t(3) }

DBach> >> Request 1 successfully terminated

DBach> >> Request 2 successfully terminated

DBach>

Figure 8.43: Using the Dense Bach command line simulator

Welcome to Dense Bach version 1.

Type in agents to evaluate them.

DBach> nask(s(1));get(t(1)) || (ask(u(2));tell(t(2)) + ask(s(2));tell(t(3))).

DBach> >> Request 1 launched

DBach> >> nask(s(1)) successfully terminated

>> token s not present

>> store : { }

DBach>

Figure 8.44: Using the Dense Bach command line simulator

Let us imagine we introduce a new agent tell(s(4)), corresponding to a second request. It will

be successful, and the resulting insertion of 4 tokens s liberates the waiting thread associated

219

with the second subagent of the parallel composition. In particular the ask(s(2)) primitive in the

sequential composition askpsp2qq ; tellptp3qq is now executable. As the tell(t(3)) primitive is also

successfully executable, the second subagent of the choice composition is completly executed.

Moreover the introduction of 3 tokens t permits to execute the get(t(1)) primitive in the first

request. Figure 8.45 shows the trace of this last execution.

Welcome to Dense Bach version 1.

Type in agents to evaluate them.

DBach> nask(s(1));get(t(1)) || (ask(u(2));tell(t(2)) + ask(s(2));tell(t(3))).

DBach> >> Request 1 launched

DBach> >> nask(s(1)) successfully terminated

>> token s not present

>> store : { }

DBach> tell(s(4)).

DBach> >> Request 2 launched

DBach> >> tell(s(4)) successfully terminated

>> store : { s(4) }

DBach> >> ask(s(2)) successfully terminated

>> store : { s(4) }

DBach> >> tell(t(3)) successfully terminated

>> store : { t(3) s(4) }

DBach> >> get(t(1)) successfully terminated

>> store : { t(2) s(4) }

DBach> >> Request 2 successfully terminated

DBach> >> Request 1 successfully terminated

DBach>

Figure 8.45: Using the Dense Bach command line simulator

220

8.5 Conclusion

In this chapter, we have proposed an interpreter and a command line simulator for BachT

and Dense Bach. Our goal in providing them was to provide the reader with interpreters and

simulators for executing agents in BachT and Dense Bach and thus to experience with them.

Following [BJ93], we have implemented the store as a token-indexed list. However, our

implementation has been made simpler due to the fact that we first aimed at providing inter-

preters. In contrast, in [BJ93], Bosschere and Jacquet provide a real implementation based on

threads for parallel executions and on semaphores associated with functors of logic terms in

order to suitably handle mutual access to shared elements. As evidenced by the simulators,

these design choices are however compatible with our implementation design. Indeed we have

used threads but have kept the design simpler by using a global lock on the store and not one for

each token. As noted in [BJ93], this is however a key factor which allows to generate speedups

over our more naive implementation which requires to block the entire tuple space. It is also

worth noting that, in contrast to [BJ93], we handle non-deterministic choice and thus provide

an implementation support for a more elaborated process algebra.

LighTS [BCP07] is the core tuple space layer for the Lime middelware. Implemented in Java,

it has an object-oriented design, permitting to provide dedicated constructs for the development

of context-aware applications. Two packages constitue the core of Lights: a lights.interface one

that contains the interfaces modeling the fundamental concepts of Linda, and the lights package

that contains a built-in implementation of these interfaces. The goal of LighTS is to provide

a simple and extensible implementation. We share this philosophy and even provide a simpler

framework since we only deal with simple tokens and thus do not even provide interfaces. On

the contrary, as for [BJ93], it is worth noting that we support the non-deterministic choice

operator which is not supported by LighTS, and this without compromising the simplicity of

our implementation.

TuCSoN is an infrastructure that offers services to enable the communication and coordina-

tion of distributed / concurrent independent software components called agents. Tuples centres

constitute the core of TuCSoN in that they provide many features, in particular, the possibility

to program reactions. The implementation is based on an implementation of Prolog in Java

and is thus much more heavy than our implementation.

Finally, to design our implementation, we have taken inspiration of Pistache [MdM11], an

implementation of the pi-Calculus as a Domain Specific Language in Scala. In particular, we

have use similar case class structures and have handled parallel and choice compositions using

221

the same technique based on generating random numbers. However, the communication in

BachT is completely different and has called for an implementation of the store and related

primitives which is not present in Pistache.

222

Chapter 9

On the Implementation of

Distributed Density

As for the BachT and Dense Bach languages in Chapter 8, we develop in this chapter an

interpreter and a command line simulator for the Vectorized Dense Bach language introduced

in Chapter 5. As this language shares properties with the MRT language, we proceed in the

same way for MRT. Again these tools allow the reader to experiment with these languages and

they argue for their implementability.

Section 9.1 presents the command-line interpreter for the Vectorized Dense Bach language.

Section 9.2 presents the command line simulator for the same language. Sections 9.3 and 9.4

proceed similarly for the MRT language.

9.1 A command-line interpreter for Vectorized Dense Bach

9.1.1 Introduction

In comparison with the primitives of the Dense Bach language, those of the Vectorized Dense

Bach language bring the new capacity to manipulate several occurrences of many different to-

kens atomically but keep the same nature. It is then easy to extend the interpreter developed

for Dense Bach in Section 8.3 of Chapter 8 to the Vectorized Dense Bach language. We found

basically the same four components : a file of abstract data, a parser of agents, the implemen-

tation of the store, and a simulator to perform the execution of a Vectorized Dense Bach agent

based on the execution of the basic Vectorized Dense Bach primitives.

The Vectorized Dense Bach language permits to manipulate many instances of different

tokens atomically. This implies that the structure of the data must be adapted to introduce the

223

notion of dense token, that can be recorded in a list. As a result the data structure presents a

new abstract class dtExpr, which is refined in a class dt, with the two parameters tok of type

string and dens of type integer, to represent a dense token. A second abstract class vDBachExpr

represents (as for the BachT and Dense Bach languages) the structure of a parsed agent and is

composed of three usual classes for the empty agent, for the primitives, and for the composed

agent. Nevertheless the class representing a primitive manipulates a parameter of type list of

dense tokens, as defined in the abstract class dtExpr. The code of these two abstract classes is

as follows:

class dtExpr

case class dt(tok: String, dens: Int) extends dtExpr

class vDBachExpr

case class vdbach_ast_empty_agent() extends vDBachExpr

case class vdbach_ast_primitive(primitive: String,

lDenseToken: List[dt]) extends vDBachExpr

case class vdbach_ast_agent(op: String, agenti: vDBachExpr,

agentii: vDBachExpr) extends vDBachExpr

9.1.2 The parser

The parser defines the class VDenseBachParsers that extends the class RegexParsers. Two

main differences with the parser developed for the Dense Bach language appear. Firstly two

definitions of regular expressions are added to represent, on the one hand, a dense token, and

on the other hand, a vector of dense tokens list. Secondly the definitions of the parsing of the

primitives take into account these lists. Technically, the two definitions for a dense token, and

a vector of them, are as follows:

def denseToken : Parser[dt] = token~"("~density~")" ^^ {

case vtoken ~ _ ~ vdensity ~ _ => dt(vtoken,vdensity)

}

def vectDenseTokenList: Parser[List[dt]] = denseToken ~ rep("," ~ vectDenseTokenList)

^^ { case vdenseToken ~ List() => List(vdenseToken)

case vdenseToken ~ List(op~lvdt) => List(vdenseToken):::lvdt

}

The definition of a primitive, for instance the tell primitive, is as follows:

def primitive : Parser[vDBachExpr] = "tell("~vectDenseTokenList~")" ^^ {

case _ ~ vvectDenseTokenList ~ _

=> vdbach_ast_primitive("tell",vvectDenseTokenList) }

224

The order of priorities between the three operators is maintained as it is in the Dense Bach

parser. Finally, an object instanciating the VDenseBachParsers is provided for a direct use

in the command-line interpreter. The complete code of the parser follows the developments of

Chapter 8. As a result, it is not presented here but is available in section D.1.2 of Appendix D.

9.1.3 The store

The code implementing the store requires also some adaptation in order to manipulate lists

of dense tokens. This concerns the implementations in the class VDenseBachStore of the four

boolean functions describing the behaviour of the primitives tell, ask, get and nask. Concretely

they are defined in an inductive way on the structure of the dense tokens lists. For instance for

the tell primitive, the presence on the store of every dense token inside the list is checked. For

a token that is already present on the store, its density is added to the density registered on

the store. If not present, the token and its density are added to the map representing the store.

The function is called recursively on the tail of the list, up to the moment it is empty, in which

case the result is true. The code of the tell primitive is as follows:

def tell(vectDenseTokenList:List[dt]):Boolean = {

vectDenseTokenList match {

case Nil => true

case dt(tok,dens)::l => {

if (theStore.contains(tok)) {

theStore(tok) = theStore(tok) + dens

tell(l)

} else {

theStore = theStore ++ Map(tok -> dens)

tell(l)

}

}

}

}

The ask primitive proceeds in a similar way. The presence on the store of every dense

token inside the list is checked, with a number at least equal to the density associated with the

token in the list. If these two conditions are respected for every token in the list, the function

returns true. Otherwise the first token for which the check fails – because it is not present on

the store, or because it is present on it but without a sufficient number – will interrupt the

process of verification, and the function fails. The code of the get function is the same as for

the ask function, except that a successful check implies to reduce the number associated with

225

the dense token on the store, with its density expressed in the list. Any failure in the check

process interrupts it and makes the function fails. Finally the nask function checks for every

dense token in the list if they are missing from the store or, at the contrary, if their associated

number is strictly less than their density expressed in the list. Again the first negative response

to this check interrupts the process and leads to a failure of the nask function. As for the Dense

Bach interpreter, two additional functions complete the code, one for printing the contents of

the store, and the second for clearing it. Likewise, an object bb of type VDenseBachStore

provides a reset function to also clear the store. The complete code of the implementation of

these functions is available in Section D.1.3 of Appendix D.

9.1.4 The simulator

The implementation of the simulator still consists in the programming of a function run one,

that performs a transition step with respect to the operational semantics of section 5.1.2. The

global strategy of the function for the sequential, the parallel and the choice compositions stay

unchanged with respect to the code developed for respectively the BachT language and the

Dense Bach language. Only the types of the manipulated expressions have been adapted, now

in a form of vectors of dense bach tokens. We refer the reader to Sections 8.1.4 and 8.3.4 for the

details of the function, and to Section D.1.4 of Appendix D for a complete listing of its code.

9.1.5 Using the command-line interpreter

The full code of the Vectorized Dense Bach interpreter is listed in section D.1 of appendix D.

Using the facilities provided by Scala to write postfix notation, Figure 9.1 presents the result

of the computation of the following expression:

pgetptp2q, sp3qq ; tellpup3q, ap4qq || tellptp3q, sp4qq ; askpup2q, ap2qqq

This expression is a parallel composition of two sequentially composed subagents. Starting

from an empty store, the first subagent cannot execute its first primitive get(t(2),s(3)), but

the first primitive tell(t(3),s(4)) of the second subagent can be executed successfully, putting

three instances of t and four of s on the store. As the store does not contain any instances

of u, the second primitive ask(u(2),a(2)) of the second subagent cannot be executed. But the

present contents of the store permits now the execution of the primitive get(t(2),s(3)) of the

first subagent. This results in the retrieval of two instances of t and three of s, leaving the store

with one instance of t and one of s. The second primitive tell(u(3),a(4)) of the first subagent

226

Welcome to Scala version 2.11.7 (OpenJDK Server VM, Java 1.7.0_95).

Type in expressions to have them evaluated.

Type :help for more information.

scala> :load dbach-cli.scala

Loading dbach-cli.scala...

...

scala> ag run "(get(t(2),s(3));tell(u(3),a(4))||tell(t(3),s(4));ask(u(2),a(2)))"

{ t(3) s(4) }

{ t(1) s(1) }

{ t(1) s(1) a(4) u(3) }

{ t(1) s(1) a(4) u(3) }

Success

scala>

Figure 9.1: Running the Vectorized Dense Bach command line interperter (1)

can also be executed, adding three instances of u and four of a on the store, together to the t

and the s already present. Finally with such contents of the store, the primitive ask(u(2),a(2))

of the second subagent can now be executed successfully, leaving the store unmodified.

As a second example, we propose to evaluate the following expression:

paskprp2q, tp1qq ; tellpup3qqq ` pnaskpsp2q, tp4qq ; getptp1q, ap1qqq || ptellptp3qq ; tellpap3qqq

In the choice composition, the left member cannot be executed, as there is no token r and t

on the store. The right member is a parallel composition, that can start randomly with either

nask(s(2),t(4)) or tell(t(3)). The primitive tell(t(3)) being presently chosen as first step, 3

instances of token t are placed on the store. The two primitives nask(s(2),t(4)) and tell(a(3))

constituing a successful first step, in our example the choice is made on nask(s(2),t(4)), that

leaves the store unchanged. Between the primitive get(t(1),a(1)) and the primitive tell(a(3)),

only the second one can be executed successfully, adding three instances of the token a on the

store. Finally, the primitive get(t(1),a(1)) is executed, retrieving one unit of each token t and

a. The total result of the execution is available in Figure 9.2.

227

Welcome to Scala version 2.11.7 (OpenJDK Server VM, Java 1.7.0_95).

Type in expressions to have them evaluated.

Type :help for more information.

scala> :load dbach-cli.scala

Loading dbach-cli.scala...

...

scala> ag run "(ask(r(2),t(1));tell(u(3))) +

(nask(s(2),t(4));get(t(1),a(1)) || tell(t(3));tell(a(3)))"

{ t(3) }

{ t(3) }

{ t(3) a(3) }

{ t(2) a(2) }

Success

Figure 9.2: Running the Dense Bach command line interpreter (2)

9.2 A Command Line Simulator for Vectorized Dense Bach

9.2.1 Introduction

As for the BachT and the Dense Bach languages, the development of a command line simulator

is motivated by the necessity to provide a specific environment for the Vectorized Dense Bach

language, allowing real parallel executions and a real competition or alternative in a choice.

Moreover any agent blocked in its execution could be awakened by the concurrent execution of

another agent. As for the other simulators, the design relies essentially on the use of threads.

The kind of interface we obtain is as follows:

Welcome to Vectorized Dense Bach version 1.

Type in agents to evaluate them.

VDBach> ask(t(1),u(2)) + get(r(2),u(2)).

VDBach> >> Request 1 launched

VDBach>

In this example, starting from an empty store, no subagent in this choice composition can

be executed. The request associated with it has been launched and waits for an evolution

of the store that can release the blocking. Let us suppose for instance that a second agent

tell(t(3),r(3),u(3)) is now introduced, associated with a second request. It brings enough el-

ements to solve both subagents. Nevertheless, a random choice will be done in favour of one

228

of them. In this case, the second subagent has been chosen, leading to the following situation

where both the first and second requests are solved:

Welcome to Vectorized Dense Bach version 1.

Type in agents to evaluate them.

VDBach> ask(t(1),u(2)) + get(r(2),u(2)).

VDBach> >> Request 1 launched

VDBach> tell(t(3),r(3),u(3)).

VDBach> >> Request 2 launched

VDBach> >> tell(t(3),r(3),u(3)) successfully terminated

>> store : { t(3) r(3) u(3) }

VDBach> >> get(r(2),u(2)) successfully terminated

>> store : { t(3) r(1) u(1) }

VDBach> >> Request 1 successfully terminated

VDBach> >> Request 2 successfully terminated

VDBach>

These two examples show the flexibility in the behaviour of the command line simulator, as

they also show the capacity of the Vectorized Dense Bach language to handle simultaneoulsy

many instances of different dense tokens. As presented in the introduction of Chapter 5, this

capacity is clearly an extension of the Dense Bach language. Nevertheless this difference will

have a limited impact on the code of the new command line simulator with regard the one

developed for the Dense Bach language.

As we did for the interpreter, the structure of the data has been adapted to introduce the

notion of dense token that can be recorded in a list. The rest of the global structure still

consists of a parser of agents, a class managing the execution of agents, an implementation of

the store, and a global object containing the main method. Apart from the necessity to handle

the new structures of data, these elements will be slightly modified, as it will be presented in

the next sections. The code of the two abstract classes dtExpr and vDBachExpr is provided in

Figure 9.3.

229

class dtExpr

case class dt(tok: String, dens: Int) extends dtExpr

class vDBachExpr

case class vdbach_ast_empty_agent() extends vDBachExpr

case class vdbach_ast_primitive(primitive: String,

lDenseToken: List[dt]) extends vDBachExpr

case class vdbach_ast_agent(op: String, agenti: vDBachExpr,

agentii: vDBachExpr) extends vDBachExpr

Figure 9.3: The abstract Dense Token class and the abstract Vectorized Dense Bach data class

9.2.2 The parser

The parser used for the Vectorized Dense Bach command line simulator is exactly the same as

the one used for the interpreter. Concretely this means that two definitions, one to represent a

dense token and the second to represent a list of dense tokens come in addition to the definitions

of a token, and of the density. Furthermore, the definitions of the primitives have been adapted

to take into account the structure of list of dense tokens. Concerning the operators, their

priority order stays unchanged, with the highest one to the sequentiality and the lowest one to

the choice. The code is no more presented here but is available in annex (see Section D.2 of

Appendix D).

9.2.3 Executing agents

The VDB Exec class is in charge of the execution of the Vectorized Dense Bach agents. As

for the other command line simulators, the class receives a parsed agent, that is executed by

an exec function, according to its nature, i.e. a primitive, a sequentially composed agent, an

agent resulting from a parallel composition, or from a choice composition. For the primitive, an

exec primitive function processes the parsing result, but with a pair of parameters adapted to

the Vector of Dense tokens structure: on the one hand, a primitive type, and on the other hand,

a list of dense tokens. Following the type of the primitive, the function exec primitive invokes

the classical functions defined for the execution of the tell, the get, the ask or the nask, but now

adapted to handle a list of dense tokens. These functions are still used for the management of

the store, and are presented in Section 9.2.4. Finally, after the primitives, the cases of a parsed

agent resulting from a parallel composition, a sequential composition or a choice composition are

processed exactly as they are for the previous Dense Bach or BachT command line simulators.

In particular, for a parallel composition, threads are associated with both agents ag i and ag ii

230

acting in the composition, with the obligation to be joined at the end of their execution. For a

choice composition, the selection of the executable subagent among those that are part of the

choice, is based on the first step. A function ag first steps associates with every subagent a pair

constitued by a first step primitive, followed by a continuation. The continuations being stored

in a vector, their associated first steps primitives are stored in an indexed list, with the index

pointing to their corresponding continuation in the vector. A random permutation of the second

list is provided to a function exec l choice, that returns the first executable subagent selected

on its first step. Again due to the great similarity with the class DB Exec, the complete code of

the VDB Exec class with all the previous cited functions is not presented here but is available

in annex (see Section D.2 of Appendix D).

9.2.4 The store

The store is also represented as a mapping, associating a token with a number representing the

number of its occurrences on the store. As mentioned in section 9.2.3, four functions define

the Vectorized Dense Bach primitives tell, get, ask and nask, that handle now lists of dense

tokens. This implies that the very nature of these primitives is preserved, except that their

respective action on the store has to be repeated for every dense token present in the list that

they handle. Furthermore in a logic of threads, to perform their action, these function have

to take the lock on the store. Among them only those that modify the store – in this case

the tell and get primitives – have to notify their successful action. At the contrary of the tell

primitive that always succeeds, the three others can face a state of the store that does not

permit their complete execution, for some of the dense tokens that belong to their list. In such

a case, these primitives have to wait until a modification of the store is notified. To examplify

our explanations, Figure 9.4 presents the code of the get primitive.

In the continuation of Section 9.2.3 concerning the execution of an agent formed by a choice,

a subagent is selected for execution if its first step primitive is checked executable. This is per-

formed by boolean test functions, that check the same conditions as the four previous primitives

tell, get, ask and nask. When successfully selected they also perform their action on the contents

of the store.

Finally the exec l choice function mentioned in Section 9.2.3 uses the functions run l choice

and l choice defined in the store. The first function run l choice tests every first step primitive,

to determine if it is executable or not. In case of no success, the process waits until a notified

modification of the store restarts it. In case of success, the second function l choice returns

the index of its continuation in the vector of continuation. These two functions being identical

231

def get(vectDenseTokenList:List[dt]) = bb.synchronized {

var list : List[dt] = vectDenseTokenList

var s : String = reg_list(vectDenseTokenList)

while(!ag_eval(vectDenseTokenList)) {

println("Get waiting")

print("VDBach> ")

bb.wait()}

while(!(list.isEmpty)) {

mapTok(list.head.tok) = mapTok(list.head.tok) - list.head.dens

list = list.tail

}

println(">> get("+s+") successfully terminated")

print(" >> store :")

print_store

println()

print("VDBach> ")

bb.notifyAll()

true

}

Figure 9.4: The Vectorized Dense Bach get primitive

to their corresponding version for the BachT and Dense Bach command line simulators, their

code is not presented here but is available in annex (see Section D.2 of Appendix D), with the

complete code of the Vectorized Dense Bach command line simulator.

9.2.5 The main object

The code of the command line simulator finishes with the definition of a main object called

MYSimInLine. It contains the main function that executes a Vectorized Dense Bach agent.

The structure of this function is organized identically to the equivalent functions of the BachT

and Dense Bach command line simulators. Based on the content of the command line, a main

loop proposes different reactions. The commands history, print and clear are respectively

responsible for listing the last five commands, printing the contents of the store, and making

an empty store. Any other line that finishes with a dot is considered as an agent to be parsed

and executed, with a thread associated to it. Every launched thread receives a number that

permits to follow its complete execution. Being similar to what we did previously the code of

this main function is not reproduced in the main text of this thesis but is listed in annex (see

Section D.2 of Appendix D).

232

Welcome to Vectorized Dense Bach version 1.

Type in agents to evaluate them.

VDBach> tell(t(4),r(2));get(t(2),r(1)) || nask(s(2),t(1));ask(t(2)).

VDBach> >> Request 1 launched

VDBach> >> tell(t(4),r(2)) successfully terminated

>> store : { t(4) r(2) }

VDBach> >> get(t(2),r(1)) successfully terminated

>> store : { t(2) r(1) }

VDBach>

Figure 9.5: The execution of tell(t(4),r(2));get(t(2),r(1))

9.2.6 Using the Vectorized Dense Bach command line simulator

In addition to the example of execution provided in the introduction, let us now suppose that we

want the command line simulator to evaluate the following expression starting from an empty

store:

tellptp4q, rp2qq ; getptp2q, rp1qq || naskpsp2q, tp1qq ; askptp2qq

In this parallel composition, the first steps of both subagents are both executable. The

execution starts with the first subagent, that produces a store containing two instances of token

t and one of token r. The two tokens t block the execution of the nask(s(2),t(1)) primitive, as

shown in Figure 9.5.

A second request for introducing a new agent get(t(2)) to retrieve the two tokens t permits

the execution of the nask(s(2),t(1)) primitive. Nevertheless, the absence of tokens t on the

store suspends the execution of the ask(t(2)) primitive. Figure 9.6 shows this second step of

execution.

A third request introducing three instances of the token t permits to execute the ask(t(2))

primitive, and closes the execution of the parallel agent, as being the first request introduced.

Figure 9.7 shows the last result of the execution.

233

Welcome to Vectorized Dense Bach version 1.

Type in agents to evaluate them.

VDBach> tell(t(4),r(2));get(t(2),r(1)) || nask(s(2),t(1));ask(t(2)).

VDBach> >> Request 1 launched

VDBach> >> tell(t(4),r(2)) successfully terminated

>> store : { t(4) r(2) }

VDBach> >> get(t(2),r(1)) successfully terminated

>> store : { t(2) r(1) }

VDBach> get(t(2)).

VDBach> >> Request 2 launched

VDBach> >> get(t(2)) successfully terminated

>> store : { t(0) r(1) }

VDBach> >> nask(s(2),t(1)) successfully terminated

>> store : { t(0) r(1) }

VDBach>

Figure 9.6: The execution of nask(s(2),t(1))

234

Welcome to Vectorized Dense Bach version 1.

Type in agents to evaluate them.

VDBach> tell(t(4),r(2));get(t(2),r(1)) || nask(s(2),t(1));ask(t(2)).

VDBach> >> Request 1 launched

VDBach> >> tell(t(4),r(2)) successfully terminated

>> store : { t(4) r(2) }

VDBach> >> get(t(2),r(1)) successfully terminated

>> store : { t(2) r(1) }

VDBach> get(t(2)).

VDBach> >> Request 2 launched

VDBach> >> get(t(2)) successfully terminated

>> store : { t(0) r(1) }

VDBach> >> nask(s(2),t(1)) successfully terminated

>> store : { t(0) r(1) }

VDBach> >> Request 2 successfully terminated

VDBach> tell(t(3)).

VDBach> >> Request 3 launched

VDBach> >> tell(t(3)) successfully terminated

>> store : { t(3) r(1) }

VDBach> >> ask(t(2)) successfully terminated

>> store : { t(3) r(1) }

VDBach> >> Request 1 successfully terminated

VDBach> >> Request 3 successfully terminated

VDBach>

Figure 9.7: The execution of ask(t(2))

235

9.3 A command-line interpreter for MRT

9.3.1 Introduction

As for the Vectorized Dense Bach language we develop in the following section a command-line

interpreter for the MRT language. As explained in Section 3.1, this language consists in re-

writing pre-condition multi-sets in post-condition multi-sets. As for the previous interpreter,

the code is organised in four files : the data structure, the parser, the store and the simulator.

Nevertheless some of them need to be adapted to take into account the structure of muti-sets.

For MRT, the abstract data file defines two classes. The first one extends the notion of

expression, with two classes mr tp and mr tn that characterize a token preceeded by a plus

sign or a minus sign. The second class is dedicated to the abstract syntax tree as for the other

language interpreters. The definitions of the two abstract classes are as follows:

class mrExpr

case class mr_tp(tok: String) extends mrExpr

case class mr_tn(tok: String) extends mrExpr

class mrAgExpr

case class mrt_ast_empty_agent() extends mrAgExpr

case class mrt_ast_primitive(Pre: List[mrExpr],

Post: List[mrExpr]) extends mrAgExpr

case class mrt_ast_agent(op: String, agenti: mrAgExpr,

agentii: mrAgExpr) extends mrAgExpr

9.3.2 The parser

The parser defines the class MRTParsers that extends the class RegexParsers. Its construction

is adapted to take into account the fact that tokens are annotated and that the language contains

only a primitive written as Preconditions Ñ Postconditions , with the pre- and post-conditions

being lists of annotated tokens. The definition of tokens being the same as the one for the

BachT language, an annotated token is a sequential composition of a sign followed by a token,

defined as follows:

def atoken : Parser[mrExpr] = "+" ~ token ^^ {

case _ ~ vtoken => mr_tp(vtoken)} |

"-" ~ token ^^ {

case _ ~ vtoken => mr_tn(vtoken)}

236

Using this definition, we can then define atokenList as a non-empty list of annotated tokens

in the expected way with the Scala rep operator :

def atokenList: Parser[List[mrExpr]] = atoken ~ rep("," ~ atokenList) ^^ {

case vatoken ~ List() => List(vatoken)

case vatoken ~ List(op~lvat) => List(vatoken):::lvat

}

Equipped with this definition, we can then specify a pre-condition or a post-condition as

formed from the set bracket being opened and immediately closed, which denotes an empty

list of annotated tokens, or as containing inside the brackets at least one annotated token, and

hence a atokenList :

def preMR: Parser[List[mrExpr]] =

"{" ~ "}" ^^ { case _ ~_ => List() } |

"{" ~ atokenList ~ "}" ^^ { case _~lvat~_ => lvat }

def postMR: Parser[List[mrExpr]] =

"{" ~ "}" ^^ { case _ ~ _ => List() } |

"{" ~ atokenList ~ "}" ^^ { case _~lvat~_ => lvat }

Reading a primitive then consists in successively reading the opening parenthesis (, then

a pre-condition preMR, then the arrow -> then a post-condition postMR and finally the closing

parenthesis). The code of the primitive is as follows:

def primitive : Parser[mrAgExpr] = "(" ~ preMR ~ "->" ~ postMR ~ ")" ^^ {

case _ ~ vatokenList1 ~ _ ~ vatokenList2 ~ _ =>

mrt_ast_primitive(vatokenList1,vatokenList2)

}

These definitions are completed by the same code as for the other languages, to define

composed agents with the same priorities given to the sequential, parallel and non-deterministic

choice operators. The complete code of the parser is not presented here but is available in

Section E.1.2 of Appendix E.

9.3.3 The store

Given the specific syntax of the MRT primitive, handling the store requires new treatments. The

most notable one is that, as the pre- and post-conditions may contain several occurrences of to-

kens, mappings are introduced to associate each token with the required number of multiplicity,

both for the pre- and post-conditions. More precisely, four mappings are used :

237

• thePosPre for the tokens appearing positively in the pre-condition

• theNegPre for the tokens appearing negatively in the pre-condition

• thePosPost for the tokens appearing positively in the post-condition

• theNegPost for the tokens appearing negatively in the post-condition

These maps are constructed by means of two auxiliary methods add to pre lists and

add to post lists, which respectively add the annotated atoms of the pre- and post-conditions

to the mappings associated with them. The code for these mappings and methods is presented

in Figures 9.8 and 9.9.

Based on these mappings, and depending of the sign and the nature (pre or post) of the

conditons, differents methods, recalling the Dense Bach primitives, are called. For the negative

pre-conditions, a method nask is invoked to verify the absence of any of the concerned token.

For the positive pre-conditions, a method ask is invoked, to check for the effective presence

of at least the registered multiplicity of the concerned token on the store. For the negative

post conditions, a method get is invoked for retrieving from the store the registered multiplicity

of the concerned token. Finally, for the positive post conditions, a method tell is invoked to

place the required number of the concerned token on the store. The code for the primitives is

presented in Figure 9.10.

With the help of these methods, the evaluation of a pre-condition consists in constructing the

two mappings associated with it and in asking the tokens positively marked with the required

number together with negatively asking for the negatively marked tokens with respect to the

associated number. Similarly, the evaluation of a post-conditions consists in constructing the

two mappings associated with it and in respectively telling and getting the positively and

negatively marked tokens. The code for these two evaluations is listed in Figure 9.11. Note

that for optimization purposes, we continue the evaluation of a pre- or post-conditions until

it becomes false. This is materialized through the variables pre eval and post eval. These

variables are also returned as results of the evaluations.

The execution of a MRT primitive is then quite simple. It consists in evaluating the pre-

condition and in case of success of evaluating the post-condition. Note that since the evaluation

of the pre-condition does not modify the store, no action needs to be undertaken in case of

failure. The code is given in Figure 9.11.

As for the other languages, two auxiliary methods are provided to print the contents of the

store and for clearing it. A companion object is also given to the resulting MrtStore, named

bb.

238

var thePosPre = Map[Str ing , Int] ()

var theNegPre = Map[Str ing , Int] ()

var thePosPost = Map[Str ing , Int] ()

var theNegPost = Map[Str ing , Int] ()

def a d d t o p r e l i s t s (atoken : mrExpr) {

atoken match {

case mr tp (x) => {

i f (thePosPre . conta ins (x))

{ thePosPre (x) = thePosPre (x) + 1 }

else

{ thePosPre = thePosPre ++ Map(x >́ 1) }

}

case mr tn (x) => {

i f (! theNegPre . conta ins (x))

{ theNegPre = theNegPre ++ Map(x >́ 1) }

}

case => { p r i n t l n (” e r r o r in p r e cond i t i on”) }

}

}

Figure 9.8: Mappings associated with pre- and post-conditions

The complete code of the store class MrtStore is available in Section E.1.3 of Appendix E.

9.3.4 The simulator

For MRT, as for the other languages, the simulator is articulated around the run one method

which performs a transition step. On that basis, the mr exec all repeatedly executes one step

until the empty agent is reached or failure is produced.

Being similar, the code is not reproduced inside the main text of this thesis. It is however

listed in Section E.1.4 of Appendix E.

9.3.5 Using the command-line interpreter

The complete code of the command-line interpreter is listed in Section E.1.4 of Appendix E.

As for the other languages, it is organized in four files, three for the parser, the store and the

simulator, together with one for the definition of the case classes. For the ease of use, they have

been concatenated to form a single file, called complete simulator.scala.

239

def a d d t o p o s t l i s t s (atoken : mrExpr) {

atoken match {

case mr tp (x) => {

i f (thePosPost . conta ins (x))

{ thePosPost (x) = thePosPost (x) + 1 }

else

{ thePosPost = thePosPost ++ Map(x >́ 1) }

}

case mr tn (x) => {

i f (theNegPost . conta ins (x))

{ theNegPost (x) = theNegPost (x) + 1 }

else

{ theNegPost = theNegPost ++ Map(x >́ 1) }

}

case => { p r i n t l n (” e r r o r in po s t cond i t i on”) }

}

}

def p r e t o p r e l i s t (l a token : L i s t [mrExpr]) {

thePosPre = Map[Str ing , Int] ()

theNegPre = Map[Str ing , Int] ()

for (a <́ l a token) { a d d t o p r e l i s t s (a) }

}

def p o s t o p o s t l i s t (l a token : L i s t [mrExpr]) {

thePosPost = Map[Str ing , Int] ()

theNegPost = Map[Str ing , Int] ()

for (a <́ l a token) { a d d t o p o s t l i s t s (a) }

}

Figure 9.9: Mappings associated with pre- and post-conditions (continued)

240

def ask (token : Str ing , number : Int) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= number) { true }

else { fa l se }

else { fa l se }

}

def nask (token : Str ing , number : Int) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= number) { fa l se }

else { true }

else { true }

}

def t e l l (token : Str ing , number : Int) : Boolean = {

i f (theStor e . conta ins (token))

{ theStor e (token) = theStor e (token) + number }

else

{ theStor e = theStor e ++ Map(token >́ number) }

true

}

def get (token : Str ing , number : Int) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= number)

{ theStor e (token) = theStor e (token) ´ number

true

}

else { p r i n t l n (” dens i ty not enough”)

fa l se }

else { p r i n t l n (”no token present ”)

fa l se }

}

Figure 9.10: Elementary primitives for the pre- and post-conditions

241

def Pre (l a token : L i s t [mrExpr]) : Boolean = {

var pr e eva l = true

p r e t o p r e l i s t (l a token)

for ((t , v) <́ thePosPre) {

i f (p r e eva l) { pr e eva l = ask (t , v) }

}

for ((t , v) <́ theNegPre) {

i f (p r e eva l) { pr e eva l = nask (t) }

}

pr e eva l

}

def Post (l a token : L i s t [mrExpr]) : Boolean = {

var pos t eva l = true

p o s t o p o s t l i s t (l a token)

for ((t , v) <́ thePosPost) {

i f (po s t eva l) { pos t eva l = t e l l (t , v) }

}

for ((t , v) <́ theNegPost) {

i f (po s t eva l) { pos t eva l = get (t , v) }

}

pos eva l

}

def exe cu t i on p r im i t i v e (mrPre : L i s t [mrExpr] , mrPost : L i s t [mrExpr]) : Boolean = {

i f (Pre (mrPre)) { Post (mrPost)

true }

else { fa l se }

}

Figure 9.11: Evaluation of the pre- and post-conditions

242

dda$scala

Welcome to Scala version 2.11.7 (OpenJDK Server VM, Java 1.7.0_131).

Type in expressions to have them evaluated.

Type :help for more information.

scala> :load complete_simulator.scala

Loading complete_simulator.scala...

...

scala>ag run "({+s} -> {+t}) + ({-s} -> {+u,+u})"

{ u(2) }

scala>

Figure 9.12: Running the MRT command-line interperter

Using the postfix notation that was already used for the other languages, Figure 9.12 illus-

trates the computation of

pt`su Ñ t`tuq ` pt´su Ñ t`u,`uuq

As it requires in its pre-condition the presence of token s and as the store is initially empty the

first alternative cannot be executed. In contrast, the second alternative specifies the absence of

s in its pre-condition and can thus be executed. This leads to telling twice token u, as stated

in the post-condition.

As a second example, let us consider the following agent :

ppt`ru Ñ t`tuq; pt`tu Ñ t`uuqq || ppt´su Ñ t`ruq; pt`uu Ñ t´r,´tuqq

As s is absent from the store, initially empty, its computation consists of first executing the

pt´su Ñ t`ruq transition, which produces r on the store, then the transition pt`ru Ñ t`tuq

which produces t on the store, then the transition pt`tu Ñ t`uu which produces u on the store

and finally the transition pt`uu Ñ t´r,´tuq which removes r and t from the store. This is

indeed what is delivered by the command-line interperter, as depicted in Figure 9.13.

The third example is related to the chemical world, namely by the representation of the

reaction producing water with hydrogen and oxygen. If a token h2 represents a molecule of

hydrogen (H2), a token o2 a molecule of oxygen (O2) and a token h2o a molecule of water

(H2O), then the following processes represents the chemical reaction producing two molecules

of water, by consuming two molecules of hydrogen and one of oxygen.

243

dda$scala

Welcome to Scala version 2.11.7 (OpenJDK Server VM, Java 1.7.0_131).

Type in expressions to have them evaluated.

Type :help for more information.

scala> :load complete_simulator.scala

Loading complete_simulator.scala...

...

scala>ag run "(({+r}->{+t});({+t}->{+u})) || (({-s}->{+r});({+u}->{-r,-t}))"

{ r(1) }

{ r(1) t(1) }

{ r(1) t(1) u(1) }

{ r(0) t(0) u(1) }

Success

scala>

Figure 9.13: The MRT interperter on a parallel agent

t`h2,`h2,`o2u Ñ t´h2,´h2,´o2,`h2o,`h2ou

As easily observed the pre-conditions require two times a token h2 and one time a token o2.

The post-conditions destroy those molecules and produce two times a token h2o, representing

the two molecules of water.

9.4 A command line simulator for MRT

9.4.1 Introduction

We propose now to develop a command line simulator for the MRT language, that offers the

user a specific environment, with real parallel execution or real competition of alternative in a

choice. The global structure of the code is still composed of a parser, an executable class, a

representation of the store, and finally an object that performs the execution of a MRT agent.

The structure of the data is identical to the one used for the MRT interpreter. It is composed

of two abstract classes mrAgExpr and mrExpr. The case classes of the first one represent the

structure of a parsed MRT agent, and the case classes of the second one represent positively

244

annotated token, and negatively annotated tokens. The code of these abstract classes are

available in annex (see Section E.2 of Appendix E).

9.4.2 The parser

The parser is identical to the one used for the interpreter. It specifies annotated tokens, that

are grouped in lists, that themselves are used to form pre-condition and post-condition lists.

The reading of a primitive can then be expressed as reading the opening parenthesis (, then

a pre-condition preMR, then the arrow -> then a post-condition postMR and finally the closing

parenthesis). The definitions of composed agents stay unchanged, with the same priorities

given to the sequential, parallel and non-deterministic choice operators. The complete code of

the parser is available in Section E.2 of Appendix E.

9.4.3 Executing agents

The MRT Exec class is in charge of the execution of the MRT agents. The class receives a

parsed agent current agent, that is executed by an exec function, according to its nature, i.e.

a primitive, a sequentially composed agent, an agent resulting from a parallel composition, or

from a choice composition. For the primitive, an exec primitive function processes the parsing

result, but with four parameters in the form of mappings, that represent the lists of the positive

and negative tokens for the pre-conditions and those for the post-conditions. A function eval pre

defined on the store evaluates the pre-conditions of the primitive. In case of success, all the

post-conditions are executed. In case of failure, the execution of the primitive is suspended,

waiting for a notification of a modification of the store. Four functions that recall the Dense

Bach primitives tell, get, ask and nask are used in the evaluation of the pre-conditions, and the

execution of the post-conditions. They are defined on the store and presented in Section 9.4.4.

The code of the function exec primitive is as follows:

def exec_primitive(mrPrePos: Map[String,Int], mrPreNeg: Map[String,Int],

mrPostPos: Map[String,Int], mrPostNeg: Map[String,Int]) = bb.synchronized {

var post_eval = true

while(!(bb.eval_pre(mrPrePos,mrPreNeg))) {bb.wait()}

for ((t,v) <- mrPostPos) {

if (post_eval) { post_eval = bb.tell(t,v) }

}

for ((t,v) <- mrPostNeg) {

if (post_eval) { post_eval = bb.get(t,v) }

245

}

bb.notifyAll()

true

}

The processing of parsed agents resulting from a parallel composition, a sequential composi-

tion or a choice composition is done as in the previous command line simulators. In particular,

for a parallel composition, threads are associated with both agents ag i and ag ii acting in the

composition, with the obligation to be joined at the end of their execution. For a choice compo-

sition, the selection of the executable subagent among those that are part of the choice, is based

on the first step. Two lists are constructed, the first one grouping the first steps primitives, and

the second one grouping their continuations. A random permutation of the first list is given to

a function exec l choice that returns the continuation of the first executable subagent selected

on its first step. Again the great similarity of the MRT Exec class with its corresponding class

of the VDB Exec class makes useless to list the code. It is available in annex (see Section E.2

of Appendix E).

9.4.4 The store

The store is again represented as a mapping, associating a token with a number representing the

number of its occurrences on the store. As mentioned in Section 9.4.3, four functions similar to

the Dense Bach primitives tell, get, ask and nask are defined. All of them have two parameters:

a string for the token name, and an integer for its number of occurrences. These functions

are used for the evaluation of the pre-conditions or the execution of the post-conditions. For

the negative pre-conditions, the nask(token,number) is invoked to verify that number is strictly

smaller than the registered multiplicity of the concerned token on the store. For the positive pre-

conditions, a method ask(token,number) is invoked, to check that number has at least the same

value as the registered multiplicity of the concerned token on the store. For the negative post

conditions, a method get(token,number) is invoked for retrieving number from the registered

multiplicity of the concerned token on the store. Finally, for the positive post conditions, a

method tell(token,number) is invoked to place the required number of the concerned token on

the store.

Finally the store defines the function l choice used by the function exec l choice invoked in

Section 9.2.3. The function returns the continuation of an executable first step. Again due to

the great similarity between this code and the equivalent code of the Vectorized Dense Bach

246

command line simulator, we do not list it in the main text of the thesis. However it is available

in annex (see Section E.2 of Appendix E).

9.4.5 The main object

The code of the command line simulator finishes with the definition of a main object called

MYSimInLine. This code is identical to the corresponding code developed for the Vectorized

Dense Bach command line simulator. This means that it provides also the same commands

history, print and clear, that are respectively responsible for listing the last five commands,

printing the contents of the store, and making an empty store. Any other command is considered

as an agent, which is then submitted to the parser, and executed with an associated thread.

The code of the MYSimInLine object is available in annex (see Section E.2 of Appendix E).

9.4.6 Using the MRT command line simulator

We now describe some examples of the use of the MRT command line simulator. Let us suppose

we want to execute the following agent, starting from an empty store:

({+t,+t,+s,+s,+s}->{-t,-t,-s,-s,-s});({}->{+u,+u,+u,+a,+a})

|| ({}->{+t,+t,+t,+s,+s,+s,+s});({+u,+u,+a,+a}->{}).

This agent consists in a parallel composition of two subagents, each of them being a sequen-

tial composition. Let us explore its execution. In the first step primitive of the first subagent,

the retrieval of two tokens t and three tokens s cannot be executed, as the pre-conditions are

not fulfilled. In the second subagent, the first step is executable, as it consists in depositing

three instances of t and four of s. With such a content of the store, the first step primitive of

the first subagent becomes now executable, with a retrieval of two tokens t and three tokens s.

This primitive is sequentially followed by a primitive that puts three instances of t and four of s

on the store. At this stage, the left part of the parallel composition is now completely executed.

The last primitive of the second subagent consisting in verifying the presence of two tokens u

and of two tokens a on the store is executable, its execution ends successfully the execution of

the parallel agent. The final result is a store with one token t, one token s, two tokens a and

three tokens u. The answer of the command line simulator is as follows:

247

Welcome to MRT version 1.

Type in agents to evaluate them.

MRT> ({+t,+t,+s,+s,+s}->{-t,-t,-s,-s,-s});({}->{+u,+u,+u,+a,+a})

| || ({}->{+t,+t,+t,+s,+s,+s,+s});({+u,+u,+a,+a}->{}).

MRT> >> Request 1 launched

MRT> >> Request 1 successfully terminated

MRT> print.

{ t(1) s(1) a(2) u(3) }

MRT>

Let us now suppose that we want to execute a choice composed agent of two sequentially

composed subagents, starting again from an empty store:

({}->{+t,+t});({-s,-s,-t}->{}) + ({+u,+u,+r}->{});({+t,+t,+r}->{-t,-t,-r}).

In this choice composition, only the first step of the first subagent can be successfully

executed. It provides two tokens t on the store, as follows:

Welcome to MRT version 1.

Type in agents to evaluate them.

MRT> ({}->{+t,+t});({-s,-s,-t}->{}) + ({+u,+u,+r}->{});({+t,+t,+r}->{-t,-t,-r}).

MRT> >> Request 1 launched

MRT> print.

{ t(2) }

MRT>

The second primitive in the first subagent cannot be executed, as it requires no token t on

the store. The first request is placed in a waiting state, until a new agent retrieves the two

tokens t of the store. This is done by introducing a second request, that permits the complete

successful execution of the first one, as follows:

248

Welcome to MRT version 1.

Type in agents to evaluate them.

MRT> ({}->{+t,+t});({-s,-s,-t}->{}) + ({+u,+u,+r}->{});({+t,+t,+r}->{-t,-t,-r}).

MRT> >> Request 1 launched

MRT> print.

{ t(2) }

MRT> ({+t,+t}->{-t,-t}).

MRT> >> Request 2 launched

MRT> >> Request 2 successfully terminated

MRT> >> Request 1 successfully terminated

MRT>

9.5 Conclusion

As in Chapter 8, we have developed an interpreter and a command line simulator for the Vector-

ized Dense Bach and the MRT languages with again the objective of providing the reader with

interpreters and command line simulators that permit to experience with these two languages.

The implementation is very similar to those used for the interpreters and command line sim-

ulators developed for BachT and Dense Bach. In particular the design of our implementation

is still inspired by Pistache [MdM11], with regards to the case classes, and the use of random

generated numbers to handle the parallel and choice compositions. We continue to use threads,

with a simpler design based on a global lock on the store.

249

250

Chapter 10

Simulations

The interpreters presented in chapters 8 and 9 are useful to experiment with the dense languages.

However they offer quite a limited interaction. Indeed, because of their command line nature,

they only allow to introduce one agent at a time. The commmand line simulators provide more

flexibility and have a more user friendly interface. Nevertheless the modification of the store

is only visible through the command line and the user has no control on which alternative to

choose.

This chapter presents an alternative way of experimenting with the languages. It is based

on graphical elements to illustrate the contents of the store as well as to execute agents, either

in an interactive fashion or automatically. As the two previous chapters have evidenced the

similarites of the languages and the implementation adaptations to be made, we shall focus in

this chapter on Dense Bach only.

10.1 A graphical simulator

10.1.1 Design

10.1.1.1 The store

The central element to animate is without any doubt the store. It indeed consitutes the core

of the graphical simulator and the corresponding window is, in fact, the one created when the

application is launched. Figure 10.1 shows it at that moment. As can be seen, the central part

is composed of the contents of the store, empty at start time but subsequently modified either

by the execution of agents or more directly through buttons that allow to add (by telling) or

remove (by getting) tokens with a specified density. A button also allows to clear the contents

251

Figure 10.1: The store window

of the store by removing all the elements.

The store window also allows to launch two kinds of agents running in parallel, the so-called

autonomous and interactive agents. They are described in the next subsections.

10.1.1.2 The interactive agent

When the button “New interactive agent ”is pressed in the store window, a new window appears

in the form depicted in Figure 10.2. It offers a field for editing the agent to be processed. The

button “Submit” parses the introduced agent which is translated, in the “Current agent” part,

in an interactive form, with a button being presented for each executable primitive. The user

then selects the one he wishes to execute, which has the double effect, on the one hand, of

modifying the store and the store window accordingly, and, on the other hand, of updating the

“Current agent” part with the new agent to be executed.

As the store can be updated by the execution of concurrent agents or directly by interactions

in the store window, a “Refresh” button is offered to update the current agent part with the

primitives that can be executed.

10.1.1.3 The autonomous agent

In a similar way, pressing the button “New autonomous agent” results in launching a new

window of the type displayed in Figure 10.3. A field is there offered to introduce an agent

252

addedFiles/interactive_blackboard.eps

Figure 10.2: The interactive agent window

Figure 10.3: The autonomous agent window

253

addedFiles/interactive_agent.eps
addedFiles/autonomous_agent.eps

to be executed. The button “Submit” results in parsing this agent and in displaying it in

the “Current agent” part. Two buttons then allow to execute it either in a run or step by

step. The “Next” button offers this latter possibility. In case an execution step is possible, the

“Current agent” part is updated with the agent resulting from a step and, of course, the store

windows is updated accordingly. The agent (and the store) remains the same in case no further

computation is possible. Pressing the “Run” button has similar effects but all the steps are

made one after the other directly.

It is worth noting that a choice is made randomly by the simulator in case it has to be

performed as a result of an agent composed by the non deterministic choice operator or by the

parallel composition operator.

10.1.2 Usage

Let us now illustrate the use of the graphical simulator. Suppose we are interested in the

following agent :

ptellptp2qq ` tellpvp2qqq ; pnaskpup3qq || tellpap2qqq

The next two subsections present its evaluation according to the two types of execution :

interactive or autonomous.

10.1.2.1 The interactive agent

To take a step by step control of the execution of the proposed agent, the user opens an

interactive agent window and fills it with the agent of interest, as shown in Figure 10.4.

Figure 10.5 shows the result of pressing the “Submit” button and illustrates the fact that two

primitives are executable : tell(t(2)) and tell(v(2)). They correspond to the two choices

offered by the non deterministic choice. Note that the primitives in the parallel composition

are not yet transformed in buttons, as the choice needs first be evaluated.

Assume the user chooses the first button, representing the execution of the tell(t(2))

primitive. The store is then adapted as shown in Figure 10.6 and the interactive agent

window becomes as shown in Figure 10.7. In this figure, the choice of the agent tell(v(2))

has disappeared and the agent is now reduced to the parallel composition of the two primitives

nask(u(3)) and tell(a(2)). Both primitives are now transformed in active buttons, as they

can now be evaluated. As a result, through the buttons the user can choose between them.

254

Figure 10.4: The interactive agent window for a specific agent

Figure 10.5: The interactive agent window for a specific agent

255

addedFiles/example_interactive_agent.eps
addedFiles/example_interactive_agent_step_1.eps

Figure 10.6: The store window after the choice of the tell(v(2)) button in the

interactive window

Figure 10.7: The second step of the interactive agent window with the remain-

ing parallel composition

256

addedFiles/example_inter_store_1.eps
addedFiles/example_interactive_agent_step_2.eps

Figure 10.8: The third step of the interactive agent window after the execution

of the nask(u(3)) primitive.

Assume the user chooses the nask(u(3)) primitive (which can be executed as there are no

token u on the store). The interactive agent window evolves to the state of figure 10.8 and

the store remains unchanged with respect to figure 10.6.

As a final step, the user executes the remaining tell(a(2)) primitive. Its effect is to modify

the store by introducing a token a(2) on it. Figure 10.10 represents the new state of the store,

and figure 10.9 indicates that the original agent has now been completely executed, which is

materialized by the fact that the current agent has become the empty agent.

10.1.2.2 The autonomous agent

The execution with respect to the autonomous form proceeds similarly. The agent is first edited

in the text field of the “Autonomous agent” window and then parsed by pressing the “Submit”

button. The resulting window is depicted in figure 10.11. Pressing the button “Run” then

executes the agent completely, which has the effect of, for instance, executing the tell(v(2))

and tell(a(2)) primitives. The resulting store is displayed in the store window of figure 10.12.

As the agent can be executed again, the second execution adds its results to the situation

obtained after the first run. The choice between tell(t(2)) and tell(v(2)) can produce as

a result two other tokens t or two tokens v. Figures 10.13 and 10.14 respectively represent

the induced contents of the store windows. Note that, as explained before, this choice is done

randomly by the graphical simulator, without any control of the user.

257

addedFiles/example_interactive_agent_step_3.eps

Figure 10.9: The fourth step of the interactive agent window

Figure 10.10: The store window after the third step of execution of the interactive

window

258

addedFiles/example_interactive_agent_step_4.eps
addedFiles/example_inter_store_3.eps

Figure 10.11: The autonomous agent window for a specific agent

Figure 10.12: The first resulting store window

259

addedFiles/example_autonomous_agent.eps
addedFiles/example_store_1.eps

Figure 10.13: The possible second resulting store window

Figure 10.14: The possible third resulting store window

260

addedFiles/example_store_2.eps
addedFiles/example_store_3.eps

Pressing the “Next” button produces the same results step by step, again without control

of the user on the choices to be made during the computation.

10.2 Implementation

10.2.1 Introduction

The graphical simulator is coded so as to meet the two computing possibilities offered here-

above to execute a Dense Bach agent. On the one hand, the user can let the program execute

automatically the agent. On the other hand, the program parses the agent and, based on the

state of the store, it offers to the user a choice of executable primitives. Moreover as presented

in Section 10.1.2, the results of the parsing, the choice of the executable primitives and the

state of the store must be visible in dedicated windows. Concretely the code is divided in seven

parts : an abstract representation of the data, a parser, a class grouping the primitives acting

on the store, a simulator that executes the parsed agent, and finally three classes that manage

the three windows of the simulation, namely the window representing the store, the window for

the automatic execution of the agent and the window for the interactive execution of the agent.

10.2.2 The structure of the data

The struture of the data is almost the same as the one used for the Dense Bach language, in the

development of its interpreter and its command line simulator. Regarding the empty agent or the

composed agents, the abstract class Expr is refined respectively in a class DB AST Empty Agent

or a class DB AST Agent. Regarding the primitives, a distinction must be done between those

that are executable and those that are not, with respect to the state of the store. Two classes

are then associated with the primitives: on the one hand, the DB AST Primitive for a prim-

itive that is not executable with regard to the state of the store, and, on the other hand, the

DB Exec AST Primitive for a primitive that is executable. These two classes differ only by a

parameter called path, only present in the class DB Exec AST Primitive. In a form of a list of

integers, it indicates the coordinates of the executable primitive inside the agent. The code of

the class Expr is as follows:

class Expr

case class DB_AST_Empty_Agent() extends Expr

case class DB_AST_Primitive(primitive: String, token: String, density: Int)

extends Expr

case class DB_Exec_AST_Primitive(primitive: String, token: String, density: Int,

261

path:List[Int]) extends Expr

case class DB_AST_Agent(op: String, primitive: Expr, agent: Expr) extends Expr

10.2.3 The parser

The parser is exactly the one that has been developed for the interpreter and the command

line simulator of the Dense Bach language and we thus refer the reader to the explanations of

Subsection 8.3.2 of Chapter 8, and the code in annex (see Section F.2 of Chapter F). A class

PrettyPrinter offers a function translate to transform a parsed agent db ag in a human readable

string. This class is defined inductively on the structure of db ag. Concretely an empty agent

is just transformed in an empty string. A primitive is written in its classical form : its name

followed within parenthesis by the name of the token, that is itself followed by its density also

within parenthesis. Finally for a composed agent, the function translate is called recursively on

both subagents, that are written within square brackets, with the operator written in between.

The code of the function translate is as follows:

class PrettyPrinter {

def translate(db_ag: Expr):String = {

db_ag match {

case DB_AST_Empty_Agent() => ""

case DB_AST_Primitive(db_prim,token,density) =>

db_prim + "(" + token + "(" + density.toString + "))"

case DB_AST_Agent(op,ag_i,ag_ii) =>

"[" + translate(ag_i) + "] " + op + " [" + translate(ag_ii) + "]"

}

}

}

10.2.4 The store

The class DBStore is implemented as for the Dense Bach interpreter and command line simu-

lator, in a form of a mapping that associates a token with a number representing the number

of its occurrences on the store. The code of the four primitives tell, ask, get and nask is un-

changed. In the case of an agent formed by a choice, subagents are selected based on their

first step primitives, that must be checked as executable or not. Four boolean test functions

test tell, test ask, test get and test nask perform this operation by checking the same conditions

for their execution as the four primitives functions tell, ask, get and nask. If successfully selected

they perform their action on the contents of the store. Finally, two functions print store and

clear store permit to respectively print the store and to resset it to the empty map. The code

262

of the class DBStore is available in Section F.3 of Chapter F.

10.2.5 The simulator

The possibilities to execute an agent in an automatic or an interactive way imply a different

processing of the parsed agent. The class DBSimulExec groups the functions invoked in both

cases. The automatic processing relies on two functions called run one and exec primitive. The

interactive processing uses four functions called run unselect, run selected, test exec primitive

and ag first steps. We detail these functions hereafter.

The function run one is defined as in Section 8.3.4, in an inductive way with regard to the

structure of an expression db ag of a parsed agent. It performs a transition step with respect to

the operational semantics of Section 4.1.2. In case of the execution of a primitive, the function

run one makes use of function test exec primitive, that calls the associated primitive function on

the store. For the parallel or choice composition, the first subagent to be executed is still selected

randomly. Both subagents must be evaluated in case of the parallel composition, while only the

selected one is evaluated for the choice composition. The complete code of functions run one

and test exec primitive is available in annex (see Section F.4 of Chapter F).

The interactive processing of an agent is based on the detection, at every step of the execu-

tion, of the executable primitives. These primitives are presented to the user as active buttons,

among which he makes his choice. This approach needs to associate a coordinate with every

primitive inside the agent. Based on the binary tree structure of the parsed agent, integer 1 is

associated with the left branch, and integer 2 with the right branch, and this for every level of

the tree. These numbers are added in a list of integer, the empty list being the coordinate of

the root of the tree, corresponding to the initial agent.

Let us clarify this with an example and suppose for instance that the agent to be executed

is as follows, starting from the empty store:

ptellptp2qq ; askptp2qqq || pnaskpsp2qq ; getptp2qqq

It is clear that in this expression only the primitives tell(t(2)) and nask(s(2)) are executable.

The empty list being associated with the global parallel agent, the subagents tellptp2qq ; askptp2qq

and naskpsp2qq ; getptp2qq receive respectively the number 1 and 2, that are added in two lists

[1] and [2]. Inside these lists, the primitives tell(t(2)) and ask(t(2)), connected by a sequential

operator, receive also the number 1 and 2 respectively. As the list of their composition is [1],

263

they have finally the respective coordinates [1,1] and [2,1]. In a similar way, the primitives

nask(s(2)) and get(t(2)) receive respectively the coordinates [1,2] and [2,2].

The function ag first steps is defined inductively on the structure of its first argument db ag,

a parsed expression Expr. In particular for a primitive DB AST Primitive that is tested exe-

cutable with the function test exec primitive on a given store, the function ag first steps returns

an executable primitive DB Exec AST Primitive with its path coordinate. In the contrary, the

function just returns the primitive without any path coordinate. For a sequential composition,

the function is called recursively on the first subagent, with a path list increased with 1. For

the parallel and the choice compositions, the function acts recursively on both subagents agi

and agii, increasing their list of coordinates with respectively by 1 and 2. The complete code

of ag first steps is as follows:

def ag_first_steps(db_ag: Expr,path:List[Int]):Expr = {

db_ag match {

case DB_AST_Empty_Agent() => DB_AST_Empty_Agent()

case DB_AST_Primitive(db_prim,token,density) =>

{ if (test_exec_primitive(db_prim,token,density,bb))

{ DB_Exec_AST_Primitive(db_prim,token,density,path) }

else { DB_AST_Primitive(db_prim,token,density) }

}

case DB_AST_Agent(";",ag_i,ag_ii) => DB_AST_Agent(";",

ag_first_steps(ag_i,path:::List(1)),ag_ii)

case DB_AST_Agent("||",ag_i,ag_ii) => DB_AST_Agent("||",

ag_first_steps(ag_i,path:::List(1)),ag_first_steps(ag_ii,path:::List(2)))

case DB_AST_Agent("+",ag_i,ag_ii) => DB_AST_Agent("+",

ag_first_steps(ag_i,path:::List(1)),ag_first_steps(ag_ii,path:::List(2)))

}

}

The coordinates being attributed to the executable primitives, the function run selected

performs the execution of a parsed agent, that is selected by the user. The function is defined

inductively on the parsed expression db ag. An empty agent stay unchanged. For a primitive,

a distinction is made if the user selects a primitive that is executable or not. In the first case,

the expression DB Exec AST Primitive is executed with the function exec primitive and the

store is adapted. In the second case, the DB AST Primitive is returned unchanged, with no

264

action on the store. If the user selects a sequential composition DB AST Agent(“; ”,ag i,ag ii),

the function run selected is applied on the first agent ag i. If the resulting agent new ag is

empty, the second agent ag ii is returned. Otherwise, the sequentially composed expression

DB AST Agent(“; ”,new ag,ag ii) is returned. For a choice composition DB AST Agent(“+

”,ag i,ag ii) only one of the two subagents ag i and ag ii can be executed. Following the choice

of the user, the function run selected is called on the first agent ag i, or the second agent ag ii.

For the parallel composition DB AST Agent(“ || ”,ag i,ag ii), both subagents must be executed.

If the coordinate of the selected subagent is in the left part of the parallel agent, a new ag i is

calculated with a run selected call on the subagent ag i. The second subagent ag ii is processed

with a function run unselect, that transforms or maintains it in a not executable new ag ii. If

the new ag i is empty, the parallel processing returns new ag ii as result, otherwise it returns

a parallel composed agent DB AST Agent(“ || ”,new ag i,ag ii). The process is similar if the

selected subagent is in the second branch of the composed agent.

The function run unselect that is used in the process of a parallel composed agent is also

defined in an inductive way, on a parsed expression db ag. In case of a DB AST Primitive, the

function maintains it in an unselected form if the primitive is not executable. It transforms it

in an unselected form if the primitive is executable, but has not been choosen by the user. The

complete codes of the functions run selected and run unselect are displayed hereafter:

def run_selected(db_ag: Expr,path:List[Int]): Expr = {

db_ag match {

case DB_AST_Empty_Agent() => DB_AST_Empty_Agent()

case DB_AST_Primitive(db_prim,token,density) =>

DB_AST_Primitive(db_prim,token,density)

case DB_Exec_AST_Primitive(db_prim,token,density,pp) => {

exec_primitive(db_prim,token,density,bb)

DB_AST_Empty_Agent() }

case DB_AST_Agent(";",ag_i,ag_ii) => {

val new_ag = run_selected(ag_i,path.tail)

if (new_ag == DB_AST_Empty_Agent()) { ag_ii }

else { DB_AST_Agent(";",new_ag,ag_ii) }

}

case DB_AST_Agent("||",ag_i,ag_ii) => {

265

if (path.head == 1) {

val new_ag_i = run_selected(ag_i,path.tail)

val new_ag_ii = run_unselect(ag_ii)

if (new_ag_i == DB_AST_Empty_Agent()) { new_ag_ii }

else { DB_AST_Agent("||",new_ag_i,new_ag_ii) } }

else {

val new_ag_i = run_unselect(ag_i)

val new_ag_ii = run_selected(ag_ii,path.tail)

if (new_ag_ii == DB_AST_Empty_Agent()) { new_ag_i }

else { DB_AST_Agent("||",new_ag_i,new_ag_ii) } }

}

case DB_AST_Agent("+",ag_i,ag_ii) => {

if (path.head == 1) { run_selected(ag_i,path.tail) }

else { run_selected(ag_ii,path.tail) }

}

}

}

def run_unselect(db_ag: Expr): Expr = {

db_ag match {

case DB_AST_Empty_Agent() => DB_AST_Empty_Agent()

case DB_AST_Primitive(db_prim,token,density) =>

DB_AST_Primitive(db_prim,token,density)

case DB_Exec_AST_Primitive(db_prim,token,density,pp) =>

DB_AST_Primitive(db_prim,token,density)

case DB_AST_Agent(op,ag_i,ag_ii) =>

DB_AST_Agent(op,run_unselect(ag_i),run_unselect(ag_ii))

}

}

The complete code of the class DBSimulExec is available in annex (see Chapter F in sec-

tion F.4).

10.2.6 The interactive blackboard

The code of the window associated with the store is written as an executable object called

InteractiveBlackboard, that extends the class SimpleSwingApplication. It is organised in two

266

parts, the first one for the representation of the current store, and the second one for the

representation of the buttons that permit to invoke respectively, on the one hand, an automatic

processing of the agent, and, on the other hand, an interactive processing of it. The windows

associated with these two last parts are explained in Sections 10.2.7 and 10.2.8.

The representation of the store is defined as a fixed value called theCurrentStore, an instance

of the GridBagPanel class. This means that all the elements that constitue the store are

arranged in a grid with respects to constraints. The first element is the label theStoreTitle,

initialized with the text “Current store”. A set of constraints is associated with this label.

The values gridx and gridy specify the grid cell where the element should be placed, in this

case (0,0). The gridwidth specifies the number of grid cells that the element should span. The

weightx parameter specifies how much the column should resize when the window is resized.

In this case with a value of 0.5, there is almost no resizing. The fill parameter specifies how

the element should fill its space in the layout. Here the default value none is used, that has

been defined to the Horizontal one. This means that the component is wide enough to fill its

display area horizontally. The parameter anchor is used to determine where to place the label

inside the area, in this case in the west area. Among the other possible values are for instance

Center, North, NorthWest. The last parameter insets is used to fix the minimum amount of

space between the component and the edges of its display area. All these constraints are finally

applied to the layout. The complete code of the label theStoreTitle is as follows:

val theStoreTitle = new Label { text = "Current store" }

c.weightx = 0.5

c.fill = Fill.None

c.gridx = 0

c.gridy = 0

c.gridwidth = 2

c.anchor = Anchor.West

c.insets = new Insets(5,5,5,5)

layout(theStoreTitle) = c

The value of the constraints can be redefined, if necessary, for every element to be placed

within the grid. The next element is the clear button. It is defined as an instance of the class

Button. It is initialized with the text “Clear”and is positioned at the East of the grid. Its code

is as follows:

val theStoreClearButton = new Button { text = "Clear" }

c.anchor = Anchor.East

layout(theStoreClearButton) = c

267

An instance of the class FlowPanel is used to display the current contents of the store,

defined as bbObj. This class arranges its contents horizontally, one after the other. The initial

content is defined as a fixed label, with the text “currently empty”. The values hGap and vGap

specify the horizontal and vertical sizes of the panel. An empty transparent border is traced

arround. The code of the bbObj is as follows:

val labelbb = new Label("currently empty")

val bbObj = new FlowPanel {

background = blue

opaque = true

contents += labelbb

hGap = 40

vGap = 30

border = Swing.EmptyBorder(15,10,10,10) }

c.gridx = 1

c.gridy = 1

layout(bbObj) = c

The store window offers to the user the possibility to insert dense tokens on the store or

to retrieve them. This is done in order to adapt the store manually for permitting a complete

execution of an agent. To do so another flowpanel, called theStoreButtons, is defined. It groups

two buttons tell and get, and two text fields, the first one labelled with “token”to receive the

name of the token to be inserted, and the second one labelled with “density”to receive its

associated density. The token text field is initialized with t. The density text field is initialized

with 1. As they are defined in a flowpanel, all these elements are aligned horizontally. After

their definitions as instances of the Button, Label or TextField classes, they are added to the

content of the flowpanel theStoreButtons, according to the following code:

val theStoreButtons = new FlowPanel {

background = blue

val theTellButton = new Button { text = "Tell" }

val theGetButton = new Button { text = "Get" }

val theSTokenText = new Label { text = "token : " }

val theSTokenField = new TextField { columns = 15

text = "t" }

val theSDensityText = new Label { text = "density : " }

val theSDensityField = new TextField { columns = 10

text = "1" }

opaque = true

contents += theTellButton

contents += theSTokenText

268

contents += theSTokenField

contents += theSDensityText

contents += theSDensityField

contents += theGetButton

hGap = 40

vGap = 20

border = Swing.EmptyBorder(5,10,5,10)

}

c.gridx = 1

c.gridy = 2

layout(theStoreButtons) = c

border = Swing.EmptyBorder(15,10,15,10)

Similarly to the theCurrentStore value, a fixed value theCreateAgentButtons is defined to

group within a flowpanel the buttons used to invoke, on the one hand, an automatic execution

of the agents, and, on the other hand, an interactive way of processing it. These two buttons

receive as names, respectively “New Autonomous Agent”, and “New Interactive Agent”. The

code to create this flowpanel is as follows:

val theCreateAgentButtons = new FlowPanel {

val theCreateAutoAgentButton = new Button { text = "New Autonomous Agent" }

val theStrutCreateButton = new Label { text = " " }

val theCreateInterAgentButton = new Button { text = "New Interactive Agent" }

background = blue

contents += theCreateAutoAgentButton

contents += theStrutCreateButton

contents += theCreateInterAgentButton

}

Both values theCurrentStore and theCreateAgentButtons being described, they have to be

grouped in the main window. This the goal of the top function, that creates an instance of the

class MainFrame. The two previous elements are to be placed vertically, and they are added

vertically to the content of the main window, which is an instance of the class BoxPanel. The

code of the function top is the following:

def top = new MainFrame {

title = "The interactive blackboard"

contents = new BoxPanel(Orientation.Vertical) {

background = blue

opaque = true

269

contents += theCurrentStore

contents += theStrutPanelI

contents += theCreateAgentButtons

border = Swing.EmptyBorder(30,30,10,10) }

}

All the buttons that have been defined previously must execute a specific action. As a

reminder, these buttons are the Clear button, the Tell button, the Get button, the button

New Autonomous Agent for processing automatically the agent, and finally the button New

Interactive Agent for processing it in an interactive way. Specific functions are defined for

these actions. They are respectively the clear store function, the tell on store function, the

get from store function, the c n auto agent function and the c n inter agent function.

The clear function calls the function defined with the same name in the class DBStore,

that empties the store. Then the function store to label refreshes the element bbObj of theCur-

rentStore. The code of the clear function is as follows:

def clear_store {

mybb.clear_store

store_to_label(mybb.theStore)

println("Cleared the store")

}

The code of the store to label function makes use of an internal function newToken to con-

struct a new label associated with a pair (token, density). Clearing the current content of the

bbObj element, the function store to label scans all the elements of the mapping theStore. The

function newToken transforms them in labels that are added to the content of the element bbObj

of theCurrentStore. The function revalidate() instructs the layout manager to recalculate the

layout, as the current content has been cleared. The repaint() function repaints the component

bbObj of theCurrentStore, as it has been modified. The code of the store to label function is as

follows:

def store_to_label(theStore:Map[String,Int]) {

def newToken(token:String,density:Int) = {

new Label { text = token + "[" + density.toString + "]"

foreground = new java.awt.Color(0, 0, 0)

background = jmjblue

opaque = true }

}

270

theCurrentStore.bbObj.contents.clear

for ((t,d) <- theStore)

{ theCurrentStore.bbObj.contents += newToken(t,d) }

SwingUtilities.invokeLater(new Runnable(){

public void run(){

theCurrentStore.bbObj.revalidate()

theCurrentStore.bbObj.repaint()

}

}

The function tell on store provides the values inside the token field and the density field

of theCurrentStore to the tell function of the class DBStore. When modified, the store to label

function refreshes the content of the element bbObj of the theCurrentStore. The action of the

get from store is similar, as it appears by comparison of both codes:

def tell_on_store {

val token_arg = theCurrentStore.theStoreButtons.theSTokenField.text

val density_arg = (theCurrentStore.theStoreButtons.theSDensityField.text).toInt

val tres = mybb.tell(token_arg,density_arg)

if (tres) {

store_to_label(mybb.theStore)

println("told " + token_arg + " with density " + density_arg)

mybb.print_store

}

}

def get_from_store {

val token_arg = theCurrentStore.theStoreButtons.theSTokenField.text

val density_arg = (theCurrentStore.theStoreButtons.theSDensityField.text).toInt

val gres = mybb.get(token_arg,density_arg)

if (gres) {

store_to_label(mybb.theStore)

println("got " + token_arg + " with density " + density_arg)

}

}

The functions c n auto agent and c n inter agent create respectively an instance of the

InteractiveAutoAgent and InteractiveInterAgent classes. These classes manage the windows

for the automatic or interactive processing of the agents, respectively. As many windows of

the same can be opened, they receive a different number at every creation. These classes are

presented in Sections 10.2.7 and 10.2.8. The codes of these functions are as follows:

271

def c_n_auto_agent {

nb_agent = nb_agent + 1

val new_auto_agent = new InteractiveAutoAgent(nb_agent,mybb)

}

def c_n_inter_agent {

nb_agent = nb_agent + 1

val new_inter_agent = new InteractiveInterAgent(nb_agent,mybb)

}

All these functions must be associated with the proper button, to be executed when it is

selected. The following code listens to the possible selection of the buttons, and associates with

them the appropriate reaction.

listenTo(theCurrentStore.theStoreClearButton,

theCurrentStore.theStoreButtons.theTellButton,

theCurrentStore.theStoreButtons.theGetButton,

theCreateAgentButtons.theCreateAutoAgentButton,

theCreateAgentButtons.theCreateInterAgentButton)

reactions += {

case ButtonClicked(theCurrentStore.theStoreClearButton)

=> clear_store

case ButtonClicked(theCurrentStore.theStoreButtons.theTellButton)

=> tell_on_store

case ButtonClicked(theCurrentStore.theStoreButtons.theGetButton)

=> get_from_store

case ButtonClicked(theCreateAgentButtons.theCreateInterAgentButton)

=> c_n_inter_agent

case ButtonClicked(theCreateAgentButtons.theCreateAutoAgentButton)

=> c_n_auto_agent

}

Finally, the five defined buttons are monitored. A click on one of them has for effect to call

the appropriate function. This is represented in the following code:

listenTo(theCurrentStore.theStoreClearButton,

theCurrentStore.theStoreButtons.theTellButton,

theCurrentStore.theStoreButtons.theGetButton,

theCreateAgentButtons.theCreateAutoAgentButton,

theCreateAgentButtons.theCreateInterAgentButton)

reactions += {

case ButtonClicked(theCurrentStore.theStoreClearButton)

=> jmj_clear_store

272

case ButtonClicked(theCurrentStore.theStoreButtons.theTellButton)

=> jmj_tell_on_store

case ButtonClicked(theCurrentStore.theStoreButtons.theGetButton)

=> jmj_get_from_store

case ButtonClicked(theCreateAgentButtons.theCreateInterAgentButton)

=> c_n_inter_agent

case ButtonClicked(theCreateAgentButtons.theCreateAutoAgentButton)

=> c_n_auto_agent }

The complete code of the InteractiveBlackboard is available in annex (see Section F.5 of

Chapter F).

10.2.7 The interactive execution

The class InteractiveInterAgent is an extension of the Frame class and manages the interactive

execution of a Dense Bach agent. On the one hand, the class contains the code for constructing

the window. On the other hand, the class provides the functions associated with the buttons

of the window, to perform some specific actions. Within this window a text area serves to edit

a Dense Bach agent. The parsing of this agent transforms it in a form where all the executable

primitives are active buttons, that can be selected by the user. The class InteractiveInterAgent

has for parameters the number of the agent, and the store.

Regarding the design of the window, it is constructed in a similar way as for the Interactive-

Blackboard and is thus not presented in details. The complete code is available in Section F.6 of

Chapter F. The different elements are positioned inside an instance of the class GridBagPanel,

called theAgent. It contains essentially a scrollable agent field to edit the agent to be executed.

A Submit button is available for parsing the agent. The result of the parsing is displayed in

a flowpanel called theCurrentAgentField. In this panel, the syntax of the agent is preserved.

Nevertheless all the primitives that it contains and that are executable with regard to the state

of the store, are transformed in a button. Finally a Refresh button permits to adapt the exe-

cutable state of the primitives in the parsed agent, taking into account any modification brought

to the store in the InteractiveBlackboard window.

The function for the parsing of the agent to be parsed takes the text of theAgentField

of theAgent element. It constructs a parsed agent by invoking the function parse agent of

the class DBSimulParser, on the agent to be parsed. Then the function ag first steps of the

class DBSimulExec, acting on the agent parsed and an empty list, constructs a current agent

expression, attributing to every primitive inside the agent a coordinate in the form of a list of

integers. This expression is translated in a syntaxical form where every executable primitive is

273

represented by a button. Again both functions revalidate() and repaint() force the layout to be

recalculated and the component theCurrentAgentField to be repainted. The complete code of

the parse agent function is as follows:

def parse_agent {

agent_to_be_parsed = theAgent.theAgentField.text

agent_parsed = mySimulParser.parse_agent(agent_to_be_parsed)

current_agent = myDBsimul.ag_first_steps(agent_parsed,List())

theAgent.theCurrentAgentField.contents.clear

translate(current_agent)

theAgent.theCurrentAgentField.revalidate()

theAgent.theCurrentAgentField.repaint()

println("output : "+agent_parsed)

println("output agent labelled : "+current_agent)

}

The function translate has a db ag expression as parameter and transforms it in a list of

widgets. To perform its action, it uses essentially two functions: the translate into widget list

function, and the group db widgets function. The function translate into widget list produces a

list of dbWidget, that can be of two forms, a label or a button, as it results from the code of

the following abstract class dbWidget :

class dbWidget

case class DB_Label(txt_label: String) extends dbWidget

case class DB_Button(txt_ag: String,path:List[Int]) extends dbWidget

The code of the function translate into widget list is defined inductively on the structure

of an ag expression. It makes essentially the difference between a DB AST Primitive and a

DB Exec AST Primitive. In the first case, a label is produced as widget. In the second case, a

button is produced, with its coordinates, represented by path, inside the structure. The code of

the function translate into widget list is as follows:

def translate_into_widget_list(ag: Expr): List[dbWidget] = {

ag match {

case DB_AST_Empty_Agent() => List(DB_Label("Empty agent"))

case DB_AST_Primitive(db_prim,token,density) => {

val ag_label = db_prim + "(" + token + "," + density.toString + ")"

List(DB_Label(ag_label)) }

case DB_Exec_AST_Primitive(db_prim,token,density,path) => {

274

val ag_label = db_prim + "(" + token + "," + density.toString + ")"

List(DB_Button(ag_label,path)) }

case DB_AST_Agent(op,ag_i,ag_ii) => {

List(DB_Label("[")) :::

translate_into_widget_list(ag_i) :::

List(DB_Label("] " + op + " [")) :::

translate_into_widget_list(ag_ii) :::

List(DB_Label("]")) }

}

}

The function group db widgets uses the list of dbWidgets produced by translate into widget list

to associate a button with the widgets of type DB Button. If clicked by the user, this button

performs one step in the execution of the agent. The code of the function group db widgets is

defined in an inductive way on the list of dbWidgets, and is as follows:

def group_db_widgets(l_db_wi: List[dbWidget]) {

l_db_wi match {

case List() => { }

case DB_Button(txt_ag,path) :: l_res => {

theAgent.theCurrentAgentField.contents += newStepButton(txt_ag,path)

group_db_widgets(l_res) }

case DB_Label(txt_label) :: lres => {

val (gen_label,ll_db_wi) = group_db_labels(txt_label,lres)

theAgent.theCurrentAgentField.contents += newAgTxt(gen_label)

group_db_widgets(ll_db_wi) }

}

}

In the case of DB Button the function newStepButton creates an instance of a subclass

InteractiveStepButton, as shown by the following code:

def newStepButton(prim_txt: String,path:List[Int]) = {

new InteractiveStepButton(prim_txt,path)

}

The subclass InteractiveStepButton extends the Button class. Based on its two parameters

prim txt and path, it defines the reaction of the associated button with the primitive prim txt,

275

by invoking the function execute step on path. The code of the subclass InteractiveStepButton

is as follows:

class InteractiveStepButton(prim_txt:String,path:List[Int]) extends Button {

this.text = prim_txt

reactions += {

case ButtonClicked(b) => execute_step(path) }

}

The invoked function execute step has for parameter the path coordinate of the button.

With the function run selected of the class DBSimulExec, it processes the selected primitive in-

side the current agent and produces a resulting agent res agent. Then based on it the function

ag first steps determines a new current agent, with its executable primitives and their coor-

dinates. The translation in executable buttons is finally displayed again in the current agent

field, with the actions of revalidate() and repaint(). The code of the function execute step is as

follows:

def execute_step(path:List[Int]) {

res_agent = myDBsimul.run_selected(current_agent,path)

current_agent = myDBsimul.ag_first_steps(res_agent,List())

theAgent.theCurrentAgentField.contents.clear

translate(current_agent)

theAgent.theCurrentAgentField.revalidate()

theAgent.theCurrentAgentField.repaint()

println("new agent : "+res_agent)

InteractiveBlackboard.redisplay_store

}

If the agent evolves to a non empty form, with no possibility to make a next step, the user

can adapt the store of the InteractiveBlackboard with the Tell and Get buttons, as explained

in Section 10.2.6. Clicking on the button Refresh forces a new parsing of the resulting agent

res agent, to take into account the new configuration of the adapted store. Concretely this is

done by using the functions ag first steps and translate to determine what are the executable

primitives inside the agent, and to present them as buttons to be clicked by the user. The

functions revalidate() and repaint() make the new agent visible as new content. The code of

the function refresh agent is as follows:

def refresh_agent {

current_agent = myDBsimul.ag_first_steps(res_agent,List())

theAgent.theCurrentAgentField.contents.clear

276

translate(current_agent)

theAgent.theCurrentAgentField.revalidate()

theAgent.theCurrentAgentField.repaint()

}

Finally, the functions parse agent and refresh agent must be associated with their appropri-

ate buttons, as reactions to be triggered in case of their clicking. The code of this attribution

is follows:

listenTo(theAgent.theSubmitAgentButton,theAgent.theRefreshAgentButton)

reactions += {

case ButtonClicked(theAgent.theSubmitAgentButton) => parse_agent

case ButtonClicked(theAgent.theRefreshAgentButton) => refresh_agent

The complet code of the class InteractiveInterAgent is available in annex (see Section F.6

of Chapter F).

10.2.8 The automatic execution

The user has for second option to execute the Dense Bach agent, on the one hand, in an

automatic way or, on the other hand, in a step by step way. The class that manages this option

is called InteractiveAutoAgent, which is an extension of the Frame class. This class has for

parameters the number of the agent, and the store, and produces the window for introducing

the agent to be processed. The text field theAgentField to edit the Dense Bach agent, and the

current agent field that displays the result of its parsing in a human readable syntax are inserted

in a instance of a GridBagPanel, in a similar way as for the windows of the InteractiveBlackboard

and the InteractiveInterAgent classes. It is not presented in details but is avalaible in annex

(see Section F.7 of Chapter F).

Three buttons are displayed in the window. They are respectively the Submit button, the

Run button and the Next button. They are associated with three functions that precise the

reaction to be triggered if the user chooses to click one of them. The function parse agent is

associated with the button Submit. This function parses the Dense Bach agent edited in the

theAgentField text area. It invokes the function parse agent of the class DBSimulParser to

parse the Dense Bach agent. Then it uses the function translate of the class PrettyPrinter,

to display the label theCurrentAgentField in a human readable text format. The code of the

function parse agent is as follows:

277

def parse_agent {

agent_to_be_parsed = theAgent.theAgentField.text

agent_parsed = mySimulParser.parse_agent(agent_to_be_parsed)

current_agent = agent_parsed

theAgent.theCurrentAgentField.text = myTranslator.translate(current_agent)

println("output : "+agent_parsed)

}

The second function execute step is associated with the button Next. This function invokes

the run one function of the class DBSimulExec to process one step of execution of the Dense

Bach agent. The result of the function is a boolean that indicates if the execution of the step is

successful or not. In case of success, the resulting new agent is translated in a human readable

way and redisplayed in the text area of theCurrentAgentField. The code of this function is as

follows:

def execute_step:Boolean = {

var exec_result = true

previous_agent = current_agent

if (current_agent != DB_AST_Empty_Agent()) {

exec_result = myDBsimul.run_one(current_agent) match

{ case (false,_) => false

case (true,new_agent) =>

{ current_agent = new_agent

true

}

}

theAgent.theCurrentAgentField.text = myTranslator.translate(current_agent)

InteractiveBlackboard.redisplay_store

}

exec_result

}

Finally the third function is the execute all function, associated with the Run button. Under

the condition that there is still an agent to process, and that no failure in the execution has

occured, this function executes in a while loop the previous execute step function. The code of

this function is as follows:

def execute_all = {

var failure = false

while (current_agent != DB_AST_Empty_Agent() && !failure) {

println("enter execution step")

278

failure = !execute_step

}

}

These three functions are associated with their respective buttons, as reactions in case of

their selection, through the following code:

listenTo(theAgent.theSubmitAgentButton,

theAgent.theRunningButtons.theStepAgentButton,

theAgent.theRunningButtons.theRunAgentButton)

reactions += {

case ButtonClicked(theAgent.theSubmitAgentButton) => parse_agent

case ButtonClicked(theAgent.theRunningButtons.theStepAgentButton) => execute_step

case ButtonClicked(theAgent.theRunningButtons.theRunAgentButton) => execute_all

}

The complete code of the class InteractiveAutoAgent is available in Section F.7 of Chapter F.

10.3 Living example

Let us illustrate the use of the simulator with an example and let us suppose that the user

wants to observe the execution of the following Dense Bach agent:

ptellpap3qq ; naskpup2qq || getprp2qqq

Let us suppose that the user wants to study the execution in an interactive way. In the Inter-

active Blackboard window of Figure 10.15, he selects the button New Interactive Agent, that pro-

duces the window of Figure 10.16, where he can edit the agent tellpap3qq ; naskpup2qq || getprp2qq.

279

Figure 10.15: The Interactive Blackboard window with an empty store

Figure 10.16: The Interactive Agent window with the agent edited

In Figure 10.17 the agent is parsed, proposing the primitive tell(a(3)) to be executable.

280

addedFiles/finalExample1.eps
addedFiles/finalExample2.eps

Figure 10.17: The parsed agent with the primitive tell(a(3)) executable

The result of the execution of the primitive tett(a(3)) introduces three tokens a in the store,

as shown in Figure 10.18.

Figure 10.18: The store with the three tokens a

Figure 10.19 indicates that the primitive nask(u(2)) is now executable.

281

addedFiles/finalExample3.eps
addedFiles/finalExample4.eps

Figure 10.19: The parsed agent with the primitive nask(u(2)) executable

After the succesful execution of the nask(u(2)) primitive, Figure 10.20 shows the resulting

agent stopped on the get(r(2)) primitive that cannot be executed, following the state of the

store.

Figure 10.20: The parsed agent with the primitive get(r(2)) non executable

In order to make the last primitive get(t(2)) executable, the store is adapted with its Tell

button, by introducing four instances of the token r. Figure 10.21 shows this adaptation.

282

addedFiles/finalExample5.eps
addedFiles/finalExample6.eps

Figure 10.21: The store with the four tokens r added with the Tell button

With the new configuration of the store, the get(r(2)) primitive can be activated. This is

done with the button Refresh in the interactive window. Figure 10.22 shows this activation.

Figure 10.22: The get(r(2)) activated with the refresh button

The last primitive get(r(2)) is now executed. As a result the final resulting agent is empty,

as shown in Figure 10.23, and the final store contains three instances of the token a and two of

the token r, as shown in Figure 10.24.

283

addedFiles/finalExample7.eps
addedFiles/finalExample8.eps

Figure 10.23: The empty agent after the execution of the get(r(2)) primitive

Figure 10.24: The final store with the two tokens r and the four tokens a

Let us suppose now that the user wants to execute the agent tellpap3qq ; naskpup2qq || getprp2qq

in an automatic way, starting from a store cleared into an empty state with its Clear button, re-

producing the Figure 10.15. Figure 10.25 shows the window of the autonomous agent, obtained

by clicking the button New Autonomous Agent. In this window the agent has been edited and

parsed, with the button Submit.

As the execution of the agent with the Run button is done in the same conditions, the

resulting agent stops again on the primitive get(r(2)), as shown in Figure 10.26. In the same

284

addedFiles/finalExample9.eps
addedFiles/finalExample10.eps

Figure 10.25: The Autonomous Agent window with the agent edited and parsed

time, three units of the token a are placed on the store, reproducing Figure 10.18.

Figure 10.26: The resulting agent after the Run execution

285

addedFiles/finalExample11.eps
addedFiles/finalExample12.eps

Figure 10.27: The autonomous agent after the Step execution

To solve this problem, the store is again adapted, by introducing four units of the token r,

using the Tell button, reproducing the situation of Figure 10.21. The last primitive can now

be executed, by using the button Next. Figure 10.27 shows an empty current agent after this

successful execution, that has also for effect to retrieve two units of the token r on the store,

leading to the same configuration as in Figure 10.24.

10.4 Conclusion

In this chapter, we have developed a simulator for the execution of Dense Bach agents. It offers

the user three windows for visualizing the different ways to execute an agent, and the effect of

its execution on the store. The executions can be done automatically, or step by step, or even

in a complete interactive way, by providing the user the choice of the primitive that he wants

to execute. By its graphical approach this tool completes the interpreters and command line

simulators that have been developed.

286

addedFiles/finalExample14.eps

Chapter 11

Modeling Dense Bach with Petri

Nets

Programs of concurrent and distributed systems are complex, as they can combine lots of

components and interactions. The analysis of the execution of such programs is at the same

time also very complex. Programs written in the dense languages we have proposed are no

exception to this situation. On the other hand, Petri Nets are widely recognized as good tools

to analyze concurrent programs, as they provide in details all the possible states of the execution

of a concurrent program and allow for the analysis of classical properties such as reachability

and deadlock-freedom. Vandorpe [Van09] has developed a software to convert a Bach expression

into a Petri net, to analyze the resulting net and to simulate, using this net, the execution of

the initial Bach expression. Building upon this piece of work, we propose an extension to model

and analyze Dense Bach agents. Another novelty with respect to [Van09] is that we use the

concept of Open Petri Nets introduced in [BBG09]. This extension has been programmed with

the Scala language. As for Chapter 10, we shall again concentrate on Dense Bach.

11.1 Open Petri nets

In [BBG09], Baldan has defined an open Petri net as an ordinary place / transition net en-

dowed with distinguished sets of open places, representing the interfaces through which the

environment interacts asynchronously with a net.

Definition 28. Denoting by S‘ the free commutative monoid over S, the element of which

are called multiset over S, an open (P/T Petri) net is a tuple N “ pS, T,‚ p.q, p.q‚, Oq where S

is the set of places, T is the set of transitions, ‚p.q,p.q‚ : T Ñ S‘ are functions mapping each

transition to its pre- and post-set, and O Ď S is the set of open places.

287

Figure 11.1 represents an open Petri net. In this picture, open places carry a label and are

represented by double circles. Other places are also marked, as are transitions as well. Referring

to Definition 29 and assuming that pre-conditions and post-conditions of transitions only handle

one token, the elements are as follows :

S “ ta, b, c, P1, P2, P3, P4u

T “ tt1, t2, t3, t4u

‚pt1q “ ta, P1u

‚pt2q “ tP1u

‚pt3q “ tP3, P4u

‚pt4q “ tP2, P3u

pt1q‚ “ ta, P2u

pt2q‚ “ tP2, P3u

pt3q‚ “ tc, P4u

pt4q‚ “ tbu

O “ ta, b, cu

Figure 11.2 depicts a second example of an open Petri net, in the form of a duplicator agent.

It consumes one token provided by the environment in place a and produces two token in places

b and c.

11.2 DB-open Petri Nets

In his master thesis, Vandorpe [Van09] has proposed a model to translate Bach agents in

Petri nets. In this model every BachT agent is associated with a compositional block, which

schematically is composed of an entry transition, followed by intermediate places and transitions

to finally reach an exit place. Figure 11.3 represents this basic block, where the oval rectangle

corresponds to the compositional block. It has on its left part a transition t, and on its right

part a Pout place, that receives the result of the firing of the agent. This place is reached if and

only if all the actions of the primitive on the store have been completed successfully. The Pin

place is not part of the compositional block, and serves to initialize the compositional block.

This place corresponds to the Pout place of the compositional agent that may precede the one

of figure 11.3.

288

✬

✫

✩

✪

P1

P4

a

P2

P3

b

c

t2

t3

t4

t1

Figure 11.1: An example of an open Petri net (from [BBG09]).

✬

✫

✩

✪

a

b

c

P1t1 t2

Figure 11.2: A duplicator agent in open Petri Net

289

✬

✫

✩

✪
Pin

¨ ¨ ¨

Pout
t

Figure 11.3: Basic block of the model of Vandorpe in a Petri net

In contrast, our idea is to express that block by using the open places of a Petri net. As

a result, every agent is represented by two places, one for the entry place (Pin) and the other

for the exit place (Pout). The entry place is potentially at the source of a finite number of

transitions. Each of these transitions corresponds to a path of execution of the agent. The exit

place is pointed by a finite number of transitions. The firing of each of them will produce one

token that will be received by the exit place. As we will see later, the idea is that the first

transitions may compete with each other to proceed but some of them may be executed. In

contrast, only one of the final transition will be executed. It is also worth observing that the

entry transitions may require more than one token to be consumed whereas the final transitions

only produce one token. The fact that entry transitions may consume more than one token

results in defining a number of tokens to be provided in the entry place to allow the agent to

proceed. Hence, our translation not only provides a Petri Net but also such a number of tokens.

Figure 11.4 depicts our structure of an agent, with n transitions related to the entry place

and m related to the exit place. In this figure, the places Pin and Pout are open places, and

are the only places visible from the environment. They represent respectively the entry and

exit places of the Petri Net associated with the considered agent. In particular the exit place

indicates the end of the execution of the agent, and is always used as an activator of the next

agent. The black rectangles represent the transitions (which are firable if their pre-condition

is satisfied). The arrows from places to transitions are equipped with a weight that represents

the number of tokens consumed by the firing of the transitons. In particular, the numbers α1,

α2, . . . , αn are the tokens consumed by transitions t1, t2, . . . , tn, respectively. Similarly, the

numbers on the arrows from transitions to places indicate the number of tokens produced in the

290

✬

✫

✩

✪

N

Pin Pout

. . .

t1

...

t11

...

tn t1m

α1

α2

αn

1

1

1

Figure 11.4: A compositional agent in Open Petri Net

places by firing the transitions. Finally, the number N indicates the initial number of tokens N

assumed to be present in the place Pin to allow the Petri Net to mimick the behaviour of the

corresponding Dense Bach agent.

To complete the picture, one has to take care of the representation of the store. Follow-

ing [Van09], the content of the store is modeled by places in the corresponding Petri Net. Every

token on the store is associated with two places. The presence of n tokens in a first place means

that n instances of the token are on the store. Any interaction of a primitive with a token on

the store consists then to connect the transition in the basic block of the primitive, with the

place associated with the token. In the following, to make the distinction between the token

manipulated by the Dense Bach language in the token space, and the token representing the

flux of execution of the Petri net, we shall respectively name them Dense Bach token and Petri

token.

The Dense Bach primitives tell, ask, get and nask are the only four possible interactions

with the token space. The three first are easy to be modeled in a Petri net, as they only

consist in adding or retrieving some Dense Bach tokens in the place representing the Dense

Bach token they are acting on. However the fact that Petri Nets are not Turing complete

induces a difficulty to represent the nask primitive. Indeed in absence of inhibitor arcs, the

formalism of Petri cannot easily test the absence of a Dense Bach token in a place, as it cannot

fire a transition starting from this empty place.

This difficulty is got arround by associating a second place with any Dense Bach token.

More formally, we assume, for any dense token, a maximum number of occurrences, say MAX,

and we then associate every Dense Bach token t present on the store with a pair of places Pt

291

✬

✫

✩

✪

Pin Pout

Pt Pt

Figure 11.5: A compositional agent in Open Petri Net

and Pt in the token space. The place Pt contains the number of Petri tokens representing the

number of instances of t that are present on the store. The Pt place, also called the anti-place,

keeps the number of instances that are not yet used.

In our model of place and anti-place, the situation where there is no Dense Bach token t on

the store corresponds on the one hand to an empty place Pt, and on the other hand to a Pt

which contains the maximum number MAX of Petri tokens. Every primitive will have a specific

effect on these places. Following their types, these effects are explained in subsection 11.3.1.

It is worth observing that the two places must obey an invariant property that we will

guarentee subsequently : for any token t, the sum of the number of tokens in Pt and the

number of tokens in Pt is equal to MAX. Note also that we might consider that MAX varies

from token to token. However, for the ease of the presentation, we shall stick to a fixed number

MAX for all the tokens.

Figure 11.5 represents one of the simplest open Petri net structures of a Dense Bach agent

interacting with the representation of a dense token on the store. In this case it corresponds to

get(t(1)). There the Dense Bach token t is associated with a pair of places Pt and Pt. This leads

us to the more general form illustrated in Figure 11.6. There, for the ease of the presentation,

names of the transitions and weight of the final transitions, present in Figure 11.4, have been

omitted and places and anti-places associated with the tokens under consideration are drawn

without the outgoing and incoming arcs between them and the transitions.

As a conclusion for this section, we can formalize the Open Petri Nets we shall consider

through the notion of DB-open Petri Net.

292

✬

✫

✩

✪

N

Pin Pout

Pt1 Pt1
Ptn Ptn

. . .

. . .

...
...

α1

α2

αn

Figure 11.6: General form of a Petri Net associated with an agent

Definition 29. Given a set of tokens T, a DB-open Petri Net on T is a tuple of the form

pS, T,‚ p.q, p.q‚, O, Pin, Pout, P ts,M,Nq where

• S is the set of places of the Petri Net with

– Pin being the entry place,

– Pout being the exit place,

– Pts “ tPt : t P Tu Y tPt : t P Tu being the set composed of the places and anti-places

associated with the tokens in T

– O “ tPin, Poutu Y Pts Ď S being the set of open places

• T is the set of transitions with ‚p.q and p.q‚ : T Ñ S‘ being functions that map each

transition to its pre- and post-set

• M : S Ñ N is a partial marking of places such that MpPtq “ 0 and MpPtq “ MAX for

any t P T

• N is a (strictly) positive number

As the careful reader will have noticed, the markingM essentially provides the initialisation

of the places and anti-places associated with the tokens. We shall however also employ it later

to provide tokens to auxiliary places in order to control the execution of the Petri Net associated

with a Dense Bach agent.

In the following, for the ease of the presentation, we shall subsequently abuse language and

employ the term DB-open Petri Net on an agent A to denote a DB-open Petri Net on the set

293

of tokens contained in A. The precise definition of the DB-open Petri Net associated with an

agent is provided inductively by the following section.

11.3 Modeling Dense Bach agents

11.3.1 The basic primitives

The following subsections present the translation in a DB-open Petri net of the four basic

primitives of Dense Bach. Figures 11.7 to 11.10 constitute the basic bricks for the construction

of any Petri net, corresponding to the translation of a Dense Bach expression. The form of the

figures presents always the same structure: every net begins with an open place and must finish

with an open place, both being represented by a double circle.

11.3.1.1 The tell primitive

Figure 11.7 depicts the representation of the tell primitive in an open Petri net. Basically, the

introduction of a Dense Bach token t(m) with density m on the store triggers a transfer of m

Petri tokens from the anti place Pt to the place Pt, as the direction of the arrows indicates.

Regarding the Petri Net, the firing of the transition also consumes one Petri token in the entry

open place Pin, and produces one Petri token in the exit open place Pout.

With the agent tell(t(m)) we thus associate the following DB-open Petri Net

pS, T,‚ p.q, p.q‚, O, Pin, Pout, P ts,M,Nq on T “ ttu:

• S = O = { Pin, Pout, Pt, Pt}

• Pin P O is the entry place

• Pout P O is the exit place

• Pts “ tPtu Y tPtu

• T = {tellptpmqq }

• ‚ptellptpmqqq “ tPtpmq, Pinu

• ptellptpmqqq‚ = {Ptpmq, Pout}

• MpPtq “ 0 and MpPtq “ MAX

• N = 1

294

✬

✫

✩

✪

Pin

1

Pout

Pt

0

Pt

30

tellptp2qq

1

2

1

2

Figure 11.7: The Dense Bach tell(t(2)) primitive in an Open Petri Net with MAX = 30

Note that, following our developments on page 76, we denote by tPtpmqu the multiset com-

posed of m occurrences of Pt and similarly we denote by tPtpmqu the multiset composed of m

occurrences of Pt.

11.3.1.2 The ask primitive

Figure 11.8 depicts the representation of the ask primitive in a DB-open Petri net. As for the

tell primitive the presence of a dense token t(m) of density m on the store is represented by a

pair of two internal places: a place Pt and its corresponding anti-place Pt. The place Pt contains

m Petri tokens, and the anti-place Pt contains the difference between the maximum of Petri

tokens and m. The presence of all the tokens in Pt and the absence of tokens in Pt represents

the effective absence of a token in the store. The ask primitive introduces no new token on the

store, as its main action is to verify the effective presence of a token on it. For this reason, there

is no link between the anti place Pt and the transition, but only a bidirectional link between

the transition and the place Pt.

The behaviour of the open net associated with the ask(t(m)) primitive is then the following:

the firing of the transition first consumes a token in the entry open place Pin, and m Petri

tokens in the internal Pt place to verify the presence of m instances of t on the store. Then

it produces a token in the exit open place Pout and puts m Petri tokens again in the internal

place Pt to restore the initial situation. For this reason the arrow between the transition and

the place Pt is bi-directional.

With the agent ask(t(m)) we associate thus the following DB-open Petri Net

pS, T,‚ p.q, p.q‚, O, Pin, Pout, P ts,M,Nq on T “ ttu:

295

✬

✫

✩

✪

Pin

1

Pout

Pt

0

Pt

30

askptp2qq

1

2

1

2

Figure 11.8: The Dense Bach ask(t(2)) primitive in an Open Petri Net with MAX = 30

• S = O = { Pin, Pout, Pt, Pt}

• Pin P O is the entry place

• Pout P O is the exit place

• Pts “ tPtu Y tPtu

• T = {askptpmqq }

• ‚paskptpmqqq “ tPtpmq, Pinu

• paskptpmqqq‚ = {Ptpmq, Pout}

• MpPtq “ 0 and MpPtq “ MAX

• N = 1

Here we denote again by tPtpmqu the multiset composed of m occurrences of Pt.

11.3.1.3 The get primitive

Figure 11.9 depicts the representation of the get(t(m)) primitive in a DB-open Petri net. The

difference between the get and the ask primitive is that get not only checks for the presence

of m occurrences of the token t on the store, but also retrieves them effectively from the store.

Both place Pt and anti place Pt are concerned, but in an opposite way to the tell primitive.

Indeed, now m instances of the Dense Bach token t must disappear from the store. This is

performed by a transfer of m Petri tokens from the place Pt to the anti-place Pt.

296

The behaviour of the open net associated with the get primitive is the following : the firing

of the transition first consumes a token in the entry open place Pin and m Petri tokens in the

internal Pt to verify the presence of m instances. Then it produces a token in the exit open

place Pout and puts m Petri tokens in the internal anti-place Pt to express the decrease of m

Dense Bach tokens on the store.

With the agent get(t(m)) we thus associate the following DB-open Petri Net

pS, T,‚ p.q, p.q‚, O, Pin, Pout, P ts,M,Nq on T “ ttu:

• S = O = { Pin, Pout, Pt, Pt}

• Pin P O is the entry place

• Pout P O is the exit place

• Pts “ tPtu Y tPtu

• T = {getptpmq }

• ‚pgetptpmqqq “ tPtpmq, Pinu

• pgetptpmqqq‚ = {Ptpmq, Pout}

• MpPtq “ 0 and MpPtq “ MAX

• N = 1

Again, we denote by tPtpmqu the multiset composed of m occurrences of Pt and similarly we

denote by tPtpmqu the multiset composed of m occurrences of Pt.

11.3.1.4 The nask primitive

Finally, Figure 11.10 depicts the representation of the nask primitive in a DB-open Petri net.

The primitive nask(t(m)) has a dual behaviour to the ask primitive, as it now checks for the

presence of minimum Max ´ m ` 1 Petri tokens in the anti-place associated with the token

t. For this reason, the anti place Pt is the only concerned. The firing of the transition thus

first consumes a Petri token in the open place Pin, as well as MAX ´ m ` 1 Petri tokens in

the anti-place Pt. Then it produces a Petri token in the exit open place Pin and replaces the

previous Max´m` 1 previoulsy consumed Petri tokens in the same place anti-place Pt.

With the agent nask(t(m)) we thus associate the following DB-open Petri Net

pS, T,‚ p.q, p.q‚, O, Pin, Pout, P ts,M,Nq on T “ ttu:

297

✬

✫

✩

✪

Pin

1

Pout

Pt

0

Pt

30

getptp2qq

1

2

1

2

Figure 11.9: The Dense Bach get(t(2)) primitive in an Open Petri Net with MAX = 30

• S = O = { Pin, Pout, Pt, Pt}

• Pin P O is the entry place

• Pout P O is the exit place

• Pts “ tPtu Y tPtu

• T = {naskptpmqq }

• ‚pnaskptpmqqq “ tPtpMAX ´m` 1q, Pinu

• pnaskptpmqqq‚ = {PtpMAX ´m` 1q, Pout}

• MpPtq “ 0 and MpPtq “ MAX

• N = 1

Again we denote by tPtpmqu the multiset composed of m occurrences of Pt.

11.3.2 The complex agents

After the representation of the basic Dense Bach primitives in a open Petri Net, the next step

consists in studying the representation of complex Dense Bach agents. These complex agents

result either from the composition of basic primitives, or from the composition of other complex

agents. In general, an agent defines what we shall call a block. As for the primitives, any block

must respect the basic open Petri net structure, as depicted in Figure 11.6. The structure must

298

✬

✫

✩

✪

Pin

1

Pout

Pt

0

Pt

30

naskptp2qq

1

29

1

29

Figure 11.10: The Dense Bach nask(t(2)) primitive in an Open Petri Net with MAX = 30

start with an open place and finish also with an open place. In general, the composition of

different blocks is achieved by merging the exit open place of the first block of the composition

with the entry open place of the next block. However some constructions will need specific

internal places (i.e not affected by the environment) and transitions for the correct execution of

the considered agent.

11.3.2.1 The sequential operator

The first complex structure of two agents results from their sequential composition. It is ob-

tained by merging the open output place of the first agent with the open input place of the

second agent. No new transition are added. Only the post-condition for firing the transition

leading to the output place of the first agent must be adapted, in the sense that the targeted

place must now be the input place of the second agent in the sequential composition, and also

its weight is to be adapted to the tokens assumed by the second agent. Regarding the token

space, every agent still refers to its internal places and anti-places. Figure 11.12 depicts the

construction of the DB-open Petri Net associated with the sequential composition of the two

primitives tell(a(2)) and tell(b(3)), whose associated DB-open Petri Nets are represented in

Figure 11.11. The places and anti-places of the tokens a and b are represented at the bottom of

the figure. With no token in the places in black, and a maximum of 30 tokens in the anti-places

in red, this picture represents the initial situation of this sequential agent, starting from an

empty store.

299

✬

✫

✩

✪

Pin

1

Pout

Pa

0

Pa

30

tellpap2qq

1

2

1

2

✬

✫

✩

✪

Pin

1

Pout

Pb

0

Pb

30

tellpbp3qq

1

3

1

3

Figure 11.11: The two Dense Bach tell(a(2)) and tell(b(3)) primitives to be combined sequentially

✬

✫

✩

✪

Pin

1

Pout

Pa

0

Pa

30

Pb

0

Pb

30

tellpap2qq tellpbp3qq

1

2

1

2

1

3

1

3

Figure 11.12: The effective sequential composition of tell(a(2)) and tell(b(3))

Let us now look how the construction of a sequential composition proceeds with two agents

expressed in a generic form. Figure 11.13 represents the two generic agents in their general

form. For the ease of representation, only two transitions connected to the entry places Pin1

and Pin2 and two connected to the exit places POut1 and POut2 have been represented. The

tokens on the store, manipulated by the primitives, are respectively represented by the sets

tt1,1, . . . , t1,Iu and tt2,1, . . . , t2,Ju. Finally the number of tokens in Pin1 that are necessary for

the execution of the first agent is equal toN1, and in place Pin2 of the second agent is equal toN2.

300

✬

✫

✩

✪

Pin1

N1

Pout1

Pt1,1 Pt1,1
Pt1,I Pt1,I

...
...

. . .

✬

✫

✩

✪

Pin2

N2

Pout2

Pt2,1 Pt2,1
Pt2,J Pt2,J

...
...

. . .

Figure 11.13: The two generic agents to be combined sequentially

Using the notations of Definition 29, with the first agent A1 we associate the DB-open Petri

Net pS1, T1,
‚ p.q1, p.q

‚
1, O1, Pin1 , Pout1 , P ts1,M1, N1q on T1, defined as follows:

• T1 : the set of tokens of the considered agent i.e. tt1,1, . . . , t1,Iu

• S1 : its places

• Pin1 : entry place

• Pout1 : exit place

• Pts1 = tPt1,1 , Pt1,1
, . . . , Pt1,I , Pt1,I

u

• O1 “ Pts1 Y tPin1 , Pout1u Ď S1

• T1 : its transitions

• ‚p.q1 and p.q‚
1 : T1 Ñ S‘

• M1 : S1 Ñ N is a partial marking such that:

– MpPt1,iq “ 0 for any Pt1,i P Pts1

– MpPt1,i
q “ MAX for any Pt1,i

P Pts1

• N1 is a strictly positive number

301

Similarly, with the second agent A2 we associate the DB-open Petri Net

pS2, T2,
‚ p.q2, p.q

‚
2, O2, Pin2 , Pout2 , P ts2,M2, N2q on T2, defined as follows:

• T2 : the set of tokens of the considered agent i.e. tt2,1, . . . , t2,Ju

• S2 : its places

• Pin2 : entry place

• Pout2 : exit place

• Pts2 = tPt2,1 , Pt2,1
, . . . , Pt2,J , Pt2,J

u

• O2 “ Pts2 Y tPin2 , Pout2u Ď S2

• T2 : its transitions

• ‚p.q2 and p.q‚
2 : T2 Ñ S‘

• M2 : S2 Ñ N is a partial marking such that:

– MpPt2,iq “ 0 for any Pt2,i P Pts2

– MpPt2,i
q “ MAX for any Pt2,i

P Pts2

• N2 is a strictly positive number

The first step of the construction consists in inserting the two previous agents in a block

representing their sequential composition. This block has a DB-open Petri Net form. It has

one entry place Pin and one exit place Pout. The DB-open Petri Net representations of the two

agents to be composed are represented in dashed form. This signals that their components will

be modified by the construction process. Figure 11.14 represents the sequential agent including

the two Open Petri net agents.

302

✬

✫

✩

✪

Pin Pout
Pin1

N1

Pout1 Pin2

N2

Pout2

Pt1,1Pt1,1
Pt1,IPt1,I

Pt2,1Pt2,1
Pt2,JPt2,J

...

. . .

...
...

. . .

...

Figure 11.14: The two agents inside the sequential composition

The second step of the construction consists in making the places and anti-places associ-

ated with the tokens tPt1,1 , . . . , Pt1,I , Pt2,1 , . . . , Pt2,J u visible to the environment of the sequential

composition. This is done by translating the respective places and anti-places from the borders

of the Open Petri net representation of the agents to the border of the sequential Open Petri

net. It is obvious that the tokens shared by both agents will appear only once on the border of

the sequential agent. Figure 11.15 represents the externalization of the places and anti-places

associated with the tokens.

✬

✫

✩

✪

Pin Pout
Pin1

N1

Pout1 Pin2

N2

Pout2

Pt1,1Pt1,1
Pt1,IPt1,I

Pt2,1Pt2,1
Pt2,JPt2,J

...

. . .

...
...

. . .

...

Figure 11.15: The places of the tokens visible outside

The third step consists, on the one hand, in a fusion between the entry place Pin1 of the

first agent and the entry place Pin of the sequential agent and, on the other hand, in a fu-

303

sion bewteen the exit place Pout2 of the second agent and the exit place POut of the sequential

agent. This implies that the number N1 of tokens necessary for the execution of the agent is now

required by the entry place of the sequential agent. Figure 11.16 represents that transformation.

✬

✫

✩

✪

Pin

N1

Pout
Pout1 Pin2

N2

Pt1,1Pt1,1
Pt1,IPt1,I

Pt2,1Pt2,1
Pt2,JPt2,J

...

. . .

...
...

. . .

...

Figure 11.16: The fusion of the entry places Pin with Pin1
and from Pout with Pout2

The fourth and final step of the construction consists in grouping the exit place Pout1 of the

first agent with the entry place Pin2 of the second agent. This implies to adpat the number

of tokens in the exit place Pout1 , i.e 1, to the number N2 required by the second agent for

its execution. All other places and transitions are preserved with their marking and weight.

Figure 11.17 represents that last transformation.

✬

✫

✩

✪

Pin

N1

Pin2 Pout

Pt1,1Pt1,1
Pt1,IPt1,I

Pt2,1Pt2,1
Pt2,JPt2,J

...

. . .

...
...

. . .

...

N2

N2

Figure 11.17: The fusion of Pout1 and Pin2

304

Again in the notations of Definition 29, with the sequential composition A1 ; A2 we associate

the following DB-open Petri Net pS, T,‚ p.q, p.q‚, O, Pin, Pout, P ts,M,Nq on T:

• T “ T1 Y T2

• Pin “ Pin1 is its entry place

• Pout “ Pout2 is its exit place

• Pts “ Pts1 Y Pts2

• O “ tPin, Poutu Y Pts

• S “ pS1zO1q Y pS2zO2q YO Y tPin2u

• M “

$

’

’

&

’

’

%

M1pP q if P P S1zO1

M2pP q if P P S2zO2

0 if Dt : P “ Pt

MAX if Dt : P “ Pt

• T “ T1 Y T2

• ‚pT q “

"

‚pT q1 if T P T1
‚pT q2 if T P T2

• pT q‚ “

"

pT q‚
1 where Pout1 is replaced by Pin2pN2q

pT q‚
2 if T P T2

It appears that after the construction, the set S is obtained as the union of the sets S1 and

S2, without their sets of open places O1 and O2, with the set O and with the set containing the

only place Pin2 . Morevover, the set O of open places is equal to the union of tPin, Poutu with

the set Pts of the places and anti-places associated with the tokens. The number of tokens in

the entry place must be equal to N1, and the number of tokens required in the internal place

Pin2 is equal to N2.

11.3.2.2 The parallel operator

Figure 11.19 depicts the construction of the parallel composition of two agents, described in

Figure 11.18, in a DB-open Petri Net. In a parallel composition, every agent participating to the

composition must be succesful, in order to produce a global succesful result. This implies that

the entry open place Pin must contain the number of tokens necessary to activate every sub-agent

participating to the parallel composition. This is obtained by summing the number of tokens

305

needed by these sub-agents to be executed. In Figure 11.19, related to tellpap2qq || tellpbp2qq,

the required number of tokens in Pin is equal to 2. Moreover during the execution of the com-

position, every agent must be selected only once. In order to guarantee this condition, some

interblocking mechanisms must be introduced. This is done by associating an internal place

with the Petri net representation of every sub-agent, as part of the pre-condition for firing its

transition. In our figure, these places are respectively named Paux 1 and Paux 2, and are initially

marked with 1. In accordance to our model, the entry place Pin merges both entry places of the

primitives tell(a(2)) and tell(b(2)). Regarding the output place of the parallel agent, it does not

result from the direct merging of both output places of the tell(a(2)) and tell(b(2)) primitives.

Indeed the output place of the parallel agent is reached only when both primitives have been

sucessfully executed. Moreover to allow a possible iteration the action of supplying the final

output place of the open Petri net must be done together with a restoring of the initial state of

both control places Paux1 and Paux2 . For these reasons, an internal transition T is added to the

structure of the parallel agent. This transition collects both successful results of the primitives

tell(a(2)) and tell(b(2)), and provides respectively 1 token to the output and control places. The

restoring of the control places to their initial state means that the structure is able to manage

iterative agent. We have implemented the restoring, although we do not consider in our thesis

the case of iterative Dense Bach agents. Again the figure represents the initial situation of the

complex agent starting from an empty store. The places and anti-places of tokens a and b are

represented on the border of the DB-open Petri Net for the parallel composition, with a value

MAX equals to 30.

✬

✫

✩

✪

Pin1 1

Pout1

Pa 0

Pa 30

tellpap2qq

2

2

✬

✫

✩

✪

Pin2 1

Pout2

Pb0

Pb30

tellpbp2qq

2

2

Figure 11.18: The two Dense Bach tell(a(2)) and tell(b(2)) primitives to be composed in parallel

306

✬

✫

✩

✪

Pin 2

Pout

Paux11 Paux2 1

Pa 0

Pa 30

Pb0

Pb30

tellpap2qq tellpbp2qq

T

1 1

2

2 1

1

1

2

21

1

1

1

1 1

Figure 11.19: The effective parallel composition of tell(a(2)) and tell(b(2))

Figure 11.20 represents the two agents in a DB-open Petri Net general form, that must be

combined in parallel. For the ease of the drawing of the picture, the representation of both

agents have been rotated from 90 degrees on the right, with their entry places on the top of the

drawing. Pin1 N1

Pout1

Pt1,1

Pt1,1

Pt1,I

Pt1,I

. . .

...

. . .

Pin2 N2

Pout2

Pt2,1

Pt2,1

Pt2,J

Pt2,J

. . .

...

. . .

Figure 11.20: The two Dense Bach agents to be composed in parallel

As for the sequential composition these two generic agents A1 and A2 are associated respec-

tively with two DB-open Petri Net pS1, T1,
‚ p.q1, p.q

‚
1, O1, Pin1 , Pout1 , P ts1,M1, N1q on T1 and

307

✬

✫

✩

✪

Pin

Pout

Pt1,1

Pt1,1

Pt1,I

Pt1,I

Pt2,1

Pt2,1

Pt2,J

Pt2,J

Pin1N1 Pin2 N2

Pout1 Pout2

. . .

...
. . .

. . .

...
. . .

Figure 11.21: The two agents in the parallel composition

pS2, T2,
‚ p.q2, p.q

‚
2, O2, Pin2 , Pout2 , P ts2,M2, N2q on T2. They are defined exactly as in page 301.

The first step in the construction of the parallel composition consists in inserting the two

agents to be combined inside the DB-open Petri Net representation of the parallel agent. This

representation has only two places : an entry and an exit. Figure 11.21 represents this insertion.

After the insertion, the places and anti-places tPt1,1 , . . . , Pt1,I , Pt2,1 , . . . , Pt2,J u migrate on

the border of the parallel agent. They become open places visible from the outside environment

of the parallel agent. Figure 11.22 represents this transformation.

The next step represents the first transformation of the agents, where some of their elements

become part of the element of the parallel agent. It concerns the entry places Pin1 and Pin2

that will merge with the entry place Pin. For a parallel composition, all subagents must be

executed. This implies that if the respective number of tokens of the two subagents necessary

for their execution are N1 and N2, the resulting number for the parallel agent must be equal to

their summation, i.e. N1 `N2. Starting from the new entry place Pin an arrow must point on

every transition that is part of the subagents. Figure 11.23 show that step of the transformation.

Symmetrically, after the connection of the subagents with the new entry place comes also

308

✬

✫

✩

✪

Pin

Pout

Pt1,1

Pt1,1

Pt1,I

Pt1,I

Pt2,1

Pt2,1

Pt2,J

Pt2,J

Pin1N1 Pin2 N2

Pout1 Pout2

. . .

...
. . .

. . .

...
. . .

Figure 11.22: Tokens are visible outside

✬

✫

✩

✪

Pin
N1 ` N2

Pout

Pt1,1

Pt1,1

Pt1,I

Pt1,I

Pt2,1

Pt2,1

Pt2,J

Pt2,J

Pout1 Pout2

. . .

...
. . .

. . .

...
. . .

Figure 11.23: Entry place of parallel agent connected to transitions

309

✬

✫

✩

✪

Pin
N1 ` N2

Pout

Pt1,1

Pt1,1

Pt1,I

Pt1,I

Pt2,1

Pt2,1

Pt2,J

Pt2,J

Pout1 Pout2

. . .

...
. . .

. . .

...
. . .

Tout

Figure 11.24: Connection with exit place of parallel agent

the necessity to connect the outpout places Pout1 and Pout2 of the subagents, with the output

place Pout of the parallel agent. This operation requires the introduction of a transition Tout.

The places Pout1 and Pout2 become standard places (i.e. non open) of the Net. Figure 11.24

depicts its connection with the output place Pout.

As explained in the introduction, as every subagent must be executed, it is necessary to

introduce a mechanism that ensures that a subagent is executed only one time. Indeed, as the

number of the tokens present inside the entry place Pin is equal to N1 ` N2, it is possible for

a same transition inside a subagent to be selected more than once. To avoid such incorrect

behaviour, we introduce internal auxiliary places Paux1 and Paux2 . These places are not visible

from outside the parallel agent and are only used for an internal regulation of the parallel agent.

Each of these places is associated with a subagent. Figure 11.25 shows the introduction of these

two places, Paux1 near the first subagent, and Paux2 near the second subagent.

For a specific subagent, its associated auxiliary place will take care of the firing of every

transition only once. This implies for an auxiliary place to be initialized with a number of tokens

required by the subagent. In our schema, this number is equal to N1 for the first subagent,

and is equal to N2 for the second subagent. Figure 11.26 shows the connection between the

auxiliary places and each transitions of their respective associated subagent.

310

✬

✫

✩

✪

Pin
N1 ` N2

Pout

Paux1

N1

Paux2

N2

Pt1,1

Pt1,1

Pt1,I

Pt1,I

Pt2,1

Pt2,1

Pt2,J

Pt2,J

Pout1 Pout2

. . .

...
. . .

. . .

...
. . .

Tout

Figure 11.25: Introduction of auxiliary places

At the end of the execution, when the internal transition Tout is fired after the successful

execution of all the subagents, the state of the auxiliary places is restored to their initial values,

i.e. respectively N1 and N2. Figure 11.27 shows that last step of the execution.

Again with the notations of Definition 29, the resulting DB-open Petri Net of the parallel

composition A1 || A2 is the DB-open Petri Net pS, T,‚ p.q, p.q‚, O, Pin, Pout, P ts,M,Nq on T

defined as follows:

• T “ T1 Y T2

• Pin is its (fresh) entry place

• Pout is its (fresh) exit place

• Pts = Pts1 Y Pts2

• O “ tPin, Poutu Y Pts

• S “ pS1zO1q Y pS2zO2q YO Y tPout1 , Pout2 , Paux1 , Paux2u

• T “ T1 Y T2 Y tToutu

311

✬

✫

✩

✪

Pin
N1 ` N2

Pout

Paux1

N1

Paux2

N2

Pt1,1

Pt1,1

Pt1,I

Pt1,I

Pt2,1

Pt2,1

Pt2,J

Pt2,J

Pout1 Pout2

. . .

...
. . .

. . .

...
. . .

Tout

Figure 11.26: Introduction of auxiliary places (cont)

✬

✫

✩

✪

Pin
N1 ` N2

Pout

Paux1

N1

Paux2

N2

Pt1,1

Pt1,1

Pt1,I

Pt1,I

Pt2,1

Pt2,1

Pt2,J

Pt2,J

Pout1 Pout2

. . .

...
. . .

. . .

...
. . .

Tout

N1 N2

Figure 11.27: Introduction of auxiliary places (final)

312

• ‚pT q “

"

‚pT q1 where tPin1u is replaced by tPin, Paux1u if T P T1
‚pT q2 where tPin2u is replaced by tPin, Paux2u if T P T2

• ‚pToutq “ tPout1 , Pout2u

• pT q‚ “

"

pT q‚
1 if T P T1

pT q‚
2 if T P T2

• pToutq
‚ “ tPout, Paux1pN1q, Paux2pN2qu

• MpPtq “ 0 @t P T “ T1 Y T2

• MpPtq “ MAX @t P T “ T1 Y T2

• MpPaux1q “ N1

• MpPaux2q “ N2

• MpP q “

"

M1pP q for any P P S1zO1

M2pP q for any P P S2zO2

• N “ N1 `N2

11.3.2.3 The choice operator

We proceed now with the construction of the choice composition of two agents in a DB-open

Petri net structure as we have done with the parallel operator. However this model must be

constructed carefully, in order to avoid the production of some incorrect results. In particular,

the choice between two agents means that the execution of one of them excludes the execution of

the second. The Petri net structure must reflect this constraint. As for the parallel composition,

the construction introduces some interblocking mechanisms, in the form of two auxiliary control

places Paux1 and Paux2 . Figure 11.29 shows the complete open net corresponding to the choice

between the two agents of Figure 11.28. To be fired, a transition associated with a sub-agent

not only consumes the token present in its own control place, but also checks i.e. consumes

and replaces the token present in the control place associated with the other transition. This

permits to check if the other agent of the choice composition has not yet started its execution.

An absence of tokens in a control place implies then, on the one hand, that its associated

transition has been already fired, and, on the other hand, that no other transition can now be

fired.

Moreover as for the parallel case, the construction of the choice respects our model of Fig-

ure 11.6. This means that both entry places of the sub-agents are merged inside the open entry

place Pin of the choice agent. On the other hand, for the open output place Pout, the exclusive

313

execution of one sub-agent implies the presence of two internal transitions Tout1 and Tout2 , with

the same role to provide the token in the open output place Pout and to restore the state of its

correspondant control place.

✬

✫

✩

✪

Pin1 1

Pout1

Pa 0

Pa 30

tellpap2qq

2

2

✬

✫

✩

✪

Pin2 1

Pout2

Pb0

Pb30

tellpbp2qq

2

2

Figure 11.28: The two Dense Bach tell(a(2)) and tell(b(2)) primitives to be composed in a choice

✬

✫

✩

✪

Pin 1

Pout

Paux1

1

Paux2

1

Pt 0

Pt 30

Pt0

Pt30

tellpap2qq tellpbp2qq

Tout1 Tout2

2

2

2

2

Figure 11.29: The effective choice composition of tell(a(2)) and tell(b(2))

Figure 11.30 shows the representation, as DB-open Petri Net, of the two generic subagents

that must be included inside a choice compositional agent. Again, for the ease of the drawing of

314

the picture, the representation of both agents have been rotated from 90 degrees on the right,

with their entry places on the top of the drawing. The number of tokens required by every

subagent to be successfully executed is N1 for the first one and N2 for the second one. We will

suppose for the rest of the discussion that N1 ě N2.

Pin1 N1

Pout1

Pt1,1

Pt1,1

Pt1,I

Pt1,I

. . .

...

. . .

Pin2 N2

Pout2

Pt2,1

Pt2,1

Pt2,J

Pt2,J

. . .

...

. . .

Figure 11.30: The two Dense Bach agents to be composed in a choice

As for the sequential and the parallel compositions these two

generic agents A1 and A2 are associated respectively with two DB-

open Petri Nets pS1, T1,
‚ p.q1, p.q

‚
1, O1, Pin1 , Pout1 , P ts1,M1, N1q on T1 and

pS2, T2,
‚ p.q2, p.q

‚
2, O2, Pin2 , Pout2 , P ts2,M2, N2q on T2. They are defined exactly as in page 301.

As for the parallel composition, the first step of the construction consists in inserting the

two subagents inside the structure of the parallel agent. Figure 11.31 represents that operation.

The places and anti-places of tPt1,1 , . . . , Pt1,I , Pt2,1 , . . . , Pt2,J u staying visible to the outside

environment, they migrate to the border of the parallel agent, as Figure 11.32 shows it.

The entry place Pin of the parallel agent is substituted to the entry places Pin1 and Pin2 of

the two subagents. In consequence all the transitions of the two subagents connected to their

respective entry place Pin1 and Pin2 are now connected to the only entry place Pin. Regarding

the number of tokens in the common entry place, it must reflect the fact that only one of the

two subagent has to be executed. This implies that the number of tokens necessary for the

315

✬

✫

✩

✪

Pin

Pout

Pt1,1

Pt1,1

Pt1,I

Pt1,I

Pt2,1

Pt2,1

Pt2,J

Pt2,J

Pin1N1 Pin2 N2

Pout1 Pout2

. . .

...
. . .

. . .

...
. . .

Figure 11.31: The two agents in the choice composition

✬

✫

✩

✪

Pin

Pout

Pt1,1

Pt1,1

Pt1,I

Pt1,I

Pt2,1

Pt2,1

Pt2,J

Pt2,J

Pin1N1 Pin2 N2

Pout1 Pout2

. . .

...
. . .

. . .

...
. . .

Figure 11.32: Tokens are visible outside

316

✬

✫

✩

✪

Pin
max(N1, N2)

Pout

Pt1,1

Pt1,1

Pt1,I

Pt1,I

Pt2,1

Pt2,1

Pt2,J

Pt2,J

Pout1 Pout2

. . .

...
. . .

. . .

...
. . .

Figure 11.33: Entry place of choice agent connected to transitions

execution of the parallel agent is equal to the maximum between N1 and N2, i.e. max(N1, N2q.

Figure 11.33 shows the merging of the entry places, with the indication of the number of tokens.

The closure of the global agent must also reflects the choice construction. As only one of

the two agents is effectively executed, only one of the two Pout1 and Pout2 places will provide its

tokens to the exit place POut. This implies that Pout1 and Pout2 are standard (i.e. non-open)

places of the composition and that two new transitions Tout1 and Tout2 are now introduced in

the construction. Figure 11.34 shows the closure construction of the DB-Open Peti Net of the

choice compositional agent.

In order to guarantee the exclusive selection of one of the two agents it is necessary to in-

troduce a pair of internal auxiliary places Paux1 and Paux2 in the construction, each of these

places being dedicated to one of the two subagents. These places serve to lock the choice be-

tween the two subagents. For a specific subagent, every transition connected to the entry place

Pin is not only connected with its corresponding auxiliary place, but also with the auxiliary

place associated with the second subagent. With such a construction, the execution of an agent

depends, on the one hand, on the presence of the required number of tokens in its specific

auxiliary place, but also, on the other hand, on the check whether the second agent has not

been selected before. Then the firing of the transitions of one subagent has not only for effect

317

✬

✫

✩

✪

Pin
max(N1, N2)

Pout

Pt1,1

Pt1,1

Pt1,I

Pt1,I

Pt2,1

Pt2,1

Pt2,J

Pt2,J

Pout1 Pout2

. . .

...
. . .

. . .

...
. . .

Tout1 Tout2

Figure 11.34: Connections to exit place of choice agent

to make its corresponding auxiliary place empty, but also to prevent the second subagent to be

selected in the same execution of the choice. Regarding the initialization of an auxiliary place

Pauxi
, it is done with the same number of tokens as in the corresponding entry place Pini

of the

concerned subagent, i.e. Ni. For the closure of the execution of the subagent, the firing of the

corresponding Tout transition must restore the auxiliary place in its initial state. If the selected

subagent is the one with the smallest required number on tokens, i.e. with N2 as we supposed,

this implies that N1 ´ N2 tokens are not consumed in the entry place Pin. In order to clean

this place, a link will connect it with the transition Tout2 , weighted with the number N1 ´ N2.

If both subagents require the same number of tokens for their execution, i.e. N1 “ N2 this link

is not necessary and is not taken into account. Figures 11.35 and 11.36 show respectively these

constructions for the first and the second subagent.

Using again the notations of Definition 29, the resulting DB-open Petri Net associated with

the choice composition A1`A2 is the DB-open Petri Net pS, T,‚ p.q, p.q‚, O, Pin, Pout, P ts,M,Nq

on T defined as follows:

• T “ T1 Y T2

• Pin is its (fresh) entry place

• Pout is its (fresh) exit place

318

✬

✫

✩

✪

Pin
max(N1, N2)

Pout

Paux1

N1

Paux2

N2

Pt1,1

Pt1,1

Pt1,I

Pt1,I

Pt2,1

Pt2,1

Pt2,J

Pt2,J

Pout1 Pout2

. . .

...
. . .

. . .

...
. . .

Tout1 Tout2

N2 N2

N1

Figure 11.35: Connections to first auxiliary place

✬

✫

✩

✪

Pin
max(N1, N2)

Pout

Paux1

N1

Paux2

N2

Pt1,1

Pt1,1

Pt1,I

Pt1,I

Pt2,1

Pt2,1

Pt2,J

Pt2,J

Pout1 Pout2

. . .

...
. . .

. . .

...
. . .

Tout1 Tout2

N1 N1 N2 N2

N1 N2

N1 ´ N2

Figure 11.36: Connections to second auxiliary place

319

• Pts = Pts1 Y Pts2

• O “ tPin, Poutu Y Pts

• S “ pS1zO1q Y pS2zO2q YO Y tPout1 , Pout2 , Paux1 , Paux2u

• T “ T1 Y T2 Y tTout1 , Tout2u

• ‚pT q “

"

‚pT q1 where tPin1u is replaced by tPin, Paux1 , Paux2pN2qu if T P T1
‚pT q2 where tPin2u is replaced by tPin, Paux2 , Paux1pN1qu if T P T2

• ‚pTout1q “ tPout1u

• ‚pTout2q “ tPout2 , PinpN1 ´N2qu

• pT q‚ “

$

’

’

&

’

’

%

pT q‚
1 Y tPaux2pN2qu if T P T1 and Pin P ‚pT q

pT q‚
1 if T P T1 and Pin R ‚pT q

pT q‚
2 Y tPaux1pN1qu if T P T2 and Pin P ‚pT q

pT q‚
2 if T P T2 and Pin R ‚pT q

• pTout1q‚ “ tPout, Paux1pN1qu

• pTout2q‚ “ tPout, Paux2pN2qu

• MpPtq “ 0 @t P T “ T1 Y T2

• MpPtq “ MAX @t P T “ T1 Y T2

• MpPaux1q “ N1

• MpPaux2q “ N2

• MpP q “

"

M1pP q for any P P S1zO1

M2pP q for any P P S2zO2

• N “ MaxpN1, N2q

11.4 Towards a workbench

One of the key features of Petri Nets is their property to depict suggestively computations.

As a result, our translation of Dense Bach agents to Petri Nets allows to benefit from an

expressive way of describing the executions of Dense Bach agents. We turn in this section to

the development of a workbench based on these ideas.

As we can already take profit of a parser for Dense Bach from Chapter 8, the structure

of our code consists in adding three components. The first one called petriNetEquivalent.scala

320

is in charge of the translation of the parsed expression to its equivallent Petri Net form. The

second file called densebach2petri xml.scala draws the different elements of the created Petri

Net structure as a svg file. The third file called runnigPetri.scala is in charge of the dynamic

execution of the Petri Net, showing its evolution, firing after firing of its transitions. It is to be

noted that in our code the Petri Net has an extended form, to include the representation of the

token space. The structure of the extended Petri Net itself is defined in a file of abstract data

called petriNetElement.scala.

11.4.1 Main data structures

The petriNetElement.scala file defines two abstract classes. The first one, called PnElmt, defines

the four elements constituing a Petri Net. The second one, called PetriNet, defines the Petri

Net as a union of the previous four elements, extended with the representation of the token

space.

The class PnElmt is refined in four classes, to represent the components of a Petri Net:

• a case class place to represent the places of the Petri Net. Many arguments are associated

with a place. In particular, every place is represented with a circle, with two coordinates

cx and cy for its center, and one radius for its radius. Three booleans indicate the nature

of the place: an entry one, an exit one and a regular one. An entry place indicates the

entry place of an agent. An exit place is the last place of an agent. Both these places

are represented in blue in the net associated with the global agent. A regular place is

an intermediate place inside the net, including the places of control of the execution, in

the case of a parallel or a choice agent. The variable nbrTokens represents the number

of tokens in the place. The variable nbrReq represents the minimum number of tokens

that are to be present in the entry place of an agent in order for this one to be executed

properly. Every place has an identifier represented by a list of strings idplace. This

identifier is constructed recursively, to indicate to which level the place belongs. Finally,

a string caraGraphi is used to represent the colour of the place.

• a case class transition to represent a transition between at least one incoming place and at

least one outgoing place. A transition is represented by a rectangle, with four coordinates:

the x and y coordinates of the upper left corner, the width of the rectangle and its height.

The two strings name and token and the integer density indicates to which Dense Bach

primitive the transition is related, and which dense token is concerned. For transitions

that are not related to a Dense Bach primitive, those fields are set to the empty string

321

for the name and the token or to 0 for the density. The variable idtrans identifies the

transition. As for the place, it has the form of a list of strings, and is built recursively.

This permits to indicate to which level the transition is associated. Finally the string

caraGraphi indicates the colour of the transition.

• a case class pre condition to represent the pre condition for the firing of a transition. Every

pre condition is characterised by an identifier of an incoming place idplace, an identifier

of a transition idtrans, a weight and a graphical charateristic caraGraphi. The weight

indicates the number of tokens that have to be consumed and retrieved in the associated

incoming place by the firing of the transition.

• a case class post condition to represent the post condition after the firing of a transition.

Every post condition needs an identifier idtrans for the transition and an identifier idplace

of an outgoing place. The integer weight indicates the number of tokens that are produced

by the firing of the transition, and added to the corresponding outgoing place.

The second abstract class DbGraph represents the extended Petri Net graph associated

with a Dense Bach agent. It is refined in one class PetriNet, with six elements. The

first four elements group the components of the previous PnElmt : a set of places SetOf-

Places, a set of transitions SetOfTrans, a set of pre conditions SetOfPre, and a set of

post conditions SetOfPost. The last two elements represent the pre conditions SetOf-

PreSpaces and post conditions SetOfPostSpaces specific to the places of the token space.

The complete code of the abstract petriNetElement.scala file is depicted in Figure 11.37.

11.4.2 Converting Dense Bach agents to Petri Nets

Based on the result of the parsing of the agent, this file defines the class PetriNetEquivalent. It

is mainly composed of one procedure convert2petriNet. The result of the parsing being a binary

tree, this structure will be browsed by convert2petriNet in a recursive way, starting from the

root of the tree, and progressively descending to the leaves that correspond to the primitives.

Besides the parsed agent, this method also needs three other parameters : a prefix identification

that represents the level of the concerned agent in the recursive structure, and two coordinates

X and Y. These last two represent the coordinates of the upper left corner of the rectangle

in which the agent will be drawn. The most basic agents - the primitives - find place in the

smallest rectangle. When associated by a composition operator of choice or parallelism, their

rectangles are included in the rectangle used to represent the composition. If associated by a

sequential operator, their rectangles are sticked together.

322

abstract class PnElmt

case class place (cx : Int , cy : Int , r ad ius : Int , entry : Boolean ,

e x i t : Boolean , r egu l a r : Boolean ,

name : Str ing , nbrTokens : Int , nbrReq : Int , i dp l a c e : L i s t [St r ing] ,

caraGraphi : St r ing) extends PnElmt

case class t r a n s i t i o n (tx : Int , ty : Int , width : Int , he i ght : Int ,

name : Str ing , token : Str ing ,

dens i ty : Int , i d t r an s : L i s t [St r ing] , caraGraphi : St r ing) extends PnElmt

case class pr e cond i t i on (i dp l a c e : L i s t [St r ing] , i d t r an s : L i s t [St r ing] ,

weight : Int , caraGraphi : St r ing) extends PnElmt

case class pos t cond i t i on (i d t r an s : L i s t [St r ing] , i dp l a c e : L i s t [St r ing] ,

weight : Int , caraGraphi : St r ing) extends PnElmt

abstract class DbGraph

case class Petr iNet (SetOfPlaces : L i s t [p l ace] , SetOfTrans : L i s t [t r a n s i t i o n] ,

SetOfPre : L i s t [p r e cond i t i on] , SetOfPost : L i s t [po s t cond i t i on] ,

SetOfPreSpaces : L i s t [p r e cond i t i on] , SetOfPostSpaces : L i s t [po s t cond i t i on])

extends DbGraph

Figure 11.37: The abstract petriNetElement.scala file

The result of the method convert2petriNet is a pair of information : the Petri Net associated

with the treated agent, and an integer that represents the minimum number of tokens required

for the execution of the Petri Net.

convert2petriNet makes use of many useful procedures to perform its action. They are not

presented here, but the reader can find their code in annex (see Chapter G).

As said in the previous paragraph, every Petri Net construction is the result of a recursive

process. It starts from the most complex form of parsed agent, and progressively adds its

specific elements, i.e. places, transitions, and their pre and post conditions, to the global Petri

Net structure. The number and nature of added components depends on the way agents are

combined. In the following, we first present the translation in Petri Net of the basic Dense Bach

primitives. Then we will present the translation of a parsed agent that is the result firstly of

a sequential composition of two agents, secondly of a parallel composition of two agents, and

finally of a choice composition of two agents.

11.4.2.1 Basic primitives

The construction of the Petri Net representation of a primitive relies on the content of the

expression dbach ast primitive(primitive: String, token: String, density: Int, petricounter : Int,

width : Int, height : Int) provided by the parser. This expression is composed of six arguments.

323

The first one receives the name of the Dense Bach primitive : tell, get, ask or nask. The second

variable receives the name of the token, and the third one its density. These three arguments

are useful for the construction of the token space. The three last variables are more concerned

by the Petri Net representation of the primitive. The first of these is an integer that represents

the number of tokens that must be present in the entry place for a correct execution of the Petri

Net. The two last variables are respectively the width and height of the rectangle within which

the Petri Net representation of the primitive is to be drawn.

The construction starts with the definition of the X and Y coordinates of the centre of

the entry place, mean X and mean Y. Their values are calculated on the basis of the X and Y

coordinates, posX and posY, of the upper left corner of the rectangle within which the primitive

is drawn. In particular the X coordinate is equal to the posX value, added with the half width

of the rectangle :

val mean_X = posX + width/2

val mean_Y = posY + 10

Then the construction continues with the definition of the places of the token space, as-

sociated with the token of the primitive. As long as a token has not been registered on the

token space, it is added on it. For every new token, two places are created. They respectively

correspond to the space and anti-space represention of the token inside the token space. As

the initial token space is empty, the place of the space receives zero token, and the place of the

anti-space receives a number of max token (defined in densebach2petri data.scala). The code is

the following, where lToken is the list of tokens already registered in the token space :

if(!(lToken.contains(token))) { // if token not yet register,

// create its place and antiplace

tokSpace = place(4*extra_w_center,3*radius/2,radius,false,false,

true,token,0,1,"ns"::token::Nil,"black")

aTokSpace = place(4*extra_w_center,3*radius/2,radius,false,false,

true,token,max_token,1,"as"::token::Nil,"red")

lToken :::= List(token)

}

After the token space, the construction continues with the creation of the entry PrimIN and

exit PrimOUT places, and the transition PrimTr between them. The places are positioned on

the vertical symetrical axis of the rectangle, i.e. with an X coordinate equal to mean X. The

rectangle of the transition has an upper left X coordinate at a distance radius of the symetrical

axis. This value is defined in densebach2petri data.scala and is equal to the half width of the

324

rectangle representing the transition. Finally, the pre and post condition for the firing of the

transition PrimTr are defined, with a weight of 1 token respectivelly. Those different elements

are added to the different sets constituing a Petri Net: the Set of places, the set of transitions,

the set of pre conditions and the set of post conditions.

val PrimIN = place(mean_X,mean_Y,radius,true,false,false,"",

petricounter,1,"In"::prefid,"blue") // place IN

val PrimOUT = place(mean_X,mean_Y + height,radius,false,true,false,"",

0,1,"Out"::prefid,"blue") // place OUT

val PrimTr = transition(mean_X - radius,mean_Y + height/2,2*radius,radius/3,

prim,token,density,"Tr"::prefid,"black") // transition Tr

val PrimPc = pre_condition("In"::prefid,"Tr"::prefid,petricounter,"black")

// pre of Tr coming from IN

val PrimPo = post_condition("Tr"::prefid,"Out"::prefid,petricounter,"black")

// post from Tr going to OUT

lPlace = PrimIN::PrimOUT::tokSpace::aTokSpace::pn.SetOfPlaces

// list of places associted with primitive

The pre and post conditions relative to the places of the token space are then defined,

based on the type of the primitive. For a tell primitive, the pre condition must start from the

anti-space. This is noted in the identifier of the pre condition, formed by the string as - for anti-

space - followed by the name of the token. The corresponding post condition must go from the

transition to the place in the token space. This is noted by the identifier of the post condition,

which is now noted as ns – for normal space – followed by the name of the token.

prim match { // pre and post following type of transition

case "tell" => {%

//for tell : from antispace (as) ...

PrimPcS = pre_condition("as"::token::Nil,"Tr"::prefid,density,"black")

// ... to normal space (ns)

PrimPoS = post_condition("Tr"::prefid,"ns"::token::Nil,density,"black")

}

case "get" => {

// for get : from ns ...

PrimPcS = pre_condition("ns"::token::Nil,"Tr"::prefid,density,"black")

// ... to as

PrimPoS = post_condition("Tr"::prefid,"as"::token::Nil,density,"black")

}

case "ask" => {

// for ask : from ns ...

PrimPcS = pre_condition("ns"::token::Nil,"Tr"::prefid,density,"black")

// ... to ns

325

PrimPoS = post_condition("Tr"::prefid,"ns"::token::Nil,density,"black")

}

case "nask" => {

// for nask : from as ...

PrimPcS = pre_condition("as"::token::Nil,"Tr"::prefid,density,"black")

// ... to as

PrimPoS = post_condition("Tr"::prefid,"as"::token::Nil,density,"black")

}

}

Finally, all the components produced are grouped with the existing components of the Petri

Net. This one is returned as the result of the call to the method convert2petriNet.

(PetriNet(lPlace,

PrimTr::pn.SetOfTrans,

PrimPc::pn.SetOfPre,

PrimPo::pn.SetOfPost,

PrimPcS::pn.SetOfPreSpaces,

PrimPoS::pn.SetOfPostSpaces),

petricounter) // synthesis of translation in PetriNet

The complete code for the construction of the Petri Net elements corresponding to a basic

primitive is listed in Figures 11.38 and 11.39.

11.4.2.2 Sequential composition

The result of the parsing can produce three kinds of complex agents. The first of these one

corresponds to the sequential composition of two agents. In that case, the result of the parsing

is an expression of the form dbach ast agent(”;”,ag i ,ag ii ,petricounter,width,height) that con-

tains six parameters. The first one is a semi-colon that represents the sequential composition.

The two next parameters represent the parsed subagents ag i and ag ii that are sequentially

combined. The fourth parameter is the number of tokens needed by the Petri Net for a correct

execution of the sequential composition, as it is calculated in the parsing of a sequential agent.

This number is equal to the petricounter of the first agent ag i of the composition. The two last

parameters are the width and the height of the rectangle that contains the drawing of the se-

quential composition. The Petri Net construction makes a recursive call to the convert2petriNet

method in order to build the representation of the two sub-agents ag i and ag ii. The recursive

call specifies the level of the call, adding 1 to the prefix id of the first agent, and 2 to the one

of the second agent.

326

case dbach a s t p r im i t i v e (prim , token , dens i ty , petr i counte r , width , he i ght) => {

// pr im i t i v e to Pe t r i Net

val mean X = posX + width/2

val mean Y = posY + 10

// p lace a s soc i a t e d with token in token space

var tokSpace = place (0 , 0 , 0 , fa lse , fa lse , fa lse , ”” , 0 , 1 , Ni l , ””)

// an t i p l a c e a s soc i a t e d with token in token space

var aTokSpace = place (0 , 0 , 0 , fa lse , fa lse , fa lse , ”” , 0 , 1 , Ni l , ””)

// pre condi t i on of t r an s i t i o n Tr (de f ined forward) coming from place tokSpace

var PrimPcS = pr e cond i t i on (Nil , Ni l , 0 , ””)

// pos t condi t i on of t r an s i t i o n Tr (de f ined forward) going to p lace aTokSpace

var PrimPoS = pos t cond i t i on (Nil , Ni l , 0 , ””)

// creat e the p lace and ant i´p lace in token space f o r a new token

// (not ye t r e g i s t e r e d in l i s t o f lToken)

i f (! (lToken . conta ins (token))) {

// i f token not ye t r e g i s t e r , c reat e i t s p lace and an t i p l a c e

tokSpace = place (4∗ extra w center , 3∗ r ad ius /2 , radius , fa lse , fa lse , true , token ,

0 , 1 , ”ns” : : token : : Ni l , ” black ”)

aTokSpace = place (4∗ extra w center , 3∗ r ad ius /2 , radius , fa lse , fa lse , true , token ,

max token , 1 , ” as ” : : token : : Ni l , ” red ”)

lToken : : := L i s t (token)

}

// p lace IN

val PrimIN = place (mean X ,mean Y , radius , true , fa lse , fa lse , ”” , petr i counte r ,

1 , ” In” : : p r e f i d , ” blue ”)

// p lace OUT

val PrimOUT = place (mean X ,mean Y + height , radius , fa lse , true , fa lse , ”” ,

0 , 1 , ”Out” : : pr e f i d , ” blue ”)

// t r an s i t i o n Tr

val PrimTr = t r a n s i t i o n (mean X ´ radius , mean Y + he ight /2 ,2∗ radius , r ad ius /3 , prim ,

token , dens i ty , ”Tr” : : pr e f i d , ” black ”)

// pre o f Tr coming from IN

val PrimPc = pr e cond i t i on (” In” : : pr e f i d , ”Tr” : : pr e f i d , pet r i counter , ” black ”)

Figure 11.38: The code for the construction of the Petri Net elements of a basic

primitive

327

// pos t from Tr going to OUT

val PrimPo = pos t cond i t i on (”Tr” : : pr e f i d , ”Out” : : pr e f i d , pet r i counter , ” black ”)

var l P l a c e : L i s t [p l ace] = Ni l

var lP l ace1 : L i s t [p l ace] = Ni l

lP l a c e = PrimIN : : PrimOUT : : tokSpace : : aTokSpace : : pn . SetOfPlaces

// l i s t o f p l a c e s a s soc i t e d with pr im i t i v e

l P l a c e = removeEmptyPlace(lP l a c e)

prim match { // pre and pos t f o l l ow i n g type o f t r an s i t i o n

case ” t e l l ” => {

// f o r t e l l : from ant i space (as) . . .

PrimPcS = pr e cond i t i on (” as ” : : token : : Ni l , ”Tr” : : p r e f i d , dens i ty , ” black ”)

// . . . to normal space (ns)

PrimPoS = pos t cond i t i on (”Tr” : : pr e f i d , ”ns ” : : token : : Ni l , dens i ty , ” black ”)

}

case ” get ” => {

// f o r ge t : from ns . . .

PrimPcS = pr e cond i t i on (”ns ” : : token : : Ni l , ”Tr” : : p r e f i d , dens i ty , ” black ”)

// . . . to as

PrimPoS = pos t cond i t i on (”Tr” : : pr e f i d , ” as ” : : token : : Ni l , dens i ty , ” black ”)

}

case ”ask” => {

// f o r ask : from ns . . .

PrimPcS = pr e cond i t i on (”ns ” : : token : : Ni l , ”Tr” : : p r e f i d , dens i ty , ” black ”)

// . . . to ns

PrimPoS = pos t cond i t i on (”Tr” : : pr e f i d , ”ns” : : token : : Ni l , dens i ty , ” black ”)

}

case ”nask” => {

// f o r nask : from as . . .

PrimPcS = pr e cond i t i on (” as ” : : token : : Ni l , ”Tr” : : p r e f i d , dens i ty , ” black ”)

// . . . to as

PrimPoS = pos t cond i t i on (”Tr” : : pr e f i d , ” as ” : : token : : Ni l , dens i ty , ” black ”)

}

}

(Petr iNet (lP lace ,

PrimTr : : pn . SetOfTrans ,

PrimPc : : pn . SetOfPre ,

PrimPo : : pn . SetOfPost ,

PrimPcS : : pn . SetOfPreSpaces ,

PrimPoS : : pn . SetOfPostSpaces) ,

p e t r i c oun t e r) // syn t he s i s o f t r an s l a t i o n in Petr iNet

}

Figure 11.39: The code for the construction of the Petri Net elements of a basic

primitive (cont)

328

case dbach_ast_agent(";",ag_i,ag_ii,petricounter,width,height) => {

if (ag_i.width == ag_ii.width) {

val (pn1,pc1) = convert2petriNet(ag_i,"1"::prefid,posX +

ag_i.width/2,posY)

val (pn2,pc2) = convert2petriNet(ag_ii,"2"::prefid,posX +

ag_i.width/2,posY + ag_i.height)

...

}

The sequential composition must take into account the width of the two rectangles that are

to be connected. Depending on their respective width, the construction will be done in order

to align their respective vertical axis.

if (ag_i.width == ag_ii.width) {

...

} else if (ag_i.width > ag_ii.width) {

...

} else {

...

}

When both agents are constructed, the fusion between them is done by replacing the entry

place of the second one by the exit place of the first one. At this level, the number of tokens of

this exit place must be equal to the tokens associated with the Petri Net of the second agent.

Finally, the different components resulting from those recursive calls are grouped in the Petri

Net structure returned by the convert2petriNet method.

if (ag_i.width == ag_ii.width) {

val (pn1,pc1) = convert2petriNet(ag_i,"1"::prefid,posX +

ag_i.width/2,posY)

val (pn2,pc2) = convert2petriNet(ag_ii,"2"::prefid,posX +

ag_i.width/2,posY + ag_i.height)

val pn1seq = PetriNet(transfOutToRegPlace(pn1.SetOfPlaces,pc2),

pn1.SetOfTrans,pn1.SetOfPre,pn1.SetOfPost,

pn1.SetOfPreSpaces,pn1.SetOfPostSpaces)

// replace In from ag_ii by Out from ag_i

val pn2seq = removeInAndReplace(findOutPlace(pn1.SetOfPlaces),1,pn2)

(unionPetriNet(pn1seq,pn2seq),pc1)

} else if ...

The complete code for the construction of the Petri Net elements of a sequential composition

of two agents is depicted in Figure 11.40.

329

case dbach as t agent (” ; ” , ag i , a g i i , pet r i counter , width , he i ght) => {

// sequence o f agents to Pe t r i Net

i f (a g i . width == a g i i . width) {

// i f a g i and a g i i have SAME width

val (pn1 , pc1) = conver t2petr iNet (ag i , ”1” : : p r e f i d , posX + ag i . width /2 , posY)

val (pn2 , pc2) = conver t2petr iNet (a g i i , ”2” : : p r e f i d , posX + ag i . width /2 ,

posY + ag i . he i ght)

val pn1seq = Petr iNet (transfOutToRegPlace (pn1 . SetOfPlaces , pc2) , pn1 . SetOfTrans ,

pn1 . SetOfPre , pn1 . SetOfPost , pn1 . SetOfPreSpaces , pn1 . SetOfPostSpaces)

// r ep l ac e In from a g i i by Out from ag i

val pn2seq = removeInAndReplace(f indOutPlace (pn1 . SetOfPlaces) , 1 , pn2)

(unionPetr iNet (pn1seq , pn2seq) , pc1)

} else i f (a g i . width > a g i i . width) {

// i f a g i i s LARGER than a g i i

val (pn1 , pc1) = conver t2petr iNet (ag i , ”1” : : p r e f i d , posX + ag i . width /2 , posY)

val (pn2 , pc2) = conver t2petr iNet (a g i i , ”2” : : p r e f i d , posX + ag i . width/2 ´ a g i i . width /2 ,

posY + ag i . he i ght)

val pn1seq = Petr iNet (transfOutToRegPlace (pn1 . SetOfPlaces , pc2) , pn1 . SetOfTrans ,

pn1 . SetOfPre , pn1 . SetOfPost , pn1 . SetOfPreSpaces , pn1 . SetOfPostSpaces)

val pn2seq = removeInAndReplace(f indOutPlace (pn1 . SetOfPlaces) , 1 , pn2)

(unionPetr iNet (pn1seq , pn2seq) , pc1)

} else {

// i f a g i i s SMALLER than a g i i

val (pn1 , pc1) = conver t2petr iNet (ag i , ”1” : : p r e f i d ,

posX + a g i i . width /2 ´ a g i . width /2 , posY)

val (pn2 , pc2) = conver t2petr iNet (a g i i , ”2” : : p r e f i d , posX + ag i . width ,

posY + ag i . he i ght)

val pn1seq = Petr iNet (transfOutToRegPlace (pn1 . SetOfPlaces , pc2) , pn1 . SetOfTrans ,

pn1 . SetOfPre , pn1 . SetOfPost , pn1 . SetOfPreSpaces , pn1 . SetOfPostSpaces)

val pn2seq = removeInAndReplace(f indOutPlace (pn1 . SetOfPlaces) , 1 , pn2)

(unionPetr iNet (pn1seq , pn2seq) , pc1)

}

}

Figure 11.40: The code for the construction of the Petri Net elements of a sequen-

tial composition of two agents

11.4.2.3 Parallel composition

In case the complex agent corresponds to a parallel composition of two sub-agents, the construc-

tion is based on the resulting expression dbach ast agent(“ || ”,ag i,ag ii,petricounter,width,height)

of the parsing. As for the sequential composition, it contains six parameters. The first one is

a string representing the parallel composition. The two next parameters represent the parsed

agents ag i and ag ii that are combined in parallel. The fourth parameter is the number of

tokens of the Petri Net structure for the parallel composition, as it is calculated in the parsing

330

of the parallel agent. This number is equal to the sum of the petricounters of ag i and ag ii.

The two last parameters are the width and the height of the rectangle that contains the drawing

of the parallel composition.

As for a primitive, the construction starts with the definition of the X and Y coordinates of

the centre of the entry place, mean X and mean Y. Their values are calculated on the basis of

the X and Y coordinates, posX and posY, of the upper left corner of the rectangle within which

the primitive will be drawn. In particular the X coordinate is equal to the posX value, added

with the half width of the rectangle :

val mean_X = posX + width/2

val mean_Y = posY + 10

The first step is then to call the recursive procedure convert2petriNet for the construction of

the parsed agent ag i and ag ii. Every agent receives a prefix id, which is the prefix id associated

with the parallel construction, increased by 1 for the first agent, and 2 for the second agent.

These prefix id are used for the construction of the places and transitions of a specific agent.

// pn1 associated with ag_i

val (pn1,pc1) = convert2petriNet(ag_i,"1"::prefid,mean_X - extra_w_center/2 -

ag_i.width,mean_Y + 2*extra_h_top/3)

// pn2 associated with ag_ii

val (pn2,pc2) = convert2petriNet(ag_ii,"2"::prefid,mean_X + extra_w_center/2,

mean_Y + 2*extra_h_top/3)

For their construction, the X and Y coordinates of the upper left corner of the rectangle

including them must be provided. They are calculated based on the representation of the ar-

rangement of the rectangle of both agents inside the global rectangle of the parallel composition,

as seen in Figure 11.41. For instance, based on this schema the X coordinate of the upper left

corner of agent ag i on the left part of the picture is obtained by substracting from the mean

position mean X the value of half the constant extra w center and the width of the rectangle

of ag i.width. The values of the different constants extra w center, extra w right, extra w left,

extra h top and extra h bottom are defined in the file densebach2petri data.scala. radius is a

constant used in many calculations, as an adjusting value. It is also half the width of the rect-

angle representing a transition.

The entry and exit places of the parallel agent are also represented in Figure 11.41. These

places are positioned onto the symetric vertical axis, and receive an identifier with a prefix

331

Pin

Pout

Aux left Aux right

Ag 1 Pin Ag 2 Pin

Ag 1 Pout

Ag 2 Pout

TrOut

extra w left extra w center extra w right

w1 w2

w

h

h1

h2

extra h top

extra h bottom

Figure 11.41: The schema of building of a complex agent based on two agents ag 1 and ag 2 for

a parallel composition

332

id coresponding to the level of the recursive call. The number of tokens in the entry place is

equal to the sum of the numbers of tokens of the two sub-Petri Nets corresponding to the two

sub-agents. The code defining these places is as follows:

val In = place(mean_X,mean_Y,radius,true,false,false,"",

valueSum(pc1,pc2),valueSum(pc1,pc2),"In"::prefid,"blue")

val Out = place(mean_X,mean_Y + height,radius,false,true,

false,"",0,1,"Out"::prefid,"blue")

The construction has also to take into account the addition of some extra elements in the

resulting Petri Net. These elements are essentially places of control, called auxiliary places.

Their function is to regulate the execution of the sub-agents. In a parallel composition, every

sub-agent must be selected one time. As the entry place of the parallel agent contains exactly

the number of tokens that is necessary for selecting both sub-agent, there is a risk that a

same sub-agent could be selected more than one time. In order to avoid this, as evidenced

in section 11.3.2.2, two control places are added to the representation of the Petri Net. They

are called the left auxiliary place and the right auxiliary place, left and right with regard to

the vertical symetrical axis. They are respectively responsible for locking the selection of the

corresponding agent situated on the same side once it has been fired. The code defining the

auxiliary places is depicted hereafter. The number of tokens these auxiliary places will receive is

the one contained in the entry place of the sub-agent they control. This can depend on the type

of the sub-agents, essentially if it results from a sequential composition or not. This difference

can be expressed by the difference between the length of the list id of the respective entry places

of the parallel agent and the length of the list id of the entry place of the sub-agent. Following

this, the entry place to be invoked for obtaining its number of tokens has a different id. This

discussion is presented into the following code, with the definition of the auxiliary places Auxg

and Auxd.

if (findInPlace(pn1.SetOfPlaces).length - In.idplace.length == 1) {

Auxg = place(mean_X - width/2 + radius,mean_Y + extra_h_top - 2*radius,

radius,false,false,true,"",findWeightInPlace("In"::"1"::prefid,

pn1.SetOfPlaces),1,"Auxl"::prefid,"black")

} else {

Auxg = place(mean_X - width/2 + radius,mean_Y + extra_h_top - 2*radius,

radius,false,false,true,"",findWeightInPlace("In"::"1"::"1"::prefid,

pn1.SetOfPlaces),1,"Auxl"::prefid,"black")

}

if (findInPlace(pn2.SetOfPlaces).length - In.idplace.length == 1) {

Auxd = place(mean_X + width/2 - radius,mean_Y + extra_h_top - 2*radius,

333

radius,false,false,true,"",findWeightInPlace("In"::"2"::prefid,

pn2.SetOfPlaces),1,"Auxr"::prefid,"black")

} else {

Auxd = place(mean_X + width/2 - radius,mean_Y + extra_h_top - 2*radius,

radius,false,false,true,"",findWeightInPlace("In"::"1"::"2"::prefid,

pn2.SetOfPlaces),1,"Auxr"::prefid,"black")

}

The auxiliary places have to control all the possible agents that composed a sub-agent. For

all of them it is then necessary to define the pre conditions between the auxiliary place and the

concerned transitions. This is done by the following code :

// build all the pre of Auxg of parallel agent

PrePn1Aux = giveAll("Auxl"::prefid, PrePn1In, 1, "black")

// idem for Auxd

PrePn2Aux = giveAll("Auxr"::prefid, PrePn2In, 1, "black")

The pre conditions of the entry place for both sub-agents PrePn1In and PrePn2In are the

result of the procedure collectIdTransPre applied to the respective set of pre conditions, for the

entry place, like for instance into the following code :

PrePn1Temp1 = collectIdTransPre(pn1.SetOfPre, "In"::"1"::"1"::prefid)

The pre conditions of the left auxiliary place Auxl are constructed and collected in PrePn1Aux.

Every transition will receive a weigth of 1, and the color of the arrow will be black. The same

code applies for the right auxiliary place Auxr.

The insertion of both sub-agents in the parallel structure implies a replacement of their

respective entry places by the entry place of the parallel composition. This implies also a

modification of the pre conditions related to these entries places, where the id of the entry place

must now be one of the entry place of the parallel composition. The following code is responsible

for these modifications :

var pn11 = removeInAndReplace("In"::prefid,1,pn1)

var pn22 = removeInAndReplace("In"::prefid,1,pn2)

After the firing of the sub-agents, a token is present in their own exit places. These sub-

results must be grouped within the exit place of the parallel construction. This is done by one

transition that will be fired if all the exit places of the sub-agents are populated with tokens.

The result is then the production of one token in the exit place of the parallel construction.

334

This schema corresponds to our model of basic brick for the construction of a Petri Net: on the

one hand, one entry place is followed by a list of transitions, and, on the other hand, some exit

transitions opening to one final exit place. The code for building this transition is as follows :

val To = transition(mean_X - radius,mean_Y + height - 2*extra_h_bottom/3,

2*radius,radius/3,"To","",0,"To"::prefid,"black")

This transition To is a rectangle where the X and Y coordinates of its upper left corner are

calculated based on the constants radius and extra h bottom of Figure 11.41. This transition

has pre conditions, established with the exit places of both sub-agents. These pre conditions

have a weight of 1 and their color is black. Their definitions are given by the following code :

val OutgTo = pre_condition(findOutPlace(pn11.SetOfPlaces),"To"::prefid,1,"black")

val OutdTo = pre_condition(findOutPlace(pn22.SetOfPlaces),"To"::prefid,1,"black")

It is to be noted that the firing of this transition To implies to restore the auxiliary places in

their original state. This implies to define post conditions between the transition To and both

auxiliary places Auxl and Auxr. It is also necessary to define the post condition between the

transition To and the final exit place out. The code is the following :

val ToAuxg = post_condition("To"::prefid,"Auxl"::prefid,

findWeightInPlace("Auxl"::prefid, Auxg::Nil),"black")

val ToAuxd = post_condition("To"::prefid,"Auxr"::prefid,

findWeightInPlace("Auxr"::prefid, Auxd::Nil),"black")

val ToOut = post_condition("To"::prefid,"Out"::prefid,1,"black")

Restoring the auxiliary place allows our code to be used to process agents with an iterative

structure. Nevertheless that possibility has not been developped further in our thesis.

Finally, all the components produced are grouped in the Petri Net structure, as follows:

(PetriNet(In::Auxg::Auxd::Out::pn11.SetOfPlaces:::pn22.SetOfPlaces,

To::pn11.SetOfTrans:::pn22.SetOfTrans,

OutgTo::OutdTo::Pre1:::Pre2,

ToAuxg::ToAuxd::ToOut::pn11.SetOfPost:::pn22.SetOfPost,

pn1.SetOfPreSpaces:::pn2.SetOfPreSpaces,

pn1.SetOfPostSpaces:::pn2.SetOfPostSpaces),

valueSum(pc1,pc2))

Figures 11.42 to 11.44 depict the complete code for the construction of the Petri Net element

in the case of a parallel composition of two agents.

335

case dbach ast agen t (” | | ” , ag i , a g i i , pc , width , he i gh t) => {

// p a r a l l e l o f a gen t s a g i and a g i i t o Pe t r i Net

/∗

b u i l d p l a c e s In , Auxg (a u x i l i a r y l e f t p l a c e) , Auxd (a u x i l i a r y r i g h t p l a c e) and Out ;

b u i l d t r a n s i t i o n To

remove p l a c e s In o f a g i and a g i i , and remplace them by In (o f p a r a l l e l a gen t) ;

modi fy r e l a t e d pre (o f p r e v i o u s ac t i on)

b u i l d pre o f Auxg t o t r a n s i t i o n o f a g i and pre o f Auxd to t r a n s i t i o n o f a g i i ;

b u i l d po s t o f TO to Auxg , Auxd and Out

∗/

val mean X = posX + width/2

val mean Y = posY + 10

val (pn1 , pc1) = conver t2pet r iNet (ag i , ”1” : : p r e f i d , mean X ´ ext ra w cen te r /2

´ ag i . width , mean Y + 2∗ ext ra h top /3) // pn1 a s s o c i a t e d w i t h a g i

val (pn2 , pc2) = conver t2pet r iNet (a g i i , ”2” : : p r e f i d , mean X + ext ra w cen te r /2 ,

mean Y + 2∗ ext ra h top /3) // pn2 a s s o c i a t e d w i t h a g i i

// c r e a t e In w i t h number o f t o kens e qu a l t o summation o f pc1 and pc2

val In = p lace (mean X ,mean Y , rad ius , true , fa lse , fa lse , ”” , valueSum(pc1 , pc2) ,

valueSum(pc1 , pc2) , ” In” : : p r e f i d , ” b lue ”)

val Out = p lace (mean X ,mean Y + height , rad ius , fa lse , true , fa lse , ”” , 0 , 1 ,

”Out” : : p r e f i d , ” b lue ”)

var Auxg = p lace (0 , 0 , 0 , fa lse , fa lse , fa lse , ”” , 0 , 0 , Ni l , ””)

var Auxd = p lace (0 , 0 , 0 , fa lse , fa lse , fa lse , ”” , 0 , 0 , Ni l , ””)

// To tak e i n t o account t he s e q u e n t i a l i t y o f two agen t s

i f (f i nd InP lace (pn1 . SetOfPlaces) . l ength ´ In . i d p l a c e . l ength == 1) {

Auxg = p lace (mean X ´ width /2 + radius , mean Y + ext ra h top ´ 2∗ rad ius , rad ius ,

fa lse , fa lse , true , ”” , f indWeightInPlace (” In” : : ”1” : : p r e f i d , pn1 . SetOfPlaces) , 1 ,

”Auxl” : : p r e f i d , ” b lack ”)

} else {

Auxg = p lace (mean X ´ width /2 + radius , mean Y + ext ra h top ´ 2∗ rad ius , rad ius ,

fa lse , fa lse , true , ”” , f indWeightInPlace (” In” : : ”1” : : ”1” : : p r e f i d , pn1 . SetOfPlaces) ,

1 , ”Auxl” : : p r e f i d , ” b lack ”)

}

i f (f i nd InP lace (pn2 . SetOfPlaces) . l ength ´ In . i d p l a c e . l ength == 1) {

Auxd = p lace (mean X + width /2 ´ rad ius , mean Y + ext ra h top ´ 2∗ rad ius , rad ius ,

fa lse , fa lse , true , ”” , f indWeightInPlace (” In” : : ”2” : : p r e f i d , pn2 . SetOfPlaces) , 1 ,

”Auxr” : : p r e f i d , ” b lack ”)

} else {

Auxd = p lace (mean X + width /2 ´ rad ius , mean Y + ext ra h top ´ 2∗ rad ius , rad ius ,

fa lse , fa lse , true , ”” , f indWeightInPlace (” In” : : ”1” : : ”2” : : p r e f i d , pn2 . SetOfPlaces) ,

1 , ”Auxr” : : p r e f i d , ” b lack ”)

}

Figure 11.42: The code for the construction of the Petri Net elements of a parallel

composition of two agents

336

var PrePn1Temp1 : L i s t [L i s t [S t r i ng]] = Ni l //

var PrePn1Temp11 : L i s t [L i s t [S t r i ng]] = Ni l //

var PrePn1In : L i s t [L i s t [S t r i ng]] = Ni l // l i s t o f i d t r an s f o r pn1

var PrePn2Temp2 : L i s t [L i s t [S t r i ng]] = Ni l

var PrePn2Temp22 : L i s t [L i s t [S t r i ng]] = Ni l

var PrePn2In : L i s t [L i s t [S t r i ng]] = Ni l // l i s t o f i d t r an s f o r pn2

var PrePn1Aux : L i s t [p r e c ond i t i on] = Ni l // l i s t o f pre o f aux p l a c e f o r pn1

var PrePn2Aux : L i s t [p r e c ond i t i on] = Ni l // l i s t o f pre o f aux p l a c e f o r pn2

var PrePn1Aux1 : L i s t [p r e c ond i t i on] = Ni l // l i s t o f pre o f p l a c e aux1 f o r pn1

var PrePn2Aux2 : L i s t [p r e c ond i t i on] = Ni l // l i s t o f pre o f p l a c e aux2 f o r pn2

var Pre1 : L i s t [p r e c ond i t i on] = Ni l

var Pre2 : L i s t [p r e c ond i t i on] = Ni l

i f (f i nd InP lace (pn1 . SetOfPlaces) . l ength > 3) { // i f a g i i s a compos i t i on o f agen t s

PrePn1Temp1 = co l l e c t IdTransPre (pn1 . SetOfPre , ” In” : : ”1” : : ”1” : : p r e f i d)

} else {

// c o l l e c t i d t r a n s in Pre a s s o c i a t e d w i t h p l a c e IN : : 1 o f pn1 (= o f a g i)

PrePn1Temp1 = co l l e c t IdTransPre (pn1 . SetOfPre , ” In” : : ”1” : : p r e f i d)

}

i f (f i nd InP lace (pn2 . SetOfPlaces) . l ength > 3) { // i f a g i i i s a compos i t i on o f agen t s

PrePn2Temp2 = co l l e c t IdTransPre (pn2 . SetOfPre , ” In” : : ”1” : : ”2” : : p r e f i d)

} else {

PrePn2Temp2 = co l l e c t IdTransPre (pn2 . SetOfPre , ” In” : : ”2” : : p r e f i d)

}

i f (f i nd InP lace (pn1 . SetOfPlaces) . l ength > 2) { // i f a g i i i s a compos i t i on o f agen t s

PrePn1Temp11 = co l l e c t IdTransPre (pn1 . SetOfPre , ” In” : : ”1” : : ”1” : : p r e f i d)

} else {

// c o l l e c t i d t r a n s in Pre a s s o c i a t e d w i t h p l a c e IN : : 1 o f pn1 (= o f a g i)

PrePn1Temp11 = co l l e c t IdTransPre (pn1 . SetOfPre , ” In” : : ”1” : : p r e f i d)

}

i f (f i nd InP lace (pn2 . SetOfPlaces) . l ength > 2) { // i f a g i i i s a compos i t i on o f agen t s

PrePn2Temp22 = co l l e c t IdTransPre (pn2 . SetOfPre , ” In” : : ”1” : : ”2” : : p r e f i d)

} else {

PrePn2Temp22 = co l l e c t IdTransPre (pn2 . SetOfPre , ” In” : : ”2” : : p r e f i d)

}

i f (PrePn1Temp1 == Ni l) { // combine p re v i o u s r e s u l t s

PrePn1In = PrePn1Temp11

} else {

PrePn1In = PrePn1Temp1 : : : PrePn1Temp11

}

i f (PrePn2Temp2 == Ni l) {

PrePn2In = PrePn2Temp22

} else {

PrePn2In = PrePn2Temp2 : : : PrePn2Temp22

}

Figure 11.43: The code for the construction of the Petri Net elements of a parallel

composition of two agents (cont)

337

PrePn1Aux = g iv eA l l (”Auxl” : : p r e f i d , PrePn1In , 1 , ” b lack ”) // b u i l d a l l t h e pre o f Auxg

PrePn2Aux = g iv eA l l (”Auxr” : : p r e f i d , PrePn2In , 1 , ” b lack ”) // idem fo r Auxd

var pn11 = removeInAndReplace (” In” : : p r e f i d , 1 , pn1) // remove IN : : 1 o f ag i , r e p l a c e d

// by IN : : p r e f i d

var pn22 = removeInAndReplace (” In” : : p r e f i d , 1 , pn2) // idem fo r a g i i

PrePn1Aux1 = PrePn1Aux : : : pn11 . SetOfPre // reg roup pre o f aux f o r pn1 w i t h pn11

PrePn2Aux2 = PrePn2Aux : : : pn22 . SetOfPre // idem fo r pn2 w i t h pn22

Pre1 = PrePn1Aux1. d i s t i n c t

Pre2 = PrePn2Aux2. d i s t i n c t

val To = t r a n s i t i o n (mean X ´ rad ius , mean Y + he i gh t ´ 2∗ extra h bottom /3 ,2∗ rad ius ,

r ad iu s /3 , ”To” , ”” ,0 , ”To” : : p r e f i d , ” b lack”)

// b u i l d t he pre o f p l a c e s Outg and Outd w i t h t r a n s i t i o n To

val OutgTo = pr e c ond i t i on (f indOutPlace(pn11 . SetOfPlaces) , ”To” : : p r e f i d , 1 , ” b lack”)

val OutdTo = pr e c ond i t i on (f indOutPlace(pn22 . SetOfPlaces) , ”To” : : p r e f i d , 1 , ” b lack”)

// b u i l d t he po s t o f t r a n s i t i o n To

val ToAuxg = pos t c ond i t i on (”To” : : p r e f i d , ”Auxl” : : p r e f i d ,

f indWeightInPlace (”Auxl” : : p r e f i d , Auxg : : Ni l) , ” b lack”)

// to Auxg and Auxd w i t h t h e i r weight ,

val ToAuxd = pos t c ond i t i on (”To” : : p r e f i d , ”Auxr” : : p r e f i d ,

f indWeightInPlace (”Auxr” : : p r e f i d , Auxd : : Ni l) , ” b lack”)

//and pos t o f To to Out

val ToOut = pos t c ond i t i on (”To” : : p r e f i d , ”Out” : : p r e f i d , 1 , ” b lack ”)

(Petr iNet (In : : Auxg : : Auxd : : Out : : pn11 . SetOfPlaces : : : pn22 . SetOfPlaces ,

To : : pn11 . SetOfTrans : : : pn22 . SetOfTrans ,

OutgTo : : OutdTo : : Pre1 : : : Pre2 ,

ToAuxg : : ToAuxd : : ToOut : : pn11 . SetOfPost : : : pn22 . SetOfPost ,

pn1 . SetOfPreSpaces : : : pn2 . SetOfPreSpaces ,

pn1 . SetOfPostSpaces : : : pn2 . SetOfPostSpaces) ,

valueSum(pc1 , pc2)) // s y n t h e s i s

}

Figure 11.44: The code for the construction of the Petri Net elements of a parallel

composition of two agents (cont)

338

Pin

Pout

Auxl` Auxr`

Ag 1 Pin Ag 2 Pin

Ag 1 Pout

Ag 2 Pout

TrOutL TrOutR

extra w left extra w center extra w right

w1 w2

w

h

h1

h2

extra h top

extra h bottom

Figure 11.45: The schema of building of a complex agent based on two agents ag 1 and ag 2 for

a choice composition

339

11.4.2.4 Choice composition

The construction of a choice compostion is done in a similar way to the one for the parallel

composition. It starts with the definition of the X and Y coordinates of the center of the entry

place of the choice agent, followed by the recursive calls to convert2petriNet for the construction

of both sub-agents ag i and ag ii. The coordinates of the left upper corners of the rectangle

are calculated with the constants extra w center and extra h top, of Figure 11.45. This figure is

almost the same as the figure for the parallel composition. The only difference is in the presence

of two transitions TrOutL and TrOutR for the propagation of the result of the execution of one

of the two sub-agents to the final exit place. The presence of two transitions indicates that only

one sub-agent has to be successful, for the choice agent to be successful.

val mean_X = posX + width/2

val mean_Y = posY + 10

var (pn1,pc1) = convert2petriNet(ag_i,"1"::prefid,mean_X

- extra_w_center/2 - ag_i.width,mean_Y + 2*extra_h_top/3)

var (pn2,pc2) = convert2petriNet(ag_ii,"2"::prefid,mean_X

+ extra_w_center/2,mean_Y + 2*extra_h_top/3)

The entry In and exit Out places of the choice agent must be defined. Places of control,

also called auxiliary places Auxl+ and Auxr+ have to be added to the choice agent. A “+”sign

has been added to their name to distinguish them from their equivalent names for the parallel

composition. Their role is also to control the execution of the sub-agents present in the com-

position. Nevertheless, and differing from the parallel composition, each of these places have

the characteristic to be connected to both entries of the sub-agents. This permits to control,

when an agent is selected among a choice, if the second agent has not been selected before. This

implies to build pre conditions for the new auxiliary places with regard of the transitions related

to the entry places for all the sub-agents, and also to build the post conditions corresponding

to the return of these transitions, but only for the agent that is not on the same side of the

control place. Figure 11.46 shows the code of the auxiliary places Auxl+ and Auxr+.

The entry place receives a number of tokens equal to the maximum between the number

of token of the Petri Net pc1 associated with the first agent, and the number of tokens ot the

Petri Net pc2 associated with the second agent.

As in the parallel case, the auxiliary places receive the same number of tokens as in the

entry place of their corresponding agent. This number is obtained via the identification of the

340

val In = place(mean_X,mean_Y,radius,true,false,false,"",

valueMax(pc1,pc2),valueMax(pc1,pc2),"In"::prefid,"blue")

if (findInPlace(pn1.SetOfPlaces).length - In.idplace.length == 1) {

Auxg = place(mean_X - width/2 + radius,mean_Y + extra_h_top - 2*radius,

radius,false,false,true,"",findWeightInPlace("In"::"1"::prefid,

pn1.SetOfPlaces),1,"Auxl+"::prefid,"black")

} else {

Auxg = place(mean_X - width/2 + radius,mean_Y + extra_h_top - 2*radius,

radius,false,false,true,"",findWeightInPlace("In"::"1"::"1"::prefid,

pn1.SetOfPlaces),1,"Auxl+"::prefid,"black")

}

if (findInPlace(pn2.SetOfPlaces).length - In.idplace.length == 1) {

Auxd = place(mean_X + width/2 - radius,mean_Y + extra_h_top - 2*radius,radius,

false,false,true,"",findWeightInPlace("In"::"2"::prefid,

pn2.SetOfPlaces),1,"Auxr+"::prefid,"black")

} else {

Auxd = place(mean_X + width/2 - radius,mean_Y + extra_h_top - 2*radius,radius,

false,false,true,"",findWeightInPlace("In"::"1"::"2"::prefid,

pn2.SetOfPlaces),1,"Auxr+"::prefid,"black")

}

val Out = place(mean_X,mean_Y + height,radius,false,true,false,"",0,1,

"Out"::prefid,"black")

Figure 11.46: The code for the construction of the auxiliary places in case of a choice composition

place, that can be different in case of a sequential composition. This possibility is discussed by

comparison of the length of the id list of the entry place of the choice agent, with the length of

the id list of the entry place of the sub-agent.

Based on the collected pre conditions of the entry places PrePn1In and PrePn2In, all the

pre conditions of the auxiliary places are constructed, for both sub-agents ag i and ag ii.

PrePn1Auxi1 = giveAll("Auxl+"::prefid, PrePn1In, 1, "black")

PrePn2Auxi1 = giveAll("Auxl+"::prefid, PrePn2In,

findWeightInPlace("Auxl+"::prefid, Auxg::Nil), "black")

PrePn1Auxi2 = giveAll("Auxr+"::prefid, PrePn1In,

findWeightInPlace("Auxr+"::prefid, Auxd::Nil), "black")

PrePn2Auxi2 = giveAll("Auxr+"::prefid, PrePn2In, 1, "black")

The post conditions of both control places with regard to the agent of the opposite place

341

are defined within the following code :

PostPn2Aux1 = newPostAux("Auxl+"::prefid, PrePn2In,

findWeightInPlace("Auxl+"::prefid, Auxg::Nil))

PostPn1Aux2 = newPostAux("Auxr+"::prefid, PrePn1In,

findWeightInPlace("Auxr+"::prefid, Auxd::Nil))

In this code the function newPostAux defines the post conditions of the place Auxl+ with

regard to the transitions of the agent constructed on the right part of the drawing. These

transitions are obtained with the list of prePn2In of the pre conditions related to the entry

place of the second agent. The same is done for the place Auxr+, with regard of the agent

constructed on the right of the drawing.

The next step consists in removing the entry places of the sub-agents, and to replace them

with the entry place of the choice agent. This operation implies also to adapt the pre conditions

that concerns the entry places of the sub-agent. In these preconditions, the referenced place

must be replaced by the entry place of the choice agent. The following code is responsible for

these operations :

if(pc1 > pc2) {

pn11 = removeInAndReplace("In"::prefid,1,pn1)

pn22 = removeInAndReplace("In"::prefid,pc1,pn2)

} else {

if(pc2 > pc1) {

pn11 = removeInAndReplace("In"::prefid,pc2,pn1)

pn22 = removeInAndReplace("In"::prefid,1,pn2)

} else {

pn11 = removeInAndReplace("In"::prefid,1,pn1)

pn22 = removeInAndReplace("In"::prefid,1,pn2)

}

}

The code discusses the differences between the two sub-agents, essentially when the choice

is constructed between a choice sub-agent and a parallel sub-agent. The case where the first

agent needs a number of tokens bigger than the second one is exemplified by the situation of

a first sub-agent with a parallel structure, and a second agent with a choice structure. Then

every pre condition between the choice entry place and the transitions of the first agent will

consume only one token, as every member of the parallel construction must be fired. This is

indicated by 1 in the call to the removeInAndReplace procedure. For the second agent, its

choice structure means that only one of its member will be fired. It needs then to consume

342

all the tokens of the choice entry place, which is indicated by pc1 in the removeInAndReplace

procedure. The symetric situation is described in the second part of the discussion. The last

discussion describes the situation where both sub-agents have the same structure.

The last elements to be constructed are the two transitions Tog and Tod that transfer the

result of the chosen agent to the final exit place. Their coordinates - X and Y of the upper left

corner, and the width and height of the rectangle - are calculated with the constants radius,

extra w center and extra h bottom. The code is the following :

val Tog = transition(mean_X - extra_w_center/2 - ag_i.width/2 -

radius,mean_Y + height - 2*extra_h_bottom/3,2*radius,radius/3,

"Tol","",0,"Tol"::prefid,"black")

val Tod = transition(mean_X + extra_w_center/2 + ag_ii.width/2- radius,

mean_Y + height - 2*extra_h_bottom/3,2*radius,radius/3,"Tor",

"",0,"Tor"::prefid,"black")

The pre and post conditions of these transitions must also be defined, inside the following

code. In the case of the post conditions containing the auxiliary places, the number of tokens

of the transition must be equal to the number of tokens inside the definition of the auxiliary

places.

val OutgTog = pre_condition(findOutPlace(pn1.SetOfPlaces),

"Tol"::prefid,1,"black")

val OutdTod = pre_condition(findOutPlace(pn2.SetOfPlaces),

"Tor"::prefid,1,"black")

val TogAuxg = post_condition("Tol"::prefid,"Auxl+"::prefid,

findWeightInPlace("Auxl+"::prefid, Auxg::Nil),"black")

val TodAuxd = post_condition("Tor"::prefid,"Auxr+"::prefid,

findWeightInPlace("Auxr+"::prefid, Auxd::Nil),"black")

val TogOut = post_condition("Tol"::prefid,"Out"::prefid,1,"black")

val TodOut = post_condition("Tor"::prefid,"Out"::prefid,1,"black")

Finaly, all the constructed elements must be grouped in the structure of the Petri Net, as

follows:

(PetriNet(In::Auxg::Auxd::Out::pn11.SetOfPlaces:::pn22.SetOfPlaces,

Tog::Tod::pn1.SetOfTrans:::pn2.SetOfTrans,

OutgTog::OutdTod::Pre1:::Pre2,

Post2,

pn1.SetOfPreSpaces:::pn2.SetOfPreSpaces,

pn1.SetOfPostSpaces:::pn2.SetOfPostSpaces),

valueMax(pc1,pc2)

343

The construction of the Petri Net is similar in its steps to the process followed for the

parallel composition. The complete code for the construction of the Petri Net elements for a

choice composition of two agents is listed in Figures 11.47 to 11.51.

11.4.3 Drawing Petri Net representations

The Petri Net being constructed, the next step is to draw a picture of it. This is achieved by

constructing an xml file, wherein will be written all the instructions to draw in a svg format

the produced Petri Net displayed in a browser.

The densebachtopetri xml.scala scala file defines a class pn2xml that is composed of a set

of internal methods, on the one hand, and of one main method called convertPn2Svg, on the

other hand. The latter is responsible for writing the xml file that produces the svg picture. The

set of internal methods is not discussed in the text. It is composed of two subsets. The first

one is composed of methods that write in the xml file the instruction for drawing the specific

components of the Petri Net. The second one is composed of tool methods for the retrieval of

useful pieces of information from the data structures of the Petri Net. The reader will find their

code in appendix (see section H.1 in chapter H).

The main method convertPn2Svg has two arguments : the Petri Net produced by the

convert2petriNet method, and a mapping that proposes a serialized list of the firable transitions

in agreement with the state of the Petri Net at a given moment. The first action openSvgFile

of this method is to open a file in writing. The second action beginSVG is to write inside this

file a header grouping different pieces of information such as the xml version, the stylesheet,

the type of encoding, the maximum dimensions (in pixels) of the drawing. A second part of the

header defines the head of the arrow used to represent the pre and post conditions.

def convertPn2Svg(pn : PetriNet, mp : Map[Int, List[String]]) {

openSvgFile()

beginSVG()

...

To represent the Petri Net, four components need to be drawn : the places of the Petri

Net, including the places and the anti places representing the tokens in the token space, the

transitions, the pre conditions of a transition, represented by an arrow leaving a place and

pointing to the transition, and the post conditions represented by an arrow leaving the transition

and pointing to a place.

344

case dbach as t agent (”+” , ag i , a g i i , pc , width , he i ght) => {

// choice o f agents ag i and a g i i to Pe t r i Net

/∗

b u i l d p l a c e s In , Auxg+, Auxd+ and Out ; (t he ”+” d i s t i n c t s au x i l i a r y

p l ac e s creat ed f o r a choice agent , from those f o r a p a r a l l e l agent ,

as they appear in pre og ag i and a g i i)

b u i l d t r an s i t i o n Tog and Tod

remove In of ag i and a g i i and r ep l ac e them by In (o f cho ice agent) ;

modify r e l a t e d pre (o f prev ious ac t ion) ;

b u i l d pre o f Auxg+ to t r an s i t i o n s o f ag i AND a g i i ;

b u i l d pre o f Auxd+ to t r an s i t i o n s o f ag i AND a g i i ;

b u i l d the pos t o f Tog to Auxg+, and Out

b u i l d the pos t o f Tod to Auxd+, and Out

∗/

val mean X = posX + width/2

val mean Y = posY + 10

var (pn1 , pc1) = conver t2petr iNet (ag i , ”1” : : p r e f i d ,mean X ´

ex t r a w cen t e r /2 ´ a g i . width ,mean Y + 2∗ ex t r a h top /3)

var (pn2 , pc2) = conver t2petr iNet (a g i i , ”2” : : p r e f i d , mean X

+ ext r a w cen t e r /2 ,mean Y + 2∗ ex t r a h top /3)

// number o f tokens o f In = summation of those o f pc1 and pc2

val In = place (mean X ,mean Y , radius , true , fa lse , fa lse , ”” ,

valueMax (pc1 , pc2) , valueMax (pc1 , pc2) , ” In” : : p r e f i d , ” blue ”)

var Auxg = place (0 , 0 , 0 , fa lse , fa lse , fa lse , ”” , 0 , 0 , Ni l , ””)

var Auxd = place (0 , 0 , 0 , fa lse , fa lse , fa lse , ”” , 0 , 0 , Ni l , ””)

// take in to account the s e q u e n t i a l i t y o f two agents ; t he number o f

// token i s the number o f token of In p lace

i f (f i nd InP l a c e (pn1 . SetOfPlaces) . l ength ´ In . i dp l a c e . l ength == 1) {

Auxg = place (mean X ´ width/2 + radius ,mean Y + ext r a h top ´ 2∗ radius , radius ,

fa lse , fa lse , true , ”” , f indWeightInPlace (” In ” : : ”1” : : p r e f i d , pn1 . SetOfPlaces) ,

1 , ”Auxl+” : : pr e f i d , ” black ”)

} else {

Auxg = place (mean X ´ width/2 + radius ,mean Y + ext r a h top ´ 2∗ radius , radius ,

fa lse , fa lse , true , ”” , f indWeightInPlace (” In ” : : ”1” : : ”1” : : p r e f i d , pn1 . SetOfPlaces) ,

1 , ”Auxl+” : : pr e f i d , ” black ”)

}

i f (f i nd InP l a c e (pn2 . SetOfPlaces) . l ength ´ In . i dp l a c e . l ength == 1) {

Auxd = place (mean X + width/2 ´ radius ,mean Y + ext r a h top ´ 2∗ radius , radius ,

fa lse , fa lse , true , ”” , f indWeightInPlace (” In ” : : ”2” : : p r e f i d , pn2 . SetOfPlaces) , 1 ,

”Auxr+” : : pr e f i d , ” black ”)

} else {

Auxd = place (mean X + width/2 ´ radius ,mean Y + ext r a h top ´ 2∗ radius , radius ,

fa lse , fa lse , true , ”” , f indWeightInPlace (” In ” : : ”1” : : ”2” : : p r e f i d , pn2 . SetOfPlaces) ,

1 , ”Auxr+” : : pr e f i d , ” black ”)

}

Figure 11.47: The code for the construction of the Petri Net elements of a choice

composition of two agents

345

val Out = place (mean X ,mean Y + height , radius , fa lse , true , fa lse , ”” , 0 , 1 ,

”Out” : : pr e f i d , ” black ”)

var PrePn1Auxi1 : L i s t [p r e cond i t i on] = Ni l

var PrePn1Auxi2 : L i s t [p r e cond i t i on] = Ni l

var PrePn2Auxi1 : L i s t [p r e cond i t i on] = Ni l

var PrePn2Auxi2 : L i s t [p r e cond i t i on] = Ni l

var PrePn1Temp1 : L i s t [L i s t [S t r ing]] = Ni l

var PrePn1Temp11 : L i s t [L i s t [S t r ing]] = Ni l

var PrePn1In : L i s t [L i s t [S t r ing]] = Ni l

var PrePn2Temp2 : L i s t [L i s t [S t r ing]] = Ni l

var PrePn2Temp22 : L i s t [L i s t [S t r ing]] = Ni l

var PrePn2In : L i s t [L i s t [S t r ing]] = Ni l

var PrePn1Auxi11 : L i s t [p r e cond i t i on] = Ni l

var PrePn2Auxi22 : L i s t [p r e cond i t i on] = Ni l

var PostPn2Aux1 : L i s t [po s t cond i t i on] = Ni l

var PostPn1Aux2 : L i s t [po s t cond i t i on] = Ni l

var Post : L i s t [po s t cond i t i on] = Ni l

var Post1 : L i s t [po s t cond i t i on] = Ni l

var Post2 : L i s t [po s t cond i t i on] = Ni l

var l i s tNamePlaces : L i s t [L i s t [S t r ing]] = Ni l

var Pre1 : L i s t [p r e cond i t i on] = Ni l

var Pre2 : L i s t [p r e cond i t i on] = Ni l

var nbr : Int = 1

Figure 11.48: The code for the construction of the Petri Net elements of a choice

composition of two agents (cont)

346

i f (f i nd InP l a c e (pn1 . SetOfPlaces) . l ength > 3) { // i f a g i i s a composi t ion of agents

PrePn1Temp1 = co l l e c t IdTr an sPre (pn1 . SetOfPre , ” In ” : : ”1” : : ”1” : : p r e f i d)

} else {

// c o l l e c t t he i d t r an s o f Pre a s soc i a t e d with the p lace IN : : 1 o f pn1 (= of ag i)

PrePn1Temp1 = co l l e c t IdTr an sPre (pn1 . SetOfPre , ” In ” : : ”1” : : p r e f i d)

}

i f (f i nd InP l a c e (pn2 . SetOfPlaces) . l ength > 3) { // i f a g i i i s a composi t ion of agents

PrePn2Temp2 = co l l e c t IdTr an sPre (pn2 . SetOfPre , ” In ” : : ”1” : : ”2” : : p r e f i d)

} else {

PrePn2Temp2 = co l l e c t IdTr an sPre (pn2 . SetOfPre , ” In ” : : ”2” : : p r e f i d)

}

i f (f i nd InP l a c e (pn1 . SetOfPlaces) . l ength > 2) { // i f a g i i s a composi t ion of agents

PrePn1Temp11 = co l l e c t IdTr an sPr e (pn1 . SetOfPre , ” In” : : ”1” : : ”1” : : p r e f i d)

} else {

// c o l l e c t t he i d t r an s o f Pre a s soc i a t e d with the p lace IN : : 1 o f pn1 (= of ag i)

PrePn1Temp11 = co l l e c t IdTr an sPr e (pn1 . SetOfPre , ” In” : : ”1” : : p r e f i d)

}

i f (f i nd InP l a c e (pn2 . SetOfPlaces) . l ength > 2) { // i f a g i i i s a composi t ion of agents

PrePn2Temp22 = co l l e c t IdTr an sPr e (pn2 . SetOfPre , ” In” : : ”1” : : ”2” : : p r e f i d)

} else {

PrePn2Temp22 = co l l e c t IdTr an sPr e (pn2 . SetOfPre , ” In” : : ”2” : : p r e f i d)

}

i f (PrePn1Temp1 == Ni l) {

PrePn1In = PrePn1Temp11

} else {

PrePn1In = PrePn1Temp1 : : : PrePn1Temp11

}

i f (PrePn2Temp2 == Ni l) {

PrePn2In = PrePn2Temp22

} else {

PrePn2In = PrePn2Temp2 : : : PrePn2Temp22

}

Figure 11.49: The code for the construction of the Petri Net elements of a choice

composition of two agents (cont)

347

// b u i l d a l l t he pre o f Auxg+ to the i d t r an s o f ag i

// idem for Auxg+ to the i d t r an s o f a g i i

// idem for Auxd+ to the i d t r an s o f ag i

// idem for Auxd+ to the i d t r an s o f a g i i

PrePn1Auxi1 = g i v eA l l (”Auxl+” : : pr e f i d , PrePn1In , 1 , ” black ”)

PrePn2Auxi1 = g i v eA l l (”Auxl+” : : pr e f i d , PrePn2In ,

f indWeightInPlace (”Auxl+” : : pr e f i d , Auxg : : N i l) , ” black ”)

PrePn1Auxi2 = g i v eA l l (”Auxr+” : : pr e f i d , PrePn1In ,

f indWeightInPlace (”Auxr+” : : pr e f i d , Auxd : : N i l) , ” black ”)

PrePn2Auxi2 = g i v eA l l (”Auxr+” : : pr e f i d , PrePn2In , 1 , ” black ”)

PostPn2Aux1 = newPostAux (”Auxl+” : : pr e f i d , PrePn2In ,

f indWeightInPlace (”Auxl+” : : pr e f i d , Auxg : : N i l))

PostPn1Aux2 = newPostAux (”Auxr+” : : pr e f i d , PrePn1In ,

f indWeightInPlace (”Auxr+” : : pr e f i d , Auxd : : N i l))

// remove In of ag i and ag i i , and r ep l ac e them by In of cho ice agent in t h e i r pre

var pn11 = Petr iNet (Nil , Ni l , Ni l , Ni l , Ni l , N i l)

var pn22 = Petr iNet (Nil , Ni l , Ni l , Ni l , Ni l , N i l)

i f (pc1 > pc2) {

pn11 = removeInAndReplace(” In ” : : pr e f i d , 1 , pn1)

pn22 = removeInAndReplace(” In ” : : pr e f i d , pc1 , pn2)

} else {

i f (pc2 > pc1) {

pn11 = removeInAndReplace(” In” : : pr e f i d , pc2 , pn1)

pn22 = removeInAndReplace(” In” : : pr e f i d , 1 , pn2)

} else {

pn11 = removeInAndReplace(” In” : : pr e f i d , 1 , pn1)

pn22 = removeInAndReplace(” In” : : pr e f i d , 1 , pn2)

}

}

var pnTotPlaces = pn11 . SetOfPlaces : : : pn22 . SetOfPlaces

l i s tNamePlaces = c o l l e c t I dP l a c e s (pnTotPlaces)

Figure 11.50: The code for the construction of the Petri Net elements of a choice

composition of two agents (cont)

348

PrePn1Auxi11 = PrePn1Auxi1 : : : PrePn1Auxi2 : : : pn11 . SetOfPre

PrePn2Auxi22 = PrePn2Auxi1 : : : PrePn2Auxi2 : : : pn22 . SetOfPre

Pre1 = PrePn1Auxi11 . d i s t i n c t

Pre2 = PrePn2Auxi22 . d i s t i n c t

val Tog = t r an s i t i o n (mean X ´ ex t r a w cen t e r /2 ´ a g i . width/2 ´ radius , mean Y

+ he ight ´ 2∗ extra h bottom /3 ,2∗ radius , r ad ius /3 , ”Tol” , ”” , 0 , ”Tol ” : : p r e f i d , ” black ”)

val Tod = t r an s i t i o n (mean X + ext r a w cen t e r /2 + a g i i . width/2´ radius , mean Y

+ he ight ´ 2∗ extra h bottom /3 ,2∗ radius , r ad ius /3 , ”Tor” , ”” , 0 , ”Tor” : : p r e f i d , ” black ”)

// b u i l d the pre o f p l a c e s Outg and Outd to t r an s i t i o n To

val OutgTog = pr e cond i t i on (f indOutPlace (pn1 . SetOfPlaces) , ”Tol” : : p r e f i d , 1 , ” black ”)

val OutdTod = pr e cond i t i on (f indOutPlace (pn2 . SetOfPlaces) , ”Tor” : : p r e f i d , 1 , ” black ”)

val TogAuxg = pos t cond i t i on (”Tol” : : p r e f i d , ”Auxl+” : : pr e f i d ,

f indWeightInPlace (”Auxl+” : : pr e f i d , Auxg : : N i l) , ” black ”)

val TodAuxd = pos t cond i t i on (”Tor” : : p r e f i d , ”Auxr+” : : pr e f i d ,

f indWeightInPlace (”Auxr+” : : pr e f i d , Auxd : : N i l) , ” black ”)

val TogOut = pos t cond i t i on (”Tol” : : p r e f i d , ”Out” : : pr e f i d , 1 , ” black ”)

val TodOut = pos t cond i t i on (”Tor” : : p r e f i d , ”Out” : : pr e f i d , 1 , ” black ”)

Post = TogAuxg : : TodAuxd : : TogOut : : TodOut : : PostPn2Aux1 : : : PostPn1Aux2

: : : pn11 . SetOfPost : : : pn22 . SetOfPost

Post = Post . d i s t i n c t

i f (l i s tNamePlaces . conta ins (”Out” : : ”1” : : ”1” : : N i l)) { //

Post1 = replaceAddTransInPost (”Tr” : : ”1” : : ”1” : : Ni l , ”Tr” : : ”2” : : ”1” : : Ni l ,

”Tr” : : ”1” : : Ni l , Post)

Post2 = replaceAddTransInPost (”Tr” : : ”2” : : ”2” : : Ni l , ”Tr” : : ”1” : : ”2” : : Ni l ,

”Tr” : : ”2” : : Ni l , Post1)

(Petr iNet (In : : Auxg : : Auxd : : Out : : pn11 . SetOfPlaces : : : pn22 . SetOfPlaces ,

Tog : : Tod : : pn1 . SetOfTrans : : : pn2 . SetOfTrans ,

OutgTog : : OutdTod : : Pre1 : : : Pre2 ,

Post2 ,

pn1 . SetOfPreSpaces : : : pn2 . SetOfPreSpaces ,

pn1 . SetOfPostSpaces : : : pn2 . SetOfPostSpaces) ,

valueMax (pc1 , pc2))

} else { //

(Petr iNet (In : : Auxg : : Auxd : : Out : : pn11 . SetOfPlaces : : : pn22 . SetOfPlaces ,

Tog : : Tod : : pn1 . SetOfTrans : : : pn2 . SetOfTrans ,

OutgTog : : OutdTod : : Pre1 : : : Pre2 ,

Post ,

pn1 . SetOfPreSpaces : : : pn2 . SetOfPreSpaces ,

pn1 . SetOfPostSpaces : : : pn2 . SetOfPostSpaces) ,

valueMax (pc1 , pc2)) // syn t he s i s

}

}

}

}

Figure 11.51: The code for the construction of the Petri Net elements of a choice

composition of two agents (cont)

349

These four steps are depicted into four blocs of code. The first bloc is the one that takes

in charge the representation of all the pre conditions. For every pre conditions of the Petri

Net, the drawing is done depending on the name of the starting place. Each time the X and

Y coordinates of the starting point, situated on the border of a place circle, and of the arrival

point of the arrow, situated on the border of a transition rectangle, have to be provided. It is

to be noted that the pre conditions between the places and anti places of the token space, and

their associated transitions are not drawn, essentially in the interests of clarity of the drawing.

The following code shows an example of the drawing of the pre condition between an auxiliary

place Auxl+ in a choice composition and a transition. Every coordinate is obtained with the use

of methods - like i.e. findCoordXOfPlace that extracts them from the adequate sets of elements

in the Petri Net structure :

pn.SetOfPre.foreach(elm => {

(elm.idplace).head match {

case "Auxl+" => {

drawP2Tcourbe(findCoordXOfPlace(elm.idplace,pn.SetOfPlaces)+radius,

findCoordYOfPlace(elm.idplace,pn.SetOfPlaces)-radius/6,

findCoordXOfTrans(elm.idtrans,pn.SetOfTrans) +

findWidthOfTrans(elm.idtrans,pn.SetOfTrans)/2,

findCoordYOfPlace(elm.idplace,pn.SetOfPlaces)

+(findCoordYOfTrans(elm.idtrans,pn.SetOfTrans)-

findCoordYOfPlace(elm.idplace,pn.SetOfPlaces))/3,

findCoordXOfTrans(elm.idtrans,pn.SetOfTrans) +

findWidthOfTrans(elm.idtrans,pn.SetOfTrans)/2,

findCoordYOfTrans(elm.idtrans,pn.SetOfTrans)-radius,"green")

} ...

The second part of the code depicts the way to draw all the post conditions of the Petri Net.

This is done in a way similar to the pre conditions. Essentially the methods need the X and

Y coordinates of the starting and ending points of the arrow, now coming from the transition,

and going to a place. The curvature orientation of the arrow line being dependant from the

distance between those two points, a discussion makes precise the code to be applied in function

of this parameter (arbitrarily fixed to a value of 300). Again the post conditions between the

transitions and the place of the token space have not been drawn for the sake of clarity of the

drawing.

pn.SetOfPost.foreach(elm => {

(elm.idplace).head match {

case "Auxl" => {

350

// if relative distance is bigger than 300

if((findCoordYOfTrans(elm.idtrans,pn.SetOfTrans)-

findCoordYOfPlace(elm.idplace,pn.SetOfPlaces)) > 300) {

drawT2Pcourbe(findCoordXOfTrans(elm.idtrans,pn.SetOfTrans),

findCoordYOfTrans(elm.idtrans,pn.SetOfTrans) +

findHeightOfTrans(elm.idtrans,pn.SetOfTrans)/2,

findCoordXOfPlace(elm.idplace,pn.SetOfPlaces),

findCoordYOfTrans(elm.idtrans,pn.SetOfTrans),

findCoordXOfPlace(elm.idplace,pn.SetOfPlaces),

findCoordYOfPlace(elm.idplace,pn.SetOfPlaces)+2*radius,"green")

} else {

drawT2Pcourbe(findCoordXOfTrans(elm.idtrans,pn.SetOfTrans)+

findWidthOfTrans(elm.idtrans,pn.SetOfTrans),

findCoordYOfTrans(elm.idtrans,pn.SetOfTrans),

findCoordXOfTrans(elm.idtrans,pn.SetOfTrans),

findCoordYOfPlace(elm.idplace,pn.SetOfPlaces)-9*radius,

findCoordXOfPlace(elm.idplace,pn.SetOfPlaces)+2*radius,

findCoordYOfPlace(elm.idplace,pn.SetOfPlaces),"green")

}

} ...

The third part of the code draws the rectangle of all the transitions, with their associated

name. The drawing of the rectangle is made by the function drawTransition, based on the X

and Y coordinates of the upper left corner of the rectangle, its width and height. A transition

that is part of the mapping of the firable one is drawn in red. Otherwise it is drawn in black.

Drawing in red is achieved by a function called drawTransitionColour. The code makes also the

distinction between the transitions that are related to a Dense Bach primitive, from those that

are not. In the first case, a text is drawn by the function drawText near the rectangle, with the

name of the primitive, the name of the token and its density. In the second case, only the name

of the transition is drawn by a function called drawTransName near its rectangle.

pn.SetOfTrans.foreach (elm => {

// if NOT belongToMap, draw in black

if(belongToMap(mp,elm.idtrans)._2 == Nil) {

if(elm.token == "") {

drawTransition(elm.tx,elm.ty,elm.width,elm.height)

drawTransName(elm.tx + 18,elm.ty,elm.width,elm.height,elm.name)

} else {

drawTransition(elm.tx,elm.ty,elm.width,elm.height)

drawText(elm.tx + 5,elm.ty,elm.width,elm.height,elm.name,elm.token,

elm.density)

}

351

} else { // else draw in colour

if(elm.token == "") {

drawTransitionColour(elm.tx,elm.ty,elm.width,elm.height)

drawTransName(elm.tx + 18,elm.ty,elm.width,elm.height,elm.name)

} else {

drawTransitionColour(elm.tx,elm.ty,elm.width,elm.height)

drawText(elm.tx + 5,elm.ty,elm.width,elm.height,elm.name,elm.token,

elm.density)

}

}

})

Finally the last part of the code concerns the representation of the places. This is made by

the function drawPlace, based on the X and Y coordinates of the centre of the circle representing

the place, and its radius. A distinction is done between the places that are specific to the Petri

Net, and those that are part of the token space. For the first case, their drawing color differs in

function of their type : the entry and exit places of the global agent are in blue, the auxiliary

places are in green, and by default any other place is in black. Regarding the token space, as

every token is associated with a pair of place and anti-place, the first category is drawn in black,

and the second one is drawn in red. These places are drawn in a specific zone on the picture,

that is determined with regard to the position of the entry place of the global agent. Every pair

of place and anti place related to a specific token is drawn within, preceded by the name of the

concerned token, thanks to the function drawTokenName. This zone is fixed by the coordinates

xOfIn and yOfIn. For every place, the instantaneous number of tokens present in the place is

written at its very centre. Figures 11.52 and 11.53 show the code for the drawing of the places,

following their type.

The code finishes with the procedure endSVG() that writes the end xml marker in the file,

and with close file() to close the file. The complete code of the convertPn2Svg method is given

in annex. (see section H.2 in Chapter H)

11.4.4 Running Petri Nets representations

After the construction of the Petri Net and its drawing in svg format, the last step consists

in animating it dynamically according to the firing of the transitions. This is the purpose of

the third class called runningPetriNet defined in the file runningPetri.scala. This class receives

only the Petri Net as argument. Based on the sets of places, of transitions and of pre and

post conditions, the main procedure of this class evaluates for every state of the Petri Net the

352

var xOfIn : Int = 7*coordXOfIn(pn.SetOfPlaces)/4

var yOfIn : Int = coordYOfIn(pn.SetOfPlaces) + 18*radius

pn.SetOfPlaces.foreach(elm => {

(elm.idplace).head match {

case "In" => {

drawPlace(elm.cx,elm.cy+radius,elm.radius,"blue")

drawNbrTok(elm.cx,elm.cy+radius,elm.nbrTokens)

}

case "Auxl" => {

drawPlace(elm.cx,elm.cy,elm.radius,"green")

drawNbrTok(elm.cx,elm.cy,elm.nbrTokens)

}

case "Auxr" => {

drawPlace(elm.cx,elm.cy,elm.radius,"green")

drawNbrTok(elm.cx,elm.cy,elm.nbrTokens)

}

case "Auxl+" => {

drawPlace(elm.cx,elm.cy,elm.radius,"green")

drawNbrTok(elm.cx,elm.cy,elm.nbrTokens)

}

case "Auxr+" => {

drawPlace(elm.cx,elm.cy,elm.radius,"green")

drawNbrTok(elm.cx,elm.cy,elm.nbrTokens)

} ...

Figure 11.52: The code for the drawing of the places.

.

353

case "Out" => {

// final out of the Petri Net in blue

if ((elm.idplace).tail == Nil) {

drawPlace(elm.cx,elm.cy,elm.radius,"blue")

drawNbrTok(elm.cx,elm.cy,elm.nbrTokens)

} else { // internal out of the Petri Net in black

drawPlace(elm.cx,elm.cy,elm.radius,"black")

drawNbrTok(elm.cx,elm.cy,elm.nbrTokens)

}

}

case "ns" => {

if (elm.name != "") {

drawTokenName(xOfIn + 3*radius/2,yOfIn,elm.name)

drawPlace(xOfIn + 7*radius/2,yOfIn,radius,"black")

drawNbrTok(xOfIn + 7*radius/2,yOfIn,elm.nbrTokens)

}

}

case "as" => {

if(elm.name != "") {

drawPlace(xOfIn + 13*radius/2, yOfIn,radius,"red")

drawNbrTok(xOfIn + 13*radius/2,yOfIn,elm.nbrTokens)

yOfIn += 3*radius

}

}

}

})

Figure 11.53: The code for the drawing of the places (cont).

.

354

list of firable transitions. One of them being fired, the new state is displayed, and a new list

of firable transitions is established. This process continues up to the moment where no more

transition are firable, due to a deadlock or to the fact that the exit place of the Petri Net as

been reached successfully.

As in the previous classes, the code is divided between a list of auxiliary tool functions,

on the one hand, and three main functions, on the other hand. The tool procedures will not

be described, and are available in annex (see section I.1 in Chapter I). The three essential

functions are called modifyInPetriNet, constructMapOfFirableTrans and execute. Based on the

modification of the Petri Net structure provided by modifyInPetriNet, and on the new list of

firable transitions produced by constructMapOfFirableTrans, the execute procedure drives the

process of renewing the Petri Net after each firing of a transition.

The first function called modifyInPetriNet has two arguments : the Petri Net pn and the

identifier idTrans of a transition. For a definite transition name idTrans, the procedure en-

counters two possibilities: either the transitions are related to one of the four Dense Bach

primitives, or not. In the first case the function creates the four lists lTransPre, lTransPost,

lTransPreSpaces and lTransPostSpaces of pre and post conditions valuable for the Petri Net as

for the token space and executes them. This execution consists in substracting, thanks to the

function substractInPlace, a required number of tokens in a place, and adding them, thanks to

the function addInPlace, to a place. The targeted places are dictated by the definitions of the

transitions. The required numbers of tokens for substraction and addition, are provided by the

weights present in the pre or post conditions. In the second case, i.e. for a transition with no

relation with the places of the token space, only the lists lTransPre and lTransPost of pre and

post conditions are constructed, the principle of the calculation being the same. In both cases

after the calculation, the new produced set of places setAux is added in the Petri Net, while

the mapping of firable transitions is reset to an empty map. The result of this method is a new

Petri Net, adapted to the modifications related to the transition.

Figures 11.54 and 11.55 present the pieces of code of the modifyinPetriNet function. Fig-

ure 11.54 shows the construction of the lists of pre and post conditions of transitions representing

a primitive. In consequence, the lists of pre and post conditions concern the places of the Petri

Net, as well as those related to the token space. After the construction of the lists specific

to a primitive, the pre and post conditions are executed with the functions addInPlace and

substractInPlace. They modify the content of the concerned places. Finally the Petri Net is

adpated to the new representation. Figure 11.55 does the same operations but for transitions

355

not related to the token space.

case _ => { // transitions concerned by Petri Net only

lTransPre = subListPre(idTrans,pn.SetOfPre)

lTransPost = subListPost(idTrans,pn.SetOfPost)

lTransPre.foreach(x => {

setAux = substractInPlace(x.idplace,setAux,x.weight)

})

lTransPost.foreach(x => {

setAux = addInPlace(x.idplace,setAux,x.weight)

})

pn2Svg.convertPn2Svg(PetriNet(setAux,pn.SetOfTrans,pn.SetOfPre,

pn.SetOfPost,pn.SetOfPreSpaces,pn.SetOfPostSpaces),Map())

return PetriNet(setAux,pn.SetOfTrans,pn.SetOfPre,pn.SetOfPost,

pn.SetOfPreSpaces,pn.SetOfPostSpaces)

}

}

Figure 11.55: The code for the construction of the lists of pre and post conditions of transitions

that are not primitives.

The second function constructMapOfFirableTrans has four arguments : a list of transitions

lTrans, a list of places lPlace, and two lists lPre and lPreSpaces of pre conditions, one valid for

the Petri Net and the other for the token space. This function checks if every transition is firable

or not. It then returns a mapping of all the firable transitions. For the transitions dedicated to

a Dense Bach primitive, the checking is done with respect to the places of the Petri Net, thanks

to the function firablePre, and the places of the token space, thanks to the function firablePreS-

paces. For all the others, the check is performed with regard to the places of the Petri Net only,

and with the use of function firablePre. In both cases every transition that is declared firable

is then added to a mapping, finally returned to the user for a new submission. Figure 11.56

shows the code of function constructMapOfFirableTrans. Within the list of transitions lTrans,

the function considers two cases. For those related to a Dense Bach primitive it checks if their

associated pre conditions – those related to the Petri Net as well as those related to the token

space – are firable. The function does the same for the transtions that are internal to the Petri

Net, with no connection with the token space. At the end of the process, the function returns

356

def modifyInPetriNet(idTrans : List[String], pn : PetriNet) :

PetriNet = {

...

// following type of transition

getNameInTrans(idTrans,pn.SetOfTrans) match {

// transitions related to token space

case "tell" | "get" | "ask" | "nask" => {

// collect all pre of specific idTrans

lTransPre = subListPre(idTrans,pn.SetOfPre)

lTransPreSpaces = subListPreSpaces(idTrans,pn.SetOfPreSpaces)

lTransPost = subListPost(idTrans,pn.SetOfPost)

lTransPostSpaces = subListPostSpaces(idTrans,pn.SetOfPostSpaces)

lTransPre.foreach(x => { // for every pre ...

// substract weight of place idplace

setAux = substractInPlace(x.idplace,setAux,x.weight)

})

lTransPost.foreach(x => { // for every post ...

// add weight of place idplace

setAux = addInPlace(x.idplace,setAux,x.weight)

})

lTransPreSpaces.foreach(x => { // for every pre of token space ...

// substract weight

setAux = substractInPlace(x.idplace,setAux,x.weight)

})

lTransPostSpaces.foreach(x => { // for every post of token space ...

// add weight of place idplace

setAux = addInPlace(x.idplace,setAux,x.weight)

})

// convert adapted Petri Net to svg

pn2Svg.convertPn2Svg(PetriNet(setAux,pn.SetOfTrans,pn.SetOfPre,

pn.SetOfPost,pn.SetOfPreSpaces,pn.SetOfPostSpaces),Map())

return PetriNet(setAux,pn.SetOfTrans,pn.SetOfPre,pn.SetOfPost,

pn.SetOfPreSpaces,pn.SetOfPostSpaces)

}

Figure 11.54: The code for the construction of the lists of pre and post conditions for the primitives,

and their execution.

.

357

a map of all the firable transitions.

def constructMapOfFirableTrans(lTrans : List[transition],

lPlace : List[place],

lPre : List[pre_condition],lPreSpaces : List[pre_condition]) :

Map[Int, List[String]] = {

...

lTrans.foreach(elm => { // for every transition of final Petri Net

elm.name match {

case "tell" | "get" | "ask" | "nask" => { // evaluate if firable

if(firablePre(elm.idtrans,lPre,lPlace) &&

firablePreSpaces(elm.idtrans,lPreSpaces,lPlace)) {

mapOfFirableTransL(i) = elm.idtrans

firable = true

}

}

case _ => { // for the others, evaluate if firable for Petri Net

if(firablePre(elm.idtrans,lPre,lPlace)) {

mapOfFirableTransL(i) = elm.idtrans

firable = true

}

}

} // match

if (firable) {

i = i + 1

firable = false

}

})

return mapOfFirableTransL

}

Figure 11.56: The code of the constructMapOfFirableTrans function.

The third function called execute is the one that organizes the renewing of the Petri Net.

It makes use of the two previous functions modifyInPetriNet and constructMapOfFirableTrans.

Both are invoked in a loop initialized by constructMapOfFirableTrans. The user makes its

choice in the proposed mapping. The function modifyInPetriNet then adapts the Petri Net.

As a result, a new list of firable transitions is established, except if the last exit place of the

Petri Net is reached, in which case the computation ends. This process continues also up to

the moment where the mapping of firable transitions is empty. Figure 11.57 presents the code

of the function execute. The argument mapOfFirableTrans receives the mapping containing all

358

def execute(pn : PetriNet) {

var pnAux : PetriNet = pn

mapOfFirableTrans = constructMapOfFirableTrans(pnAux.SetOfTrans,

pnAux.SetOfPlaces,pnAux.SetOfPre,pnAux.SetOfPreSpaces)

pn2Svg.apply(pnAux,mapOfFirableTrans)

while (! mapOfFirableTrans.isEmpty) {

curentTrans = choiceFirableTrans(mapOfFirableTrans)

println("Curent chosen transition : ")

println(curentTrans)

pnAux = modifyInPetriNet(curentTrans,pnAux)

if(getNumbTokInPlace("Out"::Nil,pnAux.SetOfPlaces) == 0) {

mapOfFirableTrans = constructMapOfFirableTrans(pnAux.SetOfTrans,

pnAux.SetOfPlaces,pnAux.SetOfPre,pnAux.SetOfPreSpaces)

pn2Svg.apply(pnAux,mapOfFirableTrans)

} else {

mapOfFirableTrans = Map()

pn2Svg.apply(pnAux,mapOfFirableTrans)

}

}

}

Figure 11.57: The code of the execute function.

the firable transitions. A loop checking the emptyness of the map of firable transitions proposes

to the user the firable one. The function getNumbTokInPlace takes the number of tokens inside

the final out place. A zero means that this place has not yet been reached, and that a new

mapping of firable transitions must be constructed. If the function returns a zero, the process

ends.

The complete codes of the three procedures are listed in annex (see section I.2 in Chapter I).

11.4.5 Illustration on an example

In order to illustrate the functioning of the Petri Net, we describe hereafter the execution

of an example. Lets us suppose we want to study the execution of the Dense Bach agent

ptellpup2qq ` tellpap3qqq ; pgetpap1qq || naskpup3qqq. In the figures that follow, in place of

putting black tokens in the places, we indicate explicitly their number.

359

2 2

Tol Tor

tell(u(2)) tell(a(3))

To

get(a(1)) nask(u(3))

1

1 1

0

0

u 0 30

0

a 0 30

1 1

0

0 0

Figure 11.58: The initial state of the Petri Net associated with agent ptellpup2qq `

tellpap3qqq ; pgetpap1qq || naskpup3qqq

.

The result of the parsing of this agent is analyzed by convert2petriNet to produce the Petri

Net in its initial state. The transcription in svg made by convertPn2Svg produces a sequence

of a choice structure, followed by a parallel one. The two auxiliary places of the choice and

the parallel structures are set to 1. The upper blue place, corresponding to the entry place is

also set to 1. There are two tokens manipulated by the agent : a and u. They are represented

on the right part of the picture, and both initialized to 0 for the token space, and to 30 for

the anti-space. This initial state is depicted in Figure 11.58. In all the figures that follow the

tokens present in a place are always represented by a number written inside the places. The

360

addedFiles/run_ex_step_1n.eps

<!DOCTYPE html>

<html lang="en">

<head>

<meta charset="UTF-8" />

<meta http-equiv="refresh" content="5" />

<title>Dense Bach in Petri</title>

</head>

<body>

<center>

<embed type="image/svg+xml" src="file:///home/ddarquen/thesisdda/DBtoPetri/file1xml" />

</center>

</body>

</html>

Figure 11.59: The code of the execute function.

four circles on the right part of the figure represent the tokens present in the token space. Every

token is represented by its name. On the same line are drawn two circles, one in black and the

second in red. The black one indicates the number of the tokens present in the token space. The

red one indicates the number of tokens present in the anti-space. For the ease of presentation,

the arrows between these token space places and the transitions of the primitives are not drawn.

The drawing of the Petri Net is loaded inside a web page, that is refreshed every five seconds.

The html code for this refresh is presented in Figure 11.59.

To conduct the execution of the Petri Net, the map of the firable transitions produced

by function constructMapOfFirableTrans explained in section 11.4.4 is presented to the user

through a terminal. The following lines show the state of the terminal for the Net in its ini-

tial state of Figure 11.58. In them, the first element of each pair indicates the number to

type in to indicate the user’s choice. The second element provides the list in reverse order

of the sub-component order. For instance, (2,1) denotes the second sub-agent of the first

sub-agent of the considered agent. More specifically for the example under consideration,

ptellpup2qq ` tellpap3qqq ; pgetpap1qq || naskpup3qqq, the first sub-agent is tellpup2qq ` tellpap3qq

and its second sub-agent is tellpap3qq so that (2,List(Tr, 2, 1)) refers to tellpap3qq.

List of the firable transitions:

361

((2,List(Tr, 2, 1)),

)

((1,List(Tr, 1, 1)),

)

Make your choice:

Looking to the composition of the first sub-agent, it proposes indeed a choice between two

primitives: tell(u(2)) and tell(a(3)). Both can be fired, but only one will be selected. Look-

ing now to the parallel composition that follows sequentially, it is composed of the primitives

get(a(1)) and nask(u(3)). Both of them must be fired, but this depends on the result of the

choice composition. If tell(u(2)) is selected in the choice, two tokens will be added in the place u,

and two will be retrieved in its corresponding anti-place. The firing of the nask(u(3)) primitive

will be succesful, as the number of u tokens present on the store does not exceed the limit of 3

requested by the nask primitive. Nevertheless the get(a(1)) of primitive will not be succesful,

if no token a is present on the token space. In order to make both get(a(1)) and nask(u(3))

firable within the parallel composition, tell(a(3)) must be selected in place of tell(u(2)).

In the choice proposed to the user by the constructMapOfFirableTrans function, the number

2 for the tell(a(3)) primitive is selected. Firing the tell(a(3)) primitive puts 3 tokens in the place

of a, and reduces the number 30 to 27 in the corresponding anti-place. The selection of this

primitive means that the token present in the right auxiliary place must also been consumed, in

order to lock the firing of the tell(u(2)) primitive. The firing also consumes the token in the left

auxiliary place, in order to check if the tell(u(2)) has not been selected before. It produces and

puts it back immediatley, as it produces one token in the exit place of the tell(a(3)) primitive.

This first evolution of the Petri Net is represented in Figure 11.60.

A new set of firable transitions is now established, that is shown in Figure 11.61.

Curent chosen transition :

List(Tr, 2, 1)

List of the firable transitions:

((1,List(Tor, 1)),

)

Make your choice:

Figure 11.61: The code of the execute function.

362

2 2

Tol Tor

tell(u(2)) tell(a(3))

To

get(a(1)) nask(u(3))

0

1 0

0

0

u 0 30

1 a 3 27

1 1

0

0 0

Figure 11.60: The result of the firing of tell(a(3)) in the choice sub-agent

In order to conclude the execution of the choice, the right transition Tor has now to be fired.

It consumes the token in the exit place of the tell(a(3)) primitive, and performs two actions :

the restore of the right auxiliary place to 1, and the supply of the entry place of the parallel

composition following sequentially the choice. As both branches of the parallel composition

must be fired, the number of tokens in the entry must be at least equal to 2, in place of 1. At

this state, as a next step to perform, the user has now the choice between firing get(a(1)) and

nask(u(3)), both being firable, and both having to be fired. Figure 11.62 depicts the state of

the Petri Net after the complete execution of the choice sub-agent.

363

addedFiles/run_ex_step_2n.eps

2 2

Tol Tor

tell(u(2)) tell(a(3))

To

get(a(1)) nask(u(3))

0

1

2

0

u 0 30

0
a 3 27

1 1

0

0 0

1

Figure 11.62: The result of the firing of the Tor transition concluding the choice sub-agent

A new set of firable transitions is again established, that is shown in Figure 11.63.

364

addedFiles/run_ex_step_3n.eps

Curent chosen transition :

List(Tor, 1)

List of the firable transitions:

((2,List(Tr, 2, 2)),

)

((1,List(Tr, 1, 2)),

)

Make your choice:

Figure 11.63: The code of the execute function.

Let us suppose that the user chooses the nask(u(3)) primitive. One on the tokens present in

the entry place is consumed, as the token present in the right auxiliary place. This last action

locks the possibility for the nask(u(3)) primitive to be fired twice, by consuming the second

token remaining in the entry place. The firing of the nask(u(3)) primitive will not change the

state of token u in the token space. Figure 11.64 depicts the state of the Petri Net after having

fired the primitive nask(u(3)) of the parallel composition.

In the new list of firable transitions, only the transition of the get(a(1)) is available, as

shown in Figure 11.65.

Curent chosen transition :

List(Tr, 2, 2)

List of the firable transitions:

((1,List(Tr, 1, 2)),

)

Make your choice:

Figure 11.65: The code of the execute function.

For the next step, the user has only the choice to fire the get(a(1)). It consumes the last

token in the entry place, as the token present in the right auxiliary place. One token is pro-

duced and placed in the exit place of the primitive. Regarding the token space, the effect of

the firing of the get(a(1)) primitive is to take one unit in the black place corresponding to to-

ken a and to add it to the 27 present in the corresponding red anti-place. Figure 11.66 depicts

the state of the Petri Net after the primitive get(a(1)) of the parallel composition has been fired.

365

2 2

Tol Tor

tell(u(2)) tell(a(3))

To

get(a(1)) nask(u(3))

0

1 1

1

0

u 0 30

0
a 3 27

1 0

0

0 1

Figure 11.64: The result of the firing of the primitive nask(u(3)) in the parallel sub-agent

Figure 11.67 shows the new selection of firable transitions.

Curent chosen transition :

List(Tr, 1, 2)

List of the firable transitions:

((1,List(To, 2)),

)

Make your choice:

Figure 11.67: The code of the execute function.

366

addedFiles/run_ex_step_4n.eps

2 2

Tol Tor

tell(u(2)) tell(a(3))

To

get(a(1)) nask(u(3))

0

1 1

0

0

u 0 30

0

a 2 28

0 0

0

1 1

Figure 11.66: The result of the firing of the second primitive get(a(1)) in the parallel sub-agent

As a final step, the last transition to be fired is To, that concludes the parallel composition.

Consuming the tokens present in both exit places of the primitives get(a(1)) and nask(u(3)),

it restores the situation of the right and left auxiliary places, and puts one token in the final

exit place. The state of the token space stays unchanged. The final result of the execution of

the agent is then to have 2 tokens a in the store, and none for token u. The restore of the

state of the auxiliary places is done and permits an iterative execution of agents, that is not

considered in our thesis. Figure 11.68 depicts the final state of the Petri Net after the firing of

the transition To of the parallel composition. The auxiliary places of the parallel composition

are restored in their initial state.

367

addedFiles/run_ex_step_5n.eps

2 2

Tol Tor

tell(u(2)) tell(a(3))

To

get(a(1)) nask(u(3))

0

1 1

0

0

u 0 30

0
a 2 28

1 1

1

0 0

Figure 11.68: The result of the firing of the transition To in the parallel sub-agent, concluding

the execution of the global agent

368

addedFiles/run_ex_step_6n.eps

11.5 Conclusion

In this chapter we have developped an application in Scala that, using the result of the parsing

of a Dense Bach agent, constructs its equivalent Petri net representation. The model for the

representation of an agent is adapted from the concept of Open Petri Net. The Scala code for

the transcription and construction of the Petri Net first constructs a Petri Net object, with four

elements : a set of places, a set of transitions and two sets, and two sets for respectively the

representation of the pre and post-conditions for the firing of the transitions. This object is

extended by a token space, for the representation of the the tokens manipulated by the Dense

Bach agents. Every token is associated with a duo of place anti-place for the representation of

the actions of the primitives.

The second part of the code uses the created Petri net object and expresses it in a set of

instructions for drawing the Net in a svg format. These instructions are encapsulated in xml

instructions and written in xml file, in order to be executed in a browser.

Finally, the Petri Net is executed step by step, thanks to a selection of firable transitions.

After each firing the representation of the Net is refreshed, and a new list of firable transitions

is established, this up to the moment the agent is completely executed, or there is no more

transitions to be fired.

Besides the intuitive modelling they provide, Petri Nets are popular for validating and

verifying systems. The translation into Petri Nets we have proposed has been used in this

chapter for simulation purposes. However, our translation provides also a means to perform

deadlock detection, invariant analysis and, more generally, model checking of Dense Bach agents

by reimplementing the classical algorithms developped for Petri Nets. Another way to reach

this goal would be to generate xml format devoted to Petri Nets, like PNML, the Petri Net

Markup Language, and use already developped tools like Tina. In these lines, it is worth noting

that a translation in PNML follows similar lines to the one we have developped to generate svg

graphs. Such developments are however left for future work.

369

370

Part IV

Conclusion

371

Chapter 12

Conclusion

It is commonly acknowledged that our life is ruled by information dynamically disseminated

in different kinds of networks. Our current use of mobile devices particularly evidences this

phenomenon. Mobile applications like Uber are widely spread and used to such non digital

tasks as transport. In this context, it is of crucial importance to get usage feedbacks in order

to guarantee not only satisfaction and quality of service but also security.

At the programming level, coordination languages have been proven very suited to code

such applications thanks to the clear separation of concerns between computations and com-

munication they embody as well as thanks to the time and space decoupling provided by the

shared space used as communication medium. However coordination languages fail to address

popularity and quality concerns that modern applications need to face.

Our thesis is that extending coordination languages to handle atomically finite numbers of

tokens provides the necessary mechanisms. We have provided a support to our claim throughout

this document by proposing different extensions of the Bach coordination language developped

at the University of Namur, by studying the expressiveness of the resulting languages, by pro-

viding interperters and command line simulators, a graphical simulator as well as a translation

to Petri Nets, that itself offers means to analyze programs written in our languages.

More concretely, restricting to tokens to better grasp the core concepts, a first extension,

named Dense Bach, has consisted in associating a notion of density with the tokens manipulated

by the Bach primitives. In order to treat several tokens at once, we have then introduced vectors

of dense tokens in a new language called Vectorized Dense Bach and have shown how differents

strategies of distributing a density among different tokens and of handling cardinalities can be

derived therefrom.

373

Our expressiveness studies has allowed to compare our languages with two languages natu-

rally related : on the one hand, the Bach language reduced to tokens, referred in the thesis as

BachT and, on the other hand, a chemically inspired language, named MRT. Previous research

by our advisors had already demonstrated the expressiveness relations between the sublanguages

of BachT and of MRT. We have proven in our thesis that our languages fulfill these relations

while being comprised in terms of expressiveness between the BachT and MRT languages, with

Dense Bach a less expressive language than Vectorized Dense Bach.

We have developed interpreters and command line simulators for each language. The inter-

preters aims at allowing the reader to become familiar with the writing and the execution of

programs. The command line simulators aim at introducing more flexibility by using threads to

offer real concurrent execution and thus to allow to grasp suspension on conditions not fulfilled

by the contents of the store, and this until other agents modify it to meet these conditions. As

the interpreters and the command line simulators work in command line, we have developed

a simulator to propose a more visual way of handling executions. Finally, in order to offer to

users a tool to study the properties of programs we have developed a tool to transform Dense

Bach agents into Petri Nets. This has been achieved through a newly notion of Open Petri

Nets, named BD-open Petri Nets.

Our thesis opens research for future work. At the language level, we have concentrated

on tokens instead of more structured tuples or ψ-terms (see [BJL06]) and have focussed on

finite processes, thereby putting aside recursive definitions. Future work should address these

topics and the consequences of their introduction on expressiveness, interperters/command line

simulators and translation to Petri Nets.

Moreover, our implementations are based on Scala and have used classical data structures

together with traditional locking mechanisms of the store. It would be interesting to analyze how

much these implementation choices affect the performances of our interpreters and command

line simulators by developping, for instance, command line simulators in C or by ruling the

access to the store by partitioning techniques.

Finally, at the programming level, the graphical simulator naturally suggests to design rep-

resentation techniques to illustrate computations. We believe that such aspects, typically ne-

glected by computer scientists, are of a crucial importance for the dessimination of coordination

languages and could open its utilization to other fields such that system biology.

374

Part V

Appendix

375

Appendix A

Appendix: Expressiveness of BachT

and MRT

The two following sections present the main expressiveness results between the different sub-

languages of the BachT family, and between the sublanguages of BachT and MRT, with their

proofs.

A.1 Expressiveness relations between the BachT sublanguages

As most of the results are already established in [BJ03a, BJ98, BJ99], we subsequently make

clear whether the proofs follow the main lines of [BJ03a, BJ98, BJ99] or whether they provide

new reasonings.

A.1.1 Sublanguages

As a first result, by sublanguage inclusion (pattern 1), a number of modular embeddings are

directly established.

Proposition 1. LBp ψq ď LBp χq, for any subsets of ψ,χ of primitives such that ψ Ď χ.

A.1.2 Checking for presence and/or absence when adding tokens

Proposition 2. LBptellq ă LBpask,tellq

Proof. As in [BJ98], the proof takes advantage of proposition 1 to establish that LBptellq ď

LBpask,tellq and uses a contradiction technique to establish that LBpask,tellq ę LBptellq. Indeed

377

considering the agent askptq with Opaskptqq “ tpH, δ´qu, we have a contradiction by property

P3 of termination invariance, as any agent in LBptellq has only successful computations.

Proposition 3. LBptellq ă LBpnask,tellq

Proof. As in [BJ98], the technique of the proof is analogous to the one of proposition 2. In

particular the contradiction is established by considering the failing behaviour of the agent

tellptq ; naskptq, where any agent in LBptellq has only successful computations.

Proposition 4. LBpask,tellq ≀ LBpnask,tellq

Proof. As in [BJ98], both components of the proof are established by contradiction.

(i) On the one hand, let us establish that LBpask,tellq ę LBpnask,tellq by contradic-

tion assuming a coder C. For A “ tellptq ; askptq, one has OpAq “ tpttu, δ`qu. Hence, by

P3, CpAq succeeds whereas we shall establish that it has failing computations. Indeed, since

Opaskptqq “ tpH, δ´qu, any computation of Cpaskptqq starting on the empty store fails. As

Cpaskptqq is composed of nask and tell primitives, this can only occur by having a nask prim-

itive preceded by a tell primitive. As enriching the initial content of the store leads to the

same result, any computation starting on any (arbitrary) store fails. As a consequence, even

if Cptellptqq has a successful computation, this computation cannot be continued by a success-

ful computation of Cpaskptqq. Consequently any computation of Cptellptq; askptqq fails, which

produces the announced contradiction.

(ii) On the other hand, LBpnask,tellq ę LBpask,tellq is also established by contradiction.

Assume a coder C and consider A “ tellptq ; naskptq. One has OpAq “ tpttu, δ´qu. By P3, the

agent CpAq fails, whereas we shall establish that it has a successful computation. Indeed, since

Optellptqq “ tpttu, δ`qu, any computation of Cptellptqq starting on the empty store is successful.

Similarly, it follows from Opnaskptqq “ tpH, δ`qu that any computation of Cpnaskptqq starting

on the empty store is successful. Consequently, so does any computation starting from any store,

since Cpnaskptqq is composed of ask and tell primitives. Summing up, any (successful) compu-

tation of Cptellptqq starting on the empty store can be continued by a (successful) computation

of Cpnaskptqq, which leads to the announced contradiction.

The reasoning used in the second part of proposition 4 will be used for proposition 8, for

establishing that LBpnask,tellq ę LBpget,tellq. Indeed, replacing ask by get in the LBpask,tellq

sublanguage does not change the fact that, with Opnaskptqq “ tpH, δ`qu, any computation

of Cpnaskptqq is successful starting from any store. This then insures that any successful

computation of Cptellptqq can be followed by a successful computation of Cpnaskptqq, this

leading to an obvious contradiction.

378

Proposition 5. LBpnask,tellq ă LBpask,nask,tellq

Proof. Both parts of the proof are established as in [BJ98]. (i) LBpnask,tellq ď

LBpask,nask,tellq results from proposition 1. (ii) LBpask,nask,tellq ę LBpnask,tellq is es-

tablished by pattern 3 on non embedding by transitivity, which leads to LBpask,tellq ď

LBpnask,tellq, hence contradicting proposition 4.

Proposition 6. LBpask,tellq ă LBpask,nask,tellq

Proof. Both parts of the proof are established as in [BJ98]. (i) LBpask,tellq ď LBpask,nask,tellq

results from proposition 1. (ii) LBpask,nask,tellq ę LBpask,tellq is established by pattern 3,

which leads to LBpnask,tellq ď LBpask,tellq, contradicting proposition 4.

A.1.3 Retrieving tokens from the store

Proposition 7. LBpask,tellq ă LBpget,tellq

Proof. (i) As in [BJ98], the method of the proof invokes on the one hand a direct transla-

tion of the askptq primitive in a getptq ; tellptq to establish LBpask,tellq ď LBpget,tellq. (ii)

On the other hand and differently from [BJ98] LBpget,tellq ę LBpask,tellq is established by

a contradictory reasoning. Assume thus a coder C and consider A = tellptq ; getptq. One has

OpAq “ tpH, δ`qu. By P2 and P3, any computation of OpCptellptqq ; Cpgetptqq is thus successful.

Such a computation is composed of a computation for Cptellptqq followed by a computation for

Cpgetptqq. As Cpgetptqq is composed of ask and tell primitives and since ask and tell primitives do

not destroy elements, this latter computation can be repeated, which yields successful compu-

tations for OpCptellptqq ; Cpgetptqq ; Cpgetptqqq. However, Optellptq ; getptq ; getptqq “ tpH, δ´qu,

which leads to the contradiction.

The reasoning used in the second part of proposition 7 can be adapted in order to be

re-used in part (ii) of proposition 10, for establishing that LBpget,tellq ę LBpask,nask,tellq and

in part (ii) of proposition 27 of section A.2. The same agent A “ tellptq ; getptq is now coded

not only with primitives tell and ask, but also with nask. Nevertheless, the presence of the

nask primitive can be dealt with by replacing the sequential composition of get(t) with himself,

by a parallel composition, and by mimicking each step of Cpgetptqq in the computation of

the other instance of Cpgetptqq. This proof method is different from the one developped in [BJ98].

Proposition 8. LBpnask,tellq ≀ LBpget,tellq

379

Proof. The proof methods of both parts are the same as in [BJ98].(i) On the one hand, by

using the same reasoning as in the second part of proposition 4, LBpnask,tellq ę LBpget,tellq.

(ii) On the other hand, by the pattern 3 of non embedding by transitivity, if LBpget,tellq ď

LBpnask,tellq, then LBpask,tellq ď LBpnask,tellq, which contradicts proposition 4.

Proposition 9. LBpget,tellq “ LBpask,get,tellq

Proof. The proof methods of both parts are the same as in [BJ98]. (i) On the one

hand LBpget,tellq ď LBpask,get,tellq results from proposition 1. (ii) On the other

hand, LBpask,get,tellq ď LBpget,tellq is obtained by expressing each askptq primitive as

getptq ; tellptq.

Proposition 10. LBpask,nask,tellq ≀ LBpget,tellq

Proof. (i) LBpask,nask,tellq ę LBpget,tellq is established by the pattern 3 of non embedding

by transitivity. Indeed if LBpask,nask,tellq ď LBpnask,tellq, then LBpask,tellq ď LBpnask,tellq,

which contradicts proposition 4. (ii) LBpget,tellq ę LBpask,nask,tellq is established by contra-

diction, similarly to the second part of proposition 7, by replacing the sequential composition

of the two getptq primitives by a parallel one, in order to cope with the potential presence of

nask primitives.

A.1.4 Checking for presence and/or absence when adding and/or retrieving

tokens

Proposition 11. LBpget,tellq ă LBpnask,get,tellq

Proof. (i) The proof methods of both parts are the same as in [BJ98]. On the one

hand LBpget,tellq ď LBpnask,get,tellq results from proposition 1. (ii) On the other hand,

LBpnask,get,tellq ę LBpget,tellq is established by contradiction, similarly to the reason-

ing conducted in the second part of proposition 4. Consider agent tellptq ; naskptq with

Optellptq ; naskptqq “ tpttu, δ´qu. It is possible to prove that Cptellptq ; naskptqq starting in

the empty store is successful, which contradicts property P3 of termination invariance.

Proposition 12. LBpnask,get,tellq “ LBpask,nask,get,tellq

Proof. (i) On the one hand, LBpnask,get,tellq ď LBpask,nask,get,tellq is established by propo-

sition 1 on language inclusion. (ii) On the other hand, to establish LBpask,nask,get,tellq ď

LBpnask,get,tellq we shall provide a coder such that the coding of the primitives askptq and

naskptq manipulate different tokens. The proof method is the same as the one presented in

[BJ98]. As the set of tokens is denumerable, it is possible to associate each of them, say t, to a

pair pt1, t2q (for instance it suffices to associate the token associated with the integer n to the

380

tokens associated with the integers 2n and 2n+1. Given such a coding of tokens, we define the

compositional coder C as follows:

Cpaskptqq “ getpt2q ; tellpt2q

Cpnaskptqq “ naskpt1q

Cpgetptqq “ getpt2q ; getpt1q

Cptellptqq “ tellpt1q ; tellpt2q

The decoder D is defined as follows: Delppσ, δqq “ pσ, δq, where σ is composed of the tokens

t for which t1 and t2 are in σ, the multiplicity of t being that of pairs pt1, t2q in σ. With

those definitions of the coder C and the decoder D, properties P1 of element-wise and P2 of

compositionality are guaranteed. It remains to establish property P3 of termination invariance

and that OpAq “ DpOpCpAqqq for any agent A of LBpask,nask,get,tellq. The proof consists of

establishing that for any agent A and stores σ and τ :

1. xA|σy Ñ˚ xE|τy iff xCpAq|σy Ñ˚ xE|τy

2. there is some agent B such that xA|σy Ñ˚ xB|τy Û with B ‰ E

iff there is some agent B1 P LBpnask,get,tellq such that xCpAq|σy Ñ˚ xB1|τy Û

This is proved by induction on the structure of the agent.

Proposition 13. LBpask,nask,tellq ă LBpask,nask,get,tellq

Proof. (i) LBpask,nask,tellq ď LBpask,nask,get,tellq is immediate by proposition 1. (ii)

LBpask,nask,get,tellq ę LBpask,nask,tellq is established by contradiction. Suppose that

LBpask,nask,get,tellq ď LBpask,nask,tellq. Then, since LBpget,tellq ď LBpnask,get,tellq

and since LBpnask,get,tellq ď LBpask,nask,get,tellq, by proposition 12, we would have that

LBpget,tellq ď LBpask,nask,tellq by pattern 2 on embedding by transitivity, which contradicts

proposition 10.

A.2 BachT in comparison with MRT

Proposition 14. For any agent A of BachT or MRT there is an agent in normal form N such

that O(N) = O(A).

Proof. The proof has been established in [Lin07], to which we refer the reader.

A.2.1 Sublanguages

Proposition 15. LBp χq ď LMRp χq, for any subset of χ of primitives.

381

Proof. Immediate by defining the coder as follows:

Cptellptqq “ ptu, t`tuq

Cpaskptpmqqq “ pt`tu, tuq

Cpgetptpmqqq “ pt`tu, t´tuq

Cpnaskptpmqqq “ pt´tu, tuq

and using the identity as decoder.

A.2.2 Putting tokens on the store

Proposition 16. LBptellq and LMRptellq are equivalent.

Proof. We have LBptellq ď LMRptellq by proposition 15. Furthermore, LMRptellq ď LBptellq is

established by coding any tell primitive of LMRptellq by a sequence of tell primitives of LBptellq:

Cptu, t`t1, . . . ,`tnuq “ tellpt1q ; . . . ; tellptnq,

some of the ti’s being possibly identical.

A.2.3 Checking for presence and/or absence when adding tokens

Proposition 17. LBpask,tellq ă LMRpask,tellq

Proof. Both parts of the proof are established as in [BJ99, BJ03b]. (i) On the one hand,

LBpask,tellq ď LMRpask,tellq, by proposition 15. (ii) On the other hand, LMRpask,tellq ę

LBpask,tellq may be established as in [BJ99, BJ03b], by exploiting the inability of LBpask,tellq

to atomically test the presence of two distinct tokens a and b. Applying pattern 4 of presence,

one considers AB “ pt`a,`bu, tuq and assumes that CpABq is in normal form (see definition 9)

and thus is written as

tellpt1q;A1 ` ¨ ¨ ¨ ` tellptpq;Ap ` askpu1q;B1 ` ¨ ¨ ¨ ` askpuqq;Bq

In this expression, we will establish that there is no alternative guarded by a tellptiq operation

and no alternative guarded by an askpujq operation either, which is impossible since CpABq

must contain at least one primitive.

Let us first establish by contradiction that there is no alternative guarded by a tellptiq

operation. Indeed, if there is an alternative guarded, say by tellptiq, then

D “ xCpABq|Hy Ñ xAi|tiy

is a valid computation prefix of CpABq. It should deadlock afterwards since OpABq “ pH, δ´q.

However D is also a valid computation prefix of CpAB` ptu, t`auqq. Hence, CpAB` ptu, t`auqq

admits a failing computation which contradicts the fact that OpAB ` ptu, t`auqq “ ptau, δ`q.

382

Secondly, we establish that there is also no alternative guarded by an askpujq operation. To

that end, let us first consider two auxiliary computations. As Opptu, t`auqq “ ptau, δ`q, any

computation of Cpptu, t`auq starting in the empty store succeeds. Let

xCpptu, t`auqq|Hy Ñ ¨ ¨ ¨ Ñ xE|ta1, . . . , amuy

be such a computation. Similarly, let

xCpptu, t`buqq|Hy Ñ ¨ ¨ ¨ Ñ xE|tb1, . . . , bnuy

be one computation of Cpptu, t`buqq. The proof of the claim proceeds by first establishing that

none of the ui’s belong to ta1, . . . , amu Y tb1, . . . , bnu.

First let us prove that none of the uj ’s belong to ta1, . . . , amu. By contradiction, assume

that ui “ ak for some k. Then

D1 “ xCpptu, t`auq;ABq|Hy Ñ ¨ ¨ ¨ Ñ xAB|ta1, . . . , amuy Ñ xBj|ta1, . . . , amuy

is a valid computation prefix of Cpptu, t`auq;ABq, which can only be continued by failing suf-

fixes. However D1 induces the following computation prefix D2 for ptu, t`auq; pAB`pt`au, tuqq

which as just seen admits only successful computations:

D2 “ xCpptu, t`auq; pAB ` pt`au, tuqqq|Hy Ñ . . .

Ñ xAB ` pt`au, tuq|ta1, . . . , amuy Ñ xBj |ta1, . . . , amuy

The proof proceeds similarly in the case some uj P tb1, . . . , bnu for some j P 1, . . . , q by then

considering ptu, t`buq;AB and ptu, t`buq; pAB ` pt`bu, tuqq.

Finally, the fact that the u1
js do not belong to ta1, . . . , amu Y tb1, . . . , bnu induces a contra-

diction. Indeed, if this is the case, then

xCpptu, t`auq; ptu, t`buq;ABq|Hy Ñ . . .

Ñ xptu, t`buq;ABq|ta1 , . . . , amuy Ñ

¨ ¨ ¨ Ñ xAB|ta1, . . . , am, b1, . . . , bnuy Û

is a valid failing computation prefix of Cpptu, t`auq; ptu, t`buq;ABq whereas

ptu, t`auq; ptu, t`buq;AB has only one successful computation.

Lemma 1. Let f : Stoken Ñ Pf pStokenq be a function associating each token with a finite set

of tokens. Assume that fpaq X fpbq ‰ H, for any pair of distinct tokens a and b. Then there is

a denumerable sequence of distinct tokens xi’s and an integer N such that

N
č

i“1

fpxiq ‰ H

383

and
N
č

i“1

fpxiq “
N
č

i“1

fpxiq X fpxjq

for any j ą N .

Proof. The proof of this technical lemma has been established in [BJ03b], to which we refer the

reader.

Proposition 18. LBpnask,tellq ă LMRpnask,tellq.

Proof. (i) On the one hand, LBpnask,tellq ď LMRpnask,tellq holds by proposition 15. (ii) On

the other hand, LMRpnask,tellq ę LBpnask,tellq is established as in [BJ99, BJ03b], by assuming

the existence of a coder C, and by establishing that it contains in fact no primitive, while it

has to contain at least one. The proof is similar to part (ii) of proposition 17, but this time by

exploiting the inability of LBpnask,tellq to atomically test the absence of two distinct tokens a

and b, following the schema of pattern 5 of absence.

To do so the construction of the tokens ta1, . . . , amu and tb1, . . . , bnu associated with the

coding of a and b is generalized by the definition of a function f : Stoken Ñ Pf pStokenq,

associating with each token a finite set of tokens.

For any token t, as Opptu, t`tuqq “ tpttu, δ`qu, any computation of Cpptu, t`tuqq starting

in the empty store succeeds. Let xpptu, t`tuqq|Hy Ñ ¨ ¨ ¨ Ñ xE|tt1, . . . , tmtuy be such a

computation and let St denote the resulting store tt1, ¨ ¨ ¨ , tmtu.

Then the proof of the claim proceeds by examining two cases: (I) either there exist two

(distinct) tokens a and b such that Sa X Sb “ H, (II) or Sa X Sb “ H for any pair of (distinct)

tokens a and b.

CASE I: Let us first suppose that there are two tokens a and b such that Sa XSb “ H. One

considers AB “ pt´a,´bu, tuq and CpABq in its normal form:

tellpv1q ; A1 ` ¨ ¨ ¨ ` tellpvpq ; Ap ` naskpu1q ; B1 ` ¨ ¨ ¨ ` naskpuqq ; Bq

The proof then proceeds by establishing that there are no alternatives guarded by tellpviq nor

by naskpujq. The absence of alternative guarded by a tellpviq primitive is established as in

part (ii) of proposition 17: if this was not the case, then AB would point out a deadlocking

computation for ptu, t`auq; pAB ` ptu, t`auqq which only admits successful computations. To

prove the absence of alternatives guarded by a naskpujq primitive, one establishes that the uj ’s

should belong to Sa and to Sb, which is impossible since Sa XSb “ H. By contradiction, assume

that uj R Sa for some j (the case where uj R Sb is treated similarly). Then

xCpptu, t`auq ; ABq | Hy ÝÑ ¨ ¨ ¨ ÝÑ xCpABq | Say ÝÑ xBj | Say

384

is a valid computation prefix of Cpptu, t`auq ; ABq which can only be continued by

failing suffixes. However, this prefix induces the following computation prefix D1 for

Cpptu, t`auq ; pAB ` ptu, t`auqq which should only admit successful computations:

xCpptu, t`auq ; pAB ` ptu, t`buqqq | Hy ÝÑ ¨ ¨ ¨

ÝÑ xAB ` ptu, t`buq | Say ÝÑ xBj | Say

CASE II: Let us now suppose that Sa XSb ‰ H for any pair of tokens a and b. As proved by

Lemma 1, it is possible to construct an infinite sequence of distinct tokens xi’s and to identify

an integer n such that
n

č

i“1

Sxi
“ H

and
n

č

i“1

Sxi
“

n
č

i“1

Sxi
X Sxj

for any j ą n. Let us consider NT “ pt´x1, ¨ ¨ ¨ ,´xnu, tuq and CpNT q in its normal form

tellpv1q ; A1 ` ¨ ¨ ¨ ` tellpvpq ; Ap ` naskpu1q ; B1 ` ¨ ¨ ¨ ` naskpuqq ; Bq

By using a reasoning similar to the one employed for case I, one may prove that there are no

alternatives guarded by a tellpviq primitive and that tu1, ¨ ¨ ¨ , uqu Ď Sx1 X ¨ ¨ ¨ X Sxn . Therefore

Cpptu, t`xn`1uq ; NT q has a failing computation since Sx1 X ¨ ¨ ¨ XSxn XSxn`1 “ Sx1 X ¨ ¨ ¨ XSxn

and thus tu1, ¨ ¨ ¨ , uqu Ď Sx1 X ¨ ¨ ¨ X Sxn Ď Sxn`1 . However, this contradicts the fact that

ptu, t`xn`1uq ; NT has only one successful computation.

In conclusion, CpABq reduces to an empty statement, which is not possible since it should

contain at least one primitive.

Proposition 19. LMRpask,tellq ≀ LBpnask,tellq

Proof. (i)On the one hand, we have that LMRpask,tellq ę LBpnask,tellq, otherwise, by pattern 3

of non embedding by transitivity, we have LBpask,tellq ď LBpnask,tellq which has been proved

impossible in proposition 4. (ii) On the other hand, LBpnask,tellq ę LMRpask,tellq is estab-

lished as in [BJ98] by contradiction, by considering tellptq ; naskptq with Optellptq ; naskptqq “

tpttu, δ´qu and by employing the reasoning developped in part (ii) of the proof of proposition 4

of section A.1.

Proposition 20. LMRpnask,tellq ≀ LBpask,tellq

Proof. (i) On the one hand, we have that LMRpnask,tellq ę LBpask,tellq. Otherwise, by pat-

tern 3 of non embedding by transitivity, we have LBpnask,tellq ď LBpask,tellq which has been

385

proved impossible in proposition 4. (ii) On the other hand, LBpask,tellq ę LMRpnask,tellq is es-

tablished as in [BJ98] by contradiction, by considering tellptq ; askptq, with Optellptq ; askptqq “

tpttu, δ`qu, and using the reasoning developped in part (i) of the proof of proposition 4 of

section A.1.

Proposition 21. LBpask,nask,tellq ≀ LMRpnask,tellq

Proof. (i) On the one hand, we have that LBpask,nask,tellq ę LMRpnask,tellq, otherwise, by

pattern 3 of non embedding by transitivity, LBpask,tellq ď LMRpnask,tellq, which has been

proved impossible in proposition 20. (ii)On the other hand, LMRpnask,tellq ę LBpask,nask,tellq

is established as in [BJ99, BJ03b]. The proof is an extension of part (ii) of the proof of propo-

sition 18, that establishes that LMRpnask,tellq ę LBpnask,tellq, with normal forms extended

with ask primitives. Using the notations of this proof, and following the proof technique 2, we

thus examine two cases and conclude for each one by a contradiction: (I) either there exist two

tokens a and b such that Sa XSb “ H, (II) or Sa XSb “ H for any pair of tokens a and b. This

proof follows the schema of pattern 5 of absence.

CASE I: Let us suppose that there are two tokens a and b such Sa X Sb “ H. Consider

AB “ pt´a,´bu, tuq and CpABq in its normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` askpu1q ; B1 ` ¨ ¨ ¨ ` askpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

The proof then proceeds by establishing that there are no alternatives guarded by tell and nask

primitives. In that case, CpABq reduces to

askpu1q ; B1 ` ¨ ¨ ¨ ` askpuqq ; Bq

which thus fails on the empty store whereas OpABq “ tpH, δ`qu, providing the contradiction.

The absence of alternatives guarded by a tellptiq primitive is established as in part (ii) of the

proof of proposition 17: if this was not the case then AB would point out a deadlocking compu-

tation for ptu, t`auq; pAB`ptu, t`auqq which only admits successful computations. The absence

of alternatives guarded by a naskpviq primitive is established as in part (ii) of proposition 18,

namely by establishing that the vi’s should belong to Sa and to Sb, which is impossible since

Sa X Sb “ H.

CASE II: In the case where Sa XSb ‰ H for any pair of tokens a and b, as proved by lemma

1, it is possible to construct an infinite sequence of distinct tokens xi’s and to identify an integer

N such that
N
č

i“1

Sxi
“ H

386

and
N
č

i“1

Sxi
“

N
č

i“1

Sxi
X Sxj

for any j ą N . Consider now NT “ pt´x1, ¨ ¨ ¨ ,´xnu, tuq and CpNT q in its normal form

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` askpu1q ; B1 ` ¨ ¨ ¨ ` askpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

By reasoning similarly to case I, one may prove that there are no alternatives guarded by a

tellptiq primitive. As regards the ask and nask primitives, the proof proceeds by contradiction

and establishes successively that

tu1, ¨ ¨ ¨ , uqu X pSx1 Y ¨ ¨ ¨ Y Sxnq “ H,

and that

tv1, ¨ ¨ ¨ , vru Ď pSx1 X ¨ ¨ ¨ X Sxnq

and derive a contradiction therefrom.

Let us first establish that tu1, ¨ ¨ ¨ , uqu X pSx1 Y ¨ ¨ ¨ Y Sxnq “ H. By contradiction, assume

uj P Sxi
, for some i, j. Consequently,

F “ xpCpptu, t`xiuqqq ; CpNT q | Hy ÝÑ ¨ ¨ ¨

ÝÑ xCpNT q | Sxi
y ÝÑ xBj | Sxi

y

is a valid computation prefix for pCpptu, t`xiuqqq ; CpNT qq which can only be continued by

failing suffixes. However F is also a computation prefix for Cpptu, t`xiuq ; pNT ` pt`xiu, tuqqq

which thus induces a failing computation for it whereas ptu, t`xiuq ; pNT ` pt`xiu, tuqqq has

only one successful computation.

Let us now establish that tv1, ¨ ¨ ¨ , vru Ď pSx1 X ¨ ¨ ¨ X Sxnq. Assume vk R Sxi
, for some k, i.

Then

F 1 “ xCpptu, t`xiuqq ; CpNT q | Hy ÝÑ ¨ ¨ ¨ ÝÑ xCpNT q | Sxi
y ÝÑ xCk | Sxi

y

is a valid computation prefix for Cpptu, t`xiuq ; NT q which can only be continued by failing

suffixes. However, it is also a computation prefix for ptu, t`xiuq ; pNT `pt`xiu, tuqqq, for which

it thus induces a failing computation whereas ptu, t`xiuq ; pNT ` pt`xiu, tuqqq has only one

successful computation.

In order to establish the final contradiction, let us consider Cpptu, t`xn`1uq ; NT q. A pos-

sible computation prefix is as follows:

xCpptu, t`xn`1uqq ; CpNT q | Hy ÝÑ ¨ ¨ ¨ ÝÑ xCpNT q | Sxn`1y.

387

Since ptu, t`xn`1uq ; NT has a successful computation and since, tv1, ¨ ¨ ¨ , vru Ď Sx1X¨ ¨ ¨XSxn Ď

Sxn`1 by the choice of the xi’s and the above inclusion, we can exclude the execution of a nask

primitive and therefore force the execution of an ask primitive and thus the existence of a j

such that uj P Sxn`1 . Now consider

ptu, t`xn`1uq ; ptu, t`x1uq ; NT

which has failing computations only. At the coded level, since LBpask,nask,tellq does not contain

any destructive primitive, the computation of Cpptu, t`x1uqq can only enrich the store resulting

from the computation of Cpptu, t`xn`1uqq, say by some set of tokens σ. Consequently, the follow-

ing derivation sequence G is a valid computation prefix for Cpptu, t`xn`1uq ; ptu, t`x1uq ; NT q,

which should be continued by failing suffixes only:

G “ xCpptu, t`xn`1uqq ; Cpptu, t`x1uqq ; CpNT q | Hy ÝÑ ¨ ¨ ¨

ÝÑ xCpptu, t`x1uqq ; CpNT q | Sxn`1y ÝÑ ¨ ¨ ¨

ÝÑ xCpNT q | Sxn`1 Y σy ÝÑ xBj | Sxn`1 Y σy

However, G is also a computation prefix G1 for

Cpptu, t`xn`1uq ; ptu, t`x1uq ; pNT ` pt`xn`1u, tuqqq

which thus induces a failing computation for

ptu, t`xn`1uq ; ptu, t`x1uq ; pNT ` pt`xn`1u, tuqq

which is impossible since it admits only a successful computation.

A.2.4 Retrieving tokens from the store in the BachT language

Proposition 22. LBpget,tellq ≀ LMRpask,tellq

Proof. (i) On the one hand, the reasoning to prove that LBpget,tellq ę LMRpask,tellq is the

same as the one used in part (ii) of the proof of proposition 7, as established in [BJ98]. It works

by contradiction and establishes that tellptq ; getptq can produce a successful computation for

Cptellptqq ; Cpgetptqq ; Cpgetptqq, leading to an obvious contradiction. (ii) On the other hand,

LMRpask,tellq ę LBpget,tellq is established as in [BJ99, BJ03b]. Intuitively, LBpget,tellq is

unable to atomically test the presence of a and b. The proof applies pattern 4 of presence. Let

us thus consider AB “ pt`a,`bu, tuq and assume that CpABq is in normal form (see definitin 9))

and thus is written as

tellpt1q;A1 ` ¨ ¨ ¨ ` tellptpq;Ap ` getpu1q;B1 ` ¨ ¨ ¨ ` getpuqq;Bq

The proof proceeds as explained in proof technique 1 by establishing (I) that there is no alter-

native guarded by a tellptiq operation, and (II) that there is no alternative guarded by a getpujq

388

operation, in which case, CpABq is equivalent to an empty statement, which is impossible since

it is composed of at least one primitive.

STEP I: Let us first establish that there is no existence of an alternative guarded by a

tellptiq operation. Otherwise it would point out a failing computation for CpAB ` ptu, t`auqq,

contradicting the fact that OpAB ` ptu, t`auqq “ ptau, δ`q.

STEP II: Let us now establish that there is no alternative guarded by a getpujq operation.

To that end, let us first consider two auxiliary computations. As Opptu, t`auqq “ tptau, δ`qu,

any computation of Cpptu, t`auqq starting in the empty store succeeds. Let

xptu, t`auq|Hy Ñ ¨ ¨ ¨ Ñ xE|ta1, . . . , amuy

be such a computation. Similarly, let

xptu, t`buq|Hy Ñ ¨ ¨ ¨ Ñ xE|tb1, . . . , bnuy

be one computation of Cpptu, t`buqq.

The proof of the claim proceeds in two steps: none of the ui’s belong to

ta1, . . . , amu Y tb1, . . . , bnu but, in that case, a contradiction occurs from the analysis of

Cpptu, t`auq; ptu, t`buq;ABq. As a result, none of the ui’s exist, namely there is no alterna-

tive guarded by a getpujq operation.

Proposition 23. LBpnask,get,tellq ≀ LMRpask,tellq

Proof. (i) On the one hand, LBpnask,get,tellq ę LMRpask,tellq. Otherwise, by pattern 3 of non

embedding by transitivity, LBpnask,tellq ď LMRpask,tellq which has been proved impossible

in part (ii) of proposition 19. (ii) On the other hand, LMRpask,tellq ę LBpnask,get,tellq is

established as in [BJ99, BJ03b]. The intuition behind the proof is again that LBpnask,get,tellq

is not able to test atomically the presence of two distinct tokens a and b. Following pattern 4

of presence, we then proceed by contradiction using these two tokens a and b. However, the

destructive character of get primitives coupled to the test for absence of nask slightly complicate

our task of producing a contradiction. To that end, we shall “saturate” their effect by taking as

many instances of codings in parallel and thereby by extending the sets Sb introduced in part

(ii) of the proof of proposition 18.

Let us thus proceed by contradiction by assuming the existence of a coder C. Take

two distinct tokens a and b. Let n be the number of occurences of nask and get prim-

itives of Cpptu, t`auqq. As Cpptu, t`auqq has only successful computations, let, as in the

part (ii) of the proof of proposition 18, Sa be the store resulting from one of them. As

p||n`2
k“1ptu, t`buqq ; ptu, t`auqq succeeds as well, let S1

b denote the store resulting from one suc-

cessful computation of its coding. Consider finally ABs “ pt`a,`b, ¨ ¨ ¨ ,`bu, tuq requesting one

389

a with n` 3 copies of b and CpABsq in its normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` getpu1q ; B1 ` ¨ ¨ ¨ ` getpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

Following proof technique 1, we shall establish (I) that there are no alternatives guarded by tell

and nask primitives, and (II) that tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. Assuming these two points

proved, a contradiction can be produced as follows. In view of the saturation provided by the

n` 2 copies of Cpptu, t`buqq, adding one more only adds tokens present in Sa YS1
b. As a result,

Cp||n`3
k“1ptu, t`buqq ; ptu, t`auq ; ABsq fails whereas ||n`3

k“1ptu, t`buqq ; ptu, t`auq ; ABs has only

one successful computation. Hence the contradiction.

STEP I: Let us first establish that there are no alternative guarded by a tellptiq primitive.

The proof proceeds by contradiction as in part (ii) of the proof of proposition 17, by pointing out

a failing computation for CpAB` ptu, t`auqq, contradicting the fact that OpAB ` ptu, t`auqq “

ptau, δ`q.

In a similar way there are no alternative guarded by a nask primitive. Indeed assuming

the existence of a naskpviq ; Ci alternative again points out a failing computation for CpAB `

ptu, t`auqq, contradicting the fact that OpAB ` ptu, t`auqq “ ptau, δ`q.

STEP II: Let us now establish that tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. This is proved in two

steps by establishing (1) that tu1, ¨ ¨ ¨ , uqu X Sa “ H, and (2) that tu1, ¨ ¨ ¨ , uqu X S1
b “ H.

First we have that tu1, ¨ ¨ ¨ , uqu X Sa “ H. By contradiction, assume that ui P Sa for some

i. Let us observe that each step of the considered computation of Cpptu, t`auqq can be repeated

in turn, in as many parallel occurences of it as needed, so that

P “ xCpp||qk“1ptu, t`auqq ; ABsq|Hy

Ñ ¨ ¨ ¨ Ñ xABs| Yq
k“1 Say

Ñ xBi|pYq
k“1Saqzuiy

is a valid computation prefix of Cpp||qk“1ptu, t`auqq ; ABsq, which can only be contin-

ued by failing suffixes. However P induces the following computation prefix P 1 for

Cpp||qk“1ptu, t`auqq ; pABs` ptu, t`auqqq which admits only successful computations:

P 1 “ xCpp||qk“1ptu, t`auqq ; pABs` ptu, t`auqqq|Hy

Ñ ¨ ¨ ¨ Ñ xCpABs` ptu, t`auqq| Yq
k“1 Say

Ñ xBi|pYq
k“1Saqzuiy

Hence the contradiction.

The fact that tu1, ¨ ¨ ¨ , uqu XS1
b “ H is proved similarly, by considering S1

b instead of Sa and

ptu, t`buq instead of ptu, t`auq.

390

Proposition 24. LMRpask,tellq ≀ LBpask,nask,tellq

Proof. (i) On the one hand, one has LBpask,nask,tellq ę LMRpask,tellq. Indeed otherwise by

pattern 3, LBpnask,tellq ď LBpask,nask,tellq ď LMRpask,tellq which has been proved impossible

in part (i) of proposition 19. (ii) On the other hand, LMRpask,tellq ę LBpask,nask,tellq may be

established as in [BJ99, BJ03b]. Let us proceed by contradiction by assuming the existence of a

coder C. Let us fix two distinct tokens a and b and let n be the number of the nask primitives

of Cpptu, t`auqq.

As Cpptu, t`auqq has only successful computations, let, as in the proof of part (ii) of propo-

sition 18, Sa be the store resulting from one of them. As p||n`2
k“1ptu, t`buqq ; ptu, t`auqq succeeds

as well, let S1
b denote the store resulting from one successful computation of its coding. Consider

finally ABs “ pt`a,`b, ¨ ¨ ¨ ,`bu, tuq requesting one a with n` 3 copies of b and CpABsq in its

normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` askpu1q ; B1 ` ¨ ¨ ¨ ` askpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

We shall establish, as explained in proof technique 1, (I) that there are no alternatives guarded

by tellptiq and naskpvjq primitives, and (II) that tu1, ¨ ¨ ¨ , uqu X pSa YS1
bq “ H. Assuming these

facts proved, as repeating once more Cpptu, t`buqq just add copies of tokens already present in

Sa Y S1
b, it follows that Cppptu, t`buqqn`3 ; ptu, t`auq ; ABsq fails, which is absurd by P3, since,

by construction, pptu, t`buqqn`3 ; ptu, t`auq ; ABs has one successful computation. Hence the

announced contradiction.

STEP I: As for proposition 23, the proof to establish that there are neither alternatives

guarded by a tell primitive, nor alternatives guarded by a nask primitive, proceeds by contra-

diction. Assuming respectively the existence of a tellptiq ; Ai alternative or a naskpviq ; Ci alter-

native will in both cases point out a contradiction a failing computation for CpAB`ptu, t`auqq,

contradicting the fact that OpAB ` ptu, t`auqq “ ptau, δ`q.

STEP II: Let us now prove that tu1, ¨ ¨ ¨ , uqu X pSa Y S1
bq “ H. This is established in two

steps by demonstrating (1) that tu1, ¨ ¨ ¨ , uqu X Sa “ H, and (2) that tu1, ¨ ¨ ¨ , uqu X S1
b “ H.

First let us prove that tu1, ¨ ¨ ¨ , uquXSa “ H. Let us observe that each step of the considered

computation of Cpptu, t`auqq can be repeated in turn, in as many parallel occurences of it as

needed, so that

P “ xCpp||qk“1ptu, t`auqq ; ABsq|Hy

Ñ ¨ ¨ ¨ Ñ xABs| Yq
k“1 Say

Ñ xBi|pYq
k“1Saqzuiy

391

is a valid computation prefix of Cpp||qk“1ptu, t`auqq ; ABsq, which can only be contin-

ued by failing suffixes. However P induces the following computation prefix P 1 for

Cpp||qk“1ptu, t`auqq ; pABs` ptu, t`auqqq which admits only successful computations:

P 1 “ xCpp||qk“1ptu, t`auqq ; pABs` ptu, t`auqqq|Hy

Ñ ¨ ¨ ¨ Ñ xCpABs` ptu, t`auqq| Yq
k“1 Say

Ñ xBi|pYq
k“1Saqzuiy

Hence the contradiction.

Secondly, the proof that tu1, ¨ ¨ ¨ , uqu X S1
b “ H is established similarly by considering S1

b

instead of Sa and ptu, t`buq instead of ptu, t`auq.

Proposition 25. LBpask,nask,tellq ă LMRpask,nask,tellq

Proof. (i) On the one hand, the fact that LBpask,nask,tellq ď LMRpask,nask,tellq is immediate

by considering the following coder:

Cpaskptqq “ pt`tu, tuq

Cpnaskptqq “ pt´tu, tuq

Cptellptqq “ ptu, t`tuq

(ii) On the other hand, LMRpask,nask,tellq ę LBpask,nask,tellq. Otherwise, by pattern 3

of non embedding by transitivity, from LMRpnask,tellq ď LMRpask,nask,tellq, one would get

LMRpnask,tellq ď LBpask,nask,tellq, which has been proved impossible in proposition 21.

Lemma 2. Let S be a finite set of tokens. Let f : Stoken Ñ Pf pStokenq be a function

associating to each token a finite set of tokens. Assume that S X fpxq “ H, for any token x.

Then there is a denumerable sequence of distinct tokens xi’s and an integer N such that

N
č

i“1

pS X Sxi
q “ H

and
N
č

i“1

pS X Sxi
q “

N
č

i“1

pS X Sxi
q X Sxj

for any j ą N . In particular, p
ŞN

i“1pS X Sxi
qq X pS X Sxj

q “ H, for any j ą N .

Proof. Admitted result, see [BJ03b].

Proposition 26. LBpnask,get,tellq ≀ LMRpnask,tellq

392

Proof. (i) On the one hand, LBpnask,get,tellq ę LMRpnask,tellq. Otherwise, by pattern 3

on non embedding by transitivity, LBpask,tellq ď LMRpnask,tellq which contradicts part (ii)

of the proof of proposition 20. (ii) On the other hand, LMRpnask,tellq ę LBpnask,get,tellq

is established as in [BJ03b] by contradiction, similarly to the proofs of LMRpnask,tellq ę

LBpask,nask,tellq of proposition 21, which itself extends that of proposition 18.

Given the destructive character of get primitives, we shall enrich them with the saturation

technique of the proof of part (ii) of proposition 23 which technically leads to considering the set

S1
b instead of the set Sb defined in the proof of the proposition 18. Following proof-technique 2

and using these notations, we thus fix a token a and reason on two cases, both leading to a

contradiction: (I) either there exists a token b such that Sa X S1
b “ H, (II) or, for any token b,

one has Sa X S1
b “ H.

CASE I: there is a token b such that Sa X S1
b “ H. Consider then AB “ pt´a,´bu, tuq and

CpABq in its normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` getpu1q ; B1 ` ¨ ¨ ¨ ` getpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

As in proposition 17, it is possible to establish that there are no alternatives guarded by a tellptiq

primitive : if this was the case then, by posing A “ ptu, t`auq, the agent AB would point out

a deadlock for A ; pAB ` Aq which only admits successful computations. As in proposition 23

also, it is possible to establish that the vi’s should belong to Sa and to S1
b, which amounts to

stating that there are no alternatives guarded by a naskpvjq primitive.

Consequently, CpABq rewrites as

getpu1q ; B1 ` ¨ ¨ ¨ ` getpuqq ; Bq

and thus OpCpABqq “ tpH, δ´qu which, by P3, contradicts the fact that OpABq “ tpH, δ`qu.

CASE II: for any token b, one has Sa X S1
b “ H. By Lemma 2 (where Sa plays the role

of S and f is defined by fpxq “ S1
x), there exists a denumerable set of distinct tokens xi, also

distinct from a, and an integer m, such that

Xm
i“1pSa X S1

xi
q “ H and rXm

i“1pSa X S1
xi

qs X pSa X S1
xj

q “ H, for j ą m.

Consider NT “ pt´a,´x1, ¨ ¨ ¨ ,´xmu, tuq and CpNT q in the following normal form:

tellpt1q ; A1 ` ¨ ¨ ¨ ` tellptpq ; Ap

` getpu1q ; B1 ` ¨ ¨ ¨ ` getpuqq ; Bq

` naskpv1q ; C1 ` ¨ ¨ ¨ ` naskpvrq ; Cr

As for case I, it is possible to prove that there are no alternatives guarded by a tellptiq primitive.

It is also possible to establish that

393

tv1, ¨ ¨ ¨ , vru Ď Sa X S1
x1

X ¨ ¨ ¨ X S1
xm

Firstly, we have that vk P Sa, for any k. Otherwise, assume vk R Sa, for some k. Then

F “ xCpptu, t`auqq ; CpNT q | Hy ÝÑ ¨ ¨ ¨

ÝÑ xCpNT q | Say ÝÑ xCk | Say

is a valid computation prefix for Cpptu, t`auq ; NT q which, by property P3, can only be

continued by failing suffixes. However F induces the following computation prefix F 1 for

Cpptu, t`auq ; pNT `ptu, t`auqqq, and thus a failing computation for it, which by P3 contradicts

the fact that ptu, t`auq ; pNT ` ptu, t`auqqq has only one successful computation.

Secondly, we have that vk P S1
xi
, for any k and i. By contradiction, assume that vk R

S1
xi
, for some k and i. The proof proceeds similarly by considering pPP ; NT q instead of

ptu, t`auq ; NT q and PP ; pNT ` ptu, t`xiuqq instead of ptu, t`auq ; pNT ` ptu, t`auqq with

PP being defined as the parallel composition of n ` 2 occurrences of ptu, t`xiuq followed by

ptu, t`auq. To that end, note that the computation of CpPP q leads to the store S1
xi

(see the

proof of proposition 23).

Consider now ptu, t`xm`1uq ; NT . A possible computation prefix for Cpptu, t`xm`1uq ; NT q

is, by P2, as follows:

xCpptu, t`xm`1uqq ; CpNT q | Hy ÝÑ˚ xCpNT q | Sxm`1y

Since ptu, t`xm`1uq ; NT has a successful computation, and since tv1, ¨ ¨ ¨ , vru Ď Sa X Sx1 X

¨ ¨ ¨ X Sxm Ď Sxm`1 there should exist j such that uj P Sxm`1 .

Therefore, as Sxm`1 Ď S1
xm`1

, the following derivation is valid:

H “ xCpp || n`2
k“1ptu, t`xm`1uqqq ; Cpptu, t`auqq ; CpNT q | Hy

ÝÑ˚ xCpNT q | S1
xm`1

y

ÝÑ xBj | S1
xm`1

ztujuy

Moreover, H should be continued by failing suffixes only since

p || n`2
k“1ptu, t`xm`1uqq ; ptu, t`auq ; NT fails. However, by P3, this introduces failing

computations for p || n`2
k“1ptu, t`xm`1uqq ; ptu, t`auq ; pNT ` ptu, t`auqq whereas this agent has

only one successful computation.

Proposition 27. LMRpask,nask,tellq ≀ LBpnask,get,tellq

Proof. (i) On the one hand, LMRpask,nask,tellq ę LBpnask,get,tellq. Otherwise, by pattern 3.

LMRpask,tellq ď LBpnask,get,tellq which contradicts proposition 23. (ii) On the other hand,

LBpnask,get,tellq ę LMRpask,nask,tellq is established as in [BJ98] and part (ii) of proposition 7,

394

but by replacing the sequential composition of the get(t) primitives by a parallel composition.

By contradiction, consider tellptq ; getptq. Opptellptq ; getptqq “ tpH, δ`qu. Hence any compu-

tation of Cptellptqq ; Cpgetptqq is successful. Such a computation is composed of a computation

for Cptellptqq followed by a computation for Cpgetptqq. As Cpgetptqq is composed of ask, nask,

tell primitives which do not destroy elements on the store, the latter computation can be re-

peated step by step which yields successful computation for Cptellptqq ; pCpgetptqq || Cpgetptqqq.

However, Optellptq ; pgetptq || getptqq “ tpH, δ´qu.

Proposition 28. LBpget,tellq ≀ LMRpnask,tellq

Proof. (i) On the one hand, LBpget,tellq ę LMRpnask,tellq. Otherwise, by pattern 3, as

LBpask,tellq ă LBpget,tellq (see part (i) of proposition 7), one would have LBpask,tellq ď

LBpget,tellq ď LMRpnask,tellq which has been proved impossible in part (ii) of the proof of

proposition 20. (ii) On the other hand, LMRpnask,tellq ę LBpget,tellq. Otherwise, by pat-

tern 3, we would have that LMRpnask,tellq ď LBpget,tellq ď LBpnask,get,tellq which has been

proved impossible in proposition 26.

Proposition 29. LBpget,tellq ≀ LMRpask,nask,tellq

Proof. (i) On the one hand, LBpget,tellq ę LMRpask,nask,tellq. The proof proceeds as for

establishing that LBpget,tellq ę LMRpask,tellq in proposition 22, by considering tellptq ; getptq

and tellptq ; pgetptq || getptqq, the parallel composition Cpgetptqq || Cpgetptqq repeating in turn

each step of Cpgetptqq. This demonstration proceeds as the one used for part (ii) of the

proof of proposition 10, being itself an adpatation of part (ii) of proposition 7. (ii) On the

other hand, LMRpask,nask,tellq ę LBpget,tellq. Otherwise, by pattern 3, one would have that

LMRpask,tellq ď LMRpask,nask,tellq ď LBpget,tellq which has been proved impossible in propo-

sition 22.

A.2.5 Retrieving tokens from the store in MRT

Proposition 30. LBpget,tellq ă LMRpget,tellq

Proof. (i) On the one hand, LBpget,tellq ď LMRpget,tellq holds by proposition 15. (ii) On

the other hand, LMRpget,tellq ę LBpget,tellq may be proved as in [BJ99, BJ03b], follow-

ing the technique used for LMRpask,tellq ę LBpask,tellq in part (ii) of proposition 17. This

amounts to considering some of the askpuiq to be getpuiq but does not affect the proof fur-

ther. Intuitively, LBpget,tellq is unable to atomically retrieve a and b. Let us thus consider

AB “ pt`a,`bu, t´a,´buq and assume that CpABq is in normal form (see definition 9) and

thus is written as tellpt1q;A1 ` ¨ ¨ ¨ ` tellptpq;Ap ` getpu1q;B1 ` ¨ ¨ ¨ ` getpuqq;Bq.

395

The proof proceeds as explain in proof technique 1 by establishing (I) that there is no

alternative guarded by a tellptiq operation, and (II) that there is no alternative guarded by

a getpujq operation, in which case, CpABq is equivalent to an empty statement, which is not

possible since it should contain at least one primitive.

STEP I: Let us first establish that there is no existence of an alternative guarded by a

tellptiq operation. Otherwise it would point out a failing computation for CpAB ` ptu, t`auqq,

contradicting the fact that OpAB ` ptu, t`auqq “ ptau, δ`q.

STEP II: Let us now establish that there is no alternative guarded by a getpujq operation.

To that end, let us first consider two auxiliary computations: as Opptu, t`auqq “ tptau, δ`qu, any

computation of Cpptu, t`auqq starting in the empty store succeeds. Let xCpptu, t`auqq|Hy Ñ

¨ ¨ ¨ Ñ xE|ta1, . . . , amuy be such a computation. Similarly, let xCpptu, t`buqq|Hy Ñ ¨ ¨ ¨ Ñ

xE|tb1, . . . , bnuy be one computation of Cpptu, t`buqq. The proof of the claim proceeds by estab-

lishing that none of the ui’s belong to ta1, . . . , amu Y tb1, . . . , bnu, in which case a contradiction

occurs from the analysis of Cpptu, t`auq; ptu, t`buq;ABq. As a result, none of the ui’s exist,

namely there is no alternative guarded by a getpujq operation.

Proposition 31. LMRpget,tellq ≀ LBpnask,tellq

Proof. (i) On the one hand, LMRpget,tellq ę LBpnask,tellq. Otherwise, by pattern 3 on non

embedding by transitivity, LMRpask,tellq ď LMRpnask,tellq which has been proved impossible

in [BJ03b]. (ii) On the other hand, LBpnask,tellq ę LMRpget,tellq is established by contra-

diction, by assuming the existence of a coder C and by considering tellptq ; naskptq. One has

Optellptq ; naskptqq “ tpttu, δ´qu whereas we shall establish that Cptellptqq ; Cpnaskptqq has a

successful computation. This demonstration is similar to the one used in part (ii) of the proof

of proposition 4 of section A.1.

Proposition 32. LMRpget,tellq ≀ LBpnask,get,tellq

Proof. (i) On the one hand, LMRpget,tellq ę LBpnask,get,tellq. Otherwise, by pattern 3 of non

embedding by transitivity, as LMRpask,tellq ď LMRpget,tellq, we then have LMRpask,tellq ď

LBpnask,get,tellq which has been proved impossible in proposition 23. (ii) On the other hand,

LBpnask,get,tellq ę LMRpget,tellq. Otherwise, by pattern 3 we would have LBpnask,tellq ď

LMRpget,tellq which has been proved impossible in proposition 31.

Proposition 33. LMRpget,tellq ≀ LBpask,nask,tellq

Proof. (i) On the one hand, LMRpget,tellq ę LBpask,nask,tellq. Otherwise, by pattern 3,

LMRpask,tellq ď LMRpget,tellq ď LBpask,nask,tellq which has been proved impossible in propo-

sition 24(i). (ii) On the other hand, LBpask,nask,tellq ę LMRpget,tellq. Otherwise, by pat-

tern 3, one would have LMRpask,tellq ď LMRpask,nask,tellq ď LBpget,tellq which has been

proved impossible in proposition 22.

396

A.2.6 Checking fo presence and/or absence when adding and/or retrieving

tokens

Proposition 34. LBpask,nask,get,tellq ă LMRpask,nask,get,tellq

Proof. (i) On the one hand, LBpask,nask,get,tellq ď LMRpask,nask,get,tellq is immediate by

considering the following coder:

Cpaskptqq “ pt`tu, tuq

Cpgetptqq “ pt`tu, t´tuq

Cpnaskptqq “ pt´tu, tuq

Cptellptqq “ ptu, t`tuq

(ii) On the other hand, LMRpask,nask,get,tellq ę LBpask,nask,get,tellq is established by

contradiction, using pattern 3 of non embedding by transitivity. Indeed, assuming that

LMRpask,nask,get,tellq ď LBpask,nask,get,tellq, as LBpask,nask,get,tellq “ LBpnask,get,tellq,

one would have LMRpnask, tellq ď LMRpask,nask,get,tellq ď LBpask,nask,get,tellq ď

LBpnask,get,tellq which has been proved impossible in proposition 26.

397

398

Appendix B

The BachT Language

B.1 The interpreter

B.1.1 The bacht-cli.scala file

This first appendix lists the full code of the BachT interpreter. This one concatenates the

abstract class Expr, the BachTParsers class, the BachTStore class and finally the BachTSimul

class.

class Expr

case class bacht as t empty agent () extends Expr

case class ba ch t a s t p r im i t i v e (p r im i t i v e : Str ing , token : Str ing) extends Expr

case class bach t a s t agen t (op : Str ing , agent i : Expr , a g en t i i : Expr) extends Expr

import s ca l a . u t i l . par s ing . combinator .

import s ca l a . u t i l . matching . Regex

class BachTParsers extends RegexParsers {

def token : Parser [St r ing] = (” [a´z] [0´9a źA´Z]∗ ”) . r ˆˆ { . t oS t r i ng }

val opChoice : Parser [St r ing] = ”+”

val opPara : Parser [St r ing] = ” | | ”

val opSeq : Parser [St r ing] = ” ; ”

def pr im i t i v e : Parser [Expr] = ” t e l l (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => ba ch t a s t p r im i t i v e (” t e l l ” , vtoken) } |

”ask (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => ba ch t a s t p r im i t i v e (” ask” , vtoken) } |

” get (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => ba ch t a s t p r im i t i v e (” get ” , vtoken) } |

”nask (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => ba ch t a s t p r im i t i v e (”nask” , vtoken) }

def agent = compos i t ionChoice

def compos i t ionChoice : Parser [Expr] =

399

compos i t ionPara˜ rep (opChoice ˜ compos i t ionChoice) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => bach t a s t agen t (op , agi , a g i i) }

def compos i t ionPara : Parser [Expr] =

compos i t ionSeq˜ rep (opPara˜ compos i t ionPara) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => bach t a s t agen t (op , agi , a g i i) }

def compos i t ionSeq : Parser [Expr] = simpleAgent˜ rep (opSeq˜ compos i t ionSeq) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => bach t a s t agen t (op , agi , a g i i) }

def s impleAgent : Parser [Expr] = pr im i t i v e | parenthes izedAgent

def parenthes izedAgent : Parser [Expr] = ” (”˜>agent<˜”) ”

}

object BachTSimulParser extends BachTParsers {

def pa r s e p r im i t i v e (prim : Str ing) = par seAl l (pr im i t i ve , prim) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

def par se agent (ag : Str ing) = par seAl l (agent , ag) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

import s ca l a . c o l l e c t i o n . mutable .Map

import s ca l a . swing .

class BachTStore {

var theStor e = Map[Str ing , Int] ()

def t e l l (token : Str ing) : Boolean = {

i f (theStor e . conta ins (token))

{ theStor e (token) = theStor e (token) + 1 }

else

{ theStor e = theStor e ++ Map(token >́ 1) }

true

}

def ask (token : Str ing) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= 1) { true }

else { fa l se }

else fa l se

}

400

def get (token : Str ing) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= 1)

{ theStor e (token) = theStor e (token) ´ 1

true

}

else { fa l se }

else fa l se

}

def nask (token : Str ing) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= 1) { fa l se }

else { true }

else true

}

def p r i n t s t o r e {

pr i n t (”{ ”)

for ((t , d) <́ theStor e)

p r i n t (t + ” (” + theStor e (t) + ”) ”)

p r i n t l n (” }”)

}

def c l e a r s t o r e {

theStor e = Map[Str ing , Int] ()

}

}

object bb extends BachTStore {

def r e s e t { c l e a r s t o r e }

}

import s ca l a . u t i l .Random

import l anguage . postf ixOps

class BachTSimul(var bb : BachTStore) {

val bacht random choice = new Random()

def run one (agent : Expr) : (Boolean , Expr) = {

agent match {

case ba ch t a s t p r im i t i v e (prim , token) =>

{ i f (ex e c p r im i t i v e (prim , token)) { (true , bacht as t empty agent ()) }

else { (fa lse , agent) }

}

case bach t a s t agen t (” ; ” , ag i , a g i i) =>

{ run one (a g i) match

{ case (fa lse ,) => (fa lse , agent)

401

case (true , bacht as t empty agent ()) => (true , a g i i)

case (true , ag cont) => (true , b a ch t a s t agen t (” ; ” , ag cont , a g i i))

}

}

case bach t a s t agen t (” | | ” , ag i , a g i i) =>

{ var branch cho i ce = bacht random choice . next Int (2)

i f (branch cho i ce == 0)

{ run one (a g i) match

{ case (fa lse ,) =>

{ run one (a g i i) match

{ case (fa lse ,)

=> (fa lse , agent)

case (true , bacht as t empty agent ())

=> (true , a g i)

case (true , ag cont)

=> (true , b a ch t a s t agen t (” | | ” , ag i , ag cont))

}

}

case (true , bacht as t empty agent ())

=> (true , a g i i)

case (true , ag cont)

=> (true , b a ch t a s t agen t (” | | ” , ag cont , a g i i))

}

}

else

{ run one (a g i i) match

{ case (fa lse ,) =>

{ run one (a g i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , bacht as t empty agent ()) => (true , a g i i)

case (true , ag cont)

=> (true , b a ch t a s t agen t (” | | ” , ag cont , a g i i))

}

}

case (true , bacht as t empty agent ())

=> (true , a g i)

case (true , ag cont)

=> (true , b a ch t a s t agen t (” | | ” , ag i , ag cont))

}

}

}

case bach t a s t agen t (”+” , ag i , a g i i) =>

{ var branch cho i ce = bacht random choice . next Int (2)

i f (branch cho i ce == 0)

{ run one (a g i) match

{ case (fa lse ,) =>

{ run one (a g i i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , bacht as t empty agent ())

=> (true , bacht as t empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

402

}

case (true , bacht as t empty agent ())

=> (true , bacht as t empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

else

{ run one (a g i i) match

{ case (fa lse ,) =>

{ run one (a g i) match

{ case (fa lse ,)

=> (fa lse , agent)

case (true , bacht as t empty agent ())

=> (true , bacht as t empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

case (true , bacht as t empty agent ())

=> (true , bacht as t empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

}

}

}

def ba ch t e x e c a l l (agent : Expr) : Boolean = {

var f a i l u r e = fa l se

var c agent = agent

while (c agent != bacht as t empty agent () && ! f a i l u r e) {

f a i l u r e = run one (c agent) match

{ case (fa lse ,) => true

case (true , new agent) =>

{ c agent = new agent

fa l se

}

}

bb . p r i n t s t o r e

p r i n t l n (”\n”)

}

i f (c agent == bacht as t empty agent ()) {

p r i n t l n (” Succes s \n”)

true

}

else {

p r i n t l n (” f a i l u r e \n”)

fa l se

}

}

403

def exe c p r im i t i v e (prim : Str ing , token : Str ing) : Boolean = {

prim match

{ case ” t e l l ” => bb . t e l l (token)

case ”ask” => bb . ask (token)

case ” get ” => bb . get (token)

case ”nask” => bb . nask (token)

}

}

}

object ag extends BachTSimul(bb) {

def apply (agent : Str ing) {

val agent par s ed = BachTSimulParser . par s e agent (agent)

ag . b a ch t e x e c a l l (agent par s ed)

}

def eva l (agent : Str ing) { apply (agent) }

def run (agent : Str ing) { apply (agent) }

}

B.2 The command line simulator

B.2.1 The parser

class BachTParsers extends RegexParsers {

def token : Parser [St r ing] = (” [a´z] [0´9a źA´Z]∗ ”) . r ˆˆ { . t oS t r i ng }

val opChoice : Parser [St r ing] = ”+”

val opPara : Parser [St r ing] = ” | | ”

val opSeq : Parser [St r ing] = ” ; ”

def pr im i t i v e : Parser [Expr] = ” t e l l (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => B AST Primitive (” t e l l ” , vtoken) } |

”ask (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => B AST Primitive (”ask” , vtoken) } |

” get (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => B AST Primitive (” get ” , vtoken) } |

”nask (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => B AST Primitive (”nask” , vtoken) }

def agent = compos i t ionChoice

def compos i t ionChoice : Parser [Expr] =

compos i t ionPara˜ rep (opChoice ˜ compos i t ionChoice) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => B AST Agent (op , agi , a g i i) }

def compos i t ionPara : Parser [Expr] =

compos i t ionSeq˜ rep (opPara˜ compos i t ionPara) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => B AST Agent (op , agi , a g i i) }

404

def compos i t ionSeq : Parser [Expr] =

simpleAgent˜ rep (opSeq˜ compos i t ionSeq) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => B AST Agent (op , agi , a g i i) }

def s impleAgent : Parser [Expr] = pr im i t i v e | parenthes izedAgent

def parenthes izedAgent : Parser [Expr] = ” (”˜>agent<˜”) ”

}

object BachTSimulParser extends BachTParsers {

def pa r s e p r im i t i v e (prim : Str ing) = par seAl l (pr im i t i ve , prim) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

def par se agent (ag : Str ing) = par seAl l (agent , ag) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

B.2.2 Vector of continuations

def v e c t a g f i r s t s t e p s (l s t : L i s t [(Expr , Expr)]) : Vector [Expr] = {

l s t match {

case Ni l => Vector . empty

case e l : : l s t r em => e l . 2 +: v e c t a g f i r s t s t e p s (l s t r em)

}

}

def l i n d e x a g f i r s t s t e p s (l s t : L i s t [(Expr , Expr)] , i : In t) : L i s t [(Expr , Int)] = {

var j = i

l s t match {

case Ni l => Ni l

case e l : : l s t r em => (e l . 1 , j) : : l i n d e x a g f i r s t s t e p s (l s t r em , j + 1)

}

}

B.2.3 Complete code of the command line simulator

/∗ BachT command l i n e s imula tor in command l i n e ∗/

/∗ ´ compile f i l e command : s c a l a c codeCompilBachT . s c a l a ∗/

/∗ ´ execut e o b j e c t : s c a l a MYSimulator ∗/

import s ca l a . t o o l s . nsc . S e t t i ng s

import s ca l a . t o o l s . nsc . i n t e r p r e t e r . ILoop

import s ca l a . u t i l . par s ing . combinator .

import s ca l a . u t i l . matching . Regex

import s ca l a . u t i l .Random

405

import s ca l a . c o l l e c t i o n . mutable .Map

import s ca l a . c o l l e c t i o n . mutable . ArrayBuf fer

import s ca l a . c o l l e c t i o n . immutable . Vector

import s ca l a . swing .

import s ca l a . i o . StdIn . readLine ;

/∗ Abst rac t c l a s s f o r BachT ∗/

class Expr

case class B AST Empty Agent () extends Expr

case class B AST Primitive (p r im i t i v e : Str ing , token : Str ing) extends Expr

case class B AST Agent (op : Str ing , p r im i t i v e : Expr , agent : Expr) extends Expr

/∗ BachT parser : c l a s s BachTParsers ∗/

class BachTParsers extends RegexParsers {

def token : Parser [St r ing] = (” [a´z] [0´9a źA´Z]∗ ”) . r ˆˆ { . t oS t r i ng }

val opChoice : Parser [St r ing] = ”+”

val opPara : Parser [St r ing] = ” | | ”

val opSeq : Parser [St r ing] = ” ; ”

def pr im i t i v e : Parser [Expr] = ” t e l l (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => B AST Primitive (” t e l l ” , vtoken) } |

”ask (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => B AST Primitive (”ask” , vtoken) } |

” get (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => B AST Primitive (” get ” , vtoken) } |

”nask (”˜ token ˜”) ” ˆˆ {

case ˜ vtoken ˜ => B AST Primitive (”nask” , vtoken) }

def agent = compos i t ionChoice

def compos i t ionChoice : Parser [Expr] =

compos i t ionPara˜ rep (opChoice ˜ compos i t ionChoice) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => B AST Agent (op , agi , a g i i) }

def compos i t ionPara : Parser [Expr] =

compos i t ionSeq˜ rep (opPara˜ compos i t ionPara) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => B AST Agent (op , agi , a g i i) }

def compos i t ionSeq : Parser [Expr] = simpleAgent˜ rep (opSeq˜ compos i t ionSeq) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => B AST Agent (op , agi , a g i i) }

def s impleAgent : Parser [Expr] = pr im i t i v e | parenthes izedAgent

def parenthes izedAgent : Parser [Expr] = ” (”˜>agent<˜”) ”

}

/∗ Object BachTSimulParser ∗/

406

object BachTSimulParser extends BachTParsers {

def pa r s e p r im i t i v e (prim : Str ing) = par seAl l (pr im i t i ve , prim) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

def par se agent (ag : Str ing) = par seAl l (agent , ag) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

/∗ Object bb r e pr e s en t i n g the s t o r e ∗/

object bb {

var mapTok = Map[Str ing , Int] ()

// synchronized methods f o r t e l l , ge t , ask and nask f o r a pr im i t i v e

def t e l l (s t r : S t r ing) = bb . synchronized {

i f (mapTok conta ins s t r) {

mapTok(s t r) = mapTok(s t r) + 1

} else {

mapTok = mapTok ++ Map(s t r >́ 1)

}

p r i n t l n (”>> t e l l (”+s t r+”) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”BachT> ”)

bb . n o t i f yA l l ()

true

}

def get (s t r : St r ing) = bb . synchronized {

while (! (mapTok conta ins s t r) | | mapTok(s t r) == 0) {bb . wait ()}

p r i n t l n (”>> get (”+s t r+”) s u c c e s s f u l l y terminated ”)

mapTok(s t r) = mapTok(s t r) ´ 1

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”BachT> ”)

bb . n o t i f yA l l ()

true

}

def ask (s t r : St r ing) = bb . synchronized {

while (! (mapTok conta ins s t r) | | mapTok(s t r) == 0) {bb . wait ()}

p r i n t l n (”>> ask (”+s t r+”) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

407

p r i n t l n ()

p r i n t (”BachT> ”)

true

}

def nask (s t r : St r ing) = bb . synchronized {

while ((mapTok conta ins s t r)) {bb . wait ()}

i f (! (mapTok conta ins s t r) | | mapTok(s t r) == 0) {

p r i n t l n (”>> nask (”+s t r+”) s u c c e s s f u l l y terminated ”)

p r i n t l n (” >> ” + ”token not pr es ent ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”BachT> ”)

}

true

}

// t e s t t e l l , ge t , ask and nask f o r execut ion of f i r s t s t ep in a choice

// boolean t e s t i f f i r s t s t ep i s e x e cu t ab l e

def t e s t t e l l (s t r : S t r ing) : Boolean = {

i f (mapTok conta ins s t r) {

mapTok(s t r) = mapTok(s t r) + 1

} else {

mapTok = mapTok ++ Map(s t r >́ 1)

}

p r i n t l n (”>> t e l l (”+s t r+”) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”BachT> ”)

// bb . n o t i f yA l l ()

true

}

def t e s t g e t (s t r : St r ing) : Boolean = {

i f (! (mapTok conta ins s t r) | | mapTok(s t r) == 0) {return fa l se } else {

p r i n t l n (”>> get (”+s t r+”) s u c c e s s f u l l y terminated ”)

mapTok(s t r) = mapTok(s t r) ´ 1

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”BachT> ”)

// bb . n o t i f yA l l ()

return true }

}

def t e s t a s k (s t r : St r ing) : Boolean = {

i f (! (mapTok conta ins s t r) | | mapTok(s t r) == 0) {return fa l se } else {

p r i n t l n (”>> ask (”+s t r+”) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”BachT> ”)

408

return true }

}

def t e s t na sk (s t r : St r ing) : Boolean = {

i f ((mapTok conta ins s t r)) {return fa l se } else {

i f (! (mapTok conta ins s t r) | | mapTok(s t r) == 0) {

p r i n t l n (”>> nask (”+s t r+”) s u c c e s s f u l l y terminated ”)

p r i n t l n (” >> ” + ”token not pr es ent ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”BachT> ”)

}

return true }

}

// Boolean func t ion f o r execut ion of prev ious BachT pr imi t i v e s

def exec b pr im (prim : Expr) : Boolean = {

prim match {

case B AST Primitive (b prim , token) => {

b prim match {

case ” t e l l ” => {

t e s t t e l l (token)

}

case ” get ” => {

t e s t g e t (token)

}

case ”ask” => {

t e s t a s k (token)

}

case ”nask” => {

t e s t na sk (token)

}

}

}

}

}

// f i nd an e x e cu t ab l e p r im i t i v e in the vec tor o f cho ice s

def l c h o i c e (l s tE I : L i s t [(Expr , Int)]) : (Boolean , Int) = {

var found : Boolean = fa l se

var i : In t = ´1

var l s t = l s tE I

while (! found && ! l s t . isEmpty) {

i f (exec b pr im ((l s t . head) . 1)) {

found = true

i = (l s t . head) . 2

} else {

l s t = l s t . t a i l

}

}

return (found , i)

409

}

// run the l i s t o f cho ice s

def r un l c h o i c e (l s t : L i s t [(Expr , Int)]) : Int = bb . synchronized {

var r = l c h o i c e (l s t)

while (! r . 1) { // i f no e x e cu t ab l e f i r s t s t ep found in the l i s t

bb . wait () // wai t

r = l c h o i c e (l s t) // a f t e r a not i f y , r e s t a r t t he search in the l i s t

}

return r . 2 // i f f i r s t s t ep found , re turn the a s soc i a t e i n t e g e r

}

// pr i n t i n g o f t he s t o r e content

def p r i n t s t o r e {

pr i n t (” { ”)

for ((t , d) <́ mapTok)

p r i n t (t + ” (” + mapTok(t) + ”) ”)

p r i n t l n (”}”)

}

// r e s e t t i n g o f t he s t o r e content to 0

def c l e a r s t o r e {

mapTok = Map[Str ing , Int] ()

p r i n t s t o r e

}

}

/∗ c l a s s B Exec f o r the execut ion of a BachT agent ∗/

class B Exec (var cur r ent agent : Expr) {

// func t ion f o r invok ing thread

def thread (body : => Unit) : Thread = {

val t = new Thread {

override def run () = body

}

t . s t a r t

t

}

// func t ion cont inuat ion , f o r operateur op ,

// add expr at the end of component e l . 2 o f e l

// e l . 1 conta ins the f i r s t s t ep

def cont inuat i on (l s t : L i s t [(Expr , Expr)] , exp : Expr , op : Str ing)

: L i s t [(Expr , Expr)] = {

l s t match {

case Ni l => Ni l

case e l : : l s t r em => (e l . 1 , B AST Agent (op , e l . 2 , exp))

: : cont inuat i on (l s t r em , exp , op)

410

}

}

// func t ion a g f i r s t s t e p s transforms an agent in a l i s t o f

// pa i r s Expression´Express ion

// The f i r s t one i s the f i r s t s t ep ; t he second one i s i t s cont inuat ion

def a g f i r s t s t e p s (b ag : Expr) : L i s t [(Expr , Expr)] = {

b ag match {

// a pr im i t i v e i s t he f i r s t s t ep f o l l owed by the empty agent

case B AST Primitive (b prim , token) => {

(B AST Primitive (b prim , token) , B AST Empty Agent ()) : : N i l

}

// f o r cho ice agent , r e cu r s i v e c a l l o f t he func t ion f o r

// every element o f t he cho ice

case B AST Agent (”+” , ag i , a g i i) => {

a g f i r s t s t e p s (a g i) : : : a g f i r s t s t e p s (a g i i)

}

// a sequence d i s t i n g u i s h e s both par t s o f Expression´Express ion

case B AST Agent (” ; ” , ag i , a g i i) => {

cont inuat i on (a g f i r s t s t e p s (a g i) , a g i i , ” ; ”)

}

// f o r p a r a l l e l agent , a g i wi th i t s c on t i nu i t y in p a r a l l e l wi th

// ag i i , and v i c e versa

case B AST Agent (” | | ” , ag i , a g i i) => {

cont inuat i on (a g f i r s t s t e p s (a g i) , a g i i , ” | | ”)

: : : cont inuat i on (a g f i r s t s t e p s (a g i i) , ag i , ” | | ”)

}

}

}

// cons t ruc t ion of Vector conta in ing the cont inuat ions (e l . 2)

// a f t e r f i r s t s t ep (e l . 1)

def v e c t a g f i r s t s t e p s (l s t : L i s t [(Expr , Expr)]) : Vector [Expr] = {

l s t match {

case Ni l => Vector . empty

case e l : : l s t r em => e l . 2 +: v e c t a g f i r s t s t e p s (l s t r em)

}

}

// Assoc ia t ion between f i r s t s t ep and index in the Vector

def l i n d e x a g f i r s t s t e p s (l s t : L i s t [(Expr , Expr)] , i : In t)

: L i s t [(Expr , Int)] = {

var j = i

l s t match {

case Ni l => Ni l

411

case e l : : l s t r em => (e l . 1 , j)

: : l i n d e x a g f i r s t s t e p s (l s t r em , j + 1)

}

}

// exec o f Dense Bach pr im i t i v e s ; invokat ion of f unc t i on s o f bb

def exe c p r im i t i v e (b prim : Str ing , token : Str ing) = {

b prim match

{ case ” t e l l ” => bb . t e l l (token)

case ” ask” => bb . ask (token)

case ” get ” => bb . get (token)

case ”nask” => bb . nask (token)

}

}

def e x e c l c h o i c e (l s t : L i s t [(Expr , Int)]) : Int = {

bb . r un l c h o i c e (l s t)

}

// exec agent

def exec (b ag par sed : Expr) : Boolean = {

b ag par sed match {

case B AST Empty Agent () => {true}

case B AST Primitive (b prim , token) => {

exe c p r im i t i v e (b prim , token) ;

}

case B AST Agent (” ; ” , ag i , a g i i)

=> { i f (exec (a g i)) { exec (a g i i) } else { fa l se } }

case B AST Agent (” | | ” , ag i , a g i i) => {

val t1 = thread (exec (a g i))

val t2 = thread (exec (a g i i))

t1 . j o i n

t2 . j o i n

true

}

case B AST Agent (”+” , ag i , a g i i) => {

var l stEE = a g f i r s t s t e p s (B AST Agent (”+” , ag i , a g i i))

var lstEV = v e c t a g f i r s t s t e p s (lstEE)

var l s tE I = l i n d e x a g f i r s t s t e p s (lstEE , 0)

var i = e x e c l c h o i c e (Random . s h u f f l e (l s tE I))

exec (lstEV (i))

true

}

}

}

// g ene ra l i z e d exec

def exec gen (b ag par sed : Expr , cpt : Int) = {

exec (b ag par sed)

bb . synchronized {

p r i n t l n (”>> Request ” + cpt + ” s u c c e s s f u l l y terminated ”)

p r i n t l n ()

412

pr i n t (”BachT> ”)

}

}

}

/∗ Object MYSimInLine conta in ing the main method of the command l i n e s imula tor ∗/

object MYSimInLine {

def main (args : Array [Str ing]) {

p r i n t l n ()

p r i n t (” Welcome to BachT ve r s i on 1 .\n”)

p r i n t (” Type in agents to eva luate them .\n\n”)

p r i n t (”BachT> ”)

var myag parsed : Expr = B AST Empty Agent ()

var l i n e = readLine ()

var cpt : Int = 1

val maxHist = 5

var h i s t o r y = ArrayBuf fer (”m0” , ”m1” , ”m2” , ”m3” , ”m4”)

var c h i s t = 0

var ca : Str ing = ” ”

while (l i n e != ” ha l t . ”) {

l i n e match {

case ” h i s t o r y . ” => { bb . synchronized {

p r i n t l n (” h i s t o r y ”) ;

p r i n t l n ()

p r i n t l n (” ” + ” ! : ” + h i s t o r y ((maxHist+ch i s t ´1) % maxHist))

p r i n t l n (” ” + ” ! ! : ” + h i s t o r y ((maxHist+ch i s t ´2) % maxHist))

p r i n t l n (” ” + ” ! ! ! : ” + h i s t o r y ((maxHist+ch i s t ´3) % maxHist))

p r i n t l n (” ” + ” ! v : ” + h i s t o r y ((maxHist+ch i s t ´4) % maxHist))

p r i n t l n (” ” + ” v : ” + h i s t o r y ((maxHist+ch i s t ´5) % maxHist))

p r i n t l n ()

p r i n t (”BachT> ”)

}

l i n e = readLine ()

}

case ” ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”BachT> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´1) % maxHist))

p r i n t (”BachT>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´1) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”BachT> ”)

}

}

413

i f (ca != ”y”) { l i n e = readLine () }

}

case ” ! ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”BachT> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´2) % maxHist))

p r i n t (”BachT>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´2) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”BachT> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” ! ! ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”BachT> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´3) % maxHist))

p r i n t (”BachT>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´3) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”BachT> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” iv ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”BachT> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´4) % maxHist))

p r i n t (”BachT>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´4) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”BachT> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ”v” => { bb . synchronized {

p r i n t l n ()

p r i n t (”BachT> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´5) % maxHist))

p r i n t (”BachT>> execute (y/n) : ”)

414

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´5) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”BachT> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” c l e a r . ” => {bb . c l e a r s t o r e

bb . synchronized {

p r i n t l n ()

p r i n t (”BachT> ”)

}

l i n e = readLine ()

}

case ” p r i n t . ” => {bb . p r i n t s t o r e

bb . synchronized {

p r i n t l n ()

p r i n t (”BachT> ”)

}

l i n e = readLine ()

}

case => {

while (! l i n e . endsWith (” . ”)) {

l i n e += readLine (” | ”)

}

l i n e = l i n e . r ep l a c e (” . ” , ””)

h i s t o r y (c h i s t % maxHist) = l i n e

c h i s t = (ch i s t + 1)

try {

myag parsed = BachTSimulParser . par s e agent (l i n e)

val mysimul = new B Exec (myag parsed)

p r i n t l n (”BachT> >> Request ” + cpt + ” launched ”)

val t = mysimul . thread (mysimul . exec gen (myag parsed , cpt))

bb . synchronized {

p r i n t l n ()

p r i n t (”BachT> ”)

}

l i n e = readLine ()

}

catch {

case unknown : Throwable => {

bb . synchronized {

p r i n t l n (”>> Error o f par s ing ”)

p r i n t l n ()

p r i n t (”BachT> ”)

}

l i n e = readLine ()

}

415

}

cpt = cpt + 1

}

}

}

}

}

416

Appendix C

The Dense Bach Language

C.1 The interpreter

C.1.1 The dbach-cli.scala file

This third appendix lists the full code of the Dense Bach interpreter. This one is constitued of

the abstract class Expr, the DenseBachParsers class, the DenseBachStore class and finally the

DenseBachSimul class.

class Expr

case class dbach ast empty agent () extends Expr

case class dbach a s t p r im i t i v e (p r im i t i v e : Str ing , token : Str ing ,

dens i ty : Int) extends Expr

case class dbach as t agent (op : Str ing , agent i : Expr ,

a g en t i i : Expr) extends Expr

import s ca l a . u t i l . par s ing . combinator .

import s ca l a . u t i l . matching . Regex

class DenseBachParsers extends RegexParsers {

def token : Parser [St r ing] = (” [a´z] [0´9a źA´Z]∗ ”) . r ˆˆ { . t oS t r i ng }

def dens i ty : Parser [Int] = (” [1 ´9] [0 ´9]∗ ”) . r ˆˆ { . to Int }

val opChoice : Parser [St r ing] = ”+”

val opPara : Parser [St r ing] = ” | | ”

val opSeq : Parser [St r ing] = ” ; ”

def pr im i t i v e : Parser [Expr] = ” t e l l (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜

=> dbach a s t p r im i t i v e (” t e l l ” , vtoken , vdens i ty) } |

”ask (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜

=> dbach a s t p r im i t i v e (”ask” , vtoken , vdens i ty) } |

” get (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜

417

=> dbach a s t p r im i t i v e (” get ” , vtoken , vdens i ty) } |

”nask (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜

=> dbach a s t p r im i t i v e (”nask” , vtoken , vdens i ty) }

def agent = compos i t ionChoice

def compos i t ionChoice : Parser [Expr] =

compos i t ionPara˜ rep (opChoice ˜ compos i t ionChoice) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => dbach as t agent (op , agi , a g i i) }

def compos i t ionPara : Parser [Expr] =

compos i t ionSeq˜ rep (opPara˜ compos i t ionPara) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => dbach as t agent (op , agi , a g i i) }

def compos i t ionSeq : Parser [Expr] =

simpleAgent ˜ rep (opSeq˜ compos i t ionSeq) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => dbach as t agent (op , agi , a g i i) }

def s impleAgent : Parser [Expr] = pr im i t i v e | parenthes izedAgent

def parenthes izedAgent : Parser [Expr] = ” (”˜>agent<˜”) ”

}

object DenseBachSimulParser extends DenseBachParsers {

def pa r s e p r im i t i v e (prim : Str ing) = par seAl l (pr im i t i ve , prim) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

def par se agent (ag : Str ing) = par seAl l (agent , ag) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

import s ca l a . c o l l e c t i o n . mutable .Map

import s ca l a . swing .

class DenseBachStore {

var theStor e = Map[Str ing , Int] ()

def t e l l (token : Str ing , dens i ty : Int) : Boolean = {

i f (theStor e . conta ins (token))

{ theStor e (token) = theStor e (token) + dens i ty }

else

{ theStor e = theStor e ++ Map(token >́ dens i ty) }

true

}

418

def ask (token : Str ing , dens i ty : Int) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= dens i ty) { true }

else { fa l se }

else fa l se

}

def get (token : Str ing , dens i ty : Int) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= dens i ty)

{ theStor e (token) = theStor e (token) ´ dens i ty

true

}

else { fa l se }

else fa l se

}

def nask (token : Str ing , dens i ty : Int) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= dens i ty) { fa l se }

else { true }

else true

}

def p r i n t s t o r e {

pr i n t (”{ ”)

for ((t , d) <́ theStor e)

p r i n t (t + ” (” + theStor e (t) + ”) ”)

p r i n t l n (” }”)

}

def c l e a r s t o r e {

theStor e = Map[Str ing , Int] ()

}

}

object bb extends DenseBachStore {

def r e s e t { c l e a r s t o r e }

}

import s ca l a . u t i l .Random

import l anguage . postf ixOps

class DenseBachSimul (var bb : DenseBachStore) {

val dbach random choice = new Random()

def run one (agent : Expr) : (Boolean , Expr) = {

agent match {

case dbach a s t p r im i t i v e (prim , token) =>

{ i f (ex e c p r im i t i v e (prim , token)) { (true , dbach ast empty agent ()) }

else { (fa lse , agent) }

419

}

case dbach as t agent (” ; ” , ag i , a g i i) =>

{ run one (a g i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , dbach ast empty agent ()) => (true , a g i i)

case (true , ag cont) => (true , dbach as t agent (” ; ” , ag cont , a g i i))

}

}

case dbach as t agent (” | | ” , ag i , a g i i) =>

{ var branch cho i ce = dbach random choice . next Int (2)

i f (branch cho i ce == 0)

{ run one (a g i) match

{ case (fa lse ,) =>

{ run one (a g i i) match

{ case (fa lse ,)

=> (fa lse , agent)

case (true , dbach ast empty agent ())

=> (true , a g i)

case (true , ag cont)

=> (true , dbach as t agent (” | | ” , ag i , ag cont))

}

}

case (true , dbach ast empty agent ())

=> (true , a g i i)

case (true , ag cont)

=> (true , dbach as t agent (” | | ” , ag cont , a g i i))

}

}

else

{ run one (a g i i) match

{ case (fa lse ,) =>

{ run one (a g i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , dbach ast empty agent ()) => (true , a g i i)

case (true , ag cont)

=> (true , dbach as t agent (” | | ” , ag cont , a g i i))

}

}

case (true , dbach ast empty agent ()) => (true , a g i)

case (true , ag cont)

=> (true , dbach as t agent (” | | ” , ag i , ag cont))

}

}

}

case dbach as t agent (”+” , ag i , a g i i) =>

{ var branch cho i ce = dbach random choice . next Int (2)

i f (branch cho i ce == 0)

{ run one (a g i) match

{ case (fa lse ,) =>

{ run one (a g i i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , dbach ast empty agent ())

420

=> (true , dbach ast empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

case (true , dbach ast empty agent ())

=> (true , dbach ast empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

else

{ run one (a g i i) match

{ case (fa lse ,) =>

{ run one (a g i) match

{ case (fa lse ,)

=> (fa lse , agent)

case (true , dbach ast empty agent ())

=> (true , dbach ast empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

case (true , dbach ast empty agent ())

=> (true , dbach ast empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

}

}

}

def dbach exec a l l (agent : Expr) : Boolean = {

var f a i l u r e = fa l se

var c agent = agent

while (c agent != dbach ast empty agent () && ! f a i l u r e) {

f a i l u r e = run one (c agent) match

{ case (fa lse ,) => true

case (true , new agent) =>

{ c agent = new agent

fa l se

}

}

bb . p r i n t s t o r e

p r i n t l n (”\n”)

}

i f (c agent == dbach ast empty agent ()) {

p r i n t l n (” Succes s \n”)

true

}

else {

p r i n t l n (” f a i l u r e \n”)

421

fa l se

}

}

def exe c p r im i t i v e (prim : Str ing , token : Str ing , dens i ty : Int) : Boolean = {

prim match

{ case ” t e l l ” => bb . t e l l (token , dens i ty)

case ”ask” => bb . ask (token , dens i ty)

case ” get ” => bb . get (token , dens i ty)

case ”nask” => bb . nask (token , dens i ty)

}

}

}

object ag extends DenseBachSimul (bb) {

def apply (agent : Str ing) {

val agent par s ed = DenseBachSimulParser . par s e agent (agent)

ag . dbach exec a l l (agent par s ed)

}

def eva l (agent : Str ing) { apply (agent) }

def run (agent : Str ing) { apply (agent) }

}

C.2 The command line simulator

C.2.1 Abstract class

/∗ Dense Bach s imula tor in command l i n e ∗/

/∗ ´ compile f i l e command : s c a l a c codeCompilV2 . s c a l a ∗/

/∗ ´ execut e o b j e c t : s c a l a MYSimulator ∗/

import s ca l a . t o o l s . nsc . S e t t i ng s

import s ca l a . t o o l s . nsc . i n t e r p r e t e r . ILoop

import s ca l a . u t i l . par s ing . combinator .

import s ca l a . u t i l . matching . Regex

import s ca l a . u t i l .Random

import s ca l a . c o l l e c t i o n . mutable .Map

import s ca l a . c o l l e c t i o n . mutable . ArrayBuf fer

import s ca l a . c o l l e c t i o n . immutable . Vector

import s ca l a . swing .

import s ca l a . i o . StdIn . readLine ;

/∗ Abst rac t c l a s s f o r Dense Bach ∗/

class Expr

case class DB AST Empty Agent () extends Expr

case class DB AST Primitive (p r im i t i v e : Str ing , token : Str ing , dens i ty : Int) extends Expr

case class DB AST Agent (op : Str ing , p r im i t i v e : Expr , agent : Expr) extends Expr

422

C.2.2 Dense Bach Parser

/∗ Dense Bach parser : c l a s s DenseBachParsers ∗/

class DenseBachParsers extends RegexParsers {

def token : Parser [St r ing] = (” [a´z] [0´9a źA´Z]∗ ”) . r ˆˆ { . t oS t r i ng }

def dens i ty : Parser [Int] = (” [1 ´9] [0 ´9]∗ ”) . r ˆˆ { . to Int }

val opChoice : Parser [St r ing] = ”+”

val opPara : Parser [St r ing] = ” | | ”

val opSeq : Parser [St r ing] = ” ; ”

def pr im i t i v e : Parser [Expr] = ” t e l l (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜ => DB AST Primitive (” t e l l ” , vtoken , vdens i ty) }

|

”ask (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜ => DB AST Primitive (” ask” , vtoken , vdens i ty) }

|

” get (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜ => DB AST Primitive (” get ” , vtoken , vdens i ty) }

|

”nask (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜ => DB AST Primitive (”nask” , vtoken , vdens i ty) }

def agent = compos i t ionChoice

def compos i t ionChoice : Parser [Expr] = compos i t ionPara˜ rep (opChoice ˜ compos i t ionChoice) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => DB AST Agent (op , agi , a g i i) }

def compos i t ionPara : Parser [Expr] = compos i t ionSeq˜ rep (opPara˜ compos i t ionPara) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => DB AST Agent (op , agi , a g i i) }

def compos i t ionSeq : Parser [Expr] = simpleAgent˜ rep (opSeq˜ compos i t ionSeq) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => DB AST Agent (op , agi , a g i i) }

def s impleAgent : Parser [Expr] = pr im i t i v e | parenthes izedAgent

def parenthes izedAgent : Parser [Expr] = ” (”˜>agent<˜”) ”

}

/∗ Object DenseBachSimulParser ∗/

object DenseBachSimulParser extends DenseBachParsers {

def pa r s e p r im i t i v e (prim : Str ing) = par seAl l (pr im i t i ve , prim) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

def par se agent (ag : Str ing) = par seAl l (agent , ag) match {

423

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

C.2.3 The store

/∗ Object bb r e pr e s en t i n g the s t o r e ∗/

object bb {

var mapTok = Map[Str ing , Int] ()

// synchronized methods f o r t e l l , ge t , ask and nask

def t e l l (s t r : Str ing , dens i ty : Int) = bb . synchronized {

i f (mapTok conta ins s t r) {

mapTok(s t r) = mapTok(s t r) + dens i ty

} else {

mapTok = mapTok ++ Map(s t r >́ dens i ty)

}

p r i n t l n (”>> t e l l (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

bb . n o t i f yA l l ()

true

}

def get (s t r : Str ing , dens i ty : Int) = bb . synchronized {

while (! (mapTok conta ins s t r) | | (mapTok(s t r) < dens i ty)) {bb . wait ()}

p r i n t l n (”>> get (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

mapTok(s t r) = mapTok(s t r) ´ dens i ty

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

true

}

def ask (s t r : Str ing , dens i ty : Int) = bb . synchronized {

while (! (mapTok conta ins s t r) | | (mapTok(s t r) < dens i ty)) {bb . wait ()}

p r i n t l n (”>> ask (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

true

}

def nask (s t r : Str ing , dens i ty : Int) = bb . synchronized {

while ((mapTok conta ins s t r) && (mapTok(s t r) >= dens i ty)) {bb . wait ()}

i f (! (mapTok conta ins s t r)) {

424

p r i n t l n (”>> nask (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t l n (” >> ” + ”token ” + s t r + ” not pr es ent ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

} else {

p r i n t l n (”>> nask (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

}

true

}

def t e s t t e l l (s t r : Str ing , dens i ty : Int) : Boolean = {

i f (mapTok conta ins s t r) {

mapTok(s t r) = mapTok(s t r) + dens i ty

} else {

mapTok = mapTok ++ Map(s t r >́ dens i ty)

}

p r i n t l n (”>> t e l l (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

// bb . n o t i f yA l l ()

return true

}

def t e s t g e t (s t r : Str ing , dens i ty : Int) : Boolean = {

i f (! (mapTok conta ins s t r) | | (mapTok(s t r) < dens i ty)) { return fa l se } else {

p r i n t l n (”>> get (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

mapTok(s t r) = mapTok(s t r) ´ dens i ty

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

return true }

}

def t e s t a s k (s t r : Str ing , dens i ty : Int) : Boolean = {

i f (! (mapTok conta ins s t r) | | (mapTok(s t r) < dens i ty)) { return fa l se } else {

p r i n t l n (”>> ask (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

return true }

}

def t e s t na sk (s t r : Str ing , dens i ty : Int) : Boolean = {

i f ((mapTok conta ins s t r) && (mapTok(s t r) >= dens i ty)) { return fa l se } else {

i f (! (mapTok conta ins s t r)) {

425

p r i n t l n (”>> nask (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t l n (” >> ” + ”token ” + s t r + ” not pr es ent ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

} else {

p r i n t l n (”>> nask (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

}

return true }

}

// Boolean func t ion f o r execut ion of prev ious Dense Bach pr im i t i v e s

def exec db pr im (prim : Expr) : Boolean = {

prim match {

case DB AST Primitive (db prim , token , dens i ty) => {

db prim match {

case ” t e l l ” => {

t e s t t e l l (token , dens i ty)

}

case ” get ” => {

t e s t g e t (token , dens i ty)

}

case ”ask” => {

t e s t a s k (token , dens i ty)

}

case ”nask” => {

t e s t na sk (token , dens i ty)

}

}

}

}

}

// f i nd an e x e cu t ab l e p r im i t i v e in the vec tor o f cho ice s

def r un l c h o i c e (l s tE I : L i s t [(Expr , Int)]) : (Boolean , Int) = {

var found : Boolean = fa l se

var i : In t = ´1

var l s t = l s tE I

while (! found && ! l s t . isEmpty) {

i f (exec db pr im ((l s t . head) . 1)) {

found = true

i = (l s t . head) . 2

} else {

l s t = l s t . t a i l

}

}

return (found , i)

}

426

// run the l i s t o f cho ice s

def l c h o i c e (l s t : L i s t [(Expr , Int)]) : Int = bb . synchronized {

var r = r un l c h o i c e (l s t)

while (! r . 1) {

bb . wait ()

r = r un l c h o i c e (l s t)

}

return r . 2

// n o t i f yA l l ()

}

// pr i n t i n g o f t he s t o r e content

def p r i n t s t o r e {

pr i n t (” { ”)

for ((t , d) <́ mapTok)

p r i n t (t + ” (” + mapTok(t) + ”) ”)

p r i n t l n (”}”)

}

// r e s e t t i n g o f t he s t o r e content to 0

def c l e a r s t o r e {

mapTok = Map[Str ing , Int] ()

p r i n t s t o r e

}

}

C.2.4 Executing a Dense Bach Agent

/∗ c l a s s DB Exec f o r the execut ion of a Dense Bach agent ∗/

class DB Exec (var cur r ent agent : Expr) {

// func t ion f o r invok ing thread

def thread (body : => Unit) : Thread = {

val t = new Thread {

override def run () = body

}

t . s t a r t

t

}

// func t ion ex t cont inuat ion , f o r operateur op , add expr at the end of component e l . 2 o f e l

// e l . 1 conta ins the f i r s t s t ep

def ex t con t i nua t i on (l s t : L i s t [(Expr , Expr)] , exp : Expr , op : Str ing) : L i s t [(Expr , Expr)] = {

l s t match {

case Ni l => Ni l

case e l : : l s t r em => (e l . 1 , DB AST Agent (op , e l . 2 , exp)) : : e x t con t i nua t i on (l s t r em , exp , op)

}

427

}

// func t ion a g f i r s t s t e p s transforms an agent in a l i s t o f pa i r s Expression´Express ion

// The f i r s t one i s the f i r s t s t ep ; t he second one i s i t s cont inuat ion

def a g f i r s t s t e p s (db ag : Expr) : L i s t [(Expr , Expr)] = {

db ag match {

// a pr im i t i v e i s t he f i r s t s t ep f o l l owed by the empty agent

case DB AST Primitive (db prim , token , dens i ty) => {

(DB AST Primitive (db prim , token , dens i ty) , DB AST Empty Agent ()) : : N i l

}

// f o r cho ice agent , r e cu r s i v e c a l l o f t he func t ion f o r every element o f t he cho ice

case DB AST Agent (”+” , ag i , a g i i) => {

a g f i r s t s t e p s (a g i) : : : a g f i r s t s t e p s (a g i i)

}

// a sequence d i s t i n g u i s h e s both par t s o f Expression´Express ion

case DB AST Agent (” ; ” , ag i , a g i i) => {

ex t con t i nua t i on (a g f i r s t s t e p s (a g i) , a g i i , ” ; ”)

}

// f o r p a r a l l e l agent , a g i i t h i t s c on t i nu i t y in p a r a l l e l wi th ag i i , and v i c e versa

case DB AST Agent (” | | ” , ag i , a g i i) => {

ex t con t i nua t i on (a g f i r s t s t e p s (a g i) , a g i i , ” | | ”)

: : : e x t con t i nua t i on (a g f i r s t s t e p s (a g i i) , ag i , ” | | ”)

}

}

}

// cons t ruc t ion of Vector conta in ing the cont inuat ions (e l . 2) a f t e r f i r s t s t ep (e l . 1)

def v e c t a g f i r s t s t e p s (l s t : L i s t [(Expr , Expr)]) : Vector [Expr] = {

l s t match {

case Ni l => Vector . empty

case e l : : l s t r em => e l . 2 +: v e c t a g f i r s t s t e p s (l s t r em)

}

}

// Assoc ia t ion between f i r s t s t ep and index in the Vector

def l i n d e x a g f i r s t s t e p s (l s t : L i s t [(Expr , Expr)] , i : In t) : L i s t [(Expr , Int)] = {

var j = i

l s t match {

case Ni l => Ni l

case e l : : l s t r em => (e l . 1 , j) : : l i n d e x a g f i r s t s t e p s (l s t r em , j + 1)

}

}

// exec o f Dense Bach pr im i t i v e s ; invokat ion of f unc t i on s o f bb

428

def exe c p r im i t i v e (db prim : Str ing , token : Str ing , dens i ty : Int) = {

db prim match

{ case ” t e l l ” => bb . t e l l (token , dens i ty)

case ” ask” => bb . ask (token , dens i ty)

case ” get ” => bb . get (token , dens i ty)

case ”nask” => bb . nask (token , dens i ty)

}

}

def e x e c l c h o i c e (l s t : L i s t [(Expr , Int)]) : Int = {

bb . l c h o i c e (l s t)

}

// exec agent

def exec (db ag parsed : Expr) : Boolean = {

db ag parsed match {

case DB AST Empty Agent () => {true}

case DB AST Primitive (db prim , token , dens i ty) => {

exe c p r im i t i v e (db prim , token , dens i ty) ;

}

case DB AST Agent (” ; ” , ag i , a g i i) => {

i f (exec (a g i)) { exec (a g i i) } else { fa l se } }

case DB AST Agent (” | | ” , ag i , a g i i) => {

val t1 = thread (exec (a g i))

val t2 = thread (exec (a g i i))

t1 . j o i n

t2 . j o i n

true

}

case DB AST Agent (”+” , ag i , a g i i) => {

var l stEE = a g f i r s t s t e p s (DB AST Agent (”+” , ag i , a g i i))

var lstEV = v e c t a g f i r s t s t e p s (lstEE)

var l s tE I = l i n d e x a g f i r s t s t e p s (lstEE , 0)

var i = e x e c l c h o i c e (Random . s h u f f l e (l s tE I))

exec (lstEV (i))

true

}

}

}

// g ene ra l i z e d exec

def exec gen (db ag parsed : Expr , cpt : Int) = {

exec (db ag parsed)

bb . synchronized {

p r i n t l n (”>> Request ” + cpt + ” s u c c e s s f u l l y terminated ”)

p r i n t l n ()

p r i n t (”DBach> ”)

}

}

}

429

C.2.5 The Command Line Simulator

/∗ Object MYSimInLine conta in ing the main method of the command l i n e s imula tor ∗/

object MYSimInLine {

def main (args : Array [Str ing]) {

p r i n t l n ()

p r i n t (” Welcome to Dense Bach ve r s i on 1 .\n”)

p r i n t (” Type in agents to eva luate them .\n\n”)

p r i n t (”DBach> ”)

var myag parsed : Expr = DB AST Empty Agent ()

var l i n e = readLine ()

var cpt : Int = 1

val maxHist = 5

var h i s t o r y = ArrayBuf fer (”m0” , ”m1” , ”m2” , ”m3” , ”m4”)

var c h i s t = 0

var ca : Str ing = ” ”

while (l i n e != ” ha l t . ”) {

l i n e match {

case ” h i s t o r y . ” => { bb . synchronized {

p r i n t l n (” h i s t o r y ”) ;

p r i n t l n ()

p r i n t l n (” ” + ” ! : ” + h i s t o r y ((maxHist+ch i s t ´1) % maxHist))

p r i n t l n (” ” + ” ! ! : ” + h i s t o r y ((maxHist+ch i s t ´2) % maxHist))

p r i n t l n (” ” + ” ! ! ! : ” + h i s t o r y ((maxHist+ch i s t ´3) % maxHist))

p r i n t l n (” ” + ” ! v : ” + h i s t o r y ((maxHist+ch i s t ´4) % maxHist))

p r i n t l n (” ” + ” v : ” + h i s t o r y ((maxHist+ch i s t ´5) % maxHist))

p r i n t l n ()

p r i n t (”DBach> ”)

}

l i n e = readLine ()

}

case ” ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´1) % maxHist))

p r i n t (”DBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´1) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”DBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” ! ! ” => { bb . synchronized {

p r i n t l n ()

430

pr i n t (”DBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´2) % maxHist))

p r i n t (”DBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´2) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”DBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” ! ! ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´3) % maxHist))

p r i n t (”DBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´3) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”DBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” iv ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´4) % maxHist))

p r i n t (”DBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´4) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”DBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ”v” => { bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´5) % maxHist))

p r i n t (”DBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´5) % maxHist) + ” . ”

p r i n t l n ()

431

} else {

p r i n t l n ()

p r i n t (”DBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” c l e a r . ” => {bb . c l e a r s t o r e

bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> ”)

}

l i n e = readLine ()

}

case ” p r i n t . ” => {bb . p r i n t s t o r e

bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> ”)

}

l i n e = readLine ()

}

case => {

while (! l i n e . endsWith (” . ”)) {

l i n e += readLine (” | ”)

}

l i n e = l i n e . r ep l a c e (” . ” , ””)

h i s t o r y (c h i s t % maxHist) = l i n e

c h i s t = (ch i s t + 1)

try {

myag parsed = DenseBachSimulParser . par s e agent (l i n e)

val mysimul = new DB Exec (myag parsed)

p r i n t l n (”DBach> >> Request ” + cpt + ” launched ”)

val t = mysimul . thread (mysimul . exec gen (myag parsed , cpt))

bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> ”)

}

l i n e = readLine ()

}

catch {

case unknown : Throwable => {

bb . synchronized {

p r i n t l n (”>> Error o f par s ing ”)

p r i n t l n ()

p r i n t (”DBach> ”)

}

l i n e = readLine ()

}

}

cpt = cpt + 1

}

}

}

432

}

}

C.2.6 Complete code of the command line simulator

/∗ Dense Bach s imula tor in command l i n e ∗/

/∗ ´ compile f i l e command : s c a l a c codeCompilV2 . s c a l a ∗/

/∗ ´ execut e o b j e c t : s c a l a MYSimulator ∗/

import s ca l a . t o o l s . nsc . S e t t i ng s

import s ca l a . t o o l s . nsc . i n t e r p r e t e r . ILoop

import s ca l a . u t i l . par s ing . combinator .

import s ca l a . u t i l . matching . Regex

import s ca l a . u t i l .Random

import s ca l a . c o l l e c t i o n . mutable .Map

import s ca l a . c o l l e c t i o n . mutable . ArrayBuf fer

import s ca l a . c o l l e c t i o n . immutable . Vector

import s ca l a . swing .

import s ca l a . i o . StdIn . readLine ;

/∗ Abst rac t c l a s s f o r Dense Bach ∗/

class Expr

case class DB AST Empty Agent () extends Expr

case class DB AST Primitive (p r im i t i v e : Str ing , token : Str ing ,

dens i ty : Int) extends Expr

case class DB AST Agent (op : Str ing , p r im i t i v e : Expr ,

agent : Expr) extends Expr

/∗ Dense Bach parser : c l a s s DenseBachParsers ∗/

class DenseBachParsers extends RegexParsers {

def token : Parser [St r ing] = (” [a´z] [0 ´9a źA´Z]∗ ”) . r ˆˆ { . t oS t r i ng }

def dens i ty : Parser [Int] = (” [1 ´9] [0 ´9]∗ ”) . r ˆˆ { . to Int }

val opChoice : Parser [St r ing] = ”+”

val opPara : Parser [St r ing] = ” | | ”

val opSeq : Parser [St r ing] = ” ; ”

def pr im i t i v e : Parser [Expr] = ” t e l l (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜

=> DB AST Primitive (” t e l l ” , vtoken , vdens i ty) } |

” ask (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜

=> DB AST Primitive (” ask” , vtoken , vdens i ty) } |

” get (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜

=> DB AST Primitive (” get ” , vtoken , vdens i ty) } |

”nask (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜

=> DB AST Primitive (”nask” , vtoken , vdens i ty) }

433

def agent = compos i t ionChoice

def compos i t ionChoice : Parser [Expr] =

compos i t ionPara˜ rep (opChoice ˜ compos i t ionChoice) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => DB AST Agent (op , agi , a g i i) }

def compos i t ionPara : Parser [Expr] =

compos i t ionSeq˜ rep (opPara˜ compos i t ionPara) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => DB AST Agent (op , agi , a g i i) }

def compos i t ionSeq : Parser [Expr] =

simpleAgent˜ rep (opSeq˜ compos i t ionSeq) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => DB AST Agent (op , agi , a g i i) }

def s impleAgent : Parser [Expr] = pr im i t i v e | parenthes izedAgent

def parenthes izedAgent : Parser [Expr] = ” (”˜>agent<˜”) ”

}

/∗ Object DenseBachSimulParser ∗/

object DenseBachSimulParser extends DenseBachParsers {

def pa r s e p r im i t i v e (prim : Str ing) = par seAl l (pr im i t i ve , prim) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

def par se agent (ag : Str ing) = par seAl l (agent , ag) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

/∗ Object bb r e pr e s en t i n g the s t o r e ∗/

object bb {

var mapTok = Map[Str ing , Int] ()

// synchronized methods f o r t e l l , ge t , ask and nask

def t e l l (s t r : Str ing , dens i ty : Int) = bb . synchronized {

i f (mapTok conta ins s t r) {

mapTok(s t r) = mapTok(s t r) + dens i ty

} else {

mapTok = mapTok ++ Map(s t r >́ dens i ty)

}

p r i n t l n (”>> t e l l (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

434

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

bb . n o t i f yA l l ()

true

}

def get (s t r : Str ing , dens i ty : Int) = bb . synchronized {

while (! (mapTok conta ins s t r) | | (mapTok(s t r) < dens i ty)) {bb . wait ()}

p r i n t l n (”>> get (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

mapTok(s t r) = mapTok(s t r) ´ dens i ty

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

true

}

def ask (s t r : Str ing , dens i ty : Int) = bb . synchronized {

while (! (mapTok conta ins s t r) | | (mapTok(s t r) < dens i ty)) {bb . wait ()}

p r i n t l n (”>> ask (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

true

}

def nask (s t r : Str ing , dens i ty : Int) = bb . synchronized {

while ((mapTok conta ins s t r) && (mapTok(s t r) >= dens i ty)) {bb . wait ()}

i f (! (mapTok conta ins s t r)) {

p r i n t l n (”>> nask (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t l n (” >> ” + ”token ” + s t r + ” not pr es ent ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

} else {

p r i n t l n (”>> nask (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

}

true

}

def t e s t t e l l (s t r : Str ing , dens i ty : Int) : Boolean = {

i f (mapTok conta ins s t r) {

mapTok(s t r) = mapTok(s t r) + dens i ty

} else {

mapTok = mapTok ++ Map(s t r >́ dens i ty)

}

p r i n t l n (”>> t e l l (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

435

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

// bb . n o t i f yA l l ()

return true

}

def t e s t g e t (s t r : Str ing , dens i ty : Int) : Boolean = {

i f (! (mapTok conta ins s t r) | | (mapTok(s t r) < dens i ty)) { return fa l se }

else {

p r i n t l n (”>> get (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

mapTok(s t r) = mapTok(s t r) ´ dens i ty

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

return true }

}

def t e s t a s k (s t r : Str ing , dens i ty : Int) : Boolean = {

i f (! (mapTok conta ins s t r) | | (mapTok(s t r) < dens i ty)) { return fa l se }

else {

p r i n t l n (”>> ask (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

return true }

}

def t e s t na sk (s t r : Str ing , dens i ty : Int) : Boolean = {

i f ((mapTok conta ins s t r) && (mapTok(s t r) >= dens i ty)) { return fa l se }

else {

i f (! (mapTok conta ins s t r)) {

p r i n t l n (”>> nask (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t l n (” >> ” + ”token ” + s t r + ” not pr es ent ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

} else {

p r i n t l n (”>> nask (”+s t r+” (”+dens i ty+”)) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”DBach> ”)

}

return true }

}

// Boolean func t ion f o r execut ion of prev ious Dense Bach pr im i t i v e s

def exec db pr im (prim : Expr) : Boolean = {

prim match {

case DB AST Primitive (db prim , token , dens i ty) => {

436

db prim match {

case ” t e l l ” => {

t e s t t e l l (token , dens i ty)

}

case ” get ” => {

t e s t g e t (token , dens i ty)

}

case ”ask” => {

t e s t a s k (token , dens i ty)

}

case ”nask” => {

t e s t na sk (token , dens i ty)

}

}

}

}

}

// f i nd an e x e cu t ab l e p r im i t i v e in the vec tor o f cho ice s

def r un l c h o i c e (l s tE I : L i s t [(Expr , Int)]) : (Boolean , Int) = {

var found : Boolean = fa l se

var i : In t = ´1

var l s t = l s tE I

while (! found && ! l s t . isEmpty) {

i f (exec db pr im ((l s t . head) . 1)) {

found = true

i = (l s t . head) . 2

} else {

l s t = l s t . t a i l

}

}

return (found , i)

}

// run the l i s t o f cho ice s

def l c h o i c e (l s t : L i s t [(Expr , Int)]) : Int = bb . synchronized {

var r = r un l c h o i c e (l s t)

while (! r . 1) {

bb . wait ()

r = r un l c h o i c e (l s t)

}

return r . 2

// n o t i f yA l l ()

}

// pr i n t i n g o f t he s t o r e content

def p r i n t s t o r e {

pr i n t (” { ”)

for ((t , d) <́ mapTok)

p r i n t (t + ” (” + mapTok(t) + ”) ”)

p r i n t l n (”}”)

}

437

// r e s e t t i n g o f t he s t o r e content to 0

def c l e a r s t o r e {

mapTok = Map[Str ing , Int] ()

p r i n t s t o r e

}

}

/∗ c l a s s DB Exec f o r the execut ion of a Dense Bach agent ∗/

class DB Exec (var cur r ent agent : Expr) {

// func t ion f o r invok ing thread

def thread (body : => Unit) : Thread = {

val t = new Thread {

override def run () = body

}

t . s t a r t

t

}

// func t ion ex t cont inuat ion , f o r operateur op , add expr

// at the end of component e l . 2 o f e l

// e l . 1 conta ins the f i r s t s t ep

def ex t con t i nua t i on (l s t : L i s t [(Expr , Expr)] , exp : Expr ,

op : Str ing) : L i s t [(Expr , Expr)] = {

l s t match {

case Ni l => Ni l

case e l : : l s t r em => (e l . 1 , DB AST Agent (op , e l . 2 , exp))

: : e x t con t i nua t i on (l s t r em , exp , op)

}

}

// func t ion a g f i r s t s t e p s transforms an agent in

// a l i s t o f pa i r s Expression´Express ion

// The f i r s t one i s the f i r s t s t ep ; t he second one i s i t s cont inuat ion

def a g f i r s t s t e p s (db ag : Expr) : L i s t [(Expr , Expr)] = {

db ag match {

// a pr im i t i v e i s t he f i r s t s t ep f o l l owed by the empty agent

case DB AST Primitive (db prim , token , dens i ty) => {

(DB AST Primitive (db prim , token , dens i ty) , DB AST Empty Agent ()) : : N i l

}

// f o r cho ice agent , r e cu r s i v e c a l l o f t he func t ion

// f o r every element o f t he cho ice

case DB AST Agent (”+” , ag i , a g i i) => {

a g f i r s t s t e p s (a g i) : : : a g f i r s t s t e p s (a g i i)

}

438

// a sequence d i s t i n g u i s h e s both par t s o f Expression´Express ion

case DB AST Agent (” ; ” , ag i , a g i i) => {

ex t con t i nua t i on (a g f i r s t s t e p s (a g i) , a g i i , ” ; ”)

}

// f o r p a r a l l e l agent , a g i i t h i t s c on t i nu i t y in p a r a l l e l wi th

// ag i i , and v i c e versa

case DB AST Agent (” | | ” , ag i , a g i i) => {

ex t con t i nua t i on (a g f i r s t s t e p s (a g i) , a g i i , ” | | ”)

: : : e x t con t i nua t i on (a g f i r s t s t e p s (a g i i) , ag i , ” | | ”)

}

}

}

// cons t ruc t ion of Vector conta in ing the cont inuat ions (e l . 2)

// a f t e r f i r s t s t ep (e l . 1)

def v e c t a g f i r s t s t e p s (l s t : L i s t [(Expr , Expr)]) : Vector [Expr] = {

l s t match {

case Ni l => Vector . empty

case e l : : l s t r em => e l . 2 +: v e c t a g f i r s t s t e p s (l s t r em)

}

}

// Assoc ia t ion between f i r s t s t ep and index in the Vector

def l i n d e x a g f i r s t s t e p s (l s t : L i s t [(Expr , Expr)] , i : In t)

: L i s t [(Expr , Int)] = {

var j = i

l s t match {

case Ni l => Ni l

case e l : : l s t r em => (e l . 1 , j)

: : l i n d e x a g f i r s t s t e p s (l s t r em , j + 1)

}

}

// exec o f Dense Bach pr im i t i v e s ; invokat ion of f unc t i on s o f bb

def exe c p r im i t i v e (db prim : Str ing , token : Str ing , dens i ty : Int) = {

db prim match

{ case ” t e l l ” => bb . t e l l (token , dens i ty)

case ” ask” => bb . ask (token , dens i ty)

case ” get ” => bb . get (token , dens i ty)

case ”nask” => bb . nask (token , dens i ty)

}

}

def e x e c l c h o i c e (l s t : L i s t [(Expr , Int)]) : Int = {

bb . l c h o i c e (l s t)

}

// exec agent

439

def exec (db ag parsed : Expr) : Boolean = {

db ag parsed match {

case DB AST Empty Agent () => {true}

case DB AST Primitive (db prim , token , dens i ty) => {

exe c p r im i t i v e (db prim , token , dens i ty) ;

}

case DB AST Agent (” ; ” , ag i , a g i i)

=> { i f (exec (a g i)) { exec (a g i i) } else { fa l se } }

case DB AST Agent (” | | ” , ag i , a g i i) => {

val t1 = thread (exec (a g i))

val t2 = thread (exec (a g i i))

t1 . j o i n

t2 . j o i n

true

}

case DB AST Agent (”+” , ag i , a g i i) => {

var l stEE = a g f i r s t s t e p s (DB AST Agent (”+” , ag i , a g i i))

var lstEV = v e c t a g f i r s t s t e p s (lstEE)

var l s tE I = l i n d e x a g f i r s t s t e p s (lstEE , 0)

var i = e x e c l c h o i c e (Random . s h u f f l e (l s tE I))

exec (lstEV (i))

true

}

}

}

// g ene ra l i z e d exec

def exec gen (db ag parsed : Expr , cpt : Int) = {

exec (db ag parsed)

bb . synchronized {

p r i n t l n (”>> Request ” + cpt + ” s u c c e s s f u l l y terminated ”)

p r i n t l n ()

p r i n t (”DBach> ”)

}

}

}

/∗ Object MYSimInLine conta in ing the main method of the command l i n e s imula tor ∗/

object MYSimInLine {

def main (args : Array [Str ing]) {

p r i n t l n ()

p r i n t (” Welcome to Dense Bach ve r s i on 1 .\n”)

p r i n t (” Type in agents to eva luate them .\n\n”)

p r i n t (”DBach> ”)

var myag parsed : Expr = DB AST Empty Agent ()

var l i n e = readLine ()

var cpt : Int = 1

440

val maxHist = 5

var h i s t o r y = ArrayBuf fer (”m0” , ”m1” , ”m2” , ”m3” , ”m4”)

var c h i s t = 0

var ca : Str ing = ” ”

while (l i n e != ” ha l t . ”) {

l i n e match {

case ” h i s t o r y . ” => { bb . synchronized {

p r i n t l n (” h i s t o r y ”) ;

p r i n t l n ()

p r i n t l n (” ” + ” ! : ” + h i s t o r y ((maxHist+ch i s t ´1) % maxHist))

p r i n t l n (” ” + ” ! ! : ” + h i s t o r y ((maxHist+ch i s t ´2) % maxHist))

p r i n t l n (” ” + ” ! ! ! : ” + h i s t o r y ((maxHist+ch i s t ´3) % maxHist))

p r i n t l n (” ” + ” ! v : ” + h i s t o r y ((maxHist+ch i s t ´4) % maxHist))

p r i n t l n (” ” + ” v : ” + h i s t o r y ((maxHist+ch i s t ´5) % maxHist))

p r i n t l n ()

p r i n t (”DBach> ”)

}

l i n e = readLine ()

}

case ” ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´1) % maxHist))

p r i n t (”DBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´1) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”DBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” ! ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´2) % maxHist))

p r i n t (”DBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´2) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”DBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” ! ! ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> h i s t o r y mode : ”)

441

p r i n t l n (h i s t o r y ((ch i s t ´3) % maxHist))

p r i n t (”DBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´3) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”DBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” iv ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´4) % maxHist))

p r i n t (”DBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´4) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”DBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ”v” => { bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´5) % maxHist))

p r i n t (”DBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´5) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”DBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” c l e a r . ” => {bb . c l e a r s t o r e

bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> ”)

}

l i n e = readLine ()

}

case ” p r i n t . ” => {bb . p r i n t s t o r e

bb . synchronized {

p r i n t l n ()

442

pr i n t (”DBach> ”)

}

l i n e = readLine ()

}

case => {

while (! l i n e . endsWith (” . ”)) {

l i n e += readLine (” | ”)

}

l i n e = l i n e . r ep l a c e (” . ” , ””)

h i s t o r y (c h i s t % maxHist) = l i n e

c h i s t = (ch i s t + 1)

try {

myag parsed = DenseBachSimulParser . par s e agent (l i n e)

val mysimul = new DB Exec (myag parsed)

p r i n t l n (”DBach> >> Request ” + cpt + ” launched ”)

val t = mysimul . thread (mysimul . exec gen (myag parsed , cpt))

bb . synchronized {

p r i n t l n ()

p r i n t (”DBach> ”)

}

l i n e = readLine ()

}

catch {

case unknown : Throwable => {

bb . synchronized {

p r i n t l n (”>> Error o f par s ing ”)

p r i n t l n ()

p r i n t (”DBach> ”)

}

l i n e = readLine ()

}

}

cpt = cpt + 1

}

}

}

}

}

443

444

Appendix D

The Vectorized Dense Bach

Language

D.1 The interpreter

D.1.1 The data

class dtExpr

case class dt (tok : Str ing , dens : Int) extends dtExpr

class vDBachExpr

case class vdbach ast empty agent () extends vDBachExpr

case class vdbach a s t p r im i t i v e (p r im i t i v e : Str ing , lDenseToken : L i s t [dt])

extends vDBachExpr

case class vdbach as t agent (op : Str ing , agent i : vDBachExpr , a g e n t i i : vDBachExpr)

extends vDBachExpr

D.1.2 The parser

import s ca l a . u t i l . par s ing . combinator .

import s ca l a . u t i l . matching . Regex

class VDenseBachParsers extends RegexParsers {

def token : Parser [St r ing] = (” [a´z] [0´9a źA´Z]∗ ”) . r ˆˆ { . t oS t r i ng }

def dens i ty : Parser [Int] = (” [1 ´9] [0 ´9]∗ ”) . r ˆˆ { . to Int }

def denseToken : Parser [dt] = token ˜” (”˜ dens i ty ˜”) ” ˆˆ {

case vtoken ˜ ˜ vdens i ty ˜ => dt (vtoken , vdens i ty)

}

def vectDenseTokenList : Parser [L i s t [dt]] = denseToken ˜ rep (” , ”

˜ vectDenseTokenList) ˆˆ {

case vdenseToken ˜ L i s t () => L i s t (vdenseToken)

case vdenseToken ˜ L i s t (op˜ lvdt) => L i s t (vdenseToken) : : : l vdt

}

445

val opChoice : Parser [St r ing] = ”+”

val opPara : Parser [St r ing] = ” | | ”

val opSeq : Parser [St r ing] = ” ; ”

def pr im i t i v e : Parser [vDBachExpr] = ” t e l l (”˜ vectDenseTokenList ˜”) ” ˆˆ {

case ˜ vvectDenseTokenList ˜

=> vdbach a s t p r im i t i v e (” t e l l ” , vvectDenseTokenList) } |

”ask (”˜ vectDenseTokenList ˜”) ” ˆˆ {

case ˜ vvectDenseTokenList ˜

=> vdbach a s t p r im i t i v e (”ask” , vvectDenseTokenList) } |

” get (”˜ vectDenseTokenList ˜”) ” ˆˆ {

case ˜ vvectDenseTokenList ˜

=> vdbach a s t p r im i t i v e (” get ” , vvectDenseTokenList) } |

”nask (”˜ vectDenseTokenList ˜”) ” ˆˆ {

case ˜ vvectDenseTokenList ˜

=> vdbach a s t p r im i t i v e (”nask” , vvectDenseTokenList) }

def agent = compos i t ionChoice

def compos i t ionChoice : Parser [vDBachExpr] =

compos i t ionPara˜ rep (opChoice ˜ compos i t ionChoice) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => vdbach as t agent (op , agi , a g i i) }

def compos i t ionPara : Parser [vDBachExpr] =

compos i t ionSeq˜ rep (opPara˜ compos i t ionPara) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => vdbach as t agent (op , agi , a g i i) }

def compos i t ionSeq : Parser [vDBachExpr] =

simpleAgent ˜ rep (opSeq˜ compos i t ionSeq) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => vdbach as t agent (op , agi , a g i i) }

def s impleAgent : Parser [vDBachExpr] = pr im i t i v e | parenthes izedAgent

def parenthes izedAgent : Parser [vDBachExpr] = ” (”˜>agent<˜”) ”

}

object VDenseBachSimulParser extends VDenseBachParsers {

def pa r s e p r im i t i v e (prim : Str ing) = par seAl l (pr im i t i ve , prim) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => { s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

def par se agent (ag : Str ing) = par seAl l (agent , ag) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => { s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

}

446

D.1.3 The store

import s ca l a . c o l l e c t i o n . mutable .Map

import s ca l a . swing .

class DenseBachStore {

var theStor e = Map[Str ing , Int] ()

def t e l l (vectDenseTokenList : L i s t [dt]) : Boolean = {

vectDenseTokenList match {

case Ni l => true

case dt (tok , dens) : : l => {

i f (theStor e . conta ins (tok)) {

theStor e (tok) = theStor e (tok) + dens

t e l l (l)

}

else

{ theStor e = theStor e ++ Map(tok >́ dens)

t e l l (l)

}

}

}

}

def ask (vectDenseTokenList : L i s t [dt]) : Boolean = {

vectDenseTokenList match {

case Ni l => true

case dt (tok , dens) : : l => {

i f (theStor e . conta ins (tok))

i f (theStor e (tok) >= dens) {

ask (l)

}

else { fa l se }

else fa l se

}

}

}

def get (vectDenseTokenList : L i s t [dt]) : Boolean = {

vectDenseTokenList match {

case Ni l => true

case dt (tok , dens) : : l => {

i f (theStor e . conta ins (tok))

i f (theStor e (tok) >= dens) {

theStor e (tok) = theStor e (tok) ´ dens

get (l)

}

else { fa l se }

else fa l se

}

}

}

def nask (vectDenseTokenList : L i s t [dt]) : Boolean = {

447

vectDenseTokenList match {

case Ni l => true

case dt (tok , dens) : : l => {

i f (theStor e . conta ins (tok))

i f (theStor e (tok) < dens) {

nask (l)

}

else { fa l se }

else { nask (l) }

}

}

}

def p r i n t s t o r e {

pr i n t (”{ ”)

for ((t , d) <́ theStor e)

p r i n t (t + ” (” + theStor e (t) + ”) ”)

p r i n t l n (”}”)

}

def c l e a r s t o r e {

theStor e = Map[Str ing , Int] ()

}

}

object bb extends DenseBachStore {

def r e s e t { c l e a r s t o r e }

}

D.1.4 The simulator

import s ca l a . u t i l .Random

import l anguage . postf ixOps

class VDenseBachSimul (var bb : DenseBachStore) {

val vdbach random choice = new Random()

def run one (agent : vDBachExpr) : (Boolean , vDBachExpr) = {

agent match {

case vdbach a s t p r im i t i v e (prim , vectDenseTokenList) =>

{ i f (ex e c p r im i t i v e (prim , vectDenseTokenList)) {

(true , vdbach ast empty agent ()) }

else { (fa lse , agent) }

}

case vdbach as t agent (” ; ” , ag i , a g i i) =>

{ run one (a g i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , vdbach ast empty agent ()) => (true , a g i i)

case (true , ag cont)

448

=> (true , vdbach as t agent (” ; ” , ag cont , a g i i))

}

}

case vdbach as t agent (” | | ” , ag i , a g i i) =>

{ var branch cho i ce = vdbach random choice . next Int (2)

i f (branch cho i ce == 0)

{ run one (a g i) match

{ case (fa lse ,) =>

{ run one (a g i i) match

{ case (fa lse ,)

=> (fa lse , agent)

case (true , vdbach ast empty agent ())

=> (true , a g i)

case (true , ag cont) =>

(true , vdbach as t agent (” | | ” , ag i , ag cont))

}

}

case (true , vdbach ast empty agent ())

=> (true , a g i i)

case (true , ag cont)

=> (true , vdbach as t agent (” | | ” , ag cont , a g i i))

}

}

else

{ run one (a g i i) match

{ case (fa lse ,) =>

{ run one (a g i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , vdbach ast empty agent ())

=> (true , a g i i)

case (true , ag cont) =>

(true , vdbach as t agent (” | | ” , ag cont , a g i i))

}

}

case (true , vdbach ast empty agent ())

=> (true , a g i)

case (true , ag cont)

=> (true , vdbach as t agent (” | | ” , ag i , ag cont))

}

}

}

case vdbach as t agent (”+” , ag i , a g i i) =>

{ var branch cho i ce = vdbach random choice . next Int (2)

i f (branch cho i ce == 0)

{ run one (a g i) match

{ case (fa lse ,) =>

{ run one (a g i i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , vdbach ast empty agent ())

=> (true , vdbach ast empty agent ())

case (true , ag cont)

449

=> (true , ag cont)

}

}

case (true , vdbach ast empty agent ())

=> (true , vdbach ast empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

else

{ run one (a g i i) match

{ case (fa lse ,) =>

{ run one (a g i) match

{ case (fa lse ,)

=> (fa lse , agent)

case (true , vdbach ast empty agent ())

=> (true , vdbach ast empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

case (true , vdbach ast empty agent ())

=> (true , vdbach ast empty agent ())

case (true , ag cont)

=> (true , ag cont)

}

}

}

}

}

def vdbach exec a l l (agent : vDBachExpr) : Boolean = {

var f a i l u r e = fa l se

var c agent = agent

while (c agent != vdbach ast empty agent () && ! f a i l u r e) {

f a i l u r e = run one (c agent) match

{ case (fa lse ,) => true

case (true , new agent) =>

{ c agent = new agent

fa l se

}

}

bb . p r i n t s t o r e

p r i n t l n (”\n”)

}

i f (c agent == vdbach ast empty agent ()) {

p r i n t l n (” Succes s \n”)

true

}

else {

p r i n t l n (” f a i l u r e \n”)

fa l se

}

450

}

def exe c p r im i t i v e (prim : Str ing , vectDenseTokenList : L i s t [dt]) : Boolean = {

prim match

{ case ” t e l l ” => bb . t e l l (vectDenseTokenList)

case ”ask” => bb . ask (vectDenseTokenList)

case ” get ” => bb . get (vectDenseTokenList)

case ”nask” => bb . nask (vectDenseTokenList)

}

}

}

object ag extends VDenseBachSimul (bb) {

def apply (agent : Str ing) {

val agent par s ed = VDenseBachSimulParser . par s e agent (agent)

ag . vdbach exec a l l (agent par s ed)

}

def eva l (agent : Str ing) { apply (agent) }

def run (agent : Str ing) { apply (agent) }

}

D.2 The command line simulator

/∗ Vector Dense Bach s imula tor in command l i n e ∗/

/∗ ´ compile f i l e command : s c a l a c codeCompilVectorDenseBach . s c a l a ∗/

/∗ ´ execut e o b j e c t : s c a l a MYSimulator ∗/

import s ca l a . t o o l s . nsc . S e t t i ng s

import s ca l a . t o o l s . nsc . i n t e r p r e t e r . ILoop

import s ca l a . u t i l . par s ing . combinator .

import s ca l a . u t i l . matching . Regex

import s ca l a . u t i l .Random

import s ca l a . c o l l e c t i o n . mutable .Map

import s ca l a . c o l l e c t i o n . mutable . ArrayBuf fer

import s ca l a . c o l l e c t i o n . immutable . Vector

import s ca l a . swing .

import s ca l a . i o . StdIn . readLine ;

/∗ Data c l a s s e s f o r Vector Dense Bach ∗/

class dtExpr

case class dt (tok : Str ing , dens : Int) extends dtExpr

class vDBachExpr

case class vdbach ast empty agent () extends vDBachExpr

case class vdbach a s t p r im i t i v e (p r im i t i v e : Str ing ,

lDenseToken : L i s t [dt]) extends vDBachExpr

case class vdbach as t agent (op : Str ing , agent i : vDBachExpr ,

a g en t i i : vDBachExpr) extends vDBachExpr

451

/∗ Vector Dense Bach parser : c l a s s VDenseBachParsers ∗/

class VDenseBachParsers extends RegexParsers {

def token : Parser [St r ing] = (” [a´z] [0 ´9a źA´Z]∗ ”) . r ˆˆ { . t oS t r i ng }

def dens i ty : Parser [Int] = (” [1 ´9] [0 ´9]∗ ”) . r ˆˆ { . to Int }

def denseToken : Parser [dt] = token ˜” (”˜ dens i ty ˜”) ” ˆˆ {

case vtoken ˜ ˜ vdens i ty ˜ => dt (vtoken , vdens i ty)

}

def vectDenseTokenList : Parser [L i s t [dt]] =

denseToken ˜ rep (” , ” ˜ vectDenseTokenList) ˆˆ {

case vdenseToken ˜ L i s t () => L i s t (vdenseToken)

case vdenseToken ˜ L i s t (op˜ lvdt) => L i s t (vdenseToken) : : : l vdt

}

val opChoice : Parser [St r ing] = ”+”

val opPara : Parser [St r ing] = ” | | ”

val opSeq : Parser [St r ing] = ” ; ”

def pr im i t i v e : Parser [vDBachExpr] = ” t e l l (”˜ vectDenseTokenList ˜”) ” ˆˆ {

case ˜ vvectDenseTokenList ˜

=> vdbach a s t p r im i t i v e (” t e l l ” , vvectDenseTokenList) } |

”ask (”˜ vectDenseTokenList ˜”) ” ˆˆ {

case ˜ vvectDenseTokenList ˜

=> vdbach a s t p r im i t i v e (”ask” , vvectDenseTokenList) } |

” get (”˜ vectDenseTokenList ˜”) ” ˆˆ {

case ˜ vvectDenseTokenList ˜

=> vdbach a s t p r im i t i v e (” get ” , vvectDenseTokenList) } |

”nask (”˜ vectDenseTokenList ˜”) ” ˆˆ {

case ˜ vvectDenseTokenList ˜

=> vdbach a s t p r im i t i v e (”nask” , vvectDenseTokenList) }

def agent = compos i t ionChoice

def compos i t ionChoice : Parser [vDBachExpr] =

compos i t ionPara˜ rep (opChoice ˜ compos i t ionChoice) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => vdbach as t agent (op , agi , a g i i) }

def compos i t ionPara : Parser [vDBachExpr] =

compos i t ionSeq˜ rep (opPara˜ compos i t ionPara) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => vdbach as t agent (op , agi , a g i i) }

def compos i t ionSeq : Parser [vDBachExpr] =

simpleAgent˜ rep (opSeq˜ compos i t ionSeq) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => vdbach as t agent (op , agi , a g i i) }

def s impleAgent : Parser [vDBachExpr] = pr im i t i v e | parenthes izedAgent

def parenthes izedAgent : Parser [vDBachExpr] = ” (”˜>agent<˜”) ”

452

}

/∗ Object VDenseBachSimulParser ∗/

object VDenseBachSimulParser extends VDenseBachParsers {

def pa r s e p r im i t i v e (prim : Str ing) = par seAl l (pr im i t i ve , prim) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => { s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

def par se agent (ag : Str ing) = par seAl l (agent , ag) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => { s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

}

/∗ Object bb r e pr e s en t i n g the s t o r e ∗/

object bb {

var mapTok = Map[Str ing , Int] ()

// synchronized methods f o r t e l l , ge t , ask and nask

def t e l l (vectDenseTokenList : L i s t [dt]) = bb . synchronized {

var l i s t : L i s t [dt] = vectDenseTokenList

var s : St r ing = r e g l i s t (vectDenseTokenList)

while (! (l i s t . isEmpty)) {

i f (mapTok conta ins (l i s t . head . tok)) {

mapTok(l i s t . head . tok) = mapTok(l i s t . head . tok) + l i s t . head . dens

} else {

mapTok = mapTok ++ Map(l i s t . head . tok >́ l i s t . head . dens)

}

l i s t = l i s t . t a i l

}

p r i n t l n (”>> t e l l (”+s+”) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”VDBach> ”)

bb . n o t i f yA l l ()

true

}

def get (vectDenseTokenList : L i s t [dt]) = bb . synchronized {

var l i s t : L i s t [dt] = vectDenseTokenList

var s : St r ing = r e g l i s t (vectDenseTokenList)

while (! a g eva l (vectDenseTokenList)) {

p r i n t l n (”Get wa i t ing”)

p r i n t (”VDBach> ”)

453

bb . wait ()}

while (! (l i s t . isEmpty)) {

mapTok(l i s t . head . tok) = mapTok(l i s t . head . tok) ´ l i s t . head . dens

l i s t = l i s t . t a i l

}

p r i n t l n (”>> get (”+s+”) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”VDBach> ”)

bb . n o t i f yA l l ()

true

}

def ask (vectDenseTokenList : L i s t [dt]) = bb . synchronized {

var l i s t : L i s t [dt] = vectDenseTokenList

var s : St r ing = r e g l i s t (vectDenseTokenList)

while (! a g eva l (vectDenseTokenList)) {

p r i n t l n (”Ask wai t ing ”)

p r i n t (”VDBach> ”)

bb . wait ()}

p r i n t l n (”>> ask (”+s+”) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”VDBach> ”)

true

}

def nask (vectDenseTokenList : L i s t [dt]) = bb . synchronized {

var l i s t : L i s t [dt] = vectDenseTokenList

var s : St r ing = r e g l i s t (vectDenseTokenList)

while (! n eva l (vectDenseTokenList)) {

p r i n t l n (”Nask wai t ing”)

p r i n t (”VDBach> ”)

bb . wait ()}

p r i n t l n (”>> nask (”+s+”) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”VDBach> ”)

true

}

def t e s t t e l l (vectDenseTokenList : L i s t [dt]) : Boolean = {

var l i s t : L i s t [dt] = vectDenseTokenList

var s : St r ing = r e g l i s t (vectDenseTokenList)

while (! (l i s t . isEmpty)) {

i f (mapTok conta ins (l i s t . head . tok)) {

mapTok(l i s t . head . tok) = mapTok(l i s t . head . tok) + l i s t . head . dens

} else {

mapTok = mapTok ++ Map(l i s t . head . tok >́ l i s t . head . dens)

}

l i s t = l i s t . t a i l

}

454

p r i n t l n (”>> t e l l (”+s+”) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”VDBach> ”)

true

}

def t e s t g e t (vectDenseTokenList : L i s t [dt]) : Boolean = {

var l i s t : L i s t [dt] = vectDenseTokenList

var s : St r ing = r e g l i s t (vectDenseTokenList)

i f (! a g eva l (vectDenseTokenList)) {

return fa l se } else {

while (! (l i s t . isEmpty)) {

mapTok(l i s t . head . tok) = mapTok(l i s t . head . tok) ´ l i s t . head . dens

l i s t = l i s t . t a i l

}

p r i n t l n (”>> get (”+s+”) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”VDBach> ”)

true }

}

def t e s t a s k (vectDenseTokenList : L i s t [dt]) : Boolean = {

var l i s t : L i s t [dt] = vectDenseTokenList

var s : St r ing = r e g l i s t (vectDenseTokenList)

i f (! a g eva l (vectDenseTokenList)) {

return fa l se } else {

p r i n t l n (”>> ask (”+s+”) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”VDBach> ”)

true }

}

def t e s t na sk (vectDenseTokenList : L i s t [dt]) : Boolean = {

var l i s t : L i s t [dt] = vectDenseTokenList

var s : St r ing = r e g l i s t (vectDenseTokenList)

i f (! n eva l (vectDenseTokenList)) {

return fa l se } else {

p r i n t l n (”>> nask (”+s+”) s u c c e s s f u l l y terminated ”)

p r i n t (” >> s t o r e : ”)

p r i n t s t o r e

p r i n t l n ()

p r i n t (”VDBach> ”)

true }

}

// Boolean func t ion f o r execut ion of prev ious Dense Bach pr im i t i v e s

def exec vdb pr im (prim : vDBachExpr) : Boolean = {

prim match {

455

case vdbach a s t p r im i t i v e (vdb prim , l d t) => {

vdb prim match {

case ” t e l l ” => {

t e s t t e l l (l d t)

}

case ” get ” => {

t e s t g e t (l d t)

}

case ”ask” => {

t e s t a s k (l d t)

}

case ”nask” => {

t e s t na sk (l d t)

}

}

}

}

}

// f i nd an e x e cu t ab l e p r im i t i v e in the vec tor o f cho ice s

def r un l c h o i c e (l s tE I : L i s t [(vDBachExpr , Int)]) : (Boolean , Int) = {

var found : Boolean = fa l se

var i : In t = ´1

var l s t = l s tE I

while (! found && ! l s t . isEmpty) {

i f (exec vdb pr im ((l s t . head) . 1)) {

found = true

i = (l s t . head) . 2

} else {

l s t = l s t . t a i l

}

}

return (found , i)

}

// run the l i s t o f cho ice s

def l c h o i c e (l s t : L i s t [(vDBachExpr , Int)]) : Int = bb . synchronized {

var r = r un l c h o i c e (l s t)

while (! r . 1) {

bb . wait ()

r = r un l c h o i c e (l s t)

}

return r . 2

}

// pr i n t i n g o f t he s t o r e content

def p r i n t s t o r e {

pr i n t (” { ”)

for ((t , d) <́ mapTok)

p r i n t (t + ” (” + mapTok(t) + ”) ”)

p r i n t l n (”}”)

}

456

// e va l ua t i on of l i s t o f tokens f o r ge t and ask

def ag eva l (l d t : L i s t [dt]) : Boolean = {

var l : L i s t [dt] = l d t

var ack : Boolean = true

while (ack && ! (l . isEmpty)) {

i f ((mapTok conta ins (l . head . tok))

&& (mapTok(l . head . tok) >= l . head . dens)) {

l = l . t a i l

} else {

ack = fa l se

}

}

return ack

}

// e va l ua t i on of l i s t o f tokens f o r nask

def n eva l (l d t : L i s t [dt]) : Boolean = {

var l : L i s t [dt] = l d t

var ack : Boolean = true

while (ack && ! (l . isEmpty)) {

i f (! (mapTok conta ins (l . head . tok))

| | (mapTok(l . head . tok) < l . head . dens)) {

l = l . t a i l

} else {

ack = fa l se

}

}

return ack

}

// r e g i s t e r l i s t o f dense tokens

def r e g l i s t (l d t : L i s t [dt]) : S t r ing = {

var l : L i s t [dt] = l d t

var s : St r ing = ””

while (! (l . isEmpty)) {

s = s + l . head . tok + ” (” + l . head . dens + ”) ”

l = l . t a i l

i f (! (l . isEmpty)) {

s = s + ” , ”

}

}

return s

}

// r e s e t t i n g o f t he s t o r e content to 0

def c l e a r s t o r e {

mapTok = Map[Str ing , Int] ()

p r i n t s t o r e

}

457

}

/∗ c l a s s Vector DB Exec f o r the execut ion of a Vector Dense Bach agent ∗/

class VDB Exec(var cur r ent agent : vDBachExpr) {

// func t ion f o r invok ing thread

def thread (body : => Unit) : Thread = {

val t = new Thread {

override def run () = body

}

t . s t a r t

t

}

// func t ion ex t cont inuat ion , f o r operateur op ,

// add expr at the end of component e l . 2 o f e l

// e l . 1 conta ins the f i r s t s t ep

def ex t con t i nua t i on (l s t : L i s t [(vDBachExpr , vDBachExpr)] ,

exp : vDBachExpr , op : Str ing) : L i s t [(vDBachExpr , vDBachExpr)] = {

l s t match {

case Ni l => Ni l

case e l : : l s t r em => (e l . 1 , vdbach as t agent (op , e l . 2 , exp))

: : e x t con t i nua t i on (l s t r em , exp , op)

}

}

// func t ion a g f i r s t s t e p s transforms an agent in a l i s t o f pa i r s

// Expression´Express ion

// The f i r s t one i s the f i r s t s t ep ; t he second one i s i t s cont inuat ion

def a g f i r s t s t e p s (db ag : vDBachExpr) : L i s t [(vDBachExpr , vDBachExpr)] = {

db ag match {

// a pr im i t i v e i s t he f i r s t s t ep f o l l owed by the empty agent

case vdbach a s t p r im i t i v e (vdb prim , l d t) => {

(vdbach a s t p r im i t i v e (vdb prim , l d t) , vdbach ast empty agent ()) : : N i l

}

// f o r cho ice agent , r e cu r s i v e c a l l o f t he func t ion f o r every element

// of the cho ice

case vdbach as t agent (”+” , ag i , a g i i) => {

a g f i r s t s t e p s (a g i) : : : a g f i r s t s t e p s (a g i i)

}

// a sequence d i s t i n g u i s h e s both par t s o f Expression´Express ion

case vdbach as t agent (” ; ” , ag i , a g i i) => {

ex t con t i nua t i on (a g f i r s t s t e p s (a g i) , a g i i , ” ; ”)

}

// f o r p a r a l l e l agent , a g i i t h i t s c on t i nu i t y in p a r a l l e l

// with ag i i , and v i c e versa

458

case vdbach as t agent (” | | ” , ag i , a g i i) => {

ex t con t i nua t i on (a g f i r s t s t e p s (a g i) , a g i i , ” | | ”)

: : : e x t con t i nua t i on (a g f i r s t s t e p s (a g i i) , ag i , ” | | ”)

}

}

}

// cons t ruc t ion of Vector conta in ing the cont inuat ions (e l . 2) a f t e r

// f i r s t s t ep (e l . 1)

def v e c t a g f i r s t s t e p s (l s t : L i s t [(vDBachExpr , vDBachExpr)])

: Vector [vDBachExpr] = {

l s t match {

case Ni l => Vector . empty

case e l : : l s t r em => e l . 2 +: v e c t a g f i r s t s t e p s (l s t r em)

}

}

// Assoc ia t ion between f i r s t s t ep and index in the Vector

def l i n d e x a g f i r s t s t e p s (l s t : L i s t [(vDBachExpr , vDBachExpr)] , i : In t)

: L i s t [(vDBachExpr , Int)] = {

var j = i

l s t match {

case Ni l => Ni l

case e l : : l s t r em => (e l . 1 , j) : : l i n d e x a g f i r s t s t e p s (l s t r em , j + 1)

}

}

// exec o f Vector Dense Bach pr im i t i v e s ; invokat ion of f unc t i on s o f bb

def exe c p r im i t i v e (vdb prim : Str ing , l d t : L i s t [dt]) = {

vdb prim match

{ case ” t e l l ” => bb . t e l l (l d t)

case ” ask” => bb . ask (l d t)

case ” get ” => bb . get (l d t)

case ”nask” => bb . nask (l d t)

}

}

def e x e c l c h o i c e (l s t : L i s t [(vDBachExpr , Int)]) : Int = {

bb . l c h o i c e (l s t)

}

// exec agent

def exec (vdb ag parsed : vDBachExpr) : Boolean = {

vdb ag parsed match {

case vdbach ast empty agent () => {true}

case vdbach a s t p r im i t i v e (vdb prim , l d t) => {

exe c p r im i t i v e (vdb prim , l d t) ;

}

case vdbach as t agent (” ; ” , ag i , a g i i) => {

459

exec (a g i)

exec (a g i i)

true }

case vdbach as t agent (” | | ” , ag i , a g i i) => {

val t1 = thread (exec (a g i))

val t2 = thread (exec (a g i i))

t1 . j o i n

t2 . j o i n

true

}

case vdbach as t agent (”+” , ag i , a g i i) => {

var l stEE = a g f i r s t s t e p s (vdbach as t agent (”+” , ag i , a g i i))

var lstEV = v e c t a g f i r s t s t e p s (lstEE)

var l s tE I = l i n d e x a g f i r s t s t e p s (lstEE , 0)

var i = e x e c l c h o i c e (Random . s h u f f l e (l s tE I))

exec (lstEV (i))

true

}

}

}

// g ene ra l i z e d exec

def exec gen (vdb ag parsed : vDBachExpr , cpt : Int) = {

exec (vdb ag parsed)

bb . synchronized {

p r i n t l n (”>> Request ” + cpt + ” s u c c e s s f u l l y terminated ”)

p r i n t l n ()

p r i n t (”VDBach> ”)

}

}

}

/∗ Object MYSimInLine conta in ing the main method of the command l i n e Simulator ∗/

object MYSimInLine {

def main (args : Array [Str ing]) {

p r i n t l n ()

p r i n t (” Welcome to Vector Dense Bach ve r s i on 1 .\n”)

p r i n t (” Type in agents to eva luate them .\n\n”)

p r i n t (”VDBach> ”)

var myag parsed : vDBachExpr = vdbach ast empty agent ()

var l i n e = readLine ()

var cpt : Int = 1

val maxHist = 5

var h i s t o r y = ArrayBuf fer (”m0” , ”m1” , ”m2” , ”m3” , ”m4”)

var c h i s t = 0

var ca : Str ing = ” ”

while (l i n e != ” ha l t . ”) {

460

l i n e match {

case ” h i s t o r y . ” => { bb . synchronized {

p r i n t l n (” h i s t o r y ”) ;

p r i n t l n ()

p r i n t l n (” ” + ” ! : ” + h i s t o r y ((maxHist+ch i s t ´1) % maxHist))

p r i n t l n (” ” + ” ! ! : ” + h i s t o r y ((maxHist+ch i s t ´2) % maxHist))

p r i n t l n (” ” + ” ! ! ! : ” + h i s t o r y ((maxHist+ch i s t ´3) % maxHist))

p r i n t l n (” ” + ” ! v : ” + h i s t o r y ((maxHist+ch i s t ´4) % maxHist))

p r i n t l n (” ” + ” v : ” + h i s t o r y ((maxHist+ch i s t ´5) % maxHist))

p r i n t l n ()

p r i n t (”VDBach> ”)

}

l i n e = readLine ()

}

case ” ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”VDBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´1) % maxHist))

p r i n t (”VDBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´1) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”VDBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” ! ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”VDBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´2) % maxHist))

p r i n t (”VDBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´2) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”VDBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” ! ! ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”VDBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´3) % maxHist))

p r i n t (”VDBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´3) % maxHist) + ” . ”

p r i n t l n ()

461

} else {

p r i n t l n ()

p r i n t (”VDBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” iv ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”VDBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´4) % maxHist))

p r i n t (”VDBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´4) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”VDBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ”v” => { bb . synchronized {

p r i n t l n ()

p r i n t (”VDBach> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´5) % maxHist))

p r i n t (”VDBach>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´5) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”VDBach> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” c l e a r . ” => {bb . c l e a r s t o r e

bb . synchronized {

p r i n t l n ()

p r i n t (”VDBach> ”)

}

l i n e = readLine ()

}

case ” p r i n t . ” => {bb . p r i n t s t o r e

bb . synchronized {

p r i n t l n ()

p r i n t (”VDBach> ”)

}

l i n e = readLine ()

}

case => {

462

while (! l i n e . endsWith (” . ”)) {

l i n e += readLine (” | ”)

}

l i n e = l i n e . r ep l a c e (” . ” , ””)

h i s t o r y (c h i s t % maxHist) = l i n e

c h i s t = (ch i s t + 1)

try {

myag parsed = VDenseBachSimulParser . par s e agent (l i n e)

val mysimul = new VDB Exec(myag parsed)

p r i n t l n (”VDBach> >> Request ” + cpt + ” launched ”)

val t = mysimul . thread (mysimul . exec gen (myag parsed , cpt))

bb . synchronized {

p r i n t l n ()

p r i n t (”VDBach> ”)

}

l i n e = readLine ()

}

catch {

case unknown : Throwable => {

bb . synchronized {

p r i n t l n (”>> Error o f par s ing ”)

p r i n t l n ()

p r i n t (”VDBach> ”)

}

l i n e = readLine ()

}

}

cpt = cpt + 1

}

}

}

}

}

463

464

Appendix E

The MRT Language

This appendix lists the full code of the MRT interpreter. This one is constitued of the abstract classes mrExpr and mrAgExpr,

the MRTParsers class, the MRTStore class and finally the MRTSimul class.

E.1 The interpreter

E.1.1 The data

class mrExpr

case class mr tp (tok : Str ing) extends mrExpr

case class mr tn (tok : Str ing) extends mrExpr

class mrAgExpr

case class mrt ast empty agent () extends mrAgExpr

case class mrt a s t p r im i t i v e (Pre : L i s t [mrExpr] ,

Post : L i s t [mrExpr]) extends mrAgExpr

case class mrt as t agent (op : Str ing , agent i : mrAgExpr ,

a g en t i i : mrAgExpr) extends mrAgExpr

E.1.2 The parser

import s ca l a . u t i l . par s ing . combinator .

import s ca l a . u t i l . matching . Regex

class MRTParsers extends RegexParsers {

def token : Parser [St r ing] = (” [a´z] [0´9a źA´Z]∗ ”) . r ˆˆ { . t oS t r i ng }

def atoken : Parser [mrExpr] = ”+” ˜ token ˆˆ {

case ˜ vtoken => mr tp (vtoken)} |

”´” ˜ token ˆˆ {

case ˜ vtoken => mr tn (vtoken)}

def atokenLis : Parser [L i s t [mrExpr]] = atoken ˜ rep (” , ” ˜ atokenL i s t) ˆˆ {

case vatoken ˜ L i s t () => L i s t (vatoken)

case vatoken ˜ L i s t (op˜ l va t) => L i s t (vatoken) : : : l v a t

}

465

def preM : Parser [L i s t [mrExpr]] = ”{” ˜ ”}” ˆˆ { case ˜ => L i s t () } |

”{” ˜ atokenL i s t ˜ ”}” ˆˆ { case ˜ l va t ˜ => l v a t }

def postMR : Parser [L i s t [mrExpr]] = ”{” ˜ ”}” ˆˆ { case ˜ => L i s t () } |

”{” ˜ atokenL i s t ˜ ”}” ˆˆ { case ˜ l va t ˜ => l v a t }

def pr im i t i v e : Parser [mrAgExpr] = ” (” ˜ preMR ˜ ”́ >” ˜ postMR ˜ ”) ” ˆˆ {

case ˜ vatokenL i s t1 ˜ ˜ vatokenL i s t2 ˜ =>

mrt a s t p r im i t i v e (vatokenList1 , vatokenL i s t2)

}

val opChoice : Parser [St r ing] = ”+”

val opPara : Parser [St r ing] = ” | | ”

val opSeq : Parser [St r ing] = ” ; ”

def agent = compos i t ionChoice

def compos i t ionChoice : Parser [mrAgExpr]

= compos i t ionPara˜ rep (opChoice ˜ compos i t ionChoice) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => mrt as t agent (op , agi , a g i i) }

def compos i t ionPara : Parser [mrAgExpr]

= compos i t ionSeq˜ rep (opPara˜ compos i t ionPara) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => mrt as t agent (op , agi , a g i i) }

def compos i t ionSeq : Parser [mrAgExpr]

= simpleAgent ˜ rep (opSeq˜ compos i t ionSeq) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => mrt as t agent (op , agi , a g i i) }

def s impleAgent : Parser [mrAgExpr] = pr im i t i v e | parenthes izedAgent

def parenthes izedAgent : Parser [mrAgExpr] = ” (”˜>agent<˜”) ”

}

object MRTSimulParser extends MRTParsers {

def pa r s e p r im i t i v e (prim : Str ing) = par seAl l (pr im i t i ve , prim) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

def par se agent (ag : Str ing) = par seAl l (agent , ag) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

E.1.3 The store

import s ca l a . c o l l e c t i o n . mutable .Map

466

import s ca l a . swing .

class MrtStore {

var theStor e = Map[Str ing , Int] ()

// add a s i gned token to the adequate pre´cons i t i on s l i s t s

def a d d t o p r e l i s t s (atoken : mrExpr) {

atoken match {

case mr tp (x) => {

i f (thePosPre . conta ins (x))

{ thePosPre (x) = thePosPre (x) + 1 }

else

{ thePosPre = thePosPre ++ Map(x >́ 1) }

}

case mr tn (x) => {

i f (! theNegPre . conta ins (x))

{ theNegPre = theNegPre ++ Map(x >́ 1) }

else

{ theNegPre = theNegPre ++ Map(x >́ 1) }

}

case => { p r i n t l n (” e r r o r in p r e cond i t i on”) }

}

}

// add a s i gned token to the adequate post´cons i t i on s l i s t s

def a d d t o p o s t l i s t s (atoken : mrExpr) {

atoken match {

case mr tp (x) => {

i f (thePosPost . conta ins (x))

{ thePosPost (x) = thePosPost (x) + 1 }

else

{ thePosPost = thePosPost ++ Map(x >́ 1) }

}

case mr tn (x) => {

i f (theNegPost . conta ins (x))

{ theNegPost (x) = theNegPost (x) + 1 }

else

{ theNegPost = theNegPost ++ Map(x >́ 1) }

}

case => { p r i n t l n (” e r r o r in po s t cond i t i on”) }

}

467

}

// cons t ruc t the pre´condi t i on mappings , negat i ve and p o s i t i v e

def p r e t o p r e l i s t (l a token : L i s t [mrExpr]) {

thePosPre = Map[Str ing , Int] ()

theNegPre = Map[Str ing , Int] ()

for (a <́ l a token) { a d d t o p r e l i s t s (a) }

}

// cons t ruc t the post´condi t i on mappings , negat i ve and p o s i t i v e

def p o s t o p o s t l i s t (l a token : L i s t [mrExpr]) {

thePosPost = Map[Str ing , Int] ()

theNegPost = Map[Str ing , Int] ()

for (a <́ l a token) { a d d t o p o s t l i s t s (a) }

}

// ask r e que s t on the s t o r e

def ask (token : Str ing , number : Int) : Boolean = {

i f (theStor e . conta ins (token)) {

i f (theStor e (token) >= number) { true }

else { fa l se }

}

else { fa l se }

}

// nask r e que s t on the s t o r e

def nask (token : Str ing , number : Int) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= 1) { fa l se }

else { true }

else true

}

// t e l l r e que s t on the s t o r e

def t e l l (token : Str ing , number : Int) : Boolean = {

i f (theStor e . conta ins (token))

{ theStor e (token) = theStor e (token) + number }

else

{ theStor e = theStor e ++ Map(token >́ number) }

true

}

468

// ge t r e que s t on the s t o r e

def get (token : Str ing , number : Int) : Boolean = {

i f (theStor e . conta ins (token)) {

i f (theStor e (token) >= number)

{ theStor e (token) = theStor e (token) ´ number

true

}

else { p r i n t l n (” dens i ty not enough”)

fa l se }

}

else {

p r i n t l n (”no token present ”)

fa l se }

}

// check the f e a s i b i l i t y o f pre´cond i t i on s

def Pre (l a token : L i s t [mrExpr]) : Boolean = {

var pr e eva l = true

p r e t o p r e l i s t (l a token)

for ((t , v) <́ thePosPre) {

i f (p r e eva l) { pr e eva l = ask (t , v) }

}

for ((t , v) <́ theNegPre) {

i f (p r e eva l) { pr e eva l = nask (t , v) }

}

pr e eva l

}

// check the f e a s i b i l i t y o f post´cond i t i on s

def Post (l a token : L i s t [mrExpr]) : Boolean = {

var pos t eva l = true

p o s t o p o s t l i s t (l a token)

for ((t , v) <́ thePosPost) {

i f (po s t eva l) { pos t eva l = t e l l (t , v) }

}

for ((t , v) <́ theNegPost) {

i f (po s t eva l) { pos t eva l = get (t , v) }

}

pos t eva l

469

}

// execut ion of a pr im i t i v e

def exe cu t i on p r im i t i v e (mrPre : L i s t [mrExpr] , mrPost : L i s t [mrExpr]) : Boolean = {

var thePosPre = Map[Str ing , Int] ()

var theNegPre = Map[Str ing , Int] ()

var thePosPost = Map[Str ing , Int] ()

var theNegPost = Map[Str ing , Int] ()

i f (Pre (mrPre)) { Post (mrPost)

true }

else { fa l se }

}

// pr i n t o f t he s t a t e o f t he s t o r e

def p r i n t s t o r e {

pr i n t (”{ ”)

for ((t , d) <́ theStor e)

p r i n t (t + ” (” + theStor e (t) + ”) ”)

p r i n t l n (”}”)

}

// make the s t o r e empty

def c l e a r s t o r e : Boolean = {

theStor e = Map[Str ing , Int] ()

true

}

}

object bb extends MrtStore {

def r e s e t { c l e a r s t o r e }

}

E.1.4 The simulator

import s ca l a . u t i l .Random

import l anguage . postf ixOps

class MRTSimul (var bb : MrtStore) {

val mrt random choice = new Random()

def run one (agent : mrAgExpr) : (Boolean ,mrAgExpr) = {

agent match {

470

case mrt a s t p r im i t i v e (latoken1 , l a token2) =>

{ i f (ex e c p r im i t i v e (latoken1 , l a token2)) {

(true , mrt ast empty agent ()) }

else { (fa lse , agent) }

}

case mrt as t agent (” ; ” , ag i , a g i i) =>

{ run one (a g i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , mrt ast empty agent ()) => (true , a g i i)

case (true , ag cont)

=> (true , mr t as t agent (” ; ” , ag cont , a g i i))

}

}

case mrt as t agent (” | | ” , ag i , a g i i) =>

{ var branch cho i ce = mrt random choice . next Int (2)

i f (branch cho i ce == 0)

{ run one (a g i) match

{ case (fa lse ,) =>

{ run one (a g i i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , mrt ast empty agent ())

=> (true , a g i)

case (true , ag cont)

=> (true , mr t as t agent (” | | ” , ag i , ag cont))

}

}

case (true , mrt ast empty agent ())

=> (true , a g i i)

case (true , ag cont)

=> (true , mr t as t agent (” | | ” , ag cont , a g i i))

}

}

else

{ run one (a g i i) match

{ case (fa lse ,) =>

{ run one (a g i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , mrt ast empty agent ())

=> (true , a g i i)

case (true , ag cont)

=> (true , mr t as t agent (” | | ” , ag cont , a g i i))

}

}

case (true , mrt ast empty agent ()) => (true , a g i)

case (true , ag cont)

=> (true , mr t as t agent (” | | ” , ag i , ag cont))

}

}

}

471

case mrt as t agent (”+” , ag i , a g i i) =>

{ var branch cho i ce = mrt random choice . next Int (2)

i f (branch cho i ce == 0)

{ run one (a g i) match

{ case (fa lse ,) =>

{ run one (a g i i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , mrt ast empty agent ())

=> (true , mrt ast empty agent ())

case (true , ag cont) => (true , ag cont)

}

}

case (true , mrt ast empty agent ())

=> (true , mrt ast empty agent ())

case (true , ag cont) => (true , ag cont)

}

}

else

{ run one (a g i i) match

{ case (fa lse ,) =>

{ run one (a g i) match

{ case (fa lse ,) => (fa lse , agent)

case (true , mrt ast empty agent ())

=> (true , mrt ast empty agent ())

case (true , ag cont) => (true , ag cont)

}

}

case (true , mrt ast empty agent ())

=> (true , mrt ast empty agent ())

case (true , ag cont) => (true , ag cont)

}

}

}

}

}

def mr t e x e c a l l (agent : mrAgExpr) : Boolean = {

var f a i l u r e = fa l se

var c agent = agent

while (c agent != mrt ast empty agent () && ! f a i l u r e) {

f a i l u r e = run one (c agent) match

{ case (fa lse ,) => true

case (true , new agent) =>

{ c agent = new agent

fa l se

}

}

bb . p r i n t s t o r e

p r i n t l n (”\n”)

}

i f (c agent == mrt ast empty agent ()) {

p r i n t l n (” Succes s \n”)

true

472

}

else {

p r i n t l n (” f a i l u r e \n”)

fa l se

}

}

def exe c p r im i t i v e (l a token1 : L i s t [mrExpr] ,

l a token2 : L i s t [mrExpr]) : Boolean = {

i f (bb . Pre (l a token1)) { bb . Post (l a token2) ; true }

else { fa l se }

}

}

object ag extends MRTSimul(bb) {

def apply (agent : Str ing) {

val agent par s ed = MRTSimulParser . par s e agent (agent)

ag . m r t e x e c a l l (agent par s ed)

}

def eva l (agent : Str ing) { apply (agent) }

def run (agent : Str ing) { apply (agent) }

}

E.2 The command line simulator

/∗ MRT simula tor in command l i n e ∗/

/∗ ´ compile f i l e command : s c a l a c codeCompilMRT. s ca l a ∗/

/∗ ´ execut e o b j e c t : s c a l a MYSimulator ∗/

import s ca l a . t o o l s . nsc . S e t t i ng s

import s ca l a . t o o l s . nsc . i n t e r p r e t e r . ILoop

import s ca l a . u t i l . par s ing . combinator .

import s ca l a . u t i l . matching . Regex

import s ca l a . u t i l .Random

import s ca l a . c o l l e c t i o n . mutable .Map

import s ca l a . c o l l e c t i o n . mutable . ArrayBuf fer

import s ca l a . c o l l e c t i o n . immutable . Vector

import s ca l a . swing .

import s ca l a . i o . StdIn . readLine ;

/∗ Abst rac t c l a s s f o r MRT ∗/

class mrExpr

case class mr tp (tok : Str ing) extends mrExpr

case class mr tn (tok : Str ing) extends mrExpr

473

class mrAgExpr

case class mrt ast empty agent () extends mrAgExpr

case class mrt a s t p r im i t i v e (mrPrePos : Map[Str ing , Int] , mrPreNeg : Map[Str ing , Int] ,

mrPostPos : Map[Str ing , Int] , mrPostNeg : Map[Str ing , Int]) extends mrAgExpr

case class mrt as t agent (op : Str ing , agent i : mrAgExpr ,

a g e n t i i : mrAgExpr) extends mrAgExpr

/∗ MRT parser : c l a s s MRTParsers ∗/

class MRTParsers extends RegexParsers {

def vatokenListToMaps (l : L i s t [mrExpr]) : (Map[Str ing , Int] ,Map[Str ing , Int]) = {

var thePos = Map[Str ing , Int] ()

var theNeg = Map[Str ing , Int] ()

for (a <́ l) { a match {

case mr tp (x) => {

i f (thePos . conta ins (x))

{ thePos (x) = thePos (x) + 1 }

else

{ thePos = thePos ++ Map(x >́ 1) }

}

case mr tn (x) => {

i f (theNeg . conta ins (x))

{ theNeg (x) = theNeg (x) + 1 }

else

{ theNeg = theNeg ++ Map(x >́ 1) }

}

case => { p r i n t l n (” e r r o r ”) }

} }

(thePos , theNeg)

}

def token : Parser [St r ing] = (” [a´z] [0 ´9a źA´Z]∗ ”) . r ˆˆ { . t oS t r i ng }

def atoken : Parser [mrExpr]= ”+” ˜ token ˆˆ {

case ˜ vtoken => mr tp (vtoken)} |

”´” ˜ token ˆˆ {

case ˜ vtoken => mr tn (vtoken)}

def atokenL i s t : Parser [L i s t [mrExpr]] = atoken ˜ rep (” , ” ˜ atokenL i s t) ˆˆ {

case vatoken ˜ L i s t () => L i s t (vatoken)

case vatoken ˜ L i s t (op˜ l va t) => L i s t (vatoken) : : : l v a t

}

def preMR : Parser [L i s t [mrExpr]] = ”{” ˜ ”}” ˆˆ { case ˜ => L i s t () } |

”{” ˜ atokenL i s t ˜ ”}” ˆˆ { case ˜ l va t ˜ => l v a t }

def postMR : Parser [L i s t [mrExpr]] = ”{” ˜ ”}” ˆˆ { case ˜ => L i s t () } |

”{” ˜ atokenL i s t ˜ ”}” ˆˆ { case ˜ l va t ˜ => l v a t }

474

def pr im i t i v e : Parser [mrAgExpr] = ” (” ˜ preMR ˜ ”́ >” ˜ postMR ˜ ”) ” ˆˆ {

case ˜ vatokenL i s t1 ˜ ˜ vatokenL i s t2 ˜ => {

val x = vatokenListToMaps (vatokenL i s t1)

val y = vatokenListToMaps (vatokenL i s t2)

mr t a s t p r im i t i v e (x . 1 , x . 2 , y . 1 , y . 2)

}

}

val opChoice : Parser [St r ing] = ”+”

val opPara : Parser [St r ing] = ” | | ”

val opSeq : Parser [St r ing] = ” ; ”

def agent = compos i t ionChoice

def compos i t ionChoice : Parser [mrAgExpr]

= compos i t ionPara˜ rep (opChoice ˜ compos i t ionChoice) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => mrt as t agent (op , agi , a g i i) }

def compos i t ionPara : Parser [mrAgExpr]

= compos i t ionSeq˜ rep (opPara˜ compos i t ionPara) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => mrt as t agent (op , agi , a g i i) }

def compos i t ionSeq : Parser [mrAgExpr]

= simpleAgent˜ rep (opSeq˜ compos i t ionSeq) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => mrt as t agent (op , agi , a g i i) }

def s impleAgent : Parser [mrAgExpr] = pr im i t i v e | parenthes izedAgent

def parenthes izedAgent : Parser [mrAgExpr] = ” (”˜>agent<˜”) ”

}

/∗ Object MRTSimulParser ∗/

object MRTSimulParser extends MRTParsers {

def pa r s e p r im i t i v e (prim : Str ing) = par seAl l (pr im i t i ve , prim) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

def par se agent (ag : Str ing) = par seAl l (agent , ag) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

/∗ Object bb r e pr e s en t i n g the s t o r e ∗/

object bb {

475

var theStor e = Map[Str ing , Int] ()

// t e l l r e que s t on the s t o r e ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

def t e l l (token : Str ing , number : Int) : Boolean = {

i f (theStor e . conta ins (token))

{ theStor e (token) = theStor e (token) + number }

else

{ theStor e = theStor e ++ Map(token >́ number) }

true

}

// ge t r e que s t on the s t o r e ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

def get (token : Str ing , number : Int) : Boolean = {

i f (theStor e . conta ins (token)) {

i f (theStor e (token) >= number)

{ theStor e (token) = theStor e (token) ´ number

true

}

else { // p r i n t l n (” den s i t y not enough ”)

fa l se }

}

else {

// p r i n t l n (”no token presen t ”)

fa l se }

}

// ask r e que s t on the s t o r e ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

def ask (token : Str ing , number : Int) : Boolean = {

i f (theStor e . conta ins (token)) {

i f (theStor e (token) >= number) { true }

else { fa l se }

}

else { fa l se }

}

// nask r e que s t on the s t o r e ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

def nask (token : Str ing , number : Int) : Boolean = {

i f (theStor e . conta ins (token))

i f (theStor e (token) >= number) { fa l se }

else { true }

else true

}

// func t ion f o r e va l ua t i on of f e a s a b i l i t y o f pre´cond i t i on s

def eva l p r e (mrPrePos : Map[Str ing , Int] ,

476

mrPreNeg : Map[Str ing , Int]) : Boolean = {

var pr e eva l : Boolean = true

for ((t , v) <́ mrPrePos) {

i f (p r e eva l) { pr e eva l = ask (t , v) }

}

for ((t , v) <́ mrPreNeg) {

i f (p r e eva l) { pr e eva l = nask (t , v) }

}

return pr e eva l

}

def exec mrt pr im (prim : mrAgExpr) : Boolean = {

prim match {

case mrt a s t p r im i t i v e (mrPrePos , mrPreNeg ,

mrPostPos , mrPostNeg) => {

var pos t eva l = true

i f (! (eva l p r e (mrPrePos , mrPreNeg))) { fa l se } else {

for ((t , v) <́ mrPostPos) {

i f (po s t eva l) { pos t eva l = t e l l (t , v)}

}

for ((t , v) <́ mrPostNeg) {

i f (po s t eva l) { pos t eva l = get (t , v) }

}

true }

}

}

}

// f i nd an e x e cu t ab l e p r im i t i v e in the vec tor o f cho ice s

def r un l c h o i c e (l s tE I : L i s t [(mrAgExpr , Int)]) : (Boolean , Int) = {

var found : Boolean = fa l se

var i : In t = ´1

var l s t = l s tE I

while (! found && ! l s t . isEmpty) {

i f (exec mrt pr im ((l s t . head) . 1)) {

found = true

i = (l s t . head) . 2

} else {

l s t = l s t . t a i l

}

}

return (found , i)

}

// run the l i s t o f cho ice s

def l c h o i c e (l s t : L i s t [(mrAgExpr , Int)]) : Int = bb . synchronized {

var r = r un l c h o i c e (l s t)

while (! r . 1) {

477

bb . wait ()

r = r un l c h o i c e (l s t)

}

return r . 2

}

// pr i n t i n g o f t he s t o r e content

def p r i n t s t o r e {

pr i n t (” { ”)

for ((t , d) <́ theStor e)

p r i n t (t + ” (” + theStor e (t) + ”) ”)

p r i n t l n (”}”)

}

// r e s e t t i n g o f t he s t o r e content to 0

def c l e a r s t o r e {

theStor e = Map[Str ing , Int] ()

p r i n t s t o r e

}

}

/∗ c l a s s MRT Exec f o r the execut ion of a MRT agent ∗/

class MRT Exec(var cur r ent agent : mrAgExpr) {

// func t ion f o r invok ing thread

def thread (body : => Unit) : Thread = {

val t = new Thread {

override def run () = body

}

t . s t a r t

t

}

// func t ion ex t cont inuat ion , f o r operateur op ,

// add expr at the end of component e l . 2 o f e l

// e l . 1 conta ins the f i r s t s t ep

def ex t con t i nua t i on (l s t : L i s t [(mrAgExpr ,mrAgExpr)] ,

exp : mrAgExpr , op : Str ing) : L i s t [(mrAgExpr ,mrAgExpr)] = {

l s t match {

case Ni l => Ni l

case e l : : l s t r em => (e l . 1 , mr t as t agent (op , e l . 2 , exp))

: : e x t con t i nua t i on (l s t r em , exp , op)

}

}

// func t ion a g f i r s t s t e p s transforms an agent in a l i s t

// o f pa i r s Expression´Express ion

// The f i r s t one i s the f i r s t s t ep ; t he second one i s i t s cont inuat ion

478

def a g f i r s t s t e p s (mrt ag : mrAgExpr) : L i s t [(mrAgExpr ,mrAgExpr)] = {

mrt ag match {

// a pr im i t i v e i s t he f i r s t s t ep f o l l owed by the empty agent

case mrt a s t p r im i t i v e (mrPrePos , mrPreNeg , mrPostpos , mrPostNeg) => {

(mr t a s t p r im i t i v e (mrPrePos , mrPreNeg , mrPostpos , mrPostNeg) ,

mrt ast empty agent ()) : : N i l

}

// f o r cho ice agent , r e cu r s i v e c a l l o f t he func t ion f o r

// every element o f t he cho ice

case mrt as t agent (”+” , ag i , a g i i) => {

a g f i r s t s t e p s (a g i) : : : a g f i r s t s t e p s (a g i i)

}

// a sequence d i s t i n g u i s h e s both par t s o f Expression´Express ion

case mrt as t agent (” ; ” , ag i , a g i i) => {

ex t con t i nua t i on (a g f i r s t s t e p s (a g i) , a g i i , ” ; ”)

}

// f o r p a r a l l e l agent , a g i wi th i t s c on t i nu i t y in p a r a l l e l wi th ag i i ,

// and v i c e versa

case mrt as t agent (” | | ” , ag i , a g i i) => {

ex t con t i nua t i on (a g f i r s t s t e p s (a g i) , a g i i , ” | | ”)

: : : e x t con t i nua t i on (a g f i r s t s t e p s (a g i i) , ag i , ” | | ”)

}

}

}

// cons t ruc t ion of Vector conta in ing the cont inuat ions (e l . 2)

// a f t e r f i r s t s t ep (e l . 1)

def v e c t a g f i r s t s t e p s (l s t : L i s t [(mrAgExpr , mrAgExpr)]) : Vector [mrAgExpr] = {

l s t match {

case Ni l => Vector . empty

case e l : : l s t r em => e l . 2 +: v e c t a g f i r s t s t e p s (l s t r em)

}

}

// Assoc ia t ion between f i r s t s t ep and index in the Vector

def l i n d e x a g f i r s t s t e p s (l s t : L i s t [(mrAgExpr ,mrAgExpr)] , i : In t)

: L i s t [(mrAgExpr , Int)] = {

var j = i

l s t match {

case Ni l => Ni l

case e l : : l s t r em => (e l . 1 , j) : : l i n d e x a g f i r s t s t e p s (l s t r em , j + 1)

}

}

// exec o f MRT pr imi t i v e s ; invokat ion of f unc t i on s o f bb

479

def exe c p r im i t i v e (mrPrePos : Map[Str ing , Int] , mrPreNeg : Map[Str ing , Int] ,

mrPostPos : Map[Str ing , Int] , mrPostNeg : Map[Str ing , Int]) = bb . synchronized {

var pos t eva l = true

while (! (bb . eva l p r e (mrPrePos , mrPreNeg))) {bb . wait ()}

for ((t , v) <́ mrPostPos) {

i f (po s t eva l) { pos t eva l = bb . t e l l (t , v) }

}

for ((t , v) <́ mrPostNeg) {

i f (po s t eva l) { pos t eva l = bb . get (t , v) }

}

bb . n o t i f yA l l ()

true

}

def e x e c l c h o i c e (l s t : L i s t [(mrAgExpr , Int)]) : Int = {

bb . l c h o i c e (l s t)

}

// exec agent

def exec (mrt ag parsed : mrAgExpr) : Boolean = {

mrt ag parsed match {

case mrt ast empty agent () => {true}

case mrt a s t p r im i t i v e (mrPrePos , mrPreNeg , mrPostpos , mrPostNeg) => {

exe c p r im i t i v e (mrPrePos , mrPreNeg , mrPostpos , mrPostNeg) ;

}

case mrt as t agent (” ; ” , ag i , a g i i) => { i f (exec (a g i))

{ exec (a g i i) } else { fa l se } }

case mrt as t agent (” | | ” , ag i , a g i i) => {

val t1 = thread (exec (a g i))

val t2 = thread (exec (a g i i))

t1 . j o i n

t2 . j o i n

true

}

case mrt as t agent (”+” , ag i , a g i i) => {

var l stEE = a g f i r s t s t e p s (mr t as t agent (”+” , ag i , a g i i))

var lstEV = v e c t a g f i r s t s t e p s (lstEE)

var l s tE I = l i n d e x a g f i r s t s t e p s (lstEE , 0)

var i = e x e c l c h o i c e (Random . s h u f f l e (l s tE I))

exec (lstEV (i))

true

}

}

}

// g ene ra l i z e d exec

def exec gen (mrt ag parsed : mrAgExpr , cpt : Int) = {

exec (mrt ag parsed)

bb . synchronized {

p r i n t l n (”>> Request ” + cpt + ” s u c c e s s f u l l y terminated ”)

p r i n t l n ()

p r i n t (”MRT> ”)

}

480

}

}

/∗ Object MYSimInLine conta in ing the main method of the command l i n e s imula tor ∗/

object MYSimInLine {

def main (args : Array [Str ing]) {

p r i n t l n ()

p r i n t (” Welcome to MRT ver s i on 1 .\n”)

p r i n t (” Type in agents to eva luate them .\n\n”)

p r i n t (”MRT> ”)

var myag parsed : mrAgExpr = mrt ast empty agent ()

var l i n e = readLine ()

var cpt : Int = 1

val maxHist = 5

var h i s t o r y = ArrayBuf fer (”m0” , ”m1” , ”m2” , ”m3” , ”m4”)

var c h i s t = 0

var ca : Str ing = ” ”

while (l i n e != ” ha l t . ”) {

l i n e match {

case ” h i s t o r y . ” => { bb . synchronized {

p r i n t l n (” h i s t o r y ”) ;

p r i n t l n ()

p r i n t l n (” ” + ” ! : ” + h i s t o r y ((maxHist+ch i s t ´1) % maxHist))

p r i n t l n (” ” + ” ! ! : ” + h i s t o r y ((maxHist+ch i s t ´2) % maxHist))

p r i n t l n (” ” + ” ! ! ! : ” + h i s t o r y ((maxHist+ch i s t ´3) % maxHist))

p r i n t l n (” ” + ” ! v : ” + h i s t o r y ((maxHist+ch i s t ´4) % maxHist))

p r i n t l n (” ” + ” v : ” + h i s t o r y ((maxHist+ch i s t ´5) % maxHist))

p r i n t l n ()

p r i n t (”MRT> ”)

}

l i n e = readLine ()

}

case ” ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”MRT> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´1) % maxHist))

p r i n t (”MRT>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´1) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”MRT> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

481

case ” ! ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”MRT> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´2) % maxHist))

p r i n t (”MRT>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´2) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”MRT> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” ! ! ! ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”MRT> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´3) % maxHist))

p r i n t (”MRT>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´3) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”MRT> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” iv ” => { bb . synchronized {

p r i n t l n ()

p r i n t (”MRT> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´4) % maxHist))

p r i n t (”MRT>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

l i n e = h i s t o r y ((ch i s t ´4) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”MRT> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ”v” => { bb . synchronized {

p r i n t l n ()

p r i n t (”MRT> h i s t o r y mode : ”)

p r i n t l n (h i s t o r y ((ch i s t ´5) % maxHist))

p r i n t (”MRT>> execute (y/n) : ”)

ca = readLine ()

i f (ca == ”y”) {

482

l i n e = h i s t o r y ((ch i s t ´5) % maxHist) + ” . ”

p r i n t l n ()

} else {

p r i n t l n ()

p r i n t (”MRT> ”)

}

}

i f (ca != ”y”) { l i n e = readLine () }

}

case ” c l e a r . ” => {bb . c l e a r s t o r e

bb . synchronized {

p r i n t l n ()

p r i n t (”MRT> ”)

}

l i n e = readLine ()

}

case ” p r i n t . ” => {bb . p r i n t s t o r e

bb . synchronized {

p r i n t l n ()

p r i n t (”MRT> ”)

}

l i n e = readLine ()

}

case => {

while (! l i n e . endsWith (” . ”)) {

l i n e += readLine (” | ”)

}

l i n e = l i n e . r ep l a c e (” . ” , ””)

h i s t o r y (c h i s t % maxHist) = l i n e

c h i s t = (ch i s t + 1)

try {

myag parsed = MRTSimulParser . par s e agent (l i n e)

val mysimul = new MRT Exec(myag parsed)

p r i n t l n (”MRT> >> Request ” + cpt + ” launched ”)

val t = mysimul . thread (mysimul . exec gen (myag parsed , cpt))

bb . synchronized {

p r i n t l n ()

p r i n t (”MRT> ”)

}

l i n e = readLine ()

}

catch {

case unknown : Throwable => {

bb . synchronized {

p r i n t l n (”>> Error o f par s ing ”)

p r i n t l n ()

p r i n t (”MRT> ”)

}

l i n e = readLine ()

}

}

cpt = cpt + 1

}

483

}

}

}

}

484

Appendix F

The Simulator

F.1 The Data sructures

class Expr

case class DB AST Empty Agent () extends Expr

case class DB AST Primitive (p r im i t i v e : Str ing , token : Str ing , dens i ty : Int)

extends Expr

case class DB Exec AST Primitive (p r im i t i v e : Str ing , token : Str ing , dens i ty : Int ,

path : L i s t [Int]) extends Expr

case class DB AST Agent (op : Str ing , p r im i t i v e : Expr , agent : Expr) extends Expr

F.2 The Parser

import s ca l a . u t i l . par s ing . combinator .

import s ca l a . u t i l . matching . Regex

class DenseBachParsers extends RegexParsers {

def token : Parser [St r ing] = (” [a´z] [0´9a źA´Z]∗ ”) . r ˆˆ { . t oS t r i ng }

def dens i ty : Parser [Int] = (” [1 ´9] [0 ´9]∗ ”) . r ˆˆ { . to Int }

val opChoice : Parser [St r ing] = ”+”

val opPara : Parser [St r ing] = ” | | ”

val opSeq : Parser [St r ing] = ” ; ”

def pr im i t i v e : Parser [Expr] = ” t e l l (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜ => DB AST Primitive (” t e l l ” , vtoken , vdens i ty) } |

”ask (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜ => DB AST Primitive (” ask” , vtoken , vdens i ty) } |

” get (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜ => DB AST Primitive (” get ” , vtoken , vdens i ty) } |

”nask (”˜ token ˜” (”˜ dens i ty ˜”)) ” ˆˆ {

case ˜ vtoken ˜ ˜ vdens i ty ˜ => DB AST Primitive (”nask” , vtoken , vdens i ty) }

def agent = compos i t ionChoice

def compos i t ionChoice : Parser [Expr] =

485

compos i t ionPara˜ rep (opChoice ˜ compos i t ionChoice) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => DB AST Agent (op , agi , a g i i) }

def compos i t ionPara : Parser [Expr] = compos i t ionSeq˜ rep (opPara˜ compos i t ionPara) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => DB AST Agent (op , agi , a g i i) }

def compos i t ionSeq : Parser [Expr] = simpleAgent˜ rep (opSeq˜ compos i t ionSeq) ˆˆ {

case ag ˜ L i s t () => ag

case ag i ˜ L i s t (op˜ a g i i) => DB AST Agent (op , agi , a g i i) }

def s impleAgent : Parser [Expr] = pr im i t i v e | parenthes izedAgent

def parenthes izedAgent : Parser [Expr] = ” (”˜>agent<˜”) ”

}

object DenseBachSimulParser extends DenseBachParsers {

def pa r s e p r im i t i v e (prim : Str ing) = par seAl l (pr im i t i ve , prim) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => { s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

def par se agent (ag : Str ing) = par seAl l (agent , ag) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => { s ca l a . sys . e r r o r (f a i l u r e .msg)

}

}

}

object TParser extends DBParsers {

def main (args : Array [Str ing]) {

p r i n t l n (” input : ”+ args (0))

val r e s = par seAl l (agent , a rgs (0)) match {

case Succes s (r e su l t ,) => r e s u l t

case f a i l u r e : NoSuccess => s ca l a . sys . e r r o r (f a i l u r e .msg)

}

p r i n t l n (”output : ”+r e s)

}

}

class PrettyPr inter {

def t r a n s l a t e (db ag : Expr) : Str ing = {

db ag match {

case DB AST Empty Agent () => ””

case DB AST Primitive (db prim , token , dens i ty) =>

db prim + ” (” + token + ” (” + dens i ty . t oS t r i ng + ”)) ”

486

case DB AST Agent (op , ag i , a g i i) =>

” [” + t r an s l a t e (a g i) + ”] ” + op + ” [” + t r an s l a t e (a g i i) + ”] ”

}

}

}

F.3 The Store

import s ca l a . c o l l e c t i o n . mutable .Map

import s ca l a . swing .

class DBStore {

var theStor e = Map[Str ing , Int] ()

def t e l l (token : Str ing , dens i ty : Int) : Boolean = synchronized {

i f (dens i ty > 0)

{

i f (theStor e . conta ins (token))

{ theStor e (token) = theStor e (token) + dens i ty }

else

{ theStor e = theStor e ++ Map(token >́ dens i ty) }

true

}

else

fa l se

}

def t e s t t e l l (token : Str ing , dens i ty : Int) : Boolean = true

def ask (token : Str ing , dens i ty : Int) : Boolean = synchronized {

i f ((dens i ty > 0) && theStor e . conta ins (token))

i f (theStor e (token) >= dens i ty) { true }

else { fa l se }

else fa l se

}

def t e s t a s k (token : Str ing , dens i ty : Int) : Boolean = synchronized {

i f ((dens i ty > 0) && theStor e . conta ins (token))

i f (theStor e (token) >= dens i ty) { true }

else { fa l se }

else fa l se

}

def get (token : Str ing , dens i ty : Int) : Boolean = synchronized {

i f ((dens i ty > 0) && theStor e . conta ins (token))

i f (theStor e (token) >= dens i ty)

{ theStor e (token) = theStor e (token) ´ dens i ty

true

}

else { fa l se }

487

else fa l se

}

def t e s t g e t (token : Str ing , dens i ty : Int) : Boolean =

t e s t a s k (token : Str ing , dens i ty : Int)

def nask (token : Str ing , dens i ty : Int) : Boolean = synchronized {

i f ((dens i ty > 0) && theStor e . conta ins (token))

i f (theStor e (token) >= dens i ty) { fa l se }

else { true }

else

i f (dens i ty == 0) { fa l se }

else { true }

}

def t e s t na sk (token : Str ing , dens i ty : Int) : Boolean = synchronized {

i f ((dens i ty > 0) && theStor e . conta ins (token))

i f (theStor e (token) >= dens i ty) { fa l se }

else { true }

else

i f (dens i ty == 0) { fa l se }

else { true }

}

def p r i n t s t o r e {

for ((t , d) <́ theStor e)

p r i n t l n (t + ” (” + theStor e (t) + ”) ”)

}

def c l e a r s t o r e : Boolean = synchronized {

theStor e = Map[Str ing , Int] ()

true

}

}

F.4 The Dense Bach Simulator

import s ca l a . u t i l .Random

class DBSimulExec (var cur r ent agent : Expr , var bb : DBStore) {

val db random choice = new Random()

def r un uns e l e c t (db ag : Expr) : Expr = {

db ag match {

case DB AST Empty Agent () => DB AST Empty Agent ()

case DB AST Primitive (db prim , token , dens i ty)

=> DB AST Primitive (db prim , token , dens i ty)

case DB Exec AST Primitive (db prim , token , dens i ty , pp)

=> DB AST Primitive (db prim , token , dens i ty)

case DB AST Agent (op , ag i , a g i i)

488

=> DB AST Agent (op , r un uns e l e c t (a g i) , r un uns e l e c t (a g i i))

}

}

def r un s e l e c t e d (db ag : Expr , path : L i s t [Int]) : Expr = {

db ag match {

case DB AST Empty Agent () => DB AST Empty Agent ()

case DB AST Primitive (db prim , token , dens i ty)

=> DB AST Primitive (db prim , token , dens i ty)

case DB Exec AST Primitive (db prim , token , dens i ty , pp) => {

exe c p r im i t i v e (db prim , token , dens i ty , bb)

DB AST Empty Agent () }

case DB AST Agent (” ; ” , ag i , a g i i) => {

val new ag = r un s e l e c t e d (ag i , path . t a i l)

i f (new ag == DB AST Empty Agent ()) { a g i i }

else { DB AST Agent (” ; ” , new ag , a g i i) }

}

case DB AST Agent (” | | ” , ag i , a g i i) => {

i f (path . head == 1) {

val new ag i = r un s e l e c t e d (ag i , path . t a i l)

val new ag i i = run uns e l e c t (a g i i)

i f (new ag i == DB AST Empty Agent ()) { new ag i i }

else { DB AST Agent (” | | ” , new ag i , n ew ag i i) } }

else {

val new ag i = run uns e l e c t (a g i)

val new ag i i = r un s e l e c t e d (a g i i , path . t a i l)

i f (n ew ag i i == DB AST Empty Agent ()) { new ag i }

else { DB AST Agent (” | | ” , new ag i , n ew ag i i) } }

}

case DB AST Agent (”+” , ag i , a g i i) => {

i f (path . head == 1) { r un s e l e c t e d (ag i , path . t a i l) }

else { r un s e l e c t e d (a g i i , path . t a i l) }

}

}

}

def run one (db ag : Expr) : (Boolean , Expr) = {

db ag match {

case DB AST Primitive (db prim , token , dens i ty) =>

{ i f (ex e c p r im i t i v e (db prim , token , dens i ty , bb))

{ (true , DB AST Empty Agent ()) }

else { (fa lse , db ag) }

}

case DB AST Agent (” ; ” , ag i , a g i i) =>

{ run one (a g i) match

489

{ case (fa lse ,) => (fa lse , db ag)

case (true , DB AST Empty Agent ()) => (true , a g i i)

case (true , ag cont)

=> (true , DB AST Agent (” ; ” , ag cont , a g i i))

}

}

case DB AST Agent (” | | ” , ag i , a g i i) =>

{ var branch cho i ce = db random choice . next Int (2)

i f (branch cho i ce == 0)

{ run one (a g i) match

{ case (fa lse ,) =>

{ run one (a g i i) match

{ case (fa lse ,) => (fa lse , db ag)

case (true , DB AST Empty Agent () => (true , a g i)

case (true , ag cont)

=> (true , DB AST Agent (” | | ” , ag i , ag cont))

}

}

case (true , DB AST Empty Agent ()) => (true , a g i i)

case (true , ag cont)

=> (true , DB AST Agent (” | | ” , ag cont , a g i i))

}

}

else

{ run one (a g i i) match

{ case (fa lse ,) =>

{ run one (a g i) match

{ case (fa lse ,) => (fa lse , db ag)

case (true , DB AST Empty Agent ()) => (true , a g i i)

case (true , ag cont)

=> (true , DB AST Agent (” | | ” , ag cont , a g i i))

}

}

case (true , DB AST Empty Agent ()) => (true , a g i)

case (true , ag cont)

=> (true , DB AST Agent (” | | ” , ag i , ag cont))

}

}

}

case DB AST Agent (”+” , ag i , a g i i) =>

{ var branch cho i ce = db random choice . next Int (2)

i f (branch cho i ce == 0)

{ run one (a g i) match

{ case (fa lse ,) =>

{ run one (a g i i) match

{ case (fa lse ,) => (fa lse , db ag)

case (true , DB AST Empty Agent ())

=> (true , DB AST Empty Agent ())

case (true , ag cont) => (true , ag cont)

}

}

case (true , DB AST Empty Agent ())

=> (true , DB AST Empty Agent ())

490

case (true , ag cont) => (true , ag cont)

}

}

else

{ run one (a g i i) match

{ case (fa lse ,) =>

{ run one (a g i) match

{ case (fa lse ,) => (fa lse , db ag)

case (true , DB AST Empty Agent ())

=> (true , DB AST Empty Agent ())

case (true , ag cont) => (true , ag cont)

}

}

case (true , DB AST Empty Agent ())

=> (true , DB AST Empty Agent ())

case (true , ag cont) => (true , ag cont)

}

}

}

}

}

def exe c p r im i t i v e (db prim : Str ing , token : Str ing , dens i ty : Int , bb : DBStore) : Boolean = {

db prim match

{ case ” t e l l ” => bb . t e l l (token , dens i ty)

case ”ask” => bb . ask (token , dens i ty)

case ” get ” => bb . get (token , dens i ty)

case ”nask” => bb . nask (token , dens i ty)

}

}

def t e s t e x e c p r im i t i v e (db prim : Str ing , token : Str ing , dens i ty : Int , bb : DBStore) : Boolean = {

db prim match

{ case ” t e l l ” => bb . t e s t t e l l (token , dens i ty)

case ”ask” => bb . t e s t a s k (token , dens i ty)

case ” get ” => bb . t e s t g e t (token , dens i ty)

case ”nask” => bb . t e s t na sk (token , dens i ty)

}

}

def a g f i r s t s t e p s (db ag : Expr , path : L i s t [Int]) : Expr = {

db ag match {

case DB AST Empty Agent () => DB AST Empty Agent ()

case DB AST Primitive (db prim , token , dens i ty) =>

{ i f (t e s t e x e c p r im i t i v e (db prim , token , dens i ty , bb))

{ DB Exec AST Primitive (db prim , token , dens i ty , path) }

else { DB AST Primitive (db prim , token , dens i ty) }

}

case DB AST Agent (” ; ” , ag i , a g i i)

=> DB AST Agent (” ; ” , a g f i r s t s t e p s (ag i , path : : : L i s t (1)) , a g i i)

case DB AST Agent (” | | ” , ag i , a g i i)

491

=> DB AST Agent (” | | ” , a g f i r s t s t e p s (ag i , path : : : L i s t (1)) ,

a g f i r s t s t e p s (a g i i , path : : : L i s t (2)))

case DB AST Agent (”+” , ag i , a g i i)

=> DB AST Agent (”+” , a g f i r s t s t e p s (ag i , path : : : L i s t (1)) ,

a g f i r s t s t e p s (a g i i , path : : : L i s t (2)))

}

}

}

F.5 The Interavtive Blackboard

import s ca l a . swing .

import s ca l a . swing . event .

import GridBagPanel .

import java . awt . I n s e t s

import java . awt . Color

import s ca l a . c o l l e c t i o n . mutable .Map

import s ca l a . c o l l e c t i o n . mutable . ArrayBuf fer

object Interact i veB la ckboa rd extends SimpleSwingAppl icat ion {

val blue = new java . awt . Color (219 , 242 , 255)

val green = new java . awt . Color (176 , 255 , 226)

val red = new java . awt . Color (255 , 176 , 176)

var mybb = new DBStore

def c l e a r s t o r e {

mybb . c l e a r s t o r e

s t o r e t o l a b e l (mybb . theStor e)

p r i n t l n (”Cleared the s to r e ”)

}

def r e d i s p l a y s t o r e {

s t o r e t o l a b e l (mybb . theStor e)

}

def t e l l o n s t o r e {

val token arg = theCurrentStore . theStoreButtons . theSTokenField . text

val den s i ty a r g = (theCurrentStore . theStoreButtons . theSDens i tyF i e ld . text) . to Int

val t r e s = mybb . t e l l (token arg , d en s i t y a r g)

i f (t r e s) {

s t o r e t o l a b e l (mybb . theStor e)

p r i n t l n (” to l d ” + token arg + ” with dens i ty ” + dens i ty a r g)

mybb . p r i n t s t o r e

}

}

492

def ge t f r om s to r e {

val token arg = theCurrentStore . theStoreButtons . theSTokenField . text

val den s i ty a r g = (theCurrentStore . theStoreButtons . theSDens i tyF i e ld . text) . to Int

val gr es = mybb . get (token arg , d en s i t y a r g)

i f (gr es) {

s t o r e t o l a b e l (mybb . theStor e)

p r i n t l n (” got ” + token arg + ” with dens i ty ” + dens i ty a r g)

}

}

def s t o r e t o l a b e l (theStor e :Map[Str ing , Int]) {

def newToken(token : Str ing , dens i ty : Int) = {

new Label { text = token + ” [” + dens i ty . t oS t r i ng + ”] ”

foreground = new java . awt . Color (0 , 0 , 0)

background = blue

opaque = true }

}

theCurrentStore . bbObj . contents . c l e a r

for ((t , d) <́ theStor e)

{ theCurrentStore . bbObj . contents += newToken(t , d) }

theCurrentStore . bbObj . r e v a l i d a t e ()

theCurrentStore . bbObj . r epa i n t ()

}

var nb agent = 0

def c n auto agent {

nb agent = nb agent + 1

val new auto agent = new Interact iveAutoAgent (nb agent ,mybb)

}

def c n i n t e r a g en t {

nb agent = nb agent + 1

val new inter agent = new In t e r a c t i v e In t e rAgen t (nb agent ,mybb)

}

/∗ ´́ ´

Window to in t roduce the s t o r e

Buttons are :

theStoreClearBut ton , to c l e a r the s t o r e

theTel lBut ton , to add a s p e c i f i e d token with a s p e c i f i e d den s i t y

theGetButton , den s i t y to be t r e a t e d

´́ ∗/

val theCurrentStore = new GridBagPanel {

background = blue

val c = new Constra ints

493

val s h ou l dF i l l = true

i f (s h ou l dF i l l) { c . f i l l = F i l l . Hor i zonta l }

val th eS to r eT i t l e = new Label { text = ”Current s t o r e ” }

c . weightx = 0.5

c . f i l l = F i l l . None

c . gr idx = 0

c . gr idy = 0

c . gr idwidth = 2

c . anchor = Anchor .West

c . i n s e t s = new I n s e t s (5 , 5 , 5 , 5)

l ayout (th eS to r eT i t l e) = c

val theStoreClearButton = new Button { text = ”Clear ” }

c . anchor = Anchor . East

l ayout (theStoreClearButton) = c

c . anchor = Anchor .West

c . gr idwidth = 1

c . f i l l = F i l l . Hor i zonta l

val th eS t r u t I = new Label { text = ” ” }

c . g r idx = 0

c . gr idy = 1

layout (th eS t r u t I) = c

val l abe lbb = new Label (” cu r r en t l y empty”)

val bbObj = new FlowPanel {

background = blue

opaque = true

contents += labe lbb

hGap = 40

vGap = 30

border = Swing . EmptyBorder (15 , 10 , 10 , 10) }

c . g r idx = 1

c . gr idy = 1

layout (bbObj) = c

val th eS t r u t I I = new Label { text = ” ” }

c . g r idx = 0

c . gr idy = 2

layout (th eS t r u t I) = c

val theStoreButtons = new FlowPanel {

background = blue

val theTel lButton = new Button { text = ”Te l l ” }

val theGetButton = new Button { text = ”Get” }

val theSTokenText = new Label { text = ” token : ” }

val theSTokenField = new TextFie ld { columns = 15

text = ” t ” }

val theSDensityText = new Label { text = ” dens i ty : ” }

val theSDens i tyF i e ld = new TextFie ld { columns = 10

text = ”1” }

opaque = true

contents += theTel lButton

494

contents += theSTokenText

contents += theSTokenField

contents += theSDensityText

contents += theSDens i tyF i e ld

contents += theGetButton

hGap = 40

vGap = 20

border = Swing . EmptyBorder (5 , 10 , 5 , 10)

}

c . g r idx = 1

c . gr idy = 2

layout (theStoreButtons) = c

border = Swing . EmptyBorder (15 , 10 , 15 , 10)

}

/∗ ´́ ´

Window to creat e agents

Buttons are :

theCreateAgentButton to creat e a new agent process

´́ ∗/

val theCreateAgentButtons = new FlowPanel {

val theCreateAutoAgentButton = new Button { text = ”New Autonomous Agent” }

val theStrutCreateButton = new Label { text = ” ” }

val theCreateInterAgentButton = new Button { text = ”New In t e r a c t i v e Agent” }

background = blue

contents += theCreateAutoAgentButton

contents += theStrutCreateButton

contents += theCreateInterAgentButton

}

/∗ ´́

Main Window

´́ ´ ∗/

val theStrutPane l I = new FlowPanel {

background = blue

hGap = 40

vGap = 20

border = Swing . EmptyBorder (5 , 10 , 5 , 10)

}

def top = new MainFrame {

t i t l e = ”The i n t e r a c t i v e blackboard”

contents = new BoxPanel (Or i entat i on . Ve r t i c a l) {

background = blue

opaque = true

495

contents += theCurrentStore

contents += theStrutPane l I

contents += theCreateAgentButtons

border = Swing . EmptyBorder (30 , 30 , 10 , 10) }

}

/∗ ´́

React ions to the but tons :

from the current s t o r e window (theCurrentStore) :

theStoreClearBut ton , theTel lBut ton , theGetButton

from the agent window :

theCreateAgentButton

´́ ∗/

l i s t enTo (theCurrentStore . theStoreClearButton ,

theCurrentStore . theStoreButtons . theTel lButton ,

theCurrentStore . theStoreButtons . theGetButton ,

theCreateAgentButtons . theCreateAutoAgentButton ,

theCreateAgentButtons . theCreateInterAgentButton)

r e a c t i o n s += {

case ButtonClicked (theCurrentStore . theStoreClearButton) => c l e a r s t o r e

case ButtonClicked (theCurrentStore . theStoreButtons . theTel lButton)

=> t e l l o n s t o r e

case ButtonClicked (theCurrentStore . theStoreButtons . theGetButton)

=> ge t f r om s to r e

case ButtonClicked (theCreateAgentButtons . theCreateInterAgentButton)

=> c n i n t e r a g en t

case ButtonClicked (theCreateAgentButtons . theCreateAutoAgentButton)

=> c n auto agent }

}

F.6 The Interactive Agent

import s ca l a . swing .

import s ca l a . swing . event .

import GridBagPanel .

import java . awt . I n s e t s

import java . awt . Color

import s ca l a . c o l l e c t i o n . mutable .Map

class In t e r a c t i v e In t e rAgen t (ag id : Int ,mybb : DBStore) extends Frame {

val blue = new java . awt . Color (196 , 226 , 255)

val green = new java . awt . Color (193 , 255 , 193)

val red = new java . awt . Color (255 , 176 , 176)

var agen t to be pa r s ed = new Str ing

var agent par s ed = new Expr

var cur r ent agent = new Expr

var r e s agen t = new Expr

496

var prev i ous agent = new Expr

var mySimulParser = new DBSimulParser

var myDBsimul = new DBSimulExec (agent parsed ,mybb)

class Interact i veStepButton (pr im txt : Str ing , path : L i s t [Int]) extends Button {

this . t ext = pr im txt

r e a c t i o n s += {

case ButtonClicked (b) => exe cu t e s t ep (path) }

}

class dbWidget

case class DB Label (t x t l a b e l : S t r ing) extends dbWidget

case class DB Button (txt ag : Str ing , path : L i s t [Int]) extends dbWidget

def t r a n s l a t e (db ag : Expr) {

def t r a n s l a t e i n t o w i d g e t l i s t (ag : Expr) : L i s t [dbWidget] = {

ag match {

case DB AST Empty Agent () => L i s t (DB Label (”Empty agent ”))

case DB AST Primitive (db prim , token , dens i ty) => {

val a g l a b e l = db prim + ” (” + token + ” , ” + dens i ty . t oS t r i ng + ”) ”

L i s t (DB Label (a g l a b e l)) }

case DB Exec AST Primitive (db prim , token , dens i ty , path) => {

val a g l a b e l = db prim + ” (” + token + ” , ” + dens i ty . t oS t r i ng + ”) ”

L i s t (DB Button (ag l abe l , path)) }

case DB AST Agent (op , ag i , a g i i) => {

L i s t (DB Label (” [”)) : : :

t r a n s l a t e i n t o w i d g e t l i s t (a g i) : : :

L i s t (DB Label (”] ” + op + ” [”)) : : :

t r a n s l a t e i n t o w i d g e t l i s t (a g i i) : : :

L i s t (DB Label (”] ”)) }

}

}

def g r oup db l abe l s (t x t l a b e l : Str ing , l db w i : L i s t [dbWidget]) :

(Str ing , L i s t [dbWidget]) = {

l db w i match {

case L i s t () => (t x t l a b e l , l db w i)

case DB Button (txt , path) : : l r e s => (t x t l a b e l , l db w i)

case DB Label (txt) : : l r e s => g r oup db l abe l s (t x t l a b e l+txt , l r e s)

}

}

def group db widgets (l db w i : L i s t [dbWidget]) {

l db w i match {

case L i s t () => { }

497

case DB Button (txt ag , path) : : l r e s => {

theAgent . theCurrentAgentFie ld . contents +=

newStepButton (txt ag , path)

group db widgets (l r e s) }

case DB Label (t x t l a b e l) : : l r e s => {

val (g en l abe l , l l d b w i) = gr oup db l abe l s (t x t l a b e l , l r e s)

theAgent . theCurrentAgentFie ld . contents +=

newAgTxt (g en l abe l)

group db widgets (l l d b w i) }

}

}

def newAgTxt (tx t a r g : Str ing) = {

new Label { text = tx t a r g

foreground = new java . awt . Color (0 , 0 , 0)

background = red

opaque = true }

}

def newStepButton (pr im txt : Str ing , path : L i s t [Int]) = {

new Interact i veStepButton (pr im txt , path)

}

/∗ to be a c t u a l l y executed in t r an s l a t e ∗/

/∗ ´́ ∗/

group db widgets (t r a n s l a t e i n t o w i d g e t l i s t (db ag))

}

def par se agent {

agen t to be pa r s ed = theAgent . theAgentFie ld . text

agent par s ed = mySimulParser . par s e agent (agen t to be pa r s ed)

cur r ent agent = myDBsimul . a g f i r s t s t e p s (agent parsed , L i s t ())

// r e s ag en t = current agent

theAgent . theCurrentAgentFie ld . contents . c l e a r

t r a n s l a t e (cur r ent agent)

theAgent . theCurrentAgentFie ld . r e v a l i d a t e ()

theAgent . theCurrentAgentFie ld . r epa i n t ()

p r i n t l n (” output : ”+agent par s ed)

p r i n t l n (” output agent l a b e l l e d : ”+cur r ent agent)

}

def exe cu t e s t ep (path : L i s t [Int]) {

r e s agen t = myDBsimul . r u n s e l e c t e d (cur r ent agent , path)

cur r ent agent = myDBsimul . a g f i r s t s t e p s (r es agent , L i s t ())

theAgent . theCurrentAgentFie ld . contents . c l e a r

t r a n s l a t e (cur r ent agent)

theAgent . theCurrentAgentFie ld . r e v a l i d a t e ()

theAgent . theCurrentAgentFie ld . r epa i n t ()

p r i n t l n (”new agent : ”+r e s agen t)

Interact i veB la ckboa rd . r e d i s p l a y s t o r e

}

498

def r e f r e s h a g en t {

cur r ent agent = myDBsimul . a g f i r s t s t e p s (r es agent , L i s t ())

theAgent . theCurrentAgentFie ld . contents . c l e a r

t r a n s l a t e (cur r ent agent)

theAgent . theCurrentAgentFie ld . r e v a l i d a t e ()

theAgent . theCurrentAgentFie ld . r epa i n t ()

}

/∗ ´́ ´

Window to in t roduce the agent to be processed

Buttons are :

theSubmitAgentButton , to submit the agent i e to parse i t in to i n t e r n a l format

theStepAgentButton , to run s t ep by s t ep the agent

´́ ∗/

val theAgent = new GridBagPanel {

background = red

/∗ Agent to be processed ∗/

/∗ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ∗/

val c = new Constra ints

val s h ou l dF i l l = true

i f (s h ou l dF i l l) { c . f i l l = F i l l . Hor i zonta l }

val theAgentTit l e = new Label { text = ”Agent to be proces s ed ” }

c . weightx = 0.5

c . f i l l = F i l l . None

c . gr idx = 0

c . gr idy = 0

c . gr idwidth = 3

c . anchor = Anchor .West

c . i n s e t s = new I n s e t s (5 , 5 , 5 , 5)

l ayout (theAgentTit l e) = c

c . gr idwidth = 1

c . f i l l = F i l l . Hor i zonta l

val t h eS t r u t i = new Label { text = ” ” }

c . g r idx = 0

c . gr idy = 1

layout (t h eS t r u t i) = c

val theAgentFie ld = new TextArea (10 , 60)

theAgentFie ld . text = ”Enter the agent ”

val th eSc r o l l ab l eAgen tF i e l d = new Scro l lPane (theAgentFie ld)

c . g r idx = 1

c . gr idy = 1

layout (th eSc r o l l ab l eAgen tF i e l d) = c

val theSubmitAgentButton = new Button {

text = ”Submit” }

499

c . g r idx = 2

c . gr idy = 1

layout (theSubmitAgentButton) = c

/∗ Current va lue o f t he agent ∗/

/∗ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´ ∗/

val theCurrentAgentTit l e = new Label { text = ”Current agent ” }

c . weightx = 0.5

c . f i l l = F i l l . None

c . gr idx = 0

c . gr idy = 2

c . gr idwidth = 3

c . anchor = Anchor .West

c . i n s e t s = new I n s e t s (5 , 5 , 5 , 5)

l ayout (theCurrentAgentTit l e) = c

c . gr idwidth = 1

c . f i l l = F i l l . Hor i zonta l

val t h e S t r u t i i = new Label { text = ” ” }

c . g r idx = 0

c . gr idy = 3

layout (t h e S t r u t i i) = c

val l abe lbb = new Label (” cu r r en t l y empty”)

val theCurrentAgentFie ld = new FlowPanel {

background = red

opaque = true

contents += labe lbb

hGap = 40

vGap = 30

border = Swing . EmptyBorder (15 , 10 , 10 , 10) }

c . g r idx = 1

c . gr idy = 3

val theSCurrentAgentFie ld = new Scro l lPane (theCurrentAgentFie ld)

l ayout (theSCurrentAgentFie ld) = c

val theRefreshAgentButton = new Button {

text = ”Refresh ” }

c . g r idx = 2

c . gr idy = 3

layout (theRefreshAgentButton) = c

}

/∗ ´́

React ions to the but tons :

from the main agent window :

theSubmitAgentButton , theRunAgentButton , theStepAgentButton

from the h i s t o r y window :

thePAgentButton , theNAgentButton

´́ ∗/

500

l i s t enTo (theAgent . theSubmitAgentButton ,

theAgent . theRefreshAgentButton)

r e a c t i o n s += {

case ButtonClicked (theAgent . theSubmitAgentButton) => par se agent

case ButtonClicked (theAgent . theRefreshAgentButton) => r e f r e s h a g en t

}

/∗ ´́

Main e lements

´́ ´ ∗/

val theStrutPane l I = new FlowPanel {

background = red

hGap = 40

vGap = 20

border = Swing . EmptyBorder (5 , 10 , 5 , 10)

}

val th eS t r u tPane l I I = new FlowPanel {

background = red

hGap = 40

vGap = 20

border = Swing . EmptyBorder (5 , 10 , 5 , 10)

}

this . t i t l e = ”Agent number ” + ag id . t oS t r i ng

this . v i s i b l e = true

this . contents = new BoxPanel (Or i entat i on . Ve r t i c a l) {

background = red

opaque = true

contents += theAgent

border = Swing . EmptyBorder (30 , 30 , 10 , 10) }

this . pack ()

}

F.7 The Autonomous Agent

import s ca l a . swing .

import s ca l a . swing . event .

import GridBagPanel .

import java . awt . I n s e t s

import java . awt . Color

import s ca l a . c o l l e c t i o n . mutable .Map

class Interact iveAutoAgent (ag id : Int ,mybb : DBStore) extends Frame {

val blue = new java . awt . Color (196 , 226 , 255)

val green = new java . awt . Color (193 , 255 , 193)

val red = new java . awt . Color (255 , 176 , 176)

var agen t to be pa r s ed = new Str ing

var agent par s ed = new Expr

501

var cur r ent agent = new Expr

var prev i ous agent = new Expr

var mySimulParser = new DBSimulParser

var myDBsimul = new DBSimulExec (agent parsed ,mybb)

var myTranslator = new PrettyPr inter

def par se agent {

agen t to be pa r s ed = theAgent . theAgentFie ld . text

agent par s ed = mySimulParser . par s e agent (agen t to be pa r s ed)

cur r ent agent = agent par s ed

theAgent . theCurrentAgentFie ld . text =

myTranslator . t r a n s l a t e (cur r ent agent)

p r i n t l n (” output : ”+agent par s ed)

}

def exe cu t e s t ep : Boolean = {

var e x e c r e s u l t = true

prev i ous agent = cur r ent agent

i f (cur r ent agent != DB AST Empty Agent ()) {

e x e c r e s u l t = myDBsimul . run one (cur r ent agent) match

{ case (fa lse ,) => fa l se

case (true , new agent) =>

{ cur r ent agent = new agent

true

}

}

theAgent . theCurrentAgentFie ld . text = myTranslator . t r a n s l a t e (cur r ent agent)

Interact i veB la ckboard . r e d i s p l a y s t o r e

}

e x e c r e s u l t

}

def e x e c u t e a l l = {

var f a i l u r e = fa l se

while (cur r ent agent != DB AST Empty Agent () && ! f a i l u r e) {

p r i n t l n (” enter execut i on s tep ”)

f a i l u r e = ! exe cu t e s t ep

}

}

/∗ ´́ ´

Window to in t roduce the agent to be processed

Buttons are :

theSubmitAgentButton , to submit the agent i e to parse i t in to i n t e r n a l format

theRunAgentButton , to run the agent from beg in to end

theStepAgentButton , to run s t ep by s t ep the agent

´́ ∗/

val theAgent = new GridBagPanel {

502

background = green

/∗ Agent to be processed ∗/

/∗ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ∗/

val c = new Constra ints

val s h ou l dF i l l = true

i f (s h ou l dF i l l) { c . f i l l = F i l l . Hor i zonta l }

val theAgentTit l e = new Label { text = ”Agent to be proces s ed ” }

c . weightx = 0.5

c . f i l l = F i l l . None

c . gr idx = 0

c . gr idy = 0

c . gr idwidth = 3

c . anchor = Anchor .West

c . i n s e t s = new I n s e t s (5 , 5 , 5 , 5)

l ayout (theAgentTit l e) = c

c . gr idwidth = 1

c . f i l l = F i l l . Hor i zonta l

val t h eS t r u t i = new Label { text = ” ” }

c . g r idx = 0

c . gr idy = 1

layout (t h eS t r u t i) = c

val theAgentFie ld = new TextArea (10 , 60)

theAgentFie ld . text = ”Enter the agent ”

val th eSc r o l l ab l eAgen tF i e l d = new Scro l lPane (theAgentFie ld)

c . g r idx = 1

c . gr idy = 1

layout (th eSc r o l l ab l eAgen tF i e l d) = c

val theSubmitAgentButton = new Button {

text = ”Submit” }

c . g r idx = 2

c . gr idy = 1

layout (theSubmitAgentButton) = c

/∗ Current va lue o f t he agent ∗/

/∗ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´ ∗/

val theCurrentAgentTit l e = new Label { text = ”Current agent ” }

c . weightx = 0.5

c . f i l l = F i l l . None

c . gr idx = 0

c . gr idy = 2

c . gr idwidth = 3

c . anchor = Anchor .West

c . i n s e t s = new I n s e t s (5 , 5 , 5 , 5)

l ayout (theCurrentAgentTit l e) = c

c . gr idwidth = 1

c . f i l l = F i l l . Hor i zonta l

503

val t h e S t r u t i i = new Label { text = ” ” }

c . g r idx = 0

c . gr idy = 3

layout (t h e S t r u t i i) = c

val theCurrentAgentFie ld = new Label {

text = ”Here w i l l be d i sp l ayed the cur r ent agent ” }

c . g r idx = 1

c . gr idy = 3

layout (theCurrentAgentFie ld) = c

/∗ The running but tons ∗/

/∗ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´ ∗/

val theRunningButtons = new FlowPanel {

background = green

val theRunAgentButton = new Button { text = ”Run” }

val theStepAgentButton = new Button { text = ”Next” }

opaque = true

contents += theRunAgentButton

contents += theStepAgentButton

hGap = 40

vGap = 20

border = Swing . EmptyBorder (5 , 10 , 5 , 10)

}

c . g r idx = 0

c . gr idy = 4

c . gr idwidth = 3

layout (theRunningButtons) = c

border = Swing . EmptyBorder (15 , 10 , 15 , 10)

}

/∗ ´́

React ions to the but tons :

from the main agent window :

theSubmitAgentButton , theRunAgentButton , theStepAgentButton

from the h i s t o r y window :

thePAgentButton , theNAgentButton

´́ ∗/

l i s t enTo (theAgent . theSubmitAgentButton ,

theAgent . theRunningButtons . theStepAgentButton ,

theAgent . theRunningButtons . theRunAgentButton)

r e a c t i o n s += {

case ButtonClicked (theAgent . theSubmitAgentButton) => par se agent

case ButtonClicked (theAgent . theRunningButtons . theStepAgentButton) => exe cu t e s t ep

case ButtonClicked (theAgent . theRunningButtons . theRunAgentButton) => e x e c u t e a l l

}

504

/∗ ´́

Main e lements

´́ ´ ∗/

val theStrutPane l I = new FlowPanel {

background = green

hGap = 40

vGap = 20

border = Swing . EmptyBorder (5 , 10 , 5 , 10)

}

val th eS t r u tPane l I I = new FlowPanel {

background = green

hGap = 40

vGap = 20

border = Swing . EmptyBorder (5 , 10 , 5 , 10)

}

this . t i t l e = ”Agent number ” + ag id . t oS t r i ng

this . v i s i b l e = true

this . contents = new BoxPanel (Or i entat i on . Ve r t i c a l) {

background = green

opaque = true

contents += theAgent

border = Swing . EmptyBorder (30 , 30 , 10 , 10) }

this . pack ()

}

505

506

Appendix G

From Dense Bach to Petri Net

This appendix lists the full code of the sub-procedures used by the procedure convert2PetriNet of the

class PetriNetEquivalent. This procedure converts the result of the parsing of a Dense Bach agent into

a structure of Petri Net.

class Petr iNetEqu iva l ent {

def conver t2petr iNet (agent : Expr , p r e f i d : L i s t [St r ing] ,

posX : Int , posY : Int) : (Petr iNet , Int) = { // In t = number o f tokens

var pn = Petr iNet (Nil , Ni l , Ni l , Ni l , Ni l , N i l)

/∗ i n t e r n a l procedures f o r ob t a i n ing in format ions or f o r

mod i f i c a t i on s o f l i s t s ∗/

def removeInPre (l p r e : L i s t [p r e cond i t i on] ,

i d InPlace : L i s t [St r ing]) :

L i s t [p r e cond i t i on] = { // remove pre a s soc i a t e d to p lace In

l p r e match {

case Ni l => Ni l

case pr e cond i t i on (idp , idt , pds , cargr) : : l => {

i f (idp == idInPlace) {

removeInPre (l , i d InP lace)

} else {

pr e cond i t i on (idp , idt , pds , cargr) : : removeInPre (l , i d InP lace)

}

}

}

}

def removeInPlace (lp : L i s t [p l ace]) :

(L i s t [St r ing] , L i s t [p l ace]) = { // remove IN place in a l i s t o f p l a c e s ;

// return id o f p lace IN and the r e s u l t i n g l i s t o f p l a c e s

l p match {

case Ni l => (Nil , N i l)

case place (cx , cy , radius , true , ex i t , r egu lar , name , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : l => (i dp l ace , l)

507

case place (cx , cy , radius , fa lse , ex i t , r egu lar , name , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : l =>

(removeInPlace (l) . 1 , p l ace (cx , cy , radius , fa lse , ex i t ,

r egu lar , name , nbrTokens , nbrReq , idp lace , caraGraphi) : : removeInPlace (l) . 2)

}

}

def removeEmptyPlace (lp : L i s t [p l ace]) : L i s t [p l ace] = { // remove p lace with no id

l p match {

case Ni l => Ni l

case place (cx , cy , radius , entry , ex i t , r egu lar , name , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : l => {

i f (i dp l a c e . isEmpty) {

removeEmptyPlace (l)

} else {

place (cx , cy , radius , entry , ex i t , r egu lar , name , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : removeEmptyPlace (l)

}

}

}

}

def r ep l aceP lacePre (idPlace2BeRemoved : L i s t [St r ing] , newIdPlace : L i s t [St r ing] ,

pc : Int , l p r e : L i s t [p r e cond i t i on]) : L i s t [p r e cond i t i on] = {

// r ep l ac e idPlace2BeRemoved by newIdPlace in a l i s t o f pre

l p r e match {

case Ni l => Ni l

case pr e cond i t i on (idp lace , i d t rans , weight , caraGraphi) : : l => {

i f (i dp l a c e == idPlace2BeRemoved) { pr e cond i t i on (newIdPlace , i d t rans ,

pc , caraGraphi) : : r ep l aceP lacePre (idPlace2BeRemoved , newIdPlace , pc , l) }

else { pr e cond i t i on (idp lace , i d t rans , weight , caraGraphi)

: : r ep l aceP lacePre (idPlace2BeRemoved , newIdPlace , pc , l) }

}

}

}

def removeInAndReplace(id : L i s t [St r ing] , pc : Int ,

pn : Petr iNet) : Petr iNet = { // remove IN of pn with

// inc idence on pre

val (idp , l p) = removeInPlace (pn . SetOfPlaces) // idp removed from pn

val l p r e = rep laceP lacePre (idp , id , pc , pn . SetOfPre) // r ep l ac e idp (removed) by

// id in l i s t o f pre

Petr iNet (lp , pn . SetOfTrans , l p r e , pn . SetOfPost , pn . SetOfPreSpaces , pn . SetOfPostSpaces)

}

def f i nd InP l a c e (lp : L i s t [p l ace]) : L i s t [S t r ing] = { // f i nd a p lace IN

// in the l i s t o f p l a c e s

l p match {

case Ni l => Ni l

case place (cx , cy , radius , true , ex i t , r egu lar , name , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : l => i dp l a c e

case place (cx , cy , radius , fa lse , ex i t , r egu lar , name , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : l => f i nd InP l a c e (l)

}

}

508

def f indOutPlace (lp : L i s t [p l ace]) : L i s t [S t r ing] = { // f i nd p lace OUT in

// the l i s t o f p l a c e s

l p match {

case Ni l => Ni l

case place (cx , cy , radius , entry , true , r egu l ar , name , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : l => i dp l a c e

case place (cx , cy , radius , entry , fa lse , r egu l ar , name , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : l => f indOutPlace (l)

}

}

def unionPetr iNet (pn1 : Petr iNet , pn2 : Petr iNet) : Petr iNet = {// union of two p e t r i n e t

Petr iNet (pn1 . SetOfPlaces : : : pn2 . SetOfPlaces ,

pn1 . SetOfTrans : : : pn2 . SetOfTrans ,

pn1 . SetOfPre : : : pn2 . SetOfPre ,

pn1 . SetOfPost : : : pn2 . SetOfPost ,

pn1 . SetOfPreSpaces : : : pn2 . SetOfPreSpaces ,

pn1 . SetOfPostSpaces : : : pn2 . SetOfPostSpaces)

}

def transfOutToRegPlace (lp : L i s t [p l ace] , nReq : Int) : L i s t [p l ace] = { // transform an

// e x i t p lace to a r e gu l a r p lace

l p match {

case Ni l => Ni l

case place (cx , cy , radius , fa lse , true , fa lse , name , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : l =>

place (cx , cy , radius , fa lse , fa lse , true , name , nbrTokens , nReq , idp lace , caraGraphi) : : l

case place (cx , cy , radius , entry , fa lse , r egu l ar , name , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : l =>

place (cx , cy , radius , entry , fa lse , r egu l ar , name , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : transfOutToRegPlace (l , nReq)

}

}

def f indWeightInPlace (i d p l a c e t : L i s t [St r ing] , l p l a c e : L i s t [p l ace]) : Int = {

// f i nd the weight in a p lace i d p l a c e t (in a l i s t o f p l a c e s)

l p l a c e match {

case Ni l => 0

case place (cx , cy , radius , entry , ex i t , r egu lar , name , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : l => {

i f (i dp l a c e == i dp l a c e t) {

nbrTokens

} else {

f indWeightInPlace (i dp l a c e t , l)

}

}

}

}

def replaceAddTransInPost (newTrans1 : L i s t [St r ing] ,

newTrans2 : L i s t [St r ing] , trans2beReplaced : L i s t [St r ing] ,

l po s t : L i s t [po s t cond i t i on]) : L i s t [po s t cond i t i on] = {

// remove trans2beReplaced by newTrans1 in a pos t AND add a new pos t wi th newTrans2

l p o s t match {

509

case Ni l => Ni l

case pos t cond i t i on (idtrans , i dp l ace , weight , caraGraphi) : : l => {

i f (i d t r an s == trans2beReplaced) {

pos t cond i t i on (newTrans1 , i dp l ace , weight , caraGraphi)

: : po s t cond i t i on (newTrans2 ,

i dp l ace , weight , caraGraphi)

: : replaceAddTransInPost (newTrans1 , newTrans2 , trans2beReplaced , l)

} else {

pos t cond i t i on (idtrans , i dp l ace , weight , caraGraphi)

: : replaceAddTransInPost (newTrans1 , newTrans2 , trans2beReplaced , l)

}

}

}

}

def c o l l e c t I dP l a c e s (l p l a c e : L i s t [p l ace]) : L i s t [L i s t [S t r ing]] = { // c o l l e c t a l l

// the i d p l a c e s in a l i s t o f p l a c e s

l p l a c e match { // creat e a l i s t wi th a l l t he i dp l a c e pre sen t in a l i s t o f p l a c e s

case Ni l => Ni l

case place (cx , cy , radius , entry , ex i t , r egu lar , name , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : l => {

i dp l a c e : : c o l l e c t I dP l a c e s (l)

}

}

}

def co l l e c t IdTr an sPr e (l p r e : L i s t [p r e cond i t i on] ,

i nP lace : L i s t [St r ing]) : L i s t [L i s t [S t r ing]] = {

// c o l l e c t in a l i s t o f pre a l l t he i d t r an s r e l a t e d

// to a s p e c i f i c inPlace

l p r e match {

case Ni l => Ni l

case pr e cond i t i on (idp lace , i d t rans , weight , caraGraphi) : : l => {

i f (i dp l a c e == inPlace) {

i d t r an s : : c o l l e c t IdTr an sPre (l , i nP lace)

} else {

co l l e c t IdTr an sPre (l , i nP lace)

}

}

}

}

def g i v eA l l (idPlaceAux : L i s t [St r ing] , l IdTrans : L i s t [L i s t [S t r ing]] ,

weight : Int , caraGraphi : St r ing) : L i s t [p r e cond i t i on] = {

l IdTrans match { // generat e the l i s t o f a l l pre o f idTrans , from the l i s t

// lIdTrans , f o r the p lace idPlaceAux

case Ni l => Ni l

case idTrans : : l => pr e cond i t i on (idPlaceAux , idTrans , weight ,

caraGraphi) : : g i v eA l l (idPlaceAux , l , weight , caraGraphi)

}

}

def newPostAux (idPlaceAux : L i s t [St r ing] , l IdTrans : L i s t [L i s t [S t r ing]] ,

weight : Int) : L i s t [po s t cond i t i on] = {

l IdTrans match { // generat e new pos t f o r the au x i l i a r y p l ac e s idPlaceAux

510

case Ni l => Ni l

case idTrans : : l => pos t cond i t i on (idTrans , idPlaceAux , weight ,

” black ”) : : newPostAux (idPlaceAux , l , weight)

}

}

def valueMax (a : Int , b : Int) : Int = { // return max va lue beteen a and b

i f (a > b) {

a

}

else {

b

}

}

def valueSum (a : Int , b : Int) : Int = { // return summation of a and b

a + b

}

/∗ end of i n t e r n a l methods ∗/

511

512

Appendix H

Svg Picture of Petri Net

H.1 Subprocedures for the conversion of Petri Net to svg

This appendix lists the full code of the sub-procedures used by the procedure convertPn2Svg of the class

pn2xml. This procedure converts the Petri Net structure into an svg picture, via an xml file.

class pn2xml (var nomFile : St r ing) {

var xmlFi l e = new PrintWriter (new F i l e (nomFile))

def openSvgFi le () { // as no wr i t i n g in f i l e a f t e r c los ing ,

// open a new xml f i l e f o r every s t ep o f execut ion of Pe t r i Net

xmlFi l e = new PrintWriter (new F i l e (nomFile))

}

def c l o s e f i l e () { // c l o s e xml f i l e

xmlFi l e . c l o s e ()

}

def beginSVG () { // header o f t he xml f i l e wi th r e f e r enc e

// to t ex t´anchor . c s s + d e f i n i t i o n of marker arrow

xmlFi l e . wr i te (”<?xml ve r s i on =\”1.0\” encoding=\”utf ´8\”?>\n”)

xmlFi l e . wr i te (”<?xml´s t y l e s h e e t type=\” text / c s s \”

h r e f=\”text´anchor . c s s \” cha r s e t=\”utf ´8\”?>\n”)

xmlFi l e . wr i te (”<!DOCTYPE svg PUBLIC \”´//W3C//DTD SVG 20010904//EN\”

\” http : //www.w3 . org /TR/2001/REĆ SVG´20010904/DTD/ svg10 . dtd\”>\n”)

xmlFi l e . wr i te (”<svg width=\”1600px\” he i ght=\”1600px\” xml : lang=\” f r \”

xmlns=\”http : //www.w3 . org /2000/ svg \”

xmlns : x l i nk=\”http : //www.w3 . org /1999/ x l i nk\”>\n”)

xmlFi l e . wr i te (”<t i t l e >XML de s c r i p t i o n o f Pe t r i Net f o r SVG</ t i t l e >\n”)

xmlFi l e . wr i te (”<def s>\n”)

xmlFi l e . wr i te (”<marker id=\”arrow\” markerWidth=\”10\” markerHeight=\”10\”

refX=\”0\” refY=\”4\” o r i e n t=\”auto \” markerUnits=

\” strokeWidth\”>\n”)

xmlFi l e . wr i te (”<path d=\”M 0 ,0 L 4 , 3 . 5 L 0 , 3 . 5 L 0 , 4 . 5

513

L 4 , 4 . 5 L 0 ,8 L 10 ,4 z \” f i l l =\”black \” />\n”)

xmlFi l e . wr i te (”</marker>\n”)

xmlFi l e . wr i te (”</def s>\n”)

}

def endSVG() { // end marker o f t he xml f i l e

xmlFi l e . wr i te (”</svg>”)

}

/∗ beg in o f methods to draw the d i f f e r e n t components o f a Pe t r i Net ∗/

def drawTrans i t ion (posx : Int , posy : Int , width : Int , he i ght : Int) {

// draw by d e f a u l t t r an s i t i o n in b l a c k

xmlFi l e . wr i te (f ”””<r e c t x = \” $posx%2d\” y = \” $posy%2d\” width = \” $width%2d\”

he i ght = \” $he i ght%2d\” s t y l e= \” f i l l : none ; s t r oke : black ; stroke ´width : 3 px;\”/>\n”””)

}

def drawTrans i t ionColour (posx : Int , posy : Int , width : Int , he i ght : Int) {

// draw p o s s i b l e f i r a b l e t r an s i t i o n in red

xmlFi l e . wr i te (f ”””<r e c t x = \” $posx%2d\” y = \” $posy%2d\” width = \” $width%2d\”

he i ght = \” $he i ght%2d\” s t y l e= \” f i l l : none ; s t r oke : red ; stroke ´width : 3 px;\”/>\n”””)

}

def drawPlaceIN (posx : Int , posy : Int , r ad ius : Int) { // draw entry p lace In in b lue

xmlFi l e . wr i te (f ”””< c i r c l e cx = \” $posx%2d\” cy = \” $posy%2d\” r = \” $rad ius%2d\”

s t y l e= \” f i l l : white ; s t r oke : blue ; s troke ´width : 3 px ;\” />\n”””)

}

def drawPlaceOUT (posx : Int , posy : Int , r ad ius : Int) { // draw e x i t p lace Out in b lue

xmlFi l e . wr i te (f ”””< c i r c l e cx = \” $posx%2d\” cy = \” $posy%2d\” r = \” $rad ius%2d\”

s t y l e= \” f i l l : white ; s t r oke : blue ; s troke ´width : 3 px ;\” />\n”””)

}

def drawPlace (posx : Int , posy : Int , r ad ius : Int , c o l o r : St r ing) {

// draw by d e f a u l t a p lace in b l a c k

xmlFi l e . wr i te (f ”””< c i r c l e cx = \” $posx%2d\” cy = \” $posy%2d\” r = \” $rad ius%2d\”

s t y l e= \” f i l l : white ; s t r oke : $ co l o r%s ; stroke ´width : 3 px ;\” />\n”””)

}

def drawP2T(pos ix : Int , pos i y : Int , pos fx : Int , pos fy : Int) {

// draw s t r a i g h t l i n e arrow from place to t r an s i t i o n

xmlFi l e . wr i te (f ”””< l i n e x1= \” $pos ix%2d\” y1= \” $pos iy%2d\” x2= \” $pos fx%2d\” y2=

\” $pos fy%2d\” s t r oke=\”black \” stroke ´width=\”3\” marker´end=\”u r l (#arrow)\”/>\n”””)

}

def drawT2P(pos ix : Int , pos i y : Int , pos fx : Int , pos fy : Int) {

// draw s t r a i g h t l i n e arrow from t r an s i t i o n to p lace

xmlFi l e . wr i te (f ”””< l i n e x1= \” $pos ix%2d\” y1= \” $pos iy%2d\” x2= \” $pos fx%2d\” y2=

\” $pos fy%2d\” s t r oke=\”black \” stroke ´width=\”3\” marker´end=\”u r l (#arrow)\”/>\n”””)

}

def drawT2Pcourbe (pos i x : Int , pos i y : Int , po in fx : Int , po in fy : Int , pos fx : Int ,

pos fy : Int , c o l o r : St r ing) {

// draw curved l i n e arrow from t r an s i t i o n to p lace

xmlFi l e . wr i te (f ”””<path d= ”M $pos ix%2d , $pos iy%2d Q $po in fx%2d , $po in fy%2d $pos fx%2d ,

514

$pos fy%2d” s t y l e = ” s t r oke : $ co l o r%s ; stroke ´width : 3 px ; f i l l : none ;

marker´end : u r l (#arrow)” />\n”””)

}

def drawP2Tcourbe (pos i x : Int , pos i y : Int , po in fx : Int , po in fy : Int , pos fx : Int ,

pos fy : Int , c o l o r : St r ing) {

// draw curved l i n e arrow from place to t r an s i t i o n

xmlFi l e . wr i te (f ”””<path d= ”M $pos ix%2d , $pos iy%2d Q $po in fx%2d , $po in fy%2d $pos fx%2d ,

$pos fy%2d” s t y l e = ” s t r oke : $ co l o r%s ; stroke ´width : 3 px ; f i l l : none ;

marker´end : u r l (#arrow)” />\n”””)

}

def drawText (postx : Int , posty : Int , width : Int , he i ght : Int , name : Str ing ,

token : Str ing , dens i ty : Int) {

// f o r t r an s i t i o n r epr e s en t i n g a pr imi t i v e , draw name of pr imi t i v e , token name and dens i t y

val posX = postx + 7∗width /12

val posY = posty ´ 6

xmlFi l e . wr i te (f ”””<text id=\”$name%s \” x=\”$posX%2d\” y=\”$posY%2d\”>

$name%s ($token%s ($dens i ty%d)) </text>\n”””)

}

def drawTransName(postx : Int , posty : Int , width : Int , he i ght : Int , name : Str ing) {

// f o r t r an s i t i o n not r e l a t e d to a pr imi t i v e , draw i t s name only

val posX = postx + 7∗width /12

val posY = posty ´ 6

xmlFi l e . wr i te (f ”””<text id=\”$name%s \” x=\”$posX%2d\” y=\”$posY%2d\”> $name%s </text>\n”””)

}

def drawTextColour (postx : Int , posty : Int , width : Int , he i ght : Int ,

name : Str ing , key : Str ing) {

// draw t e x t in co lour

val posX = postx + 7∗width /12

val posY = posty ´ 3

xmlFi l e . wr i te (f ”””<text id=\”$name%s \” x=\”$posX%2d\” y=\”$posY%2d\”>

$key%s </text>\n”””)

}

def drawTokenName(posX : Int , posY : Int , token : Str ing) {

// draw token name in f r on t o f i t s p lace and ant i´p lace in token space

xmlFi l e . wr i te (f ”””<text id=\”$token%s \” x=\”$posX%2d\” y=\”$posY%2d\”>

$token%s </text>\n”””)

}

def drawNbrTok (posX : Int , posY : Int , dens i ty : Int) {

// draw number o f token in a p lace

xmlFi l e . wr i te (f ”””<text id=\”middle\” x=\”$posX%2d\” y=\”$posY%2d\”>

$dens i ty%d </text>\n”””)

}

/∗ end of drawing methods ∗/

H.2 Conversion of Petri Net to svg

515

def convertPn2Svg (pn : Petr iNet , mp : Map[Int , L i s t [St r ing]]) {

openSvgFi le ()

beginSVG ()

// drawing o f the arrows of the pr e cond i t i on s ´ from place to t r an s i t i o n

pn . SetOfPre . f o r each (elm => { // f o r every pr e cond i t i on s o f f i n a l Pe t r i Net

(elm . i dp l a c e) . head match { // drawing determined by type o f s t a r t i n g p lace

case ”Auxl+” => {

drawP2Tcourbe (f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)+radius ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)´ r ad ius /6 ,

findCoordXOfTrans(elm . idtrans , pn . SetOfTrans) + findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+(findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)) /3 ,

findCoordXOfTrans(elm . idtrans , pn . SetOfTrans) + findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´ radius , ” green ”)

}

case ”Auxl” => {

drawP2Tcourbe (f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)+radius ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)´ r ad ius /6 ,

findCoordXOfTrans(elm . idtrans , pn . SetOfTrans) + findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+(findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)) /3 ,

findCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+ findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´ radius , ” green ”)

}

case ”Auxr+” => {

drawP2Tcourbe (f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)´ radius ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)´ r ad ius /6 ,

findCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+(findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)) /3 , findCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+

findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´ radius , ” green ”)

}

case ”Auxr” => {

drawP2Tcourbe (f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)´ radius ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)´ r ad ius /6 ,

findCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+ findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+(findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)) /3 ,

findCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´ radius , ” green ”)

}

case ” In” => {

drawP2Tcourbe (f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces) ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+radius ,

f indCoordXOfTrans(elm . idtrans , pn . SetOfTrans) + findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)/2 , findCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+

findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´ radius , ” black ”)

}

case => {

// f o r out p lace ´ drawing depending from the r e l a t i v e pos i t i on between p lace and t r an s i t i o n

i f (f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)

516

< f indCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+

findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2) { // i f p l a c e on l e f t o f t r an s i t i o n

drawP2Tcourbe (f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)+7∗ r ad ius /10 ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+7∗ r ad ius /10 ,

findCoordXOfTrans(elm . idtrans , pn . SetOfTrans) ,

(f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+(findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)) /2) , f indCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+

findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/4 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´5∗ r ad ius /6 , ” black ”)

} else { // i f p lace on r i g h t o f t r an s i t i o n

i f (f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces) > f indCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+

findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2) {

drawP2Tcourbe (f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)´7∗ r ad ius /10 ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+7∗ r ad ius /10 ,

findCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+findWidthOfTrans (elm . idtrans , pn . SetOfTrans) ,

(f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+(findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)) /2) ,

f indCoordXOfTrans(elm . idtrans , pn . SetOfTrans) +

3∗ f indWidthOfTrans (elm . idtrans , pn . SetOfTrans)/4 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´5∗ r ad ius /6 , ” black ”)

} else { // p lace and t r an s i t i o n a l i gned

drawP2T(f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces) ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces) ,

f indCoordXOfTrans(elm . idtrans , pn . SetOfTrans) + findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´ r ad ius)

}

}

}

}

})

// drawing o f the arrows of the pos t c ond i t i on s ´ from t r an s i t i o n to p lace

// f o r au x i l i a r y p lace s , t he or i en t a t i on of the curvature depends on the

// r e l a t i v e d i s tance between the t r an s i t i o n and the p lace

pn . SetOfPost . f o r each (elm => { // f o r every pos t c ond i t i on s o f f i n a l Pe t r i Net

(elm . i dp l a c e) . head match { // drawing determined by type o f po in t ed p lace

case ”Auxl” => {

i f ((findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)) > 300) {

// i f r e l a t i v e d i s tance i s b i g g e r than an a r b i t r a r y d i s tance o f 300

drawT2Pcourbe (findCoordXOfTrans(elm . idtrans , pn . SetOfTrans) ,

f indCoordYOfTrans(elm . idtrans , pn . SetOfTrans)+f indHeightOfTrans (elm . idtrans ,

pn . SetOfTrans)/2 , f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces) ,

f indCoordYOfTrans(elm . idtrans , pn . SetOfTrans) , f indCoordXOfPlace(elm . idp lace ,

pn . SetOfPlaces) , f indCoordYOfPlace(elm . idp lace ,

pn . SetOfPlaces)+2∗ radius , ” green ”)

} else {

drawT2Pcourbe (findCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+

findWidthOfTrans (elm . idtrans , pn . SetOfTrans) ,

f indCoordYOfTrans(elm . idtrans , pn . SetOfTrans) ,

f indCoordXOfTrans(elm . idtrans , pn . SetOfTrans) ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)´9∗ radius ,

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)+2∗ radius ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces) , ” green ”)

}

517

}

case ”Auxl+” => {

i f ((findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)) > 300) {

drawT2Pcourbe (findCoordXOfTrans(elm . idtrans , pn . SetOfTrans) ,

f indCoordYOfTrans(elm . idtrans , pn . SetOfTrans) +

f indHeightOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces) ,

f indCoordYOfTrans(elm . idtrans , pn . SetOfTrans) ,

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces) ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+2∗ radius , ” green ”)

} else {

drawT2Pcourbe (findCoordXOfTrans(elm . idtrans , pn . SetOfTrans) +

findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´ radius ,

f indCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+findWidthOfTrans (elm . idtrans ,

pn . SetOfTrans)/2 , f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+

(findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)) /3 ,

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)+2∗ radius ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces) , ” green ”)

}

}

case ”Auxr” => {

i f ((findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)) > 300) {

drawT2Pcourbe (findCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+

findWidthOfTrans (elm . idtrans , pn . SetOfTrans) , f indCoordYOfTrans(elm . idtrans ,

pn . SetOfTrans) + f indHeightOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces) ,

f indCoordYOfTrans(elm . idtrans , pn . SetOfTrans) ,

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces) ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+2∗ radius , ” green ”)

} else {

drawT2Pcourbe (findCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+

findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 , findCoordYOfTrans(elm . idtrans ,

pn . SetOfTrans) , f indCoordXOfTrans(elm . idtrans , pn . SetOfTrans) ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)´9∗ radius ,

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)´2∗ radius ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces) , ” green ”)

}

}

case ”Auxr+” => {

i f ((findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)) > 300) {

drawT2Pcourbe (findCoordXOfTrans(elm . idtrans , pn . SetOfTrans)+

findWidthOfTrans (elm . idtrans , pn . SetOfTrans) ,

f indCoordYOfTrans(elm . idtrans , pn . SetOfTrans) +

f indHeightOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces) ,

f indCoordYOfTrans(elm . idtrans , pn . SetOfTrans) ,

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces) ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+2∗ radius , ” green ”)

} else {

drawT2Pcourbe (findCoordXOfTrans(elm . idtrans , pn . SetOfTrans) +

518

f indWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´ radius ,

f indCoordXOfTrans(elm . idtrans , pn . SetOfTrans) +

findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)+

(findCoordYOfTrans(elm . idtrans , pn . SetOfTrans)´

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)) /3 ,

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)´2∗ radius ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces) , ” green ”)

}

}

case => { // f o r other p l a c e s drawing o f s t r a i g h t l i n e s

i f (findCoordXOfTrans(elm . idtrans , pn . SetOfTrans) +

findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 <

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)) {

// l i n e t i l t e d from l e f t to r i g h t

drawT2P(findCoordXOfTrans(elm . idtrans , pn . SetOfTrans) +

findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans) +

f indHeightOfTrans (elm . idtrans , pn . SetOfTrans) ,

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)´15∗ r ad ius /10 ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)´ r ad ius)

} else { // l i n e t i l t e d from r i g h t to l e f t

i f (findCoordXOfTrans(elm . idtrans , pn . SetOfTrans) +

findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 >

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)) {

drawT2P(findCoordXOfTrans(elm . idtrans , pn . SetOfTrans) +

findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans) +

f indHeightOfTrans (elm . idtrans , pn . SetOfTrans) ,

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces)+15∗ r ad ius /10 ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)´ r ad ius)

} else { // same x pos i t i on , the s t r a i g h t l i n e i s v e r t i c a l

drawT2P(findCoordXOfTrans(elm . idtrans , pn . SetOfTrans) +

findWidthOfTrans (elm . idtrans , pn . SetOfTrans)/2 ,

findCoordYOfTrans(elm . idtrans , pn . SetOfTrans) +

f indHeightOfTrans (elm . idtrans , pn . SetOfTrans) ,

f indCoordXOfPlace(elm . idp lace , pn . SetOfPlaces) ,

f indCoordYOfPlace(elm . idp lace , pn . SetOfPlaces)´2∗ r ad ius)

}

}

}

}

})

// drawing o f the t r a n s i t i o n s in b lack , wi th the except ion

// of the f i r a b l e l i s t e d in the mapping , t ha t are drawn in red

pn . SetOfTrans . f o r each (elm => {

// i f NOT belongToMap , draw in b l ac k

i f (belongToMap (mp, elm . i d t r an s) . 2 == Ni l) {

i f (elm . token == ””) {

drawTrans i t ion (elm . tx , elm . ty , elm . width , elm . he i ght)

drawTransName(elm . tx + 18 , elm . ty , elm . width , elm . height , elm . name)

} else {

drawTrans i t ion (elm . tx , elm . ty , elm . width , elm . he i ght)

519

drawText (elm . tx + 5 , elm . ty , elm . width , elm . height , elm . name ,

elm . token , elm . dens i ty)

}

} else { // e l s e draw in co lour

i f (elm . token == ””) {

drawTrans i t ionColour (elm . tx , elm . ty , elm . width , elm . he i ght)

drawTransName(elm . tx + 18 , elm . ty , elm . width , elm . height , elm . name)

} else {

drawTrans i t ionColour (elm . tx , elm . ty , elm . width , elm . he i ght)

drawText (elm . tx + 5 , elm . ty , elm . width , elm . height , elm . name ,

elm . token , elm . dens i ty)

}

}

})

// drawing o f the p l ac e s and t h e i r number o f tokens

pn . SetOfPlaces . f o r each (elm => {

(elm . i dp l a c e) . head match {

case ” In ” => {

drawPlace (elm . cx , elm . cy+radius , elm . radius , ” blue ”)

drawNbrTok (elm . cx , elm . cy+radius , elm . nbrTokens)

}

case ”Auxl” => {

drawPlace (elm . cx , elm . cy , elm . radius , ” green ”)

drawNbrTok (elm . cx , elm . cy , elm . nbrTokens)

}

case ”Auxr” => {

drawPlace (elm . cx , elm . cy , elm . radius , ” green ”)

drawNbrTok (elm . cx , elm . cy , elm . nbrTokens)

}

case ”Auxl+” => {

drawPlace (elm . cx , elm . cy , elm . radius , ” green ”)

drawNbrTok (elm . cx , elm . cy , elm . nbrTokens)

}

case ”Auxr+” => {

drawPlace (elm . cx , elm . cy , elm . radius , ” green ”)

drawNbrTok (elm . cx , elm . cy , elm . nbrTokens)

}

case ”Out” => {

// f i n a l out o f t he Pe t r i Net in b lue

i f ((elm . i dp l a c e) . t a i l == Ni l) {

drawPlace (elm . cx , elm . cy , elm . radius , ” blue ”)

drawNbrTok (elm . cx , elm . cy , elm . nbrTokens)

} else { // i n t e r n a l out o f t he Pe t r i Net in b l a c k

drawPlace (elm . cx , elm . cy , elm . radius , ” black ”)

drawNbrTok (elm . cx , elm . cy , elm . nbrTokens)

}

}

case ”ns” => {

i f (elm . name != ””) {

drawTokenName(xOfIn + 3∗ r ad ius /2 , yOfIn , elm . name)

drawPlace (xOfIn + 7∗ r ad ius /2 , yOfIn , radius , ” black ”)

drawNbrTok (xOfIn + 7∗ r ad ius /2 , yOfIn , elm . nbrTokens)

}

520

}

case ” as ” => {

i f (elm . name != ””) {

drawPlace (xOfIn + 13∗ r ad ius /2 , yOfIn , radius , ” red ”)

drawNbrTok (xOfIn + 13∗ r ad ius /2 , yOfIn , elm . nbrTokens)

yOfIn += 3∗ r ad ius

}

}

}

})

endSVG()

c l o s e f i l e ()

}

}

521

522

Appendix I

Running the Petri Net

I.1 Running Petri Net

This appendix lists the full code of the sub-procedures used by the procedure execute of the class

runningPetriNet. This procedure executes the Petri Net. Using a pre-selected list of firable transitions,

it fires one of them, modifies the number of tokens in the involved places, redraws the new state of the

Petri Net, and refreshes the list of firable transitions.

class runningPetr iNet (var pn : Petr iNet) {

var mapOfFirableTrans : Map[Int , L i s t [St r ing]] = Map()

// Map between number i n t and f i r a b l e t r an s i t i o n

var cur entP lace : L i s t [St r ing] = Ni l

var curentTrans : L i s t [St r ing] = Ni l

var cur entL i s tPre : L i s t [p r e cond i t i on] = Ni l

var cur entL i s tPos t : L i s t [po s t cond i t i on] = Ni l

var l i s t IdTr an s : L i s t [L i s t [S t r ing]] = Ni l

var l i s tIdTransCopy : L i s t [L i s t [S t r ing]] = Ni l

var curentListExecPre : L i s t [p r e cond i t i on] = Ni l

var cur entL i s tPreSpaces : L i s t [p r e cond i t i on] = Ni l

var cur entL i s tPos tSpaces : L i s t [po s t cond i t i on] = Ni l

/∗ i n t e r n a l methods to r e t r i e v e u s e f u l l in format ions

from l i s t s o f t he Pe t r i Net ∗/

def subListPre (idTrans : L i s t [St r ing] , lPreCond : L i s t [p r e cond i t i on])

: L i s t [p r e cond i t i on] = {

// return a l i s t o f a l l t he p r e cond i t i on s corresponding to a s p e c i f i c idTrans

lPreCond match {

case Ni l => Ni l

case pr e cond i t i on (idp lace , i d t rans , weight , caraGraphi) : : l => {

i f (i d t r an s == idTrans) {

pr e cond i t i on (idp lace , i d t rans , weight , caraGraphi) : : subListPre (idTrans , l)

} else {

subListPre (idTrans , l)

}

523

}

}

}

def subListPreSpaces (idTrans : L i s t [St r ing] , lPreSpaces : L i s t [p r e cond i t i on]) :

L i s t [p r e cond i t i on] = {

// return a l i s t o f p r e cond i t i on s (r e l a t e d to the token space) f o r a

// s p e c i f i c idTrans

lPreSpaces match {

case Ni l => Ni l

case pr e cond i t i on (idp lace , i d t rans , weight , caraGraphi) : : l => {

i f (i d t r an s == idTrans) {

pr e cond i t i on (idp lace , i d t rans , weight , caraGraphi) : : subListPreSpaces (idTrans , l)

} else {

subListPreSpaces (idTrans , l)

}

}

}

}

def subLi s tPos t (idTrans : L i s t [St r ing] , lPostCond : L i s t [po s t cond i t i on]) :

L i s t [po s t cond i t i on] = {

// return a l i s t o f po s t c ond i t i on corresponding to a s p e c i f i c idTrans

lPostCond match {

case Ni l => Ni l

case pos t cond i t i on (idtrans , i dp l ace , weight , caraGraphi) : : l => {

i f (i d t r an s == idTrans) {

pos t cond i t i on (idtrans , i dp l ace , weight , caraGraphi) : : subL i s tPos t (idTrans , l)

} else {

subLi s tPos t (idTrans , l)

}

}

}

}

def subListPostSpaces (idTrans : L i s t [St r ing] , lPos tSpaces : L i s t [po s t cond i t i on]) :

L i s t [po s t cond i t i on] = {

// return a l i s t o f po s t c ond i t i on (r e l a t e d to the token space)

// f o r a s p e c i f i c idTrans

lPos tSpaces match {

case Ni l => Ni l

case pos t cond i t i on (idtrans , i dp l ace , weight , caraGraphi) : : l => {

i f (i d t r an s == idTrans) {

pos t cond i t i on (idtrans , i dp l ace , weight , caraGraphi) : : subListPostSpaces (idTrans , l)

} else {

subListPostSpaces (idTrans , l)

}

}

}

}

def getNumbTokInPlace(idP lace : L i s t [St r ing] , l p l a c e : L i s t [p l ace]) : Int = {

// return the number o f tokens f o r a s p e c i f i c idPlace , from a l i s t o f p l a c e s

l p l a c e match {

case Ni l => 0

524

case place (cx , cy , radius , entry , ex i t , r egu lar , name , nbrTokens , nbrReq , idp lace ,

caraGraphi) : : l => {

i f (i dp l a c e == idPlace) {

nbrTokens

} else {

getNumbTokInPlace(idPlace , l)

}

}

}

}

def f i r a b l e P r e (idTrans : L i s t [St r ing] , pre : L i s t [p r e cond i t i on] , p la :

L i s t [p l ace]) : Boolean = {

// check i f a s p e c i f i c t r an s i t i o n (idTrans) , f o r a l l i t s r e l a t e d p lace s ,

// i s f i r a b l e or not

var lTransPre : L i s t [p r e cond i t i on] = Ni l

var lPlaceNames : L i s t [L i s t [S t r ing]] = Ni l

var l P l a c e s : L i s t [p l ace] = Ni l

var r e s u l t : Boolean = true

lTransPre = subListPre (idTrans , pre)

lTransPre . f o r each (w => {

// p r i n t l n (w. weight , getNumbTokInPlace (w. idp lace , p la))

i f ((r e s u l t == true) && (w. weight <= getNumbTokInPlace(w. idp lace , p la))) {

r e s u l t = r e s u l t & true

} else {

r e s u l t = fa l se

}

})

return r e s u l t

}

def f i r ab l eP r eSpace s (idTrans : L i s t [St r ing] , pre : L i s t [p r e cond i t i on] ,

p la : L i s t [p l ace]) : Boolean = {

// check i f a s p e c i f i c t r an s i t i o n (idTrans) ,

// f o r a l l i t s r e l a t e d p l ac e s in the token space , i s f i r a b l e or not

var lTransPre : L i s t [p r e cond i t i on] = Ni l

var l P l a c e s : L i s t [p l ace] = Ni l

var r e s u l t : Boolean = true

lTransPre = subListPreSpaces (idTrans , pre)

lTransPre . f o r each (w => {

// p r i n t l n (w. weight , getNumbTokInPlace (w. idp lace , p la))

i f ((r e s u l t == true) && (w. weight <= getNumbTokInPlace(w. idp lace , p la))) {

r e s u l t = r e s u l t & true

} else {

r e s u l t = fa l se

}

})

525

return r e s u l t

}

def cho i ceF i rab l eTrans (mapChoice : Map[Int , L i s t [St r ing]]) : L i s t [S t r ing] = {

// return the choice among a mapping o f f i r a b l e t r an s i t i o n s

var cho i ce : Int = 0

var r e sponse : L i s t [St r ing] = Ni l

p r i n t l n (” L i s t o f the f i r a b l e t r a n s i t i o n s :\n”)

mapChoice . f o r each (elm => { p r i n t l n (elm , ”\n”)})

while (r e sponse == Ni l) {

p r i n t l n (”Make your cho i ce :\n”)

var s = (s ca l a . i o . StdIn . readLine ()) . to Int

p r i n t l n (s)

i f (mapChoice conta ins s) {

r e sponse = mapChoice (s)

} else {

p r i n t l n (”Value not pr es ent .\n”)

}

}

return r e sponse

}

def getNameInTrans (idTrans : L i s t [St r ing] , lTrans : L i s t [t r a n s i t i o n]) : S t r ing = {

// return the name of a s p e c i f i c idTrans among a l i s t o f t r an s i t i o n s

lTrans match {

case Ni l => ””

case t r a n s i t i o n (tx , ty , width , height , name , token , dens i ty , i d t rans , caraGraphi) : : l => {

i f (i d t r an s == idTrans) {

name

} else {

getNameInTrans (idTrans , l)

}

}

}

}

def s ub s t r a c t (a : Int , b : Int) : Int = { // compute d i f f e r e n c e between a and b

a ´ b

}

def add (a : Int , b : Int) : Int = { // compute summation of a and b

a + b

}

def s ub s t r a c t InP l a c e (idP lace : L i s t [St r ing] , l p l a c e : L i s t [p l ace] ,

weight : Int) : L i s t [p l ace] = {

// s u b s t r a c t weight (o f a t r an s i t i o n) from number o f tokens in a

// s p e c i f i c idP lace

l p l a c e match {

case Ni l => Ni l

526

case place (cx , cy , radius , entry , ex i t , name , r egu lar , nbrTokens , nbrReq ,

idp lace , caraGraphi) : : l => {

i f (i dp l a c e == idPlace) {

place (cx , cy , radius , entry , ex i t , name , r egu lar ,

s ub s t r a c t (getNumbTokInPlace(idPlace , l p l a c e) ,

weight) , nbrReq , idp lace , caraGraphi) : : s ub s t r a c t InP l a c e (idPlace , l , weight)

} else {

place (cx , cy , radius , entry , ex i t , name , r egu lar , nbrTokens ,

nbrReq , idp lace , caraGraphi) : : s ub s t r a c t InP l a c e (idPlace , l , weight)

}

}

}

}

def addInPlace (idP lace : L i s t [St r ing] , l p l a c e : L i s t [p l ace] ,

weight : Int) : L i s t [p l ace] = {

// add weight (o f a t r an s i t i o n) to number o f tokens in a s p e c i f i c idP lace

l p l a c e match {

case Ni l => Ni l

case place (cx , cy , radius , entry , ex i t , name , r egu lar , nbrTokens , nbrReq , idp lace ,

caraGraphi) : : l => {

i f (i dp l a c e == idPlace) {

place (cx , cy , radius , entry , ex i t , name , r egu lar ,

add (getNumbTokInPlace(idPlace , l p l a c e) , weight)∗nbrReq , nbrReq , idp lace ,

caraGraphi) : : addInPlace (idPlace , l , weight)

} else {

place (cx , cy , radius , entry , ex i t , name , r egu lar , nbrTokens , nbrReq ,

idp lace , caraGraphi) : : addInPlace (idPlace , l , weight)

}

}

}

}

/∗ end of i n t e r n a l u s e f u l l methods ∗/

/∗ pr i n t i n g methods ∗/

def p r i n tL i s t (l p l a c e : L i s t [p l ace]) {

l p l a c e . f o r each (x => {

p r i n t l n (x)

})

}

def pr i n tL i s tP r e (l p r e : L i s t [p r e cond i t i on]) {

l p r e . f o r each (x => {

p r i n t l n (x)

})

}

def pr i n tL i s tPo s t (l po s t : L i s t [po s t cond i t i on]) {

l p o s t . f o r each (x => {

p r i n t l n (x)

})

}

527

/∗ end of p r i n t i n g methods ∗/

I.2 Running Petri Net Main Methods

def modi fyInPetr iNet (idTrans : L i s t [St r ing] , pn : Petr iNet) : Petr iNet = {

// modify number o f token in p l ac e s a f t e r f i r i n g o f t r an s i t i o n s

var lTransPre : L i s t [p r e cond i t i on] = Ni l

var lTransPreSpaces : L i s t [p r e cond i t i on] = Ni l

var lTransPost : L i s t [po s t cond i t i on] = Ni l

var lTransPostSpaces : L i s t [po s t cond i t i on] = Ni l

var l P l a c e s : L i s t [p l ace] = Ni l

var poids : Int = 0

var i dp l a c e : L i s t [St r ing] = Ni l

var nbrTok : Int = 0

var setAux : L i s t [p l ace] = pn . SetOfPlaces

// f o l l ow i n g type o f t r an s i t i o n

getNameInTrans (idTrans , pn . SetOfTrans) match {

// t r an s i t i o n concerned by Pe t r i Net and token space

case ” t e l l ” | ” get ” | ”ask” | ”nask” => {

// c o l l e c t a l l t he pre o f a s p e c i f i c idTrans

lTransPre = subListPre (idTrans , pn . SetOfPre)

// c o l l e c t a l l t he pre o f a s p e c i f i c idTrans r e l a t e d to token space

lTransPreSpaces = subListPreSpaces (idTrans , pn . SetOfPreSpaces)

// c o l l e c t a l l t he pos t o f a s p e c i f i c idTrans

lTransPost = subLi s tPos t (idTrans , pn . SetOfPost)

// c o l l e c t a l l t he pos t o f a s p e c i f i c idTrans r e l a t e d to token space

lTransPostSpaces = subListPostSpaces (idTrans , pn . SetOfPostSpaces)

lTransPre . f o r each (x => { // f o r every pre . . .

// s u b s t r a c t weight o f p lace i dp l a c e

setAux = subs t r a c t InP l a c e (x . i dp l ace , setAux , x . weight)

})

lTransPost . f o r each (x => { // f o r every pos t . . .

// add weight o f p lace i dp l a c e

setAux = addInPlace (x . i dp l ace , setAux , x . weight)

})

// f o r every pre o f token space . . .

lTransPreSpaces . f o r each (x => {

// s u b s t r a c t weight

setAux = subs t r a c t InP l a c e (x . i dp l ace , setAux , x . weight)

})

// f o r every pos t o f token space . . .

lTransPostSpaces . f o r each (x => {

// add weight o f p lace i dp l a c e

setAux = addInPlace (x . i dp l ace , setAux , x . weight)

})

// convert adapted Pe t r i Net to svg

pn2Svg . convertPn2Svg (Petr iNet (setAux , pn . SetOfTrans ,

pn . SetOfPre , pn . SetOfPost ,

528

pn . SetOfPreSpaces , pn . SetOfPostSpaces) ,Map())

return Petr iNet (setAux , pn . SetOfTrans , pn . SetOfPre ,

pn . SetOfPost , pn . SetOfPreSpaces , pn . SetOfPostSpaces)

}

// t r an s i t i o n concerned by Pe t r i Net only

case => {

lTransPre = subListPre (idTrans , pn . SetOfPre)

lTransPost = subLi s tPos t (idTrans , pn . SetOfPost)

lTransPre . f o r each (x => {

setAux = subs t r a c t InP l a c e (x . i dp l ace , setAux , x . weight)

})

lTransPost . f o r each (x => {

setAux = addInPlace (x . i dp l ace , setAux , x . weight)

})

pn2Svg . convertPn2Svg (Petr iNet (setAux , pn . SetOfTrans ,

pn . SetOfPre , pn . SetOfPost ,

pn . SetOfPreSpaces , pn . SetOfPostSpaces) ,Map())

return Petr iNet (setAux , pn . SetOfTrans , pn . SetOfPre ,

pn . SetOfPost , pn . SetOfPreSpaces , pn . SetOfPostSpaces)

}

}

}

/∗ end of method f o r modi fy ing the p e t r i Net ∗/

/∗ method f o r con s t ruc t i n g a map of f i r a b l e t r a n s i t i o n s ∗/

/∗ scan of a l l t he t r an s i t i on s , and with t h e i r r e l a t e d p lace s ,

check o f t h e i r f i r a b l e charac t e r wi th regard to ∗/

/∗ t he concerned pr e cond i t i on s r e l a t e d to the Pe t r i Net from

one par t and i t s ex t ens ion with token space on ∗/

/∗ t he other par t ∗/

def constructMapOfFirableTrans (lTrans : L i s t [t r a n s i t i o n] ,

l P l a c e : L i s t [p l ace] ,

lPr e : L i s t [p r e cond i t i on] , lPreSpaces : L i s t [p r e cond i t i on])

: Map[Int , L i s t [St r ing]] = {

// search ing o f f i r a b l e t r a n s i t i o n s (f o l l ow i n g t h e i r type)

// and b u i l d i n g a map with the p o s i t i v e one

var i : In t = 1

var mapOfFirableTransL : Map[Int , L i s t [St r ing]] = Map()

var f i r a b l e : Boolean = fa l se

// f o r every t r an s i t i o n of f i n a l Pe t r i Net

lTrans . f o r each (elm => {

// i f t r an s i t i o n concerned by Pe t r i Net AND

// i t s ex t ens ion by token space

elm . name match {

// e va l ua t e i f f i r a b l e in both case s

case ” t e l l ” | ” get ” | ”ask” | ”nask” => {

i f (f i r a b l eP r e (elm . idtrans , lPre , lP l a c e) &&

f i r ab l eP r eSpace s (elm . idtrans , lPreSpaces , lP l a c e)) {

mapOfFirableTransL(i) = elm . i d t r an s

529

f i r a b l e = true

}

}

// f o r the others , e v a l ua t e i f f i r a b l e only wi th

// regard to Pe t r i Net

case => {

i f (f i r a b l eP r e (elm . idtrans , lPre , lP l a c e)) {

mapOfFirableTransL(i) = elm . i d t r an s

f i r a b l e = true

}

}

} // match

i f (f i r a b l e) {

i = i + 1

f i r a b l e = fa l se

}

})

return mapOfFirableTransL

}

/∗ end of method f o r con s t ruc t i n g a map

of f i r a b l e t r an s i t i o n s ∗/

/∗ main method f o r renewing the Pe t r i Net

a f t e r f i r i n g o f a t r an s i t i o n ∗/

/∗ whi l e the l i s t o f f i r a b l e t r a n s i t i o n s i s not empty ,

s e l e c t one o f the se t r a n s i t i o n s and f i r e i t ∗/

/∗ modify the Pe t r i Net wi th r e spe c t o f t he pre´

and post´condi tons or t h i s f i r e d t r an s i t i o n ∗/

/∗ redraw the modi f ied Pe t r i Net ∗/

/∗ r e s e t t he l i s t o f f i r a b l e t r a n s i t i o n s except i f

t he f i n a l Out p lace i s reached (i t s number o f ∗/

/∗ tokens i s d i f f e r e n t from 0 ∗/

def execute (pn : Petr iNet) {

var pnAux : Petr iNet = pn

mapOfFirableTrans = constructMapOfFirableTrans (

pnAux . SetOfTrans , pnAux . SetOfPlaces ,

pnAux . SetOfPre , pnAux . SetOfPreSpaces)

pn2Svg . apply (pnAux , mapOfFirableTrans)

while (! mapOfFirableTrans . isEmpty) {

curentTrans = cho i ceF i rab l eTrans (mapOfFirableTrans)

p r i n t l n (”Curent chosen t r a n s i t i o n : ”)

p r i n t l n (curentTrans)

pnAux = modi fyInPetr iNet (curentTrans , pnAux)

i f (getNumbTokInPlace(”Out” : : Ni l , pnAux . SetOfPlaces) == 0) {

mapOfFirableTrans = constructMapOfFirableTrans (

pnAux . SetOfTrans , pnAux . SetOfPlaces ,

pnAux . SetOfPre , pnAux . SetOfPreSpaces)

pn2Svg . apply (pnAux , mapOfFirableTrans)

} else {

mapOfFirableTrans = Map()

pn2Svg . apply (pnAux , mapOfFirableTrans)

}

}

530

}

531

532

Part VI

References

533

Bibliography

[Arb96] F. Arbab. The IWIM Model for Coordination of Concurrent Activities. In P. Ciancarini and C. Hankin, editors,

Proceedings of the First International Conference on Coordination Models and Languages, volume 1061, pages

34–56, Cesena, Italy, 1996. Springer-Verlag. 29, 40

[Arb04] Farhad Arbab. Reo: A channel-based coordination model for component composition. Mathematical. Structures

in Computer Science., 14(3):329–366, June 2004. 30, 40

[BBG09] P. Baldan, F. Bonchi, and F. Gadducci. Encoding asynchronous interactions using open petri nets. In CONCUR

2009 - Concurrency Theory, 20th International Conference, CONCUR 2009, Bologna, Italy, September 1-4,

2009. Proceedings, pages 99–114, 2009. 287, 289, 544

[BCGZ01] N. Busi, P. Ciancarini, R. Gorrieri, and G. Zavattaro. Coordination Models: A Guided Tour. In Andra Omicini,

Franco Zambonelli, Matthias Klush, and Robert Tolksdorf, editors, Coordination of Internet Agents: Models,

Technologies, and Applications, pages 6–24. Springer-Verlag, 2001. 3, 27, 39

[BCP07] D. Balzarotti, P. Costa, and G. P. Picco. The lights tuple space framework and its customization for context-

aware applications. Web Intelligence and Agent Systems, 5(2):215–231, 2007. 221

[BGLG05] M. Bravetti, R. Gorrieri, R. Lucchi, and G.Zavattaro. Quantitative Information in the Tuple Space Coordination

Model. Theoretical Computer Science, 346(1):28–57, 2005. 37, 40, 82

[BGLZ04] M. Bravetti, R. Gorrieri, R. Lucchi, and G. Zavattaro. Probabilistic and Prioritized Data Retrieval in the

Linda Coordination Model. In R. De Nicola, G.L. Ferrari, and G. Meredith, editors, Proceedings of the 6th

International Conference on Coordination Models and Languages, volume 2949 of Lecture Notes in Computer

Science, pages 55–70. Springer, 2004. 37, 40, 82

[BGZ] N. Busi, R. Gorrieri, and G. Zavattaro. A Process Algebraic View of Linda Coordination Primitives. 82

[BGZ97] N. Busi, R. Gorrieri, and G. Zavattaro. On the Turing equivalence of Linda coordination primitives. Electronic

Notes in Theoretical Computer Science, 7:75–75, 1997. 82

[BJ93] K.D. Bosschere and J.-M. Jacquet. Multi-prolog: Definition, operational semantics and implementation. In

Logic Programming, Proceedings of the Tenth International Conference on Logic Programming, Budapest,

Hungary, June 21-25, 1993, pages 299–313, 1993. 221

[BJ98] A. Brogi and J.-M. Jacquet. On the Expressiveness of Linda-like Concurrent Languages. Electronic Notes in

Theoretical Computer Science, 16(2):61–82, 1998. 49, 50, 51, 54, 55, 56, 57, 68, 69, 97, 130, 134, 138, 153, 155,

156, 162, 377, 378, 379, 380, 385, 386, 388, 394

[BJ99] A. Brogi and J.-M. Jacquet. On the Expressiveness of Coordination Models. In C. Ciancarini and A. Wolf,

editors, Proceedings of the Third International Conference on Coordination Languages and Models, volume

1594 of Lecture Notes in Computer Science, pages 134–149. Springer-Verlag, Apr 1999. 48, 57, 64, 68, 69, 377,

382, 384, 386, 388, 389, 391, 395

[BJ03a] A. Brogi and J.-M. Jacquet, editors. Foclasa 2002, Foundations of Coordination Languages and Software

Architectures (Satellite Workshop of CONCUR 2002), volume 68, 2003. 26, 48, 49, 50, 51, 68, 69, 377

535

[BJ03b] A. Brogi and J.-M. Jacquet. On the Expressiveness of Coordination via Shared Dataspaces. Science of Computer

Programming, 46(1-2):71–98, 2003. 26, 48, 49, 50, 51, 57, 61, 64, 69, 72, 125, 130, 163, 167, 382, 384, 386, 388,

389, 391, 392, 393, 395, 396

[BJK06] A. Brogi, J.-M. Jacquet, and J. Kok. Foundations of Coordination Languages and Software Architectures.

Fundamenta Informaticae, 73(4):431–598, 2006. 26

[BJKP06] A. Brogi, J.-M. Jacquet, J. Kramer, and E. Pimentel. Second International Workshop on Foundations of

Coordination Languages and Software Architectures (FOCLASA’03). Science of Computer Programming,

61(2):73–187, 2006. 26

[BJL06] A. Brogi, J.-M. Jacquet, and I. Linden. Fully Abstract Semantics for a Coordination Model with Asynchronous

Communication and Enhanced Matching. Fundamentae Informatica, 73(4):431–478, 2006. 75, 374

[BJP04] A. Brogi, J.-M. Jacquet, and E. Pimentel, editors. Proceedings of FOCLASA 2003, the Foundations of Coor-

dination Languages and Software Architectures, a satellite event of CONCUR 2003, volume 97 of Electronic

Notes in Theoretical Computer Science, 2004. 26

[BKZ99] M. M. Bonsangue, J. N. Kok, and G. Zavattaro. Comparing coordination models based on shared distributed

replicated data. In ACM Symposium on Applied Computing, pages 156–165, 1999. 82

[BL93] J.-P Banâtre and D. Le Métayer. Programming by multiset transformation. Communications of the ACM,

36(1):98–111, 1993. 32, 40

[BM96] J.-P. Banâtre and D. Le Métayer. Gamma and the Chemical Reaction Model: Ten Years After. Coordination

Programming, pages 3–41, Imperial College Press, London, 1996. 32, 40

[CA10] Dave Clarke and Gul A. Agha, editors. Coordination Models and Languages, 12th International Conference,

COORDINATION 2010, Amsterdam, The Netherlands, June 7-9, 2010. Proceedings, volume 6116 of Lecture

Notes in Computer Science. Springer, 2010. 26

[CDH00] Proceedings of the 2000 ACM Symposium on Applied Computing (SAC 2000). pages 147–282, Como (I), 19–21

March 2000. ACM. Track on Coordination Models, Languages and Applications. 26

[CG89] Nicholas Carriero and David Gelernter. Linda in Context. Commun. ACM, 32(4):444–458, 1989. 27

[CGZ95] N. Carriero, D. Gelernter, and L. Zuck. Bauhaus linda. In P. Ciancarini, O. Nierstrasz, and A. Yonezawa,

editors, Object-Based Models and Languages for Concurrent Systems: Proc. of the ECOOP’94 Workshop

on Modles and Languages for Coordination of Parallelism and Distribution, pages 66–76. Springer, Berlin,

Heidelberg, 1995. 28

[CP15] Javier Cámara and José Proença, editors. Proceedings 13th International Workshop on Foundations of Coor-

dination Languages and Self-Adaptive Systems, FOCLASA 2014, Rome, Italy, 6th September 2014, volume

175 of EPTCS, 2015. 26

[CV06] C. Canal and M. Viroli, editors. Proceedings of the 4th International Workshop on the Foundations of Coordi-

nation Languages and Software Architectures (FOCLASA 2005), volume 154 of Electronic Notes in Theoretical

Computer Science, 2006. 26

[CV13] Carlos Canal and Massimo Villari, editors. Advances in Service-Oriented and Cloud Computing - Workshops of

ESOCC 2013, Málaga, Spain, September 11-13, 2013, Revised Selected Papers, volume 393 of Communications

in Computer and Information Science. Springer, 2013. 26

[CW006] Coordination models and languages, 8th international conference, coordination 2006. volume 4038 of Lecture

Notes in Computer Science, Bologna, Italy, 2006. Springer-Verlag, 2006. 26

[CW111] SAC 2011: Proceedings of the 2011 ACM Symposium on Applied Computing, New York, NY, USA, 2011.

ACM. Special Track on Coordination Models, Languages and Applications. 26

536

[dBP94] F.S. de Boer and C. Palamidessi. Embedding as a Tool for Language Comparison. Information and Compu-

tation, 108(1):128–157, 1994. 49, 50, 68, 95, 128, 131

[DJL13a] D. Darquennes, J.-M. Jacquet, and I. Linden. On Density in Coordiantion Languages. In C. Canal and

M. Villari, editors, CCIS 393, Advances in Service-Oriented and Cloud Computing, ESOCC 2013, Proceedings

of Foclasa Workshop, pages 189–203, Malaga, Spain, 2013. Springer. 20, 133

[DJL13b] D. Darquennes, J.-M. Jacquet, and I. Linden. On the Introduction of Density in Tuple-Space Coordination

Languages. In Science of Computer Programming, special issue of Foclasa 2013. Springer, 2013. 20

[DJL14] D. Darquennes, J.-M. Jacquet, and I. Linden. On Distributed Density in Tuple-based Coordination Languages.

In CONCUR 2014, Proceedings of Foclasa Workshop, Rome, Italy, 2014. Springer. 21

[FHA99] E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces: Principles, Patterns, and Practice. Addison-Wesley, 1999.

28

[GC92] D. Gelernter and N. Carriero. Coordination languages and their significance. Communications of the ACM,

35(2):97–107, 1992. 23, 39

[Gel85] D. Gelernter. Generative Communication in Linda. ACM Transactions on Programming Languages and

Systems, 7(1):80–112, 1985. 24, 40

[GFM04] R. De Nicola G. Ferrari and G. Meredith, editors. Coordination Languages and Models, 6th International

Conference, COORDINATION 2004, Pisa, Italy, February 2004, Proceedings, volume 2949 of Lecture Notes

in Computer Science. Springer-Verlag, 2004. 26

[GPR99] A.L. Murphy G.P. Picco and G.-C. Roman. LIME: Linda Meets Mobility. In D. Garlan, editor, ICSE’99:

Proceedings of the 21st International Conference on Software Engineering, pages 368–377. IEEE Computer

Society Press, 1999. 28, 36, 40

[HV15] Tom Holvoet and Mirko Viroli, editors. Coordination Models and Languages - 17th IFIP WG 6.1 Interna-

tional Conference, COORDINATION 2015, Held as Part of the 10th International Federated Conference on

Distributed Computing Techniques, DisCoTec 2015, Grenoble, France, June 2-4, 2015, Proceedings, volume

9037 of Lecture Notes in Computer Science. Springer, 2015. 26

[ILJ11] M.-O. Staicu I. Linden and J.-M. Jacquet. On Coordination in Mobile Ad-hoc Networks: Language, Design,

Expressiveness, Issues and Semantic Studies. Technical report, Faculty of Computer Science, University of

Namur, Namur, Belgium, 2011. 41

[JBB00] J.-M. Jacquet, K. De Bosschere, and A. Brogi. On Timed Coordination Languages. In A. Porto and G.-C.

Roman, editors, Proc. 4th International Conference on Coordination Languages and Models, volume 1906 of

Lecture Notes in Computer Science, pages 81–98. Springer, 2000. 41

[JL07] J.-M. Jacquet and I. Linden. Coordinating Context-aware Applications in Mobile Ad-hoc Networks. In

T. Braun, D. Konstantas, S. Mascolo, and M. Wulff, editors, Proceedings of the first ERCIM workshop on

eMobility, pages 107–118. The University of Bern, 2007. 41, 43

[JL09] J.-M. Jacquet and I. Linden. Fully Abstract Models and Refinements as Tools to Compare Agents in Timed

Coordination Languages. Theoretical Computer Science, 410(2-3):221–253, 2009. 41

[JLD16] J.M. Jacquet, I. Linden, and D. Darquennes. On the introduction of density in tuple-space coordination

languages. Sci. Comput. Program., 115-116:149–176, 2016. 26

[JM17] J.-M. Jacquet and Mieke Massink, editors. Coordination Models and Languages - 19th International Confer-

ence, COORDINATION 2017, Held as Part of the 12th International Federated Conference on Distributed

Computing Techniques, DisCoTec 2017, Neuchtel, Switzerland, June 19-22, 2017, Proceedings, Lecture Notes

in Computer Science. Springer, 2017. 26

537

[JP05] J.-M Jacquet and G. P. Picco, editors. Coordination Models and Languages, 7th International Conference,

COORDINATION 2005, Namur, Belgium, April 20-23, 2005, Proceedings, volume 3454 of Lecture Notes in

Computer Science. Springer-Verlag, 2005. 26

[KP14] Eva Kühn and Rosario Pugliese, editors. Coordination Models and Languages - 16th IFIP WG 6.1 Interna-

tional Conference, COORDINATION 2014, Held as Part of the 9th International Federated Conferences on

Distributed Computing Techniques, DisCoTec 2014, Berlin, Germany, June 3-5, 2014, Proceedings, volume

8459 of Lecture Notes in Computer Science. Springer, 2014. 26

[KR12] Natallia Kokash and António Ravara, editors. Proceedings 11th International Workshop on Foundations of

Coordination Languages and Self Adaptation, FOCLASA 2012, Newcastle, U.K., September 8, 2012, volume 91

of EPTCS, 2012. 26

[Lin07] I. Linden. On the Introduction of Time in Coordination Languages, Semantics, Expressiveness and Program-

ming Methodologies. PhD thesis, Faculty of Computer Science, University of Namur, Namur, Belgium, 2007.

41, 49, 57, 381

[LJ04] I. Linden and J.-M. Jacquet. On the Expressiveness of Absolute-Time Coordination Languages. In R. De

Nicola, G.L. Ferrari, and G. Meredith, editors, Proc. 6th International Conference on Coordination Models

and Languages, volume 2949 of Lecture Notes in Computer Science, pages 232–247. Springer, 2004. 41, 48, 49

[LJ07] I. Linden and J.-M. Jacquet. On the Expressiveness of Timed Coordination via Shared Dataspaces. Electronical

Notes in Theoretical Computer Science, 180(2):71–89, 2007. 41, 48, 49

[LJBB04] I. Linden, J.-M. Jacquet, K. De Bosschere, and A. Brogi. On the Expressiveness of Relative-Timed Coordination

Models. Electronical Notes in Theoretical Computer Science, 97:125–153, 2004. 41, 48, 49

[LP16] Alberto Lluch Lafuente and Jos Proena, editors. Coordination Models and Languages - 18th IFIP Interna-

tional Conference, COORDINATION 2016, Held as Part of the 11th International Federated Conference on

Distributed Computing Techniques, DisCoTec 2016, Heraklion, Crete, Greece, June 6-9, 2016, Proceedings,

volume 9686 of Lecture Notes in Computer Science. Springer, 2016. 26

[MdM11] P. Matiello and A. C. V. de Melo. A π-calculus Internal Domain-Specific Language for Scala. Technical report,

Department of Computer Science, University of São Paulo, São Paulo, Brazil, 2011. 221, 249

[MO06] et al M. Odersky. An Overview of the Scala Programming Language - Technical Report - Second Edition.

Technical report, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland, 2006. 172

[MO10] B. Venners M. Odersky, L. Spoon. Programming in Scala. Artima, 2010. 173

[MO13] S. Mariani and A. Omicini. Tuple-based Coordination of Stochastic Systems with Uniform Primitives. In

Proceedings of the 14th Workshop ”From Objects to Agents” co-located with the 13th Conference of the Italian

Association for Artificial Intelligence (AI*IA 2013), Torino, Italy, December 2-3, 2013., pages 8–15, 2013. 38,

40

[MR11a] Wolfgang De Meuter and Gruia-Catalin Roman, editors. Coordination Models and Languages - 13th Interna-

tional Conference, COORDINATION 2011, Reykjavik, Iceland, June 6-9, 2011. Proceedings, volume 6721 of

Lecture Notes in Computer Science. Springer, 2011. 26

[MR11b] Mohammad Reza Mousavi and António Ravara, editors. Proceedings 10th International Workshop on the

Foundations of Coordination Languages and Software Architectures, FOCLASA 2011, Aachen, Germany,

10th September, 2011, volume 58 of EPTCS, 2011. 26

[MS10] Mohammad Reza Mousavi and Gwen Salaün, editors. Proceedings Ninth International Workshop on the

Foundations of Coordination Languages and Software Architectures, FOCLASA 2010, Paris, France, 4th

September 2010, volume 30 of EPTCS, 2010. 26

[MZ06] M. Odersky M. Zenger. Independently Extensible Solutions to the Expression Problem - Technical Report.

Technical report, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland, 2006. 172

538

[NJ13] Rocco De Nicola and Christine Julien, editors. Coordination Models and Languages, 15th International Con-

ference, COORDINATION 2013, Held as Part of the 8th International Federated Conference on Distributed

Computing Techniques, DisCoTec 2013, Florence, Italy, June 3-5, 2013. Proceedings, volume 7890 of Lecture

Notes in Computer Science. Springer, 2013. 26

[OD01] A. Omicini and E. Denti. From Tuple Spaces to Tuple Centres. Science of Computer Programming, 41(3):277–

294, November 2001. 28, 34, 36, 40

[OZ] A. Omicini and F. Zambonelli. TuCSoN: a coordination model for mobile information agents. In Monica Div-

itini David G. Schwartz and Terje Brasethvik, editors, 1st International Workshop on Innovative Internet

Information Systems (IIIS’98), pages 177–187, Pisa, Italy, 8–9 June. IDI – NTNU, Trondheim (Norway). 34,

40

[PA98] G.A. Papadopoulos and F. Arbab. Coordination Models and Languages. In Technical Report SEN-R9834.

Centrum voor Wiskunde en Informatica (CWI), ISSN 1386-369X, 1998. 24, 26, 40

[Pan02] B. Panda, editor. 17th ACM Symposium on Applied Computing (SAC 2002), Madrid, Spain, 10–14 March

2002. ACM Press. Special Track on Coordination Models, Languages and Applications. 26

[PHW05a] A. Di Pierro, C. Hankin, and H. Wiklicky. Probabilistic Linda-based Coordiantion Languages. In F. de Boer,

M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Formal Methods for Components and Objects (FMCO

2004), volume 3657 of Lecture Notes in Computer Science, pages 120–140. Springer, 2005. 40

[PHW05b] A. Di Pierro, C. Hankin, and H.b Wiklicky. Probabilistic Linda-based Coordination Languages. In Proceedings

of the Third International Conference on Formal Methods for Components and Objects, FMCO’04, pages

120–140, Berlin, Heidelberg, 2005. Springer-Verlag. 39

[Plo81] G. Plotkin. A Structured Approach to Operational Semantics. (Computer Science Department, Aarhus Uni-

versity, DAIMI FN-19), 1981. 45

[Pro11] J. Proenç. Synchronous Coordination of Distributed Components. PhD thesis, Institute for Programming

research and Algorithmics, University Leiden, Leiden, Netherland, 2011. 30, 32, 40

[RDP98] G.L. Ferrari R. De Nicola and R. Pugliese. KLAIM: a Kernel Language for Agents Interaction and Mobility.

IEEE Transactions on Software Engineering (Special Issue on Mobility and Network Aware Computing), 1998.

28, 36, 40

[Sha92] E.Y. Shapiro. Embeddings Among Concurrent Programming Languages. In W.R. Cleaveland, editor, Pro-

ceedings of COORDINATION 1992, Lecture Notes in Computer Science, pages 486–503. Springer, 1992. 26,

49

[Sir12] Marjan Sirjani, editor. Coordination Models and Languages - 14th International Conference, COORDINA-

TION 2012, Stockholm, Sweden, June 14-15, 2012. Proceedings, volume 7274 of Lecture Notes in Computer

Science. Springer, 2012. 26

[SM113] SAC 2013: Proceedings of the 28th Annual ACM Symposium on Applied Computing, New York, NY, USA,

2013. ACM. Special Track on Coordination Models, Languages and Applications. 26

[Tuc04] TuCSoN Guide, tucson version: 1.4.0. http://lia.deis.unibo.it/Research/TuCSoN/doc/tucson.pdf, 2004.

34, 35

[Van09] O. Vandorpe. Modélisation de l’exécution de programmes dans les langages de coordination au moyen de

réseaux de petri. Master’s thesis, Faculty of Computer Science, University of Namur, Namur, Belgium, 2009.

287, 288, 291

[VC09] M. Viroli and M. Casadei. Biochemical Tuple Spaces for Self-organising Coordination. In J. Field and V. T.

Vasconcelos, editors, Proceedings of 11th International Conference, COORDINATION 2009, volume 5521 of

Lecture Notes in Computer Science, pages 143–162. Springer, 2009. 37, 38, 40, 82

539

http://lia.deis.unibo.it/Research/ TuCSoN/doc/tucson.pdf

[VC10] M. Viroli and M. Casadei. Chemical-Inspired Self-Composition of Competing Services. In Proceedings of the

2010 ACM Symposium on Applied Computing, SAC ’10, pages 2029–2036, New York, NY, USA, 2010. ACM.

37, 40

[WC115] SAC 2015: Proceedings of the 30th Annual ACM Symposium on Applied Computing, New York, NY, USA,

2015. ACM. Special Track on Coordination Models, Languages and Applications. 26

[Wyc98] P. Wyckoff. T Spaces. IBM Systems Journal, 37(3), 1998. 28

[Zav98a] G. Zavattaro. On the incomparability of Gamma and Linda. Electronic Transactions on Numerical Analysis,

1998. 82, 128

[Zav98b] Gianluigi Zavattaro. Towards a Hierarchy of Negative Test Operators for Generative Communication. Electronic

Notes in Theoretical Computer Science, 16:154–170, 1998. 82, 128

540

List of Figures

1.1 The server class (1) . 7

1.2 The server class (2) . 8

1.3 The server class (3) . 9

1.4 The client class (1) . 11

1.5 The client class (2) . 12

1.6 The client class (3) . 13

2.1 The most commonly used Reo primitives. 31

2.2 Representation of an exclusive rooter. 32

2.3 Connector eliminating one element over two. 33

2.4 The chemical reaction 2H2 ` O2 ÝÑ 2H2O in Gamma. 33

3.1 Transition rules for token-based primitives (BachT) . 46

3.2 Transition rules for multi-set rewriting-based primitives (MR) . 47

3.3 Transition rules for the operators . 47

3.4 Basic embedding. 49

3.5 Embedding hierarchy of BachT Languages. 51

3.6 Integrated embedding hierarchy of BachT and MRT languages. 51

3.7 Three-dimensional representation of the expressiveness relations between the different sublanguages of BachT

and MRT. 68

3.8 Three-dimensional representation of the expressiveness relations between the different sublanguages of BachT,

Dense Bach and MRT. 71

4.1 Transition rules for dense token-based primitives (Dense Bach) . 77

4.2 Transition rules for token-based primitives (BachT) . 78

4.3 Transition rules for the operators . 78

5.1 Transition rules for vectorized dense token-based primitives (VD-Bach) . 85

5.2 Transition rules for the operators . 86

5.3 Transition rule for the weak nask . 86

5.4 Transition rules for list of token-based primitives (Dense Bach with distributed Density) 89

5.5 Transition rules for the operators . 90

5.6 Transition rules for capacity based primitives . 93

541

6.1 Embedding hierarchy of BachT and Dense Bach languages for the tell, ask and nask primitives in Dense Bach.104

6.2 Embedding hierarchy of BachT and Dense Bach languages for the get primitive in Dense Bach. 107

6.3 Embedding hierarchy of BachT and Dense Bach languages for all the primitives in Dense Bach. 109

6.4 Embedding hierarchy of Dense Bach and a multi-set rewriting language, considering the presence of the tell,

ask and nask primitives in the mutli-set rewriting language. 124

6.5 Embedding hierarchy of Dense Bach and a multi-set rewriting language, considering the presence of the get

primitive in the mutli-set rewriting language. 126

6.6 Embedding hierarchy of Dense Bach and a multi-set rewriting language, considering the presence of all the

primitives in the mutli-set rewriting language. 127

6.7 Three-dimensional representation of the expressiveness relations between the different sublanguages of Dense

Bach. 127

6.8 Three-dimensional representation of the expressiveness relations between the different sublanguages of BachT,

Dense Bach and MRT. 129

7.1 Embedding hierarchy of Dense Bach Languages. 132

7.2 Integrated hierarchies of Dense Bach and Dense Bach with Distributed Density. 132

7.3 Embedding hierarchy of Dense Bach and Vectorized Dense Bach for the tell, ask and nask primitives. 146

7.4 Embedding hierarchy of Bach and Vectorized Dense Bach languages for the get primitive in Dense Bach. . . 149

7.5 Embedding hierarchy of Dense Bach and Vectorized Dense Bach for all the primitives in Dense Bach. 151

7.6 Embedding hierarchy of Vectorized Dense Bach and a multi-set rewriting language, considering the presence

of the tell, ask and nask primitives in the mutli-set rewriting language. 162

7.7 Embedding hierarchy of Vecorized Dense Bach and a multi-set rewriting language, considering the presence

of the get primitive in the mutli-set rewriting language. 164

7.8 Embedding hierarchy of Vectorized Dense Bach and a multi-set rewriting language, considering the presence

of all the primitives in the mutli-set rewriting language. 164

7.9 Three-dimensional representation of the expressiveness relations between the different sublanguages of Dense

Bach, Vectorized Dense Bach and MRT. 166

8.1 The abstract BachT data.scala file . 173

8.2 Parser: the class BachTParsers . 177

8.3 Parser : the object BachTSimulParser . 178

8.4 The BachTStore class . 179

8.5 The BachTStore class continued . 180

8.6 The bb object . 180

8.7 BachT-simulator: primitive and sequential composition . 182

8.8 BachT-simulator: parallel composition . 183

8.9 BachT-simulator: non-deterministic choice . 184

8.10 BachT-simulator: main loop . 185

8.11 BachT-simulator: the BachTSimul class and the object ag . 186

8.12 Running the BachT command line interperter . 187

8.13 Running the BachT command line interperter . 187

8.14 Running the BachT command line interperter . 188

8.15 The BachT simulator in command line with a waiting request . 190

8.16 The BachT simulator in command line with a second request liberating the first one 191

542

8.17 The BachT simulator in command line with a choice between two subagents 192

8.18 The abstract BachT data class . 193

8.19 Command line simulator : the construction of the list of first steps followed by their continuation 195

8.20 Command line simulator : the exec function of a parsed agent . 196

8.21 Command line simulator : the exec primitive function . 196

8.22 Command line simulator : the tell primitive . 197

8.23 Command line simulator : the ask primitive . 199

8.24 Command line simulator : the nask primitive . 199

8.25 Command line simulator : the Test tell primitive . 200

8.26 command line simulator : the run l choice function . 200

8.27 Command line simulator : the main function for the execution of an agent 201

8.28 Running the BachT command line simulator . 202

8.29 Running the BachT command line simulator . 203

8.30 Running the BachT command line simulator . 204

8.31 The abstract Dense Bach data.scala file . 204

8.32 Parser: the class DenseBachParsers . 206

8.33 Parser : the object DenseBachSimulParser . 207

8.34 The DenseBachStore class . 208

8.35 The DenseBachStore class continued . 209

8.36 The bb object . 209

8.37 Running the Dense Bach command line interperter (1) . 210

8.38 Running the Dense Bach command line interpreter (2) . 211

8.39 The abstract Dense Bach data class . 212

8.40 Command line simulator : the exec primitive function . 213

8.41 Command line simulator : the exec primitive function . 215

8.42 Using the Dense Bach command line simulator . 218

8.43 Using the Dense Bach command line simulator . 219

8.44 Using the Dense Bach command line simulator . 219

8.45 Using the Dense Bach command line simulator . 220

9.1 Running the Vectorized Dense Bach command line interperter (1) . 227

9.2 Running the Dense Bach command line interpreter (2) . 228

9.3 The abstract Dense Token class and the abstract Vectorized Dense Bach data class 230

9.4 The Vectorized Dense Bach get primitive . 232

9.5 The execution of tell(t(4),r(2));get(t(2),r(1)) . 233

9.6 The execution of nask(s(2),t(1)) . 234

9.7 The execution of ask(t(2)) . 235

9.8 Mappings associated with pre- and post-conditions . 239

9.9 Mappings associated with pre- and post-conditions (continued) . 240

9.10 Elementary primitives for the pre- and post-conditions . 241

9.11 Evaluation of the pre- and post-conditions . 242

9.12 Running the MRT command-line interperter . 243

543

9.13 The MRT interperter on a parallel agent . 244

10.1 The store window . 252

10.2 The interactive agent window . 253

10.3 The autonomous agent window . 253

10.4 The interactive agent window for a specific agent . 255

10.5 The interactive agent window for a specific agent . 255

10.6 The store window after the choice of the tell(v(2)) button in the interactive window 256

10.7 The second step of the interactive agent window with the remaining parallel composition 256

10.8 The third step of the interactive agent window after the execution of the nask(u(3)) primitive. 257

10.9 The fourth step of the interactive agent window . 258

10.10The store window after the third step of execution of the interactive window 258

10.11The autonomous agent window for a specific agent . 259

10.12The first resulting store window . 259

10.13The possible second resulting store window . 260

10.14The possible third resulting store window . 260

10.15The Interactive Blackboard window with an empty store . 280

10.16The Interactive Agent window with the agent edited . 280

10.17The parsed agent with the primitive tell(a(3)) executable . 281

10.18The store with the three tokens a . 281

10.19The parsed agent with the primitive nask(u(2)) executable . 282

10.20The parsed agent with the primitive get(r(2)) non executable . 282

10.21The store with the four tokens r added with the Tell button . 283

10.22The get(r(2)) activated with the refresh button . 283

10.23The empty agent after the execution of the get(r(2)) primitive . 284

10.24The final store with the two tokens r and the four tokens a . 284

10.25The Autonomous Agent window with the agent edited and parsed . 285

10.26The resulting agent after the Run execution . 285

10.27The autonomous agent after the Step execution . 286

11.1 An example of an open Petri net (from [BBG09]). 289

11.2 A duplicator agent in open Petri Net . 289

11.3 Basic block of the model of Vandorpe in a Petri net . 290

11.4 A compositional agent in Open Petri Net . 291

11.5 A compositional agent in Open Petri Net . 292

11.6 General form of a Petri Net associated with an agent . 293

11.7 The Dense Bach tell(t(2)) primitive in an Open Petri Net with MAX = 30 295

11.8 The Dense Bach ask(t(2)) primitive in an Open Petri Net with MAX = 30 296

11.9 The Dense Bach get(t(2)) primitive in an Open Petri Net with MAX = 30 298

11.10The Dense Bach nask(t(2)) primitive in an Open Petri Net with MAX = 30 299

11.11The two Dense Bach tell(a(2)) and tell(b(3)) primitives to be combined sequentially 300

11.12The effective sequential composition of tell(a(2)) and tell(b(3)) . 300

544

11.13The two generic agents to be combined sequentially . 301

11.14The two agents inside the sequential composition . 303

11.15The places of the tokens visible outside . 303

11.16The fusion of the entry places Pin with Pin1
and from Pout with Pout2 . 304

11.17The fusion of Pout1 and Pin2
. 304

11.18The two Dense Bach tell(a(2)) and tell(b(2)) primitives to be composed in parallel 306

11.19The effective parallel composition of tell(a(2)) and tell(b(2)) . 307

11.20The two Dense Bach agents to be composed in parallel . 307

11.21The two agents in the parallel composition . 308

11.22Tokens are visible outside . 309

11.23Entry place of parallel agent connected to transitions . 309

11.24Connection with exit place of parallel agent . 310

11.25Introduction of auxiliary places . 311

11.26Introduction of auxiliary places (cont) . 312

11.27Introduction of auxiliary places (final) . 312

11.28The two Dense Bach tell(a(2)) and tell(b(2)) primitives to be composed in a choice 314

11.29The effective choice composition of tell(a(2)) and tell(b(2)) . 314

11.30The two Dense Bach agents to be composed in a choice . 315

11.31The two agents in the choice composition . 316

11.32Tokens are visible outside . 316

11.33Entry place of choice agent connected to transitions . 317

11.34Connections to exit place of choice agent . 318

11.35Connections to first auxiliary place . 319

11.36Connections to second auxiliary place . 319

11.37The abstract petriNetElement.scala file . 323

11.38The code for the construction of the Petri Net elements of a basic primitive 327

11.39The code for the construction of the Petri Net elements of a basic primitive (cont) 328

11.40The code for the construction of the Petri Net elements of a sequential composition of two agents 330

11.41The schema of building of a complex agent based on two agents ag 1 and ag 2 for a parallel composition . 332

11.42The code for the construction of the Petri Net elements of a parallel composition of two agents 336

11.43The code for the construction of the Petri Net elements of a parallel composition of two agents (cont) . . . 337

11.44The code for the construction of the Petri Net elements of a parallel composition of two agents (cont) . . . 338

11.45The schema of building of a complex agent based on two agents ag 1 and ag 2 for a choice composition . . 339

11.46The code for the construction of the auxiliary places in case of a choice composition 341

11.47The code for the construction of the Petri Net elements of a choice composition of two agents 345

11.48The code for the construction of the Petri Net elements of a choice composition of two agents (cont) 346

11.49The code for the construction of the Petri Net elements of a choice composition of two agents (cont) 347

11.50The code for the construction of the Petri Net elements of a choice composition of two agents (cont) 348

11.51The code for the construction of the Petri Net elements of a choice composition of two agents (cont) 349

11.52The code for the drawing of the places. 353

11.53The code for the drawing of the places (cont). 354

11.55The code for the construction of the lists of pre and post conditions of transitions that are not primitives. . 356

545

11.54The code for the construction of the lists of pre and post conditions for the primitives, and their execution. 357

11.56The code of the constructMapOfFirableTrans function. 358

11.57The code of the execute function. 359

11.58The initial state of the Petri Net associated with agent ptellpup2qq ` tellpap3qqq ; pgetpap1qq || naskpup3qqq . 360

11.59The code of the execute function. 361

11.61The code of the execute function. 362

11.60The result of the firing of tell(a(3)) in the choice sub-agent . 363

11.62The result of the firing of the Tor transition concluding the choice sub-agent 364

11.63The code of the execute function. 365

11.65The code of the execute function. 365

11.64The result of the firing of the primitive nask(u(3)) in the parallel sub-agent 366

11.67The code of the execute function. 366

11.66The result of the firing of the second primitive get(a(1)) in the parallel sub-agent 367

11.68The result of the firing of the transition To in the parallel sub-agent, concluding the execution of the global

agent . 368

546

List of Tables

3.1 Table summarizing the expressiveness comparisons between the different sublanguages of BachT and MRT. 72

6.1 Table summarizing the expressiveness comparisons between the different sublanguages of BachT, Dense Bach

and MRT. 130

7.1 Table summarizing the expressiveness comparisons between the different sublanguages of Dense Bach, Vec-

torized Dense Bach and MRT. 167

547

	I Background
	1 Introduction
	1.1 The current context
	1.1.1 Density in coordination languages
	1.1.2 The taxi application and the need for domain specific coordination languages
	1.1.3 Other applications

	1.2 The thesis
	1.3 Structure
	1.4 Publications

	2 Coordination Languages and Models
	2.1 Coordination as a natural evolution in Computer Science
	2.2 Linda as the first coordination language
	2.2.1 The tuples
	2.2.2 The primitives
	2.2.3 The generative communication model

	2.3 A survey of the family of coordination models and languages
	2.3.1 General concerns
	2.3.2 Manifold and its successor Reo
	2.3.3 Gamma
	2.3.4 TuCSoN
	2.3.5 Klaim
	2.3.6 Lime
	2.3.7 Linda with priorities or probabilities

	2.4 Conclusion

	3 Variants of Linda and Gamma
	3.1 BachT and MRT: two coordination languages
	3.1.1 Transition system
	3.1.2 Observables and operational semantics

	3.2 Expressiveness study
	3.2.1 Expressiveness and modular embedding
	3.2.2 Main results
	3.2.3 General patterns
	3.2.4 Expressiveness relations between the BachT sublanguages
	3.2.5 BachT in comparison with MRT

	3.3 BachT, MRT and the thesis
	3.4 Conclusion

	II Language Design
	4 The Dense Bach Language
	4.1 Definition of the language
	4.1.1 Language issues
	4.1.2 Transition system

	4.2 Applications
	4.2.1 Commerce
	4.2.2 Security
	4.2.3 Smart cities

	4.3 Conclusion

	5 Dense Bach with Distributed Density
	5.1 Definition of VD-Bach
	5.1.1 Language issues
	5.1.2 Transition system
	5.1.3 Weak negative ask
	5.1.4 Application

	5.2 On Distributed Density
	5.2.1 Definition of a distributed density
	5.2.2 Definition of DBD-Bach
	5.2.3 Application
	5.2.4 Cardinality on tokens
	5.2.5 Translation in VD-Bach

	5.3 Conclusion

	6 Expressiveness Study of Dense Bach
	6.1 Comparison with BachT
	6.1.1 Generic patterns and results
	6.1.2 Adding tokens on the store
	6.1.3 Checking for presence and/or absence when adding tokens
	6.1.4 Retrieving tokens from the store
	6.1.5 Checking for the presence and/or absence when adding and/or retrieving tokens

	6.2 Comparison with MRT
	6.2.1 Generic patterns and results
	6.2.2 Adding tokens on the store
	6.2.3 Checking for the presence and/or absence when adding tokens
	6.2.4 Retrieving tokens from the store
	6.2.5 Checking for the presence and/or absence when adding and/or retrieving tokens

	6.3 Conclusion

	7 Expressiveness Study of Vectorized Dense Bach
	7.1 Comparison with Dense Bach
	7.1.1 Generic patterns and results
	7.1.2 Adding tokens on the store
	7.1.3 Checking for presence and/or absence when adding tokens
	7.1.4 Retrieving tokens from the store
	7.1.5 Checking for presence and/or absence when adding and/or retrieving tokens

	7.2 Comparison with MRT
	7.2.1 Generic patterns and results
	7.2.2 Adding tokens on the store
	7.2.3 Checking for presence and/or absence when adding tokens
	7.2.4 Retrieving tokens from the store
	7.2.5 Checking for presence and/or absence when adding and/or retrieving tokens

	7.3 Conclusion

	III Programming Aspects
	8 On the Implementation of Dense Bach
	8.1 A command-line interpreter for BachT
	8.1.1 Introduction
	8.1.2 The parser
	8.1.3 The store
	8.1.4 The simulator
	8.1.5 Using the command-line interperter

	8.2 A command line simulator for BachT
	8.2.1 Introduction
	8.2.2 The parser
	8.2.3 Executing agents
	8.2.4 The store
	8.2.5 The main object
	8.2.6 Using the BachT Command Line Simulator

	8.3 A command-line interpreter for Dense Bach
	8.3.1 Introduction
	8.3.2 The parser
	8.3.3 The store
	8.3.4 The simulator
	8.3.5 Using the command-line interpreter

	8.4 A Command Line Simulator for Dense Bach
	8.4.1 Introduction
	8.4.2 The parser
	8.4.3 Executing agents
	8.4.4 The store
	8.4.5 The main object
	8.4.6 Using the Dense Bach Command Line Simulator

	8.5 Conclusion

	9 On the Implementation of Distributed Density
	9.1 A command-line interpreter for Vectorized Dense Bach
	9.1.1 Introduction
	9.1.2 The parser
	9.1.3 The store
	9.1.4 The simulator
	9.1.5 Using the command-line interpreter

	9.2 A Command Line Simulator for Vectorized Dense Bach
	9.2.1 Introduction
	9.2.2 The parser
	9.2.3 Executing agents
	9.2.4 The store
	9.2.5 The main object
	9.2.6 Using the Vectorized Dense Bach command line simulator

	9.3 A command-line interpreter for MRT
	9.3.1 Introduction
	9.3.2 The parser
	9.3.3 The store
	9.3.4 The simulator
	9.3.5 Using the command-line interpreter

	9.4 A command line simulator for MRT
	9.4.1 Introduction
	9.4.2 The parser
	9.4.3 Executing agents
	9.4.4 The store
	9.4.5 The main object
	9.4.6 Using the MRT command line simulator

	9.5 Conclusion

	10 Simulations
	10.1 A graphical simulator
	10.1.1 Design
	10.1.2 Usage

	10.2 Implementation
	10.2.1 Introduction
	10.2.2 The structure of the data
	10.2.3 The parser
	10.2.4 The store
	10.2.5 The simulator
	10.2.6 The interactive blackboard
	10.2.7 The interactive execution
	10.2.8 The automatic execution

	10.3 Living example
	10.4 Conclusion

	11 Modeling Dense Bach with Petri Nets
	11.1 Open Petri nets
	11.2 DB-open Petri Nets
	11.3 Modeling Dense Bach agents
	11.3.1 The basic primitives
	11.3.2 The complex agents

	11.4 Towards a workbench
	11.4.1 Main data structures
	11.4.2 Converting Dense Bach agents to Petri Nets
	11.4.3 Drawing Petri Net representations
	11.4.4 Running Petri Nets representations
	11.4.5 Illustration on an example

	11.5 Conclusion

	IV Conclusion
	12 Conclusion

	V Appendix
	A Appendix: Expressiveness of BachT and MRT
	A.1 Expressiveness relations between the BachT sublanguages
	A.1.1 Sublanguages
	A.1.2 Checking for presence and/or absence when adding tokens
	A.1.3 Retrieving tokens from the store
	A.1.4 Checking for presence and/or absence when adding and/or retrieving tokens

	A.2 BachT in comparison with MRT
	A.2.1 Sublanguages
	A.2.2 Putting tokens on the store
	A.2.3 Checking for presence and/or absence when adding tokens
	A.2.4 Retrieving tokens from the store in the BachT language
	A.2.5 Retrieving tokens from the store in MRT
	A.2.6 Checking fo presence and/or absence when adding and/or retrieving tokens

	B The BachT Language
	B.1 The interpreter
	B.1.1 The bacht-cli.scala file

	B.2 The command line simulator
	B.2.1 The parser
	B.2.2 Vector of continuations
	B.2.3 Complete code of the command line simulator

	C The Dense Bach Language
	C.1 The interpreter
	C.1.1 The dbach-cli.scala file

	C.2 The command line simulator
	C.2.1 Abstract class
	C.2.2 Dense Bach Parser
	C.2.3 The store
	C.2.4 Executing a Dense Bach Agent
	C.2.5 The Command Line Simulator
	C.2.6 Complete code of the command line simulator

	D The Vectorized Dense Bach Language
	D.1 The interpreter
	D.1.1 The data
	D.1.2 The parser
	D.1.3 The store
	D.1.4 The simulator

	D.2 The command line simulator

	E The MRT Language
	E.1 The interpreter
	E.1.1 The data
	E.1.2 The parser
	E.1.3 The store
	E.1.4 The simulator

	E.2 The command line simulator

	F The Simulator
	F.1 The Data sructures
	F.2 The Parser
	F.3 The Store
	F.4 The Dense Bach Simulator
	F.5 The Interavtive Blackboard
	F.6 The Interactive Agent
	F.7 The Autonomous Agent

	G From Dense Bach to Petri Net
	H Svg Picture of Petri Net
	H.1 Subprocedures for the conversion of Petri Net to svg
	H.2 Conversion of Petri Net to svg

	I Running the Petri Net
	I.1 Running Petri Net
	I.2 Running Petri Net Main Methods

	VI References
	Bibliography
	List of Figures
	List of Tables

