
Facilitating Easier Access to FPGAs in the Heterogeneous Cloud
Ecosystems

Minhas, U. I., Woods, R., & Karakonstantis, G. (2018). Facilitating Easier Access to FPGAs in the
Heterogeneous Cloud Ecosystems. In Proceedings of the 28th International Conference on Field Programmable
Logic and Applications (FPL), 2018 (pp. 447-448). (28th International Conference on Field Programmable Logic
and Applications (FPL): Proceedings). Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/FPL.2018.00083
Published in:
Proceedings of the 28th International Conference on Field Programmable Logic and Applications (FPL), 2018

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2018 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen's academics and its Open Research team.  We would love to hear how access to
this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:24. Jun. 2024

https://doi.org/10.1109/FPL.2018.00083
https://pure.qub.ac.uk/en/publications/d2d4a3ac-0568-4fc6-afa4-9a53c4134045


Facilitating Easier Access to FPGAs in the
Heterogeneous Cloud Ecosystems

Umar Ibrahim Minhas, Roger Woods and Georgios Karakonstantis

Abstract—With FPGAs being increasingly integrated into ex-
isting software-based heterogeneous cloud environments, novel
evaluation mechanisms are required to reveal the energy-
performance trade-offs of accelerators (FPGAs, GPUs, etc) using
high-level heterogeneous programming environments. For FP-
GAs, this also requires reconsideration of scheduling policies and
reconfiguration methods with an aim to integrate software-based
approaches as well as optimizations for broader workload sizes.
Proposed considerations are evaluated using various configura-
tion techniques for a number of applications.

I. INTRODUCTION

Cloud computing offers users ubiquitous access to shared
pool of resources, through centralized data centres managed
by high level software based ecosystems. In recent times, there
has been an increased interest to integrate Field Programmable
Gate Arrays (FPGAs) [1] but these differ in design effort,
reconfiguration and scheduling policies when compared to
Graphic Processing Units (GPUs). This paper re-evaluates
accelerators in the context of a heterogeneous computing
environment of cloud ecosystems.

The first challenge concerns evaluation of achievable gains
using a state-of-the-art heterogeneous programming model -
OpenCL. Although the traditional approach of programming
accelerators using platform specific languages (e.g VHDL,
CUDA, etc) [2] is performance-efficient, it is not suited to
heterogeneous environments due to lack of portability.

The second challenge investigates reconfiguration overhead
on FPGAs [3] incurred due to multi-task execution in cloud
systems. Initial work has targeted this via intelligent schedul-
ing targeting techniques such as module reuse [4] and faster
reconfiguration memories [5]. However, as per our knowl-
edge, no work has looked into bringing more reconfiguration
methods into scheduling model, particularly the more recent
software based approaches. This allows easier access of the
FPGA as a heterogeneous resource and allows trade-off of re-
configuration overhead with performance and can help achieve
better overall execution time.

To summarize, we identify the following contributions for
FPGAs’ integration in data centres:

• Evaluation of accelerators (FPGA and GPU) using a mod-
ern uniform programming model (OpenCL) and similar
optimization efforts used for GPUs.

• Inclusion of multiple reconfiguration methods into
scheduling model for task size aware selection of the
reconfiguration method.

II. METHODOLOGY

We address the aforementioned challenges as follows.

Evaluation of Accelerators: We evaluate FPGAs against
GPUs using the unified parallel programming model, OpenCL
as follows:

• Step-1: Identify a set of micro-architectural optimiza-
tion and design space exploration based on platform-
independent parameters of OpenCL that are applicable
to both FPGAs and GPUs.

• Step-2: In addition to Step-1, apply application-specific
optimizations on three accelerated computing tasks in-
cluding matrix-matrix multiply (SGEMM), binomial op-
tion pricing (BOP) and finite difference time domain
(FDTD) while analyzing the architectural and algorithmic
challenges using OpenCL.

We then compare the implementations on state-of-art plat-
forms which use the same technology namely, Altera FPGA
(Nallatech 385 with Stratix V A7 chip) and NVIDIA GPU
(GTX-980). We consider application specific metrics for
throughput and energy efficiency while keeping the design
effort constant. We also compare the achieved performance
in terms of floating point operations per second against theo-
retical peak performance on each platform.

Although the GPU outperforms FPGA in terms of through-
put (due to larger size of device), the results indicate that
Altera FPGA performs better in terms of achieved percentage
of device’s peak performance (68%) compared to NVIDIA
GPU (20%) and achieves better energy efficiency (up to
1.4×) for some of the examples without the need for detailed
hardware optimisation.

Scheduling Model: The most common reconfiguration
methods for FPGAs involve reconfigurion of the whole FPGA
with a singe task (SBST) (reconfiguration time in the order
of few seconds) and dynamic partial reconfiguration (DPR),
in which multiple tasks are loaded into set regions where
each region is a subset of whole FPGA (reconfiguration
time in the order of few 100ms). We explore two additional
reconfiguration methods:

• Multi-core reconfiguration (MCR) architecture compris-
ing 64 light-weight programmable cores. The cores allow
for rapid run-time reprogramming, remotely over ether-
net, in less than 20ms [6].

• Single bitstream multi-task configuration (SBMT), which
is similar to DPR. However, instead of dividing FPGA
into fixed size regions, the OpenCL synthesizer maps
combined source code of all tasks to a single bitstream,
allowing for system optimization. The intelligent re-
sources allocation per task workload size (WS) is such



that all tasks have a similar execution time.
In terms of the highest to lowest reconfiguration time per

task, Tr, and throughput, T , the order of the above mentioned
methods is SBST, SBMT/DPR and MCR. DPR in our case has
the same performance as SBMT. SBMT may have lower Tr

than DPR because for SBMT, Tr is proportional to logic used
per task while for DPR it is proportional to area of region onto
which the task is loaded which will always be greater than the
logic used by the task.

The net execution time in a multi-task environment depends
on the reconfiguration time - throughput - task size trade-
off. Using the aforementioned information, our task size-aware
scheduler tries to minimize the following sum for n tasks:

n∑
i=0

Tr(i) + T (i)×WS(i) (1)

III. RESULTS

We consider two real world tasks from financial computa-
tion and graph analytics, namely BOP and sparse matrix vector
multiplication (SpMV). WS for both tasks can vary largely
in real-time environment with number of options for BOP
depending on the stocks being monitored and matrix sizes in
SpMV depending on the size of network being evaluated.

0	

1000	

2000	

3000	

4000	

5000	

6000	

1	 2	 4	 8	 16	 32	 64	 128	 256	 512	 1K	 2K	 4K	 8K	 16K	 32K	

To
ta
l	E
xe
cu
tio

n	
tim

e	
(m

s)
	

Number	of	Options	

MCR	

SBST	

DPR	-	5%	

DPR	-	20%	

SBMT	-	5%	

SBMT	-	20%	

Fig. 1. Total execution time against task size for BOP using various
reconfiguration methodologies

5.E+00	

5.E+01	

5.E+02	

5.E+03	

5.E+04	

1,
1K

	

2,
2K

	

4,
4K

	

8,
8K

	

16
,1
6K

	

32
,3
2K

	

64
,6
4K

	

12
8,
12
8K

	

25
6,
25
6K

	

51
2,
51
2K

	

1K
,1
M
	

2K
,2
M
	

4K
,4
M
	

8K
,8
M
	

16
K,
16
M
	

32
K,
32
M
	

To
ta
l	E
xe
cu
tio

n	
tim

e	
(lo

g1
0(
s)
)	

Task	Size	(Number	of	Options,	Number	of	Non-Zero	Elements)	

MCR	

SBST	

SBMT	-	5%	

SBMT	-	20%	

Fig. 2. Multi-task computations using various task sizes

The results for total execution time against workload sizes
using various configurations are shown in Fig. 1 for BOP while

SpMV followed a similar trend. For DPR and SBMT, we use
two different configurations using logic utilization less than or
equal to 5% and 20% of total FPGA logic. In an ideal scenario
where all tasks have same execution model, the selection of
reconfiguration method based on task size can provide up to
86× and 106× improvement over worst case for tasks with a
similar execution model as BOP or SpMV, respectively.

In a second analysis, we mimic a multi-task environment by
using multiple instances of BOP and SpMV as independent
tasks (requiring reconfiguration each time). To evaluate the
effect of individual tasks’ WS , we take a total WS of 32K
options and 32M non-zero elements (NNZ) for BOP and
SpMV task instances, respectively and vary the WS per
instance. The evaluation of reconfiguration policy against WS

is shown in Fig. 2. It shows that even when computing variable
tasks, the intelligent selection of reconfiguration policy can
provide up to 79× and 60× improvement over worst case on
the lowest and highest end of WS /instance, respectively.

The results project a case for selection of reconfiguration
method based on the dynamic nature of task queues. For a
more dynamic queue requiring frequent reconfiguration for
tasks with smaller workload sizes, a space sharing model or
run-time programmable model is better. However for bigger
tasks, whole FPGA reconfiguration may be used.

IV. FUTURE WORK

In our evaluation of multiple reconfiguration methods,
SBMT performs the best on average because,

• SBMT has lower average Tr than DPR as for SBMT, Tr

is proportional to area of task while it is proportional to
the area of region onto which the task is loaded in DPR.

• SBMT has the best compute density, i-e total execution
time for a set of tasks excluding Tr, as depicted by
another set of experiments using four computationally
different tasks.

This motivates us to further explore SBMT. In our context
of SBMT using OpenCL, we explore the design space using
scaled versions by changing OpenCL options such as work-
items, loop unrolling, local memory, etc. To speed up this ex-
ploration, we propose a static source code analysis framework
that can leverage the correlation between multiple versions of
same task to achieve accuracy in performance estimates.

REFERENCES
[1] N. Tarafdar et al. “Designing for FPGAs in the Cloud”, in IEEE Design

& Test, pp. 23-29, 2018.
[2] U. I. Minhas et al., “GPU vs FPGA: A comparative analysis for non-

standard precision”, in International Symposium on Applied Reconfig-
urable Computing. Springer, pp. 298-305, 2014.

[3] A. Purgato et al., “Resource-efficient scheduling for partially-
reconfigurable FPGA-based systems”, in IEEE International Parallel and
Distributed Processing Symposium Workshops, pp. 189-197, 2016.

[4] R. Cattaneo et al., “Para-sched: A reconfiguration-aware scheduler for re-
configurable architectures”, in IEEE International Parallel & Distributed
Processing Symposium Workshops, pp. 243-250, 2014.

[5] H. Liang et al., “Parallelizing hardware tasks on multicontext FPGA with
efficient placement and scheduling algorithms”, IEEE Trans. on Computer
Aided Design of Integrated Circuits and Systems, pp. 350-363, 2018.

[6] U. I. Minhas et al, “Nanostreams: A microserver architecture for real-time
analytics on fast data streams”, IEEE Trans. on Multi-Scale Computing
Systems, 2017


