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Member, IEEE and Erik G. Larsson, Fellow, IEEE

Abstract—This paper investigates the performance of limited-
fronthaul cell-free massive multiple-input multiple-output
(MIMO) taking account the fronthaul quantization and imperfect
channel acquisition. Three cases are studied, which we refer
to as Estimate&Quantize, Quantize&Estimate, and Decentral-
ized, according to where channel estimation is performed and
exploited. Maximum-ratio combining (MRC), zero-forcing (ZF),
and minimum mean-square error (MMSE) receivers are consid-
ered. The Max algorithm and the Bussgang decomposition are
exploited to model optimum uniform quantization. Exploiting
the optimal step size of the quantizer, analytical expressions
for spectral and energy efficiencies are presented. Finally, an
access point (AP) assignment algorithm is proposed to improve
the performance of the decentralized scheme. Numerical results
investigate the performance gap between limited fronthaul and
perfect fronthaul cases, and demonstrate that exploiting relatively
few quantization bits, the performance of limited-fronthaul cell-
free massive MIMO closely approaches the perfect-fronthaul
performance.

Keywords: Bussgang decomposition, cell-free massive MIMO, C-
RAN, energy efficiency, quantization, optimal uniform quantiza-
tion.

I. INTRODUCTION
A. Why Cell-Free Massive MIMO?

The goal of the fifth generation (5G) wireless network is
to provide greatly increased throughput while supporting very
high density of users. A wireless network that can serve large
numbers of users at the same time must become an ultra-dense
network (UDN). In a UDN, the density of base stations (BSs)
may exceed that of users, and distance between users and BSs
is reduced to a few metres [2], [3]. The huge interference
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from the neighbouring BSs is such that the capacity scaling
law of the cellular paradigm no longer holds and hence
interference becomes a limiting factor [2]-[4]. Exploiting
coordination techniques, several neighbouring BSs can share
data via fronthaul links: however, coordination among BSs
results in a very large overhead in UDNs, which is costly and
practically infeasible. The centralized or “cloud” radio access
network (C-RAN) is a promising network architecture that can
effectively address the interference and coordination issues in
UDNS [2].

In C-RAN, the distributed remote radio heads (RRHs)
service the users while the base-band signal processing is
performed at a central base band unit (BBU) [5], [6]. C-
RAN also allows implementation of a version of coordinated
multipoint processing (CoMP), where the RRHs replace the
coordinated BSs, and everything is processed at the “cloud”
(the centralized processor). While C-RAN was created to
reduce the hardware costs, by allowing multiple base stations
to share a processor, it also enables the implementation of
CoMP-based cooperation between base stations connected to
the same “cloud”-based processor.

C-RAN and cell-free massive multiple-input multiple-output
(MIMO) are not thus alternative technologies. Cell-free mas-
sive MIMO is very different since it is explicitly not based on
the cellular principle. In cell-free Massive MIMO, we process
the physical-layer signals in a different way and we deploy the
access points (APs) in a different way from conventional cel-
lular networks. Specifically, many APs are distributed across
the area, removing the concepts of cell and cell-edge users.
However, since cell-free massive MIMO requires a “central
processing unit” (CPU), it can be implemented using a C-
RAN-like architecture, and similarly the APs are connected
to the CPU through fronthaul links. Nevertheless the software
that we will run and the way that we deploy the APs will be
different from that normally considered in C-RAN, reflecting
the techniques used in massive MIMO. For example, some
functional operations, such as channel estimation through
uplink pilots, are carried out at the APs. Users are supported
using time-division duplex (TDD), as in massive MIMO.

B. State-of-the-Art Limited-Fronthaul C-RAN

The common public radio interface (CPRI) specification
was published by a union of radio equipment manufacturers,
aiming to standardize the fronthaul communication of BBU
and RRHs in C-RAN [7], [8]. In CPRI, each sample is



quantized exploiting a given large number of bits (around 15
bits) per sample. Based on [9], CPRI is not suitable for large-
scale C-RAN and practical implementations using limited-
fronthaul links are necessary. On the other hand, using a non-
uniform quantizer, the quantization levels can be optimized
as a function of the statistics of the signal using standard
techniques such as the Lloyd-Max algorithm [10]. Another
approach in C-RAN is exploiting Wyner-Ziv coding. The
coding scheme at the RRHs in order to leverage the side
information at the receiver is known as Wyner- Ziv coding
[11]. Using Wyner-Ziv quantization, the RRH can exploit a
better quantizer with an improved resolution without any need
to increase the fronthaul rate [8]. Another technique in C-RAN
is compute-and-forward, which is originated from network
information theory and nested lattice codes [8]. Finally, many
of the network information theoretic problems for the design
of C-RANs are open and improvement in this domain may
provide a progress in the C-RAN technology [8], [12]. In this
paper, we investigate the performance of limited-fronthaul cell-
free massive using the Bussgang decomposition, which can be
applied to the C-RAN technology.

C. The Limited Capacity of Fronthaul Links in Cell-Free
Massive MIMO

The limited capacity links from the APs to the CPU
constitute one of the most important challenges in cell-free
massive MIMO [13]-[18]. This fronthaul limitation is a more
crucial challenge on the uplink, as in the downlink mode the
signals are sent as bit streams to the APs which then apply
local modulation and coding whereas as the fronthaul links
send the quantized version of the received signals at the APs
to the CPU, which introduces additional self-interference to
the signals at the CPU.

The total data rate required to transmit these quantized
signals with sufficient precision to avoid performance loss is
several times the total user data rate supported by those signals.
In the C-RAN literature, this has been estimated as 20-50 times
the corresponding data rate [19], implemented using the CPRI
standard [7], typically over optical fiber.

The assumption of infinite fronthaul in [20] is not realistic in
practice. It is reasonable to assume, however, that the fronthaul
network will carry quantized signals, at least in the uplink
direction, and that this will affect the network performance.
This paper therefore provides an approach for the analysis of
the effect of fronthaul quantization on the uplink of cell-free
massive MIMO. While there has been significant work in the
context of network MIMO on compression techniques such as
Wyner-Ziv coding for interconnection of base stations, here for
simplicity (and hence improved scalability) we assume simple
uniform quantization. J. Max in [21] developed an algorithm to
solve the problem of minimizing the mean-squared distortion
(or mean-squared error (MSE)). In addition, P. Zillmann in
[22] studied the problem of minimising the MSE of the uni-
form quantizer exploiting the Bussgang decomposition [23].
Note that the Max algorithm and the scheme in [22] provide
the same signal-to-distortion-plus-noise ratio (SDNR). In this
paper, we exploit both the Max algorithm and the Bussgang
decomposition to model optimal uniform quantization.

D. Different Implementations of Cell-Free Massive MIMO

In this paper, we study four cases for the implementation of
cell-free massive MIMO networks with linear processing and
present a fair comparison between the different schemes. By
fair comparison, we refer to the fact that we assume the same
fronthaul rate for all schemes. We investigate an uplink cell-
free massive MIMO system with limited-fronthaul links and
three different linear detection schemes, namely, maximum-
ratio combining (MRC), zero-forcing (ZF), and minimum
mean-square error (MMSE). We study the case in which
the APs estimate the channel and the quantized versions of
the estimated channels are transferred to the CPU through
limited fronthaul links. Moreover, APs also send the quantized
received signals to the CPU: we use the Bussgang decompo-
sition to model the quantized signal. This case is referred to
as Estimate&Quantize. Then, the case Quantize&Estimate is
investigated, in which the quantized version of the received
pilots is sent back to the CPU and the CPU performs the
channel estimation. In this case, the APs also need to transfer
the quantized versions of the received user data to the CPU.
Next, we derive the fronthaul bit rate of limited-fronthaul cell-
free massive MIMO. Finally, a decentralized scheme is investi-
gated, in which the distributed APs multiply the received signal
by the conjugate of the channel estimates, and a quantized
version of this weighted signal is sent back to the CPU. Note
that [24] considers the downlink of cell-free massive MIMO
whereas in this paper, we investigate the uplink transmission.
Moreover, the energy efficiency of cell-free massive MIMO
with only error-free and unlimited capacity fronthaul links is
in investigated in [24].

E. Applications

Considering a limited-capacity fronthaul is practically im-
portant since this is the case that will appear in practice.
For the first time, we investigate the performance of the
system under realistic assumption of limited-capacity fronthaul
links and using different detectors. The analytical results for
the achievable rate and the energy efficiency can be used
for power control optimization and other resource allocation
tasks. Moreover, the analysis in this paper provides the means
for system designers to investigate the outage probability,
user assignment schemes, pilot assignment algorithms and bit
error rate analysis with the realistic assumption of limited-
capacity fronthaul links. Finally, the different implementa-
tions of cell-free massive MIMO (namely, Estimate&Quantize,
Quantize&Estimate and the decentralized scheme) open the
door to investigating flexible functional splits and signal com-
pression techniques in this system model.

E. Contributions

The connection between the APs and the CPU is a challenge
for the practical implementation of cell-free massive MIMO.
One practical and feasible architecture of the cell-free massive
MIMO is the radio stripe system [14], where the fronthaul
links have limited capacity. The analysis in the current paper
show that using only a few quantization bits (resulting in a



few tens of Mbit/s required fronthaul rate), the performance of
limited-fronthaul cell-free massive MIMO closely approaches
the perfect-fronthaul performance. The required capacity of
fronthaul links obtained in this paper are compatible with
the capacity of Ethernet links: a capacity of 100 Mbit/s can
be achieved by using twisted pair Ethernet [25]. Moreover,
energy-efficient techniques are considered as one of the key
avenues for addressing these issues in the development of
future wireless systems. As shown in the paper, the energy
efficiency of the system is a function of the number of
quantization bits. We accordingly find the optimal number of
quantization bits to maximize the energy efficiency. As a re-
sult, the proposed uniform quantization scheme has low-power
consumption and easy deployment which is very suitable for
the practical implementation of cell-free massive MIMO. A
“tradeoff” between the energy efficiency (as measured in
bit/J) and spectral efficiency (as measured in bit/sec/Hz) of
the cell-free massive MIMO system is an important perfor-
mance metric [26]. However, the authors in [26] consider
co-located massive MIMO whereas the investigation of the
tradeoff between spectral efficiency and energy efficiency in
cell-free massive MIMO is essential. Therefore, using the
achievable rate obtained in the paper, we evaluate the tradeoff
between the spectral efficiency and energy efficiency of the
cell-free massive MIMO system. The contributions of the
paper can be summarized as follows:

1. We exploit the Bussgang decomposition and the Max
algorithm to model the effect of uniform quantization
with Estimate&Quantize, Quantize&Estimate and decen-
tralized schemes. We derive analytical expressions for
the user signal-to-interference-plus-noise ratio (SINR) for
different schemes with three linear receivers, namely
MRC, ZF and MMSE, taking into account the effects
of limited fronthaul links, quantization errors and pilot
contamination. We show that to analyse the performance
of the aforementioned schemes with quantized channel
gain at the receiver and non-Gaussian noise, we need to
exploit the scheme in [27]. Note that this is the first paper
which investigates the scheme in [27] and shows that the
achievable rate can be obtained through a similar way as
in [27, Section 2.3.5 and Table 2.3]. These analyses are
novel and not presented anywhere else.

2. The required fronthaul rate and power consumption of the
Estimate&Quantize, Quantize&Estimate and decentral-
ized cases are investigated, which enables us to formulate
the total power consumption of the system. Given the
effect of the channel coherence time, the capacity of
fronthaul links and the effect the quantization distor-
tion, a closed form expression for an achievable spectral
efficiency and the energy efficiency of the system are
obtained. We show that very high spectral efficiency and
energy efficiency can be obtained even with simple MRC
processing. A tradeoff between the energy efficiency and
spectral efficiency of the system is presented. It is shown
that exploiting a moderately large number of APs can
significantly enhance the spectral and energy efficiency
of the system.

Figure 1. The uplink of a cell-free massive MIMO system with K single-
antenna users and M APs. Each AP is equipped with N antennas. The solid
lines denote the uplink channels and the dashed lines present the limited
capacity fronthaul links between the APs and the CPU.

3. One of the aims of this work is to find a practical user
assignment algorithm for cell-free massive MIMO. A
novel and efficient user assignment algorithm is proposed,
which is based on the capacity of fronthaul links and
improves the performance of decentralized cell-free mas-
sive MIMO. Note that the proposed AP assignment is
different from the AP selection schemes investigated in
[14], [24], [28], as here we investigate the effect of the
limited capacity of the fronthaul links on the total number
of users which can be supported by each AP.

4. We present a performance comparison between the case
of perfect fronthaul links, the Estimate&Quantize,
Quantize&Estimate and the decentralized scheme. Next,
we investigate the optimal number of AP antennas along
with the optimal number of quantization bits and optimal
number of APs to maximize the uplink energy efficiency
of cell-free Massive MIMO. Numerical results confirm
that relatively few quantization bits are needed for the
limited-fronthaul case to meet the performance of the
system with perfect fronthaul, which reveals that limited-
fronthaul cell-free massive MIMO can be considered as
a practical system for beyond 5G.

5. We investigate one of the most important and practical
issues of cell-free massive MIMO: should we allocate
more bits to quantize the estimated channel at the APs or
more bits to quantize the received signal? It is interesting
that the numerical results show that the same number of
bits should be exploited to quantize the estimated channel
at the APs or to quantize the received signal to maximize
the spectral efficiency and energy efficiency of the system.

Outline: The rest of the paper is organized as follows. Section
IT describes the system model and Section III reviews the
optimal uniform quantization model. Section IV describes the
Estimate&Quantize scheme. Sections V presents the decen-
tralized processing scheme whereas the Quantize&Estimate
scheme is investigated in Section VI. In addition, Sections VII
and VIII investigate the total energy efficiency and proposed
AP assignment schemes, respectively. Numerical results are
presented in Section IX, and finally Section X concludes the

paper.



II. SYSTEM MODEL

We consider the uplink transmission in a cell-free massive
MIMO system with M APs and K single-antenna users arbi-
trarily distributed in a large area, as shown in Fig. 1. Moreover,
we assume each AP has N antennas. The channel coefficient
vector between the kth user and the mth AP, g,,, € CN*! s
modeled as

:Bmkhmk, (1)

where [,k is the large-scale fading coefficient and h,;; ~
CN(0,1y) is a complex Gaussian random vector with covari-
ance matrix I which represents the small-scale fading [24].!

Smk =

A. Channel Estimation at the APs

All pilot sequences transmitted by the K users in the channel
estimation phase are collected in a matrix ® € C™»*K  where
7, is the length of the pilot sequence for each user and the
kth column, ¢y, represents the pilot sequence used by the kth
user, where ||¢x||> = 1. Let V@ € C™!, where ||¢¢|> = 1,
be the pilot sequence assigned to the kth user. The MMSE
estimate of the channel coefficient is given by [24]

K
Emk = Cmk (\/Tpppgmk +VTpPp Z gmk’¢g¢k +Qp,m¢k)»(2)
k'#k
where Q, ,,, denotes the noise vector at the mth AP whose
elements are independent and identically distributed (i.i.d.)
CN(0,1), p,, represents the normalized signal-to-noise ratio
(SNR) of each pilot symbol, where it is assumed that p,
denotes the power of pilot sequence where p, = % and

pn 1is the noise power [24]. Moreover, we have c,x =
\/Tpppﬁmk T])Ppﬁ,znk

K H 2 2
TpPp Zklzlﬁmk’|¢k/¢k‘ +1 ¢5¢I\‘ +1

[24].

and Yk -
TpPp Zk’:l Bmk’

B. Uplink Transmission

In this subsection, we consider the uplink data transmission,
where all users send their signals to the APs. The transmitted
signal from the kth user is denoted by x; = \/p gi sk, where
sk (B{|sx|*} = 1) and g, denotes the transmitted symbol and
the transmit power, respectively. Moreover, p refers to the
normalized uplink SNR. The N X 1 received signal at the mth
AP is given by

K
Y =P D Gk TSk + i, 3)
k=1

where n,,, ~ CN(0,Iy) is the noise vector at the mth AP. The
baseline of cell-free massive MIMO with perfect fronthaul and
linear receivers has been presented in [13], [30]-[32]. Hence,
we only present the performance analysis for the limited
fronthaul cases.

IWith multiple antennas at the users, if the users do not have channel state
information, then a system with K NN -antenna users have the same sum uplink
spectral efficiency as a system having KN single-antenna users. However,
in the case that users have channel state information, the effect of multiple
antennas at the user terminals is investigated in [29] and is out of scope of
the current paper.

ITII. OPTIMAL UNIFORM QUANTIZATION MODEL

In this section, we provide an overview of the optimal
uniform quantization. Note that J. Max in [21] developed an
algorithm to define the necessary conditions to minimize the
distortion of a scalar quantizer [33]. In addition, the Bussgang
decomposition [23] is also used in this paper, enabling us to
exploit the scheme proposed by P. Zillmann in [22] to model
the quantization and hence find the optimum step size of the
quantizer by maximizing the SDNR. Note that the Max algo-
rithm and the scheme based on the Bussgang decomposition in
[22] result in the same SDNR. The main difference between
them is that using the Bussgang decomposition, the output
of the quantizer can be represented by a scalar multiple of
the input plus an uncorrelated distortion [22], [23] whereas
exploiting the Max algorithm, the quantization distortion and
the output of the quantizer are uncorrelated [21], [34], [35].
The details of the optimal uniform quantization models are
provided in the following subsections.

A. Optimal Uniform Quantization with the Bussgang Decom-
position

Based on the Bussgang decomposition [23], the output of a
quantizer can be represented by a scalar multiple of the input
plus uncorrelated distortion as follows [15], [22], [36]:

Q(z) = h(z) = az + ng, Vk, €]

where Q(-) denotes the quantization operation, and h(z)
denotes a memoryless nonlinear function with the Gaussian-
distributed input z, a is a constant, ny refers to the dis-
tortion noise which is uncorrelated with the input of the
quantizer, z [22]. The term a is given by a = E{Ef{hz(zz})} =
i/Z zh(2) f,(z)dz, where p, = E{z?} denotes the power
of z and we drop absolute value as z is a real number, and
[z (z) represents the probability distribution function of z. In
general, the terms « is a function of the power of the quantizer
input, p,. Similar to the methodology in [15], to remove this
dependency, we normalize the input signal by dividing the
input signal, z, by the square root of its power, 4/p;, and then
multiply the quantizer output by its square root, 4/p,. Hence,
by introducing a new variable 7 = \/%, we have

Q(2) = VpzQ(2) = aVp:Z + \pzia = az+ \pzia.  (5)

In other words, d is the constant term in the Bussgang
decomposition for the case of normalized input. Finally, the
optimum step size of the quantizer and the corresponding d
are given in [15, Subsection II-B], which are summarized in
Table L.

B. Max Algorithm for Optimal Uniform Quantization

Based on the analysis provided by J. Max in [21], the linear
quantization can be modeled as:

Q(z) = h(z) = z+ny, Vk. (6)

Note that based on the analysis in [35], [37, Chapter 3], the
quantization model in (6) is a special case of (5), where d@ =



Table 1
THE OPTIMAL STEP SIZE AND DISTORTION POWER OF A UNIFORM
QUANTIZER with and without the Bussgang decomposition AND UNIT
VARIANCE INPUT SIGNAL.

a Aopt G}%ld =b-a*= 0'5’3 a o-rgld = a'f;
1 1.596 0.2313 0.6366 0.3634 [21]
2 0.9957 0.10472 0.88115 0.1188 [21]
3 0.586 0.036037 0.96256 0.03744 [21]
4 0.3352 0.011409 0.98845 0.01154 [21]
5 0.1881 0.003482 0.996505 0.00349 [21]
6 0.1041 0.0010389 0.99896 -
7 0.0568 0.0003042 0.99969 -
8 0.0307 0.0000876 0.999912 -
9 0.0165 0.0000249 0.999975 -
10 0.0088 6.99696 x 10° 0.999993 -
11 0.004649 1.94441 x 107© 0.999998 -
12 0.0024484 5.35536 x 1077 0.999999 -
13 0.001283 1.46369 x 1077 0.9999998 -
14 0.001283 3.97394 x 1078 0.99999997 -
15 0.000349 1.0727x 10 I -

= 1 I

8

g=
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Figure 2. Cumulative distribution of the input of the quantizer with K = 10
and N = 1.

1- o-?. Using J. Max algorithm, the output of the quantizer
and the distortion are uncorrelated [21], [34], [35]. For this
case, to calculate the variance of the quantization error, we
exploit the following scheme:

o2 = a'eg, obtained in [21],
a a(l-a, [38],

a <5,
a > 6,

(7

where o« denotes the number of quantization bits. In the
following sections, we investigate the performance of limited-
fronthaul cell-free massive MIMO with the aforementioned
optimal uniform quantization schemes.

IV. ESTIMATE&QUANTIZE SCHEME

In this section, we present the Estimate&Quantize scheme.
With this scheme, the mth AP quantizes the estimated chan-
nels, &%, Vk, and the received signal, y,,, using the optimal
uniform quantization, and forwards the quantized channel
and the quantized signal to the CPU. In the following sub-
sections, we exploit the Bussgang decomposition [22], [23]
and the Max algorithm [21] to quantize the received signal
and the estimated channel, respectively. These enable us to

exploit the scheme in [26] to derive the SINR of the limited-
fronthaul cell-free massive MIMO system with the considered
Estimate&Quantize scheme.

A. Quantization of the Received Signal

Using the Bussgang decomposition [22], [23], the quantized
signal can be obtained as:

where y,, is the received signal at the mth AP and is defined
in (3). Exploiting the analysis in Section IV, the variance of
the distortion noise is given by 0'2‘%]” = O'[Zé%]nE {|[ym]n|2}.
Hence, we have

K
ot = Tl |0 D Pt +1

k'=1
K
2
= O-é.v p Zﬂmk’Qk’ + 1 ,Vm, n, (9)
k=1
where O'ézy is the variance of the distortion noise with unit

variance Tnput for the given number of quantization bits.
Note that using y,, defined in (3), the elements of y,, are
uncorrelated, ie., E{y,yf} = 0. Moreover, in the second
equality in (9) we used the same number of bits in all APs
and all antennas to quantize the received signal and hence
o-[zéi;]n = o-egy = o-eg’ B,Vm,n. Note that subscript B denotes
the Bussgang decomposition. The optimal values of 0'3 g for

different numbers of quantization bits are given in Table 1.

Remark 1. J. Bussgang in his original work [23] assumes
that the input of quantizer has Gaussian distribution. Since the
input of quantizer is the sum of many random variates, from
the central limit theorem, it has near Gaussian distribution.
Therefore, we use the Bussgang decomposition, making the
approximation that the input of the quantizer is Gaussian
distributed. The Gaussian approximation can be verified nu-
merically, as shown in Fig. 2. We can see that the cumulative
distribution of the empirical distribution matches very well
with that of the Gaussian distribution.

Remark 2. Using the Bussgang decomposition, the quantizer
input is uncorrelated with the distortion noise. This implies

that E {ymezf’} — 0, Vk.

B. Quantization of the Estimated Channel

We quantize the estimated channel with the optimal quan-
tizer obtained using the Max algorithm [21] as follows:

gmk = ka + equa Vk. (10)

Using the analysis in Section IV, the variance of the quantiza-
tion error is obtained as U[zeg = a[zég | E {[gmk]n|2}, which

. mik N mik AN
results in

Y

where for simplicity we use the same number of bits in all
APs to quantize the estimated channels.

2 _ 2 _ 2
o-[e&’ k]" - O’[é&’ k]n7’mk - UggYmk, Vm, k’ n,
mkKk mkKk



Remark 3. Note that J. Max investigated the case of an input
signal with Gaussian distribution, and here the input signal,
i.e., 8mk has Gaussian distribution.

Remark 4. Based on [21], [34], [35], the quantizer output is
assumed to be uncorrelated with the distortion noise. Hence,
we have
« g H| _
E{gmkemk }_0, Vk. (12)
Note that the reason why we do not use the Bussgang
decomposition to model the quantization of the estimated
channel is explained later after the proof of Proposition 5.

Remark 5. If the probability density function of input of the
quantizer is even, and exploiting the symmetrical quantizer,
the distortion noise has zero mean [21], [34], [35]. Hence,
we have:

E{ef } =0 & E{e),} =0. (13)

C. Data Detection

Let Ve CMNXK be the linear detector matrix depending on
the side information at the receiver g,,x, Vm, k. We let v =
[Vlrk, N k]T refer to the kth column of the detector matrix
V, and V,,x € CN. The received signal after using the linear
detector at the CPU is given by

(14)

Se=V (V1. Yl

where ¥,, is defined in (8). Next, the received signal for the
kth user is re-written as:

K
d\/ﬁz (gmk -ef, + gmk) Vqisk + anp, + eﬁq)

D. Capacity Bound with Quantized Channel and Non-
Gaussian Noise

Note that the quantized version of the estimated channel
is available as side information at the CPU to decode the
signal, where we use the term Q = G to refer to it
Moreover, the received signal in (15) can be re-written as
fk = ﬁAlsk + dAz + dA3 + A4 - ﬁAj + ﬁA6, and W =
Ar + A3 + Ay + A5 + Ag. Note that here we use the scheme
in [27, Section 2.3.5 and Table 2.3] for fading channel with
additive non-Gaussian noise W and side information Q. Let us
suppose the following four conditions hold: 1. Terms A sy, A,
Az, A4, As and Ag are mutually uncorrelated, 2. E{W|Q} ~ 0,
3. E{sZWlQ} ~ 0, and 4. E{A’i‘s’,‘(WlQ} ~ 0. Then the
closed-form expression for the achievable rate of the kth user
is given by Ry ~ E{log,(1+SINRy)}, where the SINRg
is the achievable SINR of the kth user and the expectation
is taken over G. Using the analysis in [27], the achievable
SINR is obtained by (16) (defined at the bottom of this page).
In the following lemmas, we prove the four aforementioned
conditions.

Lemma 1. Terms Aysk, Aa, Az, A4, As and Ag are mutually
uncorrelated.

Proof: Please refer to Appendix A. [

Lemma 2. We have E{W|Q} =~ 0. Note that the approximation
term in E{W|Q} ~ 0 means that the term E{W|Q} is small
enough and can be neglected.

Proof: Please refer to Appendix B. [

Lemma 3. We have ]E{sZWlQ} ~ 0, where approximation
sign indicates that the term E {s’,‘(W|Q} is small enough and
can be neglected.

Proof: Please refer to Appendix C. [
Lemma 4. We have E {A’I‘SZW|Q} =~ 0.

Proof: Please refer to Appendix D. [
Next, the achievable SINR of the kth user is obtained in the

m=1 k=1
M K M following theorem.
~ CH « ~ vH %
=avp9qk Z Vini8mk Sk +a~p Z Vdr Z Vink&mk’ Sk/ Theorem 1. The SINR of the kth user in cell-free massive
m=1 k#k m=1 MIMO for the case when APs send back the quantized
A A versions of the estimated channels and the quantized version
M M M K of the received signals to the CPU through limited fronthaul
+ dZ {'anrﬂ" Z{’Zkeryn —d \/ﬁz ‘V’Zk Z Weikrsk’ links is given bg&(]l7) (defined at the top of the next page),
el el =l o=l where in SINR, U the superscript “E&Q,If” stands for
ﬁf—’ T N Estimate&Quantize and limited fronthaul.
3 4 5
M K Proof: Using Lemma 1 and the analysis in [27], the achiev-
+d \/EZ i'Zk Z VG &k Sk - (15) able SINR is obtained by (16). Next, using (15) and (11), and
m=1 k=1 after some mathemapical manipulation, we have (18), where
) WESQI and FE4QI are defined in (20). It is straightfor-
6 ~ v
ward to calculate the terms E{|A1sk|G|2}, E {|A2|G|2}, and
E&Q,If |E {Al |é}|2
SINR, ™" = (16)

T E{JAL |G} +E {143 |G} + LE{|A4P |G} +E{IAsP |G} +E {| A6l |G}



par |SM VH, g

E&Q,If_
SINRF“Q= . . 5 (17)
K M 5 ) T5v B 5 Iop| M o,
P 2 qre| 2V gmk’ +p Z [Vl Z qr | Bmir |1+ o _'ymk’(l_o'ég) +[ 1+ ) 2 Vil
Kk m=1 a a m=1
2 2 2 w k [ Ugy B
SE{[AIG |+ E {JAsIG] )+ E{|AlG | = 3 1l 2 ) paw ﬁmk/(u - )—ymkr(l—crég)l
m=1 k=1 I
M o2 K .
. i _ E&Q,l .
+ ) i P2 =¥ (p D ar W@ +FE&QJf) Vi, (18)
m=1 k=1

E {|A3|é|2}. Finally, by substituting (18) into (16), we obtain
(17), which completes the proof. [ |
In this case, we will consider the following linear detectors.

(}, for MRC
1
N
V- G(G G) , 1 for ZF (19)
K A\
(dzp kgl G g gl + RELQN ) G, for MMSE
where G = [g),-- -, k], and RE&QI j5 obtained as follows:
K
RE&QI _ Z qk/Wff&Q’lf + 1y + FE&QI (20a)
k/

E&Q I _ E&Q It TE&Q It (20b)
S ( + 1) diag (rep (B1x, N)- - rep (Bazirs N)), (200)
T =i crég)chag (1ep (Y1, N) -+ 1ep (Yarkrs N)) - (20d)

5 B
prei _ ZeB L e (20¢)
a

Note that the MMSE detector is optimal as it maximizes the
instantaneous SINR of each user.

V. DECENTRALIZED PROCESSING SCHEME

In this section, we investigate MRC, which due to its
low complexity and can be designed in a distributed fashion
where most processing is locally performed at the APs [20].
First, the received signal from the kth user at the mth AP,
i.e., Ym, is multiplied by the Hermitian of the local channel
estimate g - Following the termmology in [15], the mth AP
quantizes the term z,, x = gmkym,Vk. Next, the AP forwards
the quantized signals, i.e., Z;,x, in each symbol duration to the
CPU. Similar to [35], [39], a low resolution analog-to-digital
converter (ADC) quantizes the real and imaginary parts of
Zm.kx With @ bits each, which introduces quantization errors
to the received signals [35], [37], [38], [40]. Exploiting the
Bussgang decomposition, the relation between z,x and its
quantized version, Z,k, iS given by

Zmk = AZm + efnk’ (21)

where the term efn  is the distortion noise of the mth AP.
Note that the input of quantizer, i.e., Zy k = gZ & Yms Yk, is the
sum of many random variates, from the central limit theorem,
it has a near Gaussian distribution. This allows us to exploit
Bussgang theorem [41, Section II-D]. The aggregated received
signal at the CPU can be written as (22) (defined at the
top of the next page), where DSy and BUj are the desired
signal (DS) and beamforming uncertainty (BU) for the kth
user, respectively, and IUI; is the inter-user-interference (IUI)
caused by the k’th user. Moreover, TNy accounts for the total
noise (TN) following the MRC detection, and finally TQE,
is to the total quantization error (TQE) at the kth user. Using
the fact that the terms DSg, BUy, IUIxx, TNy, and TQE,
are mutually uncorrelated, the achievable uplink rate of the
kth user with the decentralized processing is given by (23)
(defined at the top of the next page), where the index dec
refers to the decentralized scheme [15, Section III].

VI. QUANTIZE&ESTIMATE SCHEME

In this section, we provide the Quantize&Estimate scheme.
With this scheme, the APs quantize the received signal and
received pilot, using the optimal uniform quantization, and
forwards the quantized versions of the received signal and
received pilot to the CPU. In the following subsections, we
exploit the Bussgang decomposition [22], [23] to quantize the
received signal and the received pilot.

A. Quantization of Received Pilot

The users simultaneously transmit their pilot sequences, and
similar to [20] we assume the pilot sequence for the kth user
is \Tp¢x € C*1, where ||¢||> = 1. Hence, the received
signal at the mth AP is given by [20]

K
Yh = Vioby ), gmidf + Wh, (24)

k=1

where matrix W2 € CNX7r is the noise whose elements are
iid. CN(0,1). Next each AP quantizes the received signal
and sends the quantized versions of the received signals to the
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CPU. Using the Bussgang theorem, the quantized version of
the recieved pilot signal at the mth AP is given by

v - r
Y’ =avh +EY"”

K
= a\T Py ) gmdll +aWh +EY" . (25)
k=1

Py . . . . .
where E,(ny ) is the quantization distortion.

Remark 6. Note that Y5, has Gaussian distribution as
it is sum of Gaussian variables, i.e., mgm@{’,
mgmmﬁg, WP . This enabels us to exploit Bussgang’s
approach in [23]. In this case, the inputs are also independent
which implies that the outputs will be independent (based on
the analysis in [37, Section 2.2].

B. Channel Estimation at the CPU

Next, the CPU exploits the pilot sequence @i to correlate
the received quantized signal from the mth AP with the pilot
sequence as follows:

w o _vyP
ym,k = YmPr

K
~ ~ ~ . (yP
= AT Dk +ANTpPp . Bk dr+awl, +el), (26)

k'#k
where w 2 W2 ¢, and éi:,f) 2EY g,

Lemma 5. Linear minimum mean-square error (LMMSE)
estimate of g given )Vfgl o IS

27)

{ mkymk} 3
v Hy

v vp

Yo

E
M2
mk kaym,k’
= fin

dVTppp,Bmk

where ¢y =

- K 2 K '
az(rpppkzlﬁmk, |¢kH¢k’| +1)+a§(p,, kzlﬁmkn)

Proof: Tt is easy to show that E {gmkym k} = Na+\[TpP pPmk-
In addition, using (26), the denominator of c¢,,x is obtained as
follows:

yp H\‘?p
E{ym,k ym,k>

K
~ 2
:Naz(/,,ppZBmk/ |67 g1 [+1) + NE {‘ [£5"]
k’'=1 ’

2
} . (28)

where again Y7, is the input of the quantizer at the mth AP,
given in (25), and [ . ], refers to the (n,?)-th element, and
n=1,---,N,and t = 1,---,7,. Hence, the variance of the
quantization error can be obtained as follows:

E {“Eﬁny')] t'z} = 2B {‘[an]n’t 2}
K

=02 (p,, D Bk + 1), (29)
k'=1

which completes the proof.
The mean-square of the nth element of g, is denoted by
Ymk, and given by

Ymk éE{

(], 7}

) 2
_ A TpP Pk
= _ . (30)

- K 2
az(rpppkglﬁmk/ 61 61| +1)+<r§ (ppkzlﬁmkﬂ)

Note that the channel estimation error &,,x is given by

émk = 8mk — émka a3n

where the elements of f;mk ~ CN(0, Bk — Ymik) are i.id.
random variables and independent of g,,z. This is obtained
from the fact that the term in (25) is the sum of many
random variates, from the central limit theorem, it has near
Gaussian distribution [36]. Therefore, the MMSE estimation
has Gaussian distribution. This fact is also observed in Fig. 3
with M =40, N =1, K =20 and a,,2 = 1 bit.
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Figure 3. Cumulative distribution of the channel estimation with M = 40,
N =1, K =20 and a;, 2 =1 bit.

C. Quantization of Received Signal

The received signal at the mth AP from all users, i.e., Y,
is given by (3). Exploiting the Bussgang decomposition, the
quantized version of y,, is

Yim = AYm + €, Vm, (32)

where the quantization noise is uncorrelated with the input of
y H

the quantizer, i.e., E {ymem } =0, Vm. Moreover, note that

K
k’=1

K
=02 (PZ Bk G + 1),
k=1

where in second equality of (33), we assumed the same

(33)

number of bits at all APs, i.e., 0'2éy = 02 4, ¥m, for
simplicity. Note that in Remark 1, we prove that y,, has

Gaussian distribution, which enables us to use J. Bussgang’s
approach in [23].

D. Data Detection

Let V € CMNXK pe the linear detector matrix, which
depends on the side information at the receiver, &k, Vm, k.

Y Y ¥ T

We assume Vi = [V, .-+ VI | refers to the kth column
of the detector matrix V, and %'mk € CN . The received signal
for the kth user after using the detector at the CPU is given
by

¥T

Sk=vEyT. - 9], (34)

where ffm is defined in (32). Next, §; is re-written as
(35) (defined a} the top of the next page), where Vv, =
[%flTk, e ,\ﬁ,k] , and refer to the kth column of a MN x K

detector matrix V, and V = [%71, . ,%'K].

E. Capacity Bound with Quantized Channel and Non-
Gaussian Noise

The CPU exploits the estimated channel as side informa-
tion to detect the signal, where here we refer to the side

information at the CPU as U = (}, and the received signal
in (33) is re-written as Ek = 4Bisy + aB, + dB3 + dB4 + Bs,
where E = B, + B3 + B4 + Bs is the additive non-Gaussian
noise. Based on [27, Section 2.3.5 and Table 2.3], if the
following four conditions hold: 1. Terms Bjsk, B», Bs,
B4, and Bs are mutually uncorrelated, 2. E{E|U} ~ 0, 3.
E{s;E|U} ~ 0, and 4. E{Bs;E|U} ~ 0. The closed-form
expression for the achievable rate of the kth user is given by

Ry ~ E {log,(1 + SINRy)}, where the SINRy is the achievable

SINR of the kth user and the expectation is taken over é The

achievable SINR is obtained by
SINRy (36)
Y2

[ {mic}

- Y Y Y 1 v
B{1B |G} +B {182 |G} +E {182 |G + —E {1B51|G]

Therefore, in the following lemmas, we show that the four
above-mentioned required conditions hold.

Lemma 6. Terms By, B, B3, B4, and Bs are mutually
uncorrelated.

Proof: First, we use Sk given in (35)
K
Ym = \//BZ Emk Vi Sk + Ny
k=1

K
= VP ), (it o) VaRSK + B0 BT)
k=1

As n,, and émk are uncorrelated i.i.d. Gaussian noise and
ii.d. Gaussian MMSE error, respectively. Moreover, based
on the analysis in Section III, using the Bussgang theorem,
the quantization noise is uncorrelated with the input of the
quantizer. Hence, the terms the terms B; and Bs and the
terms B, and Bs are uncorrelated. Note that terms B3 and
B4 include i.i.d. Gaussian noise and i.i.d. Gaussian MMSE
error, respectively. Hence terms B, and Bg are uncorrelated
with other terms. These reveal that the terms By, B,, B3, By,
and Bs are mutually uncorrelated, which completes the proof
of Lemma 6. [ |

Lemma 7. We have E {E|U} =~ 0. Note that the approximation
term in E{E|U} ~ 0 means that the term E{E|U} is small
enough and can be neglected.

Proof: Please refer to Appendix E. [
Lemma 8. We have E {s;E|U} ~ 0.

Proof: Please refer to Appendix F. [
Lemma 9. We have E {B’l‘s’,‘CEIU} ~ 0.

Proof: Please refer to Appendix G. [
Finally, the achievable SINR of the kth user is obtained in
the following theorem.

Theorem 2. The SINR of the kth user in cell-free massive
MIMO for the case when APs send back the quantized version
of received pilots and the quantized version of the received
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p 3 ar| S k] +p X Bl 3 g (14 —22) B = ymie] + |1+ —22] 3 (il
k'#k m=1 m=1 k’=1 a a m=1
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k=1 k=1
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k=1 k=1
signals to the CPU through the limited fronthaul links (and Note that the linear receiver is given by
hence CPU estimates the channel) is given by (38) (defined ¥
at teh top of this page), where in SINRkQ B the superscipt (v;’ o for MRC
“Q&E, If " refers to Quantize&Estimate and limited fronthaul. Vo G ((}H (}) , for ZF @1

Proof: First, we present a proposition which helps us to
prove Theorem 1. Note that the proof for ZF and MMSE
follows the same steps as in the MRC case.

Proposition 1. The input signals of the quantizers are uncor-
related.

Proof: As explained in Subsections VI-A and VI-C, we
need to quantize the received signals and the received pilots
in the Quantize&Estimate scheme. To prove that the inputs of
quantizers are uncorrelated, we need to show that the equalities
in (39) hold. Note that using (3) and (24), we have the
equalities in (40). Moreover, we have E {ymy } 0, Vi+m

and E {[ym M } =0, Vn # n’. This completes the proof
of Proposition 1.

By following the proof of Theorem 1 and using Proposition
1, we can arrive at the desired result as in (38). [ ]

K . . -by
Y qrgegy +RQ&E’”) G, for MMSE

-, 8k, and R2E! i5 obtained as follows:

RQ&EIf _ =p Z qr WQ&E Jf +Iyn + FQ&E,lf, (42a)
k/
Wg&E,lf _ Sl;f&Q,lf _ T%&E,lf (42b)

o2
B ,.
SN = (1 + %) diag (rep (Bik, N) - - -rep (Bmis N)),  (42¢)
T = diag (rep (Y1, N) -+ rep (yaws N)) (42d)
2
[0
FOUEI = By, . (42e)
a

VII. ENERGY EFFICIENCY

In this section, we investigate the energy efficiency per-
formance of the limited-fronthaul cell-free massive MIMO



system, which is obtained by dividing the system through-
put by the consumed power. In the following subsections,
the required fronthaul capacities of Estimate&Quantize and
Quantize&Estimate cases are investigated. Next, the power
consumption model and energy efficiency analysis are pre-
sented.

A. Fronthaul Bit Rate

Let us assume the length of frame (which represents the
length of the uplink data) is 7y = 7. — 7, where 7. denotes
the number of samples for each coherence interval. Defining
the number of the quantization bits as a,,;, for i = 1,2,3,
corresponding to Estimate&Quantize, Quantize&Estimate and
decentralized scheme, for i = 1, i = 2 and i = 3,
respectively, where the index m denotes the mth AP. For
Estimate&Quantize, the required number of bits for each AP
to quantize the estimated channel and the uplink data during
each coherence interval is 2a, | X (NK + Nty) whereas
Quantize&Estimate requires 2,2 X (NTp + NTr) = 2,2 X
Nt. bits for each AP to quantize the received pilots and the
uplink data during each coherence interval. Moreover, we need
2Kty a3 bits to quantize the signal during each coherence
interval for the case of the decentralized scheme. Finally R, ,,
is the fronthaul rate of cell-free massive MIMO at the mth AP
to the CPU, is given by

2N(K+7f)m,1 . .
—— Estimate&Quantize,  (43a)
2NT .2 . .
Rohm= T—” Quantize&Estimate,  (43b)
2Ktra
#, Decentralized scheme, (43c¢)
C

where T, (in sec.) refers to coherence time.

B. Power Consumption Model

The total power consumption can be defined as follows:
Piotat = Prx + Pcp, where Prx is the uplink power am-
plifiers (PAs) due to transmit power at the users and PA
dissipation [42], and Pcp refers to the circuit power (CP)
consumption [42]. The power consumption Prx is given
by Prx = %pNo Z,’;l gk, where ¢ is the PA efficiency
at each user. The power consumption Pcp is obtained as
Pcp = MPgx+ KPy + ZZ:I Ptn.m, where Psy is a fixed power
consumption (including control signals and fronthaul) at each
AP, Py denotes the required power to run circuit components
at each user and finally, fronthaul power consumption from
the mth AP to the CPU is obtained as follows [43], [44]:

Rﬂ‘l,m

— 44
Cﬂl’m b ( )

P, = PRT,m

where PgT,,, is the power required for fronthaul traffic (BT) at
the mth AP, and Cq, ,,, introduces the capacity of the fronthaul
link between the mth AP and the CPU.

C. Total Energy Efficiency

In this section, we formulate the total energy efficiency of
cell-free massive MIMO uplink. The total energy efficiency
is achieved by dividing the sum throughput by the total
consumed power which is give by

4 B.S(VD, ;) ( bit
E (VO] = V™ oma) ( 1 ) SR
Piotal (am,i) Joule
where B is the bandwidth, and
V) _ \;, ?f l =1 (Estimz'lte&Qua.mtize), 46)
V, if i =2 (Quantize&Estimate) ,
and the sum spectral efficiency is given by
. K .
SV ami) = D5k (VO am) 7)
k=1

where the spectral efficiency (in bit/s/Hz) is defined by

S (V(i),am,i) - (1 - :—”) E {1og2 (1 + SINR]((i))} .48
c

where SINR;{i) refers to the SINR at the kth user and the

term (i) refers to E&Q,If and Q&E,If for i = 1 and i = 2,

respectively. Note that the expectation is taken over small-

scale fading. Next, for the case of decentralized scheme, the

total energy efficiency is give by

B.S (a'm,3) bit
Ee (a'm,S) - Ptotal (am,3) (Joule) ’ (49)
where the sum spectral efficiency is given by
K
S (am3) = ) Sk (a@m3), (50)
k=1

where the spectral efficiency (in bit/s/Hz) is defined as
follows:

Sk (@m.3) :(1 - T—") log, (1+SINRE). (51
T

c

VIII. AP ASSIGNMENT

For the case of the decentralized scheme, the total fronthaul
rate required between the mth AP and the CPU increases
linearly with the total number of users served by the mth AP,
which is obvious from (43c). This reveals the need to pick a
proper set of active users for each AP, i.e., |U|,,, Ym. Using
(43c) and the constraint Rypm < Cp, m, We have

th,mTc

Am,3 X |(Ll|m < )
Tf

,Vm. (52)

The important result of (52) is that reducing the number
of active users at each AP allows for using more bits to
quantize each weighted signal at the APs. To find the proper
number of active users for each AP, we modify the proposed
antenna selection schemes in [24]. The proposed modified
received power based AP assignment scheme is summarized
in Algorithm 1, where oy, is a predetermined threshold. We
will investigate the effect of oy, on the system performance
in the next section. Moreover, inspired by the methodology



Algorithm 1 Modified received power based AP assignment

1. Initialize oy,.
2. Find set Ay: First sort PRP(m, k) as PRP(kW, k) < --- <
PRP (M) k) where we define K™ € {1,---, M}. Suppose
A = {kWV}.
fori=2: M

if Y,ea, P(m, k) 2 om%, then stop,

else Ax = A U {kD}

end
end

]kchlm
3. Calculate U,,, from Aj. Next, set a3 = : d

ﬂqbnhf
calculate @ and oéy from Table I. Finally, set y,,x = 0 when

k ¢ U,,, and calculate the SINR given in (23).

V4 kYmk

rAy/,I/:l VAKYmk ]
1. Next, we enhance the large-scale antenna selection scheme
proposed in [24]. For the modified large-scale AP assignment,
run Algorithm 1 with PYS(m, k) = ﬁ Note that in

m’/=1 Pm’k

Algorithm 1, Ay is the set of active APIS for the kth user.
Finally, we turn off the mth AP, if U, is empty.

in [24], we use PRP(m, k) = in Algorithm

IX. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide numerical results to evaluate
the performance of the cell-free massive MIMO system with
different parameters and different beamforming schemes. A
cell-free massive MIMO system with M APs and K single-
antenna users is considered in a D X D simulation area,
where both APs and users are uniformly distributed in random
locations. In the following subsections, we define the simula-
tion parameters and then present the corresponding simulation
results. Throughout the rest of the paper, the index m is
dropped from @, ; as we consider the same number of bits to
quantize the signal at all APs. Note that the term “orthogonal
pilots” refer to the case where orthogonal pilots are assigned
to all users, while in “random pilot assignment” each user is
randomly assigned a pilot sequence from a set of orthogonal
sequences of length 7, (< K), following the approach of [20],
[45].

A. Simulation Parameters

The channel coefficients between users and APs are mod-
eled in (1) where the coefficient B, is given by [20] Bk =

Osh Zmk
PL,.x10 10 | where PL,,; is the path loss from the kth
17" denotes the shadow fading

user to the mth AP and 10~
with standard deviation o, = 8 dB, and z,,x ~ N(0, 1). In the
simulation, an uncorrelated shadowing model and a three-slope
model for the path loss in [20] are considered. Moreover, it is
assumed that that p,, and p denote the pilot sequence and the
uplink data powers, respectively, where p, = % and p = %
In simulations, we set 13,, = 100 mW and p = 100 mW,
Pgr =5 Watt, and D = 1 km unless otherwise stated. Similar
to [20], we assume that the simulation area is wrapped around

at the edges, and hence simulate an area without boundaries.
Hence, the square simulation area has eight neighbours. We
evaluate the average sum spectral and energy efficiency of the
system over 300 random realizations of the locations of APs,
users and shadow fading. Moreover, we set { = 0.3, Py =0.1
Watt, Pgx = 0.825 Watt [42]-[44], [46].

B. Numerical Results

1) Effect of Number of Quantization Bits: This section
investigates the spectral efficiency and energy efficiency per-
formance of different cases of cell-free massive MIMO with
fixed capacity of fronthaul links and different numbers of
quantization bits. We assume that M = 40 APs each with
N = 10 antennas are uniformly distributed in the area.
Moreover, we assume K = 40 users and 7, = 40 as the
length of pilot sequences. In Fig. 4a, the average sum spectral
efficiency of the system is plotted versus the number of
quantization bits while assuming a fixed Cy, = 64 Mbits/s as
the capacity of fronthaul links and three different receivers,
namely the MMSE, ZF and MRC receivers. As the figure
shows only a@; = ap = 6 bits for Case Q&E and E&Q
and a3 = 2 bits for decentralized scheme are enough to
closely achieve the performance of perfect fronthaul links.
Note that exploiting (39), @] = @ = 6 and @3 = 2 bits
lead to Ry, = 24 Mbit/s for all cases. In addition, the figure
demonstrates that the performance of decentralized scheme
can be significantly improved by using the proposed AP
assignment schemes. Note that in the figures, legends RP-
assignment and LS-assignment refer to the proposed modified
received power based AP assignment and the large-scale based
AP assignment, respectively. Note that for a fixed fronthaul
rate, the performance gap between decentralized scheme and
MRC with limited-fronthaul is due to the fact that in the
decentralized scheme, the CPU does not have access to the
quantized channel estimates and exploits only the statistics of
the channel to decode the data. Next, the average total energy
efficiency performance of the system is investigated in Fig.
6b. As the figure shows a; = ap = 6 and a3 = 2 bits are
the optimal values to maximize the performance of energy
efficiency of cell-free massive MIMO for Q&E and E&Q and
decentralized schemes, respectively.

2) Effect of the Capacity of fronthaul Links: In this section,
the effect of capacity of fronthaul links on the spectral effi-
ciency and energy efficiency performance of cell-free massive
MIMO is presented. We assume M = 40 distributed APs each
equipped with N = 10 antennas serve K = 40 uniformly
distributed users. We also consider 7, = 40 orthogonal pilots.
Figs. 5a and 5b demonstrate the spectral efficiency and energy
efficiency performance of the system versus the capacity of
fronthaul links, respectively. To exploit the available fronthaul
capacity we exploit different numbers of bits for different
situations. For example, let us consider the first point, i.e.,
Cm = 12.8 Mbits/s. Using the fronthaul rate given in (43)
and setting @1 = 3, @ = 3 and a3 = 1, we have Ry = 12
Mbit/s, R = 12 Mbit/s and Rg, = 12.8 Mbit/s, respectively.
As expected the average sum spectral efficiency increases as
the capacity of fronthaul links increase which is shown in
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Figure 4. Here, we set M =40, N = 10, K =40, 7, = 40, Cp, = 64 Mbits/s, Pgr = 1 Watt, 7. = 200, and 7. = 1 ms. We set o = a» = {3,6,9, 13, 16},
and a3 = {1,2,3,4,5} which using (43) results in Ry, = {12, 24,36, 52,64} Mbit/s for all three cases. Moreover for the case of AP assignment we use
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Figure 5. Here, we set M = 40, N = 10, K = 40, 7p
which using (43a) and (43b) results in Ry =
which leads to Ry =
{95%, 99%, 99.6%, 99.6%, 99.7%, 100%, 100%, 100% }.

Fig. 5a. Moreover, interestingly Fig. 5a reveals that using
Rm = 38.4 Mbits/s the spectral efficiency performance of
the cell-free massive MIMO system is very close to the
performance of the system with perfect fronthaul links. Next,
Fig. 5b demonstrate the average total energy efficiency of the
cell-free massive MIMO system. As it can be observed to
maximize the energy efficiency of the system we need to set
Ry, = 38.4 Mbits/s. Note that the proposed AP assignment
algorithms can significantly improve the performance of cell-
free massive MIMO in the low fronthaul rate regime. Note
that both the spectral efficiency and the power consumption
increase with the number of quantization bits. The increasing
spectral efficiency will lead to an increasing energy efficiency
as long as the quantization bits have a negligible impact
on the total power consumption. After a certain point, the
energy efficiency reduces instead since the power consumption
increases faster than the spectral efficiency. Finally, Figs. 5a

=40, Pgr = 1, 7 = 200, and T, = 1 ms. We use a; =
{12,24,36,52,64,76,88, 104} Mbit/s, respectively whereas we set a3z =
{12.8,25.6,38.4,51.2,64,76, 89.6,102.4} Mbit/s using (43c). Moreover for the case of AP assignment we use Oy =
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and 5b demonstrate that the performance of the ZF receiver is
closer to the performance of the MMSE receiver in the high
fronthaul rate regime.

3) Effect of Number of Antennas at APs: This section
investigates the effect of number of antennas per AP in cell-
free massive MIMO, where we fix the total number of service
antennas (i.e., MN), and change the number of antennas per
AP, N, and total number of APs, M. Fig. 6b shows the average
total energy efficiency of the system with MN = 300, K = 40,
7, = 40 and Cp, = 122.4 Mbits/s. For the sets of M =
{2,4,5,10,15,20,25} and N = {150,75,60, 30,20, 15, 12},
we use o) = ap = {2,4,5,10,15,20,25} and a3 = 12 which
using (43) result in Ry = 120 Mbit/s, Ry, = 120 Mbit/s
Rm = 122.4 Mbit/s, for Q&E and E&Q and decentralized
schemes, respectively. We observe that to maximize the energy
efficiency, one can determine optimal values of M and N.
In addition, for this system set-up, the average sum spectral
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Figure 6. Here, we assume a fixed total service antennas M N =
For the sets of M = {2,4,5,10,15,20,25} and N =
using (43) result in Ry, = 120 Mbit/s, Ry, = 120 Mbit/s Ry, =
Sth = {100%, 100%, 100%, 100%, 100%, 99.5%, 99.5%}.

efficiency performance is shown in Fig. 6a. As expected,
the average sum spectral efficiency increases by distributing
more antennas in the area , i.e., increasing M (as it will
bring APs close to the users and improve the quality of the
channel). Therefore, Figs. 6b and 6a present a tradeoff between
M and N. Moreover, as expected, Figs. 6a and 6b reveal
that the proposed AP assignment schemes are not able to
improve the performance for the case of a few APs. Moreover,
for the case of MRC, there is a performance gap between
the decentralized scheme and the centralized scheme (Q&E
and E&Q). This is due to the fact that in general the level
of channel hardening in cell-free massive MIMO is small
which is a result of [47]. Interestingly, Fig. 6a shows that by
increasing the number of antennas per AP, the performance
gap between the decentralized and the centralized schemes
reduces.

4) More Bits to Quantize the Estimated Channel or the
Received Signal in Case E&Q?: In Section IV, we investigate
the case when the AP estimates the channel and sends back the
quantized channel estimate as well as the quantized received

signal to the CPU. Using (43a), the fronthaul rate for this case

. . 2(NK+N m .
is obtained by Ry = w when we exploit the

same number of bits to quantiTzLe the channel estimate and the
received signal. However, we could exploit different numbers
of bits to quantize the received signal and the channel estimate.
Let us assume oz \» Ym and 0/ |» Ym refer to the quantization
bits to quantize the received 51gna1 and the channel estlmate
Z(N K a/ \tNTy a

m,1

respectively. Hence we have Ry, = T ,Vm,
where we drop the index m as we use the same number of bits

at all APs and use Rgp, = M
a cell-free massive MIMO system with M = 20, N = 20,
K =40, 7, = 40, 7. = 200, T, = 1 ms, and Cg, = 40
Mbits/s. Figs. 9a and 9b demonstrate the average sum spectral
efficiency and energy efficiency, respectively. We assume

pairs (a,a%) = {(21,1),(17,2), (13,3), (9,4), (5,5), (1,6)}
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40, 7, = 40, Cy = 122.4 Mbits/s and 7. = 200, To = 1 ms.

{2,4,5,10,15,20,25} and a3 = 12 which

where using R = M results in Ry, = 40 Mbits/s

for all pairs. Figs. 9a and 9b show that the pair for this network
set-up, having the same number of bits to quantize the channel
estimate and the signal, ie., (a7, af) = (5,5) is optimal.

Next, we assume a cell-free massive MIMO network
with M = 200, N = 2, K = 40, 7, = 40, 7. = 200,
T. = 1 ms, and Cy, = 12 Mbits/s. To quantize the channel
estimate and the received signal we consider pairs (a/]y , af ) =
{(71,1),(67,2), (63,3),(59,4), (55,5), (51,6)(47,7), (43,8)

,(39,9), (35,10), (31,11), (27, 12)(23,13), (19, 14), (15, 15)

,(11,16), (7,17), (3, 18)} where using Ry, = w
results in Ry, = 12 Mbits/s for all pairs. The average sum
spectral efficiency for this network set-up is presented in Fig.
8a. As the figure shows exploiting the same number of bits
to quantize the received signal and the channel estimate is
optimal and maximizes the spectral efficiency performance of
the cell-free massive MIMO system.

To investigate the effect of coherence time on the sys-
tem performance, we present the average sum spectral effi-
ciency the cell-free massive MIMO system with M = 200,
N =2 K =50, 1, =40, . = 750, T, = 2.5 ms,
and Cp, = 12 Mbits/s in Fig. 8. The pairs (o,af) =

{(80,5), (66, 6), (52,7), (38, 8), (24, &9) (10,10)} are cons1d—
ered where exploiting Ry, = M we have Ry, =

12 Mbits/s for all pairs. As the ﬁglfre shows exploiting the
same number of bits to quantize the channel estimate and the
received signal, i.e., (o}, af) = (5,5) maximizes the spectral
efficiency of the system.

5) The Optimal 6., for the Proposed AP Assignment
Schemes for the Centralized Scheme: In this section, we inves-
tigate the optimal value of 8y, for the proposed AP assignment
schemes. Figs. 9a and 9b present spectral efficiency and the
energy efficiency of the cell-free massive MIMO, respectively,
with M =40, N = 10, K = 40, Cy, = 12.8 Mbits/s, Py = 1
Watt, and a3 = 1.
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Figure 8. Average sum spectral efficiency versus aly with M =200, N =2.

6) The Effect of Total Number of Users:: In this section,
we investigate the of total number of users on the system
performance. In Fig. 10 with M = 40, N = 10 and Cq, = 30
Mbit/s. As expected, by increasing total number of users, the
average per-user rate of the cell-free massive MIMO system
decreases. In this paper, we investigate the ergodic rates so
there is no concept of outage performance. One possible
application of the results of the current paper is power control
where we could provide the exact rates that the users are
requesting, instead of the rates that are obtained with a given
uplink power. This is left aside for future research.

X. CONCLUSIONS

We have considered limited-fronthaul cell-free massive
MIMO, and a performance comparison between different ways
of implementing cell-free massive MIMO uplink has been
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1 (b) Here, we set K = 50, 7, = 40, 7. = 750, T, = 2.5
and Cp, = 12 Mbits/s in Fig. . The pairs (a7, af) =
{(80,5), (66, 6), (52,7), (38, 8), (24,9), (10, 10) } are considered

and Ry, = 12 Mbits/s for all pairs.

presented. First, we have investigated the performance of cell-
free massive MIMO with perfect fronthaul links and linear
receivers. Next, two other different cases have been studied:
(i) Estimate&Quantize: when APs estimate the channel and
transfer the quantized version of the estimated channel and
the quantized versions of the received signals to the CPU and
(i) Quantize&Estimate, APs transfer the quantized version
of the received uplink pilot and the quantized version of the
received uplink data to the CPU, and hence CPU estimates the
channels. We have made use of the Bussgang decomposition,
which enables us to find a linear relationship between the
input of the quantizer and the quantization noise. Spectral
and energy efficiency of the different cases with different
linear receivers have been derived. Numerical results have
been provided and showed that the performance of limited-
fronthaul cell-free massive MIMO is fairly close to the per-



< 95
E B gy
Na) y,g»w&‘a A
<= | o b
> 90 » i
Q .a-*"» i
= s |
2 8 |
e !
2 % !
5 i
= 85r-e -Received-power-based user assignment \\ 1
g ~* Large-scale-based user assignment i
o —b>— Without user assignment \"\
E g0t \‘
w )
> |
o0 |
s !
N SN N N N
P e R R = e e e =
60 65 70 75 80 85 90 95 100

oy, (%)

(a) Average sum spectral efficiency vs. Op.

N
I 18 —O
z el o8 © ||
= *-... O .o~ 1
= £ -
8 ot O 0700 5 000 00 ° |
S 177 *** . e
g A KK ]
Q l
S 16} b
'S5 i
o - )

151 . . i
2 - 0 - Received-power-based user assignment | }
— . 1
g || *--Large-scale-based user assignment 3
o 14 7|—>—Without user assignment 1
%D ): | S G U U U S U U U U U S N S N -
— L LA AAALAnALn AL A A e
> 13 ‘ ‘ ‘
< 60 70 80 90 100

o, (%
i (%)

(b) Average total energy efficiency vs. O,

Figure 9. Here, we set M =40, N =10, K =40, Cy, = 12.8 Mbits/s, Py, = 1 Watt, and a3 = 1.

W
(=}

" —e— MMSE, perfect fronthaul
---©--MMSE, Q&E

- -0 - MMSE, E&Q
—*—ZF, perfect fronthaul
-%-—ZF, Q&E

- % - ZF, E&Q

—b>—MRC, perfect fronthaul
--b--MRC, Q&E

- -> - MRC, E&Q

@~ MRC, dec. proc.

S
(=}

(9%
(=}

S}
(=}
T

Average per-user rate (bit/s)

20 30 40 50 60 70 80 90
Number of users (K)

Figure  10. The average per-user rate of the system
with M = 40, N = 10 and Cy, = 30 Mbits/s. For
K = {20, 25,30, 315,40, 45, 50, 55, 60, 65, 70, 75, 80, 85,90},
we set @ = ap = 5 (which comes from (43a) and (43b)) and

a3 =1{3,2,2,2,1,1,1,1,1,1,1, 1,1, 1, 1} (coming from (43c)).

formance of the perfect-fronthaul system while exploiting
only a few bits for quantization. Moreover, the performance
of Quantize&Estimate is only marginally better than that of
Estimate&Quantize. Finally, it was shown that in the limited-
fronthaul cell-free massive MIMO, to achieve the best perfor-
mance the same number of bits should be used to quantize

the estimated channel at the APs and to quantize the received
signal.

APPENDIX A: PROOF OF LEMMA 1

We use the following proposition and remarks to prove
Lemma 1 for the MRC case. Note that the proof for ZF and
MMSE follows the same steps as in the MRC case.

Proposition 2. The input signals of quantizers defined in (8)
and (10) are uncorrelated.

Proof: As explained in Subsections IV-A and IV-B, we
need to quantize the received signal and the estimated channel
in the Estimate&Quantize scheme. To prove that the inputs of

quantizers are uncorrelated, it is sufficient to prove that the
following equalities hold:

E{ymy/'} = 0.V # m, E{[yml;[ymlw}=0,Yn#n", (530)
E {8t} = 0.V #m, (53b)
E {[8mk]; [8mk ] } =0,¥n # n’, E{ym&fi }=0,VI # m, (53¢c)

EA{[Ymly [&mk]p }=0,Yn %0, (53d)
where 0 refers to a matrix with size MN X 1 with
all zero elements. Note that using (2) and (3) we
have the equalities in (54) (defined at the top of

the next page), which completes the proof of Lemma
1. O

Proposition 3. Using Remark 4, terms Aisy and As are
uncorrelated.

Proposition 4. Terms A1sy and A4 are uncorrelated.

Proof: We have

M (M
E{Ajs;As} = B avpae Y g gt | | 8Hen
m=1 m=1

= MavpqrE {|18|1°8( €5} =0, (55)
where e’ = [elT, cee ,eL]T, and the second equality is due

to the following facts: E{gfsc} = 0,E{gfe’} = 0, and
E{e’sx} = 0, where 0 = [0,---,0]7 e CMNX! This
completes proof of Proposition 4. O

Proposition 5. Terms A4 and As are uncorrelated.

Proof: Note that we have

E{A}As}

M * M K
=E{ | D ghen| Bve D B > Vared s =0,(56)
m=1 m=1 k’=1



K
E{ymy!'} = E{(gmrsk +nm) (guesk +m)" } = ZE {gmigh} = 0.Vl #m,

k=1

E{[ym]; [ym]n’} =E {([gmk]n Sk + [Il}’11]1f1)>}< ([gmk]n’sk + [nm]n’)} = O’ Vn # I’l,,

E {gmkg;]{} =E{Cmk

k’=1

K K H
\NTpPp Z gmk’¢g¢k+gp,m¢k) =cik (\/Tppp Z glk’¢g¢k+gp,l¢k) =0,vi #m,

(54a)

(54b)

(54¢)
k'=1

K * K
E{[gmk]; [gmk]n/}zE{ka TpPp Z [gmk'] n ¢Z¢k + [Qp,m‘pk],) CmkNTpPp Z [gmk’]n' ¢g¢k+[9p,m¢k ] n)}

k=1
=0,Vn#n

K H
E {Ymgg(} = E{ (gmksk +1y,) Cik (VTppp Z glk'¢g¢k+!2p,l¢k) } = 2, Vi # m,
k=1

K
E{[yml) [Bmk)n} = E{ ([gmil, sk + [l )" Cmk (\/Tppp Z [gmr ] ¢£{¢k+[9p,m¢k]n/) }0, Vn #n/,
=1

k'=1
(54d)

(54e)

(54f)

where the second equality is due to the following facts:

B {gflsw} =0, Bfef sef =0,
E{gent =0 E{gent =0,

where the first two equalities are due to the fact
that there is no correlation between the transmitted
signal s, and the quantized version of the estimated
channel. Note that the third equality in (57) comes
from Remark 4. This completes the proof or Proposition
5.

Note that in the proof of Proposition 4, we used the property
of Max algorithm that the output of the quantizer and the
distortion are uncorrelated (which is explained in Section
III-B of the current paper). Otherwise, without using the Max
algorithm,, it is not possible to prove that the term A4 and
As are uncorrelated in Proposition 4.

(57)

Proposition 6. Using Remark 4, terms A, and As are uncor-
related.

Proposition 7. As terms A3 and Ag include i.i.d. Gaussian
noise and i.i.d. Gaussian MMSE error, respectively, Ay and
Ag are uncorrelated with other terms.

Finally, using Propositions 2- 7, it is easy to show that terms
Alsk, Ao, Az, A4, As and Ag are mutually uncorrelated, which
completes the proof of Lemma 1. [ |

APPENDIX B: PROOF OF LEMMA 2

Firstly, note that A, As and Ag include si, which has
zero mean and is independent of Q, hence, E {Ay+As+Ag|Q}
= 0. Similarly, A3 includes n,, which has zero mean and
independent of Q, resulting is E {A3]|Q} = 0. Next, we need to
show that E {A4]Q} = 0. We have E {A4]Q} = E {¥V/ e}, |Q} =

vH E {e;,|Q}. Therefore, we need to prove that E {e;,|Q} = 0.
Note that E{e%ﬁmk} = 0 is equivalent to E {e%émk} =0,

as Vp is a function of only g,,x. Next, approximating the
Bayesian estimator with a linear estimator, we have [35], [38]

o (a)  _ . o
E{e%llgmk} g O-gjk E{e%ggk}gmh

Note that the approximation in step (a) is widely used in
literature in the concept of uniform quantization [35], [37]-
[39]. Next, we aim to calculate the term E {efngﬁ k}. As a
remind, the term eﬁ, denotes the quantization distortion while
we quantize the received signal, i.e., y,,, in (8), and the term
8k 1s the output of quantizer where we quantize the estimated
channel, i.e., &,, in (10). It is easy to show that the input of
thes@1two quantizers are uncorrelated. More precisely, using
(2) and (3), we have

(58)

K
E {yngk}: kaE{ (\/ﬁz Smk \/q_ksk + nm)
k=1

K H
(v—rppp D gmidlig+ szp,m«pk) }=0.<59>

k'=1

This shows that the inputs of quantizers when we separately
quantize the estimated channel and the received signal are
uncorrelated. Moreover, using the analysis in [37, Section 2.2],
when we quantize two uncorrelated signals x; and x; using the
uniform quantizer (i.e., Q(x1) = x; +ny, and Q(x2) = xp +ny),
we have E {Q(x1)n2} = E{Q(x2)n;} = 0. Exploiting this fact
and (59), we have

E{engl }=0.

Finally, substituting (60) into (58), we get E{efnlf'mk} ~ 0,
which completes the proof. [

(60)

APPENDIX C: PROOF OF LEMMA 3

Firstly, note that E {s} (A2 + A3 + A4) |Q} = 0, as none of
the terms A, A3 and A4 include sy, which has zero mean
and is independent of Q. In the following, we prove that
E{sz (As + Ag) |Q} = 0. Next, approximating the Bayesian



estimator with a linear estimator we show that E {s; As|Emk } ~
0, which is given as follows:

E {s; Aslgmi} ~ oy
M
- O'grzkE{sz(Z‘v’ZkZ Qk'ei’nk"?k')gzk}gmk
(ar) _ . .
= 2E{«/‘ Z( )gﬁfuskﬁ}gmk

M
(a3)

(a2) . ‘
- gmk\/_E{Z( mkemk) gﬁk}gmk =0,

kE {SkAngk} Smk

(61)

where in step (a;) we used the fact that the terms sis are
independent variables. Moreover, step (az) is due to the fact
that s, has zero mean and independent of Q, and E{|s;|?} = 1
whereas step (a3) comes from (12). Next we have:

E {s} A6lgm } ~05" E{s} Al } Bk
M K
TP E{s’;( Z vl Z @gmk'sk’)gﬁk}gmk

;; k'=1
_2 m{ Z

1

M
o ‘Tg_z { Z ( mkgmk) ng} &k (b~2)0

m=

( mkgmk) &oklSkl }gmk

(62)

—_

Ji

where in step (b) we used the fact that sis are independent
variables. Moreover, note that the elements of g,,; are i.i.d.
CN (0, Bk —yYmi) and are uncorrelated and independent of the
input of the quantizer, i.e., E{gx gZ «} =0, and hence uncor-
related with the output of the quantizer, i.e., E{gmkgg ) =0.
The step (b,) comes from the fact that the output of the quan-
tizer g,,,x and the channel estimation error g,,; are uncorrelated
and independent. This independence is shown in Figs. 1la,
11b, 11¢, 11d, where the results reveal that P(u, &) ~ P(u) X
P(¢) while ¢ and u represent the channel estimation error
and the output of the quantizer, respectively. This completes
the proof. [ |

APPENDIX D: PROOF OF LEMMA 4

It can be easily shown that E {A7s} (A + A3 + A4) |Q} =0,
as none of the terms A;, A, Az and A4 include sj, which
has zero mean and is independent of Q. In the following, we
show that E {ATS}; (As + Ag) |Q} = 0. First, we aim to show

that B {A}s; As|gmi} ~ 0, as follows:

E{A]s;As|gmk} ~ o

—oni]E{
M

(c1) VH « . .

Cl 0- 2 E{(Z"Zkgmk) ( mk quefnk)hk'zgzk}gmk

m=1

M
() - . . o
: Oy 2 E{( Zkgmk) ( mk‘VCIke;gnk)ng}gmk
=1

2 E{( mkgmk) ( mk\/_emk)gmk}g’"k

+ Ug.ka{ZZ (v &n ) ( Zkﬁeik)gzk}gmwo,(&)

n=1m#n

k A skAngk}gmk

M
Z mkgmk) Sk(z kZ Qk'emk,Sk')gmk}gmk

k'=1

I

where in step (c;) we use the fact that the terms sgs are
independent variables. In addition, step (c2) is due to the fact
that s has zero mean and independent of Q, and E{|s;|*} = 1.
Moreover, we have I; = 0, due to (12), and I, = 0 (as
gmkg,’;’k = 0,Vn # m, based on the analysis in [37, Section
2.2], we end up with E{gmkeikH} = 0,Vn # m). Next,
approximating the Bayesian estimator with a linear estimator,
we have:

E {A SkA6|gmk} = 0’v E {A SkA6gmk} Emk
* M
=0y E{ Z mkgmk) ( Z Z\/CIk'gmk'Sk')ng}gmk
m=1 k'=1
M M
0'_2 E{(Z{’ kg ) (Z mk\/_gmk)lsk| gmk}gmk
m=1
(d2) S
3 72 E{( V,Zkgmk) V,Zk\/q_kgmk)ng}QMk
m=1 =1

B
e e
:

_2 E{ Z Z ({’nH g ( mk\/_gmk)gmk}gmk

n=1 m#n

+

Iy

_ VH « ' VH ~ o . (d3)
O-ij 9k {(VZkgmk) (VZkgmk)ng}gmk 0, (64)

where in step (d;) we used the fact that sis are independent
variables. Moreover, step (d;) is due to the fact that s, has
zero mean and independent of Q and E{|sx|*} = 1. Again, note
that that the elements of g, are i.i.d. CN (0, Bk — Ymk) and
are uncorrelated and independent of the input of the quantizer,
ie., E{gmkgg «} = 0, and hence uncorrelated with the output
of the quantizer, i.e., E{gmkggk} = 0. Next, I, = 0, which
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Figure 11. Pdf of u = g,,x and & = g,,,x with @ = 1 quantization bit.

is due to the fact that the equality E{gmkgfk} =0,Vn £ m
results in E{gnkgnﬂk} = 0,Vn # m (based on the analysis in
[37, Section 2.2], we end up with E{gmkeikH} = 0,Yn #
m). Finally, the step (d3) is due to the fact that the output
of the quantizer g, and the channel estimation error &,
are uncorrelated and independent. The independence shown in
Figs. 11a, 11b, 11c, 11d where the results show that P(u, £) ~
P(u) x P(¢) while & and u are the channel estimation error
and the output of the quantizer, respectively. This completes
the proof. [ ]

APPENDIX E: PROOF OF LEMMA 7

Firstly, note that B, and B3 include sy, which has zero mean
and is independent of U, hence, E {B; + Bs5|U} = 0. Similarly,
B4 includes n, which has zero mean and independent of
U, resulting is E{B4|U} 0. Next, we need to show
that E{Bs|U} = 0. We have E{Bs|U} = E{VZ e),|U} =
%ZkE {e),1U}. Therefore, we need to prove that E {e;,|U} = 0.
Note that E {e), [V} = 0 is equivalent to E {e}, |} = 0,
as Vi is a function of only Si. Next, approximating the
Bayesian estimator with a linear estimator, we have [35], [38]

E{ehlim} € o2 B{eLE Em.  (69)
Note that the approximation in step (e) is widely used in
literature in the concept of uniform quantization [35], [37]-
[39]. Next, we aim to calculate the term E{e%égk}. As a
remind, the term e;,, denotes the quantization distortion while
we quantize the received signal, i.e., ¥, in (32), and the term

%107 ‘
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X
= 38}
=
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(d) Multiplication of pdf of u and &, i.e., P(u) X P(&).

8.« is the output of quantizer where we quantize the estimated
channel, i.e., &, in (31). It is easy to show that the input of
these two quantizers are uncorrelated. More precisely, using
(2) and (3), we have

K
E {Yngk} = kaE{ \/ﬁzgmk\/q_ksk + nm)
k=1

| e

This shows that the inputs of quantizers when we separately
quantize the estimated channel and the received signal are
uncorrelated. Moreover, using the analysis in [37, Section 2.2],
when we quantize two uncorrelated signals x; and x, using the
uniform quantizer (i.e., Q(x1) = x1 +ny, and Q(x3) = x2 +ny),
we have E{Q(x1)n2} = E{Q(x2)n} = 0. Exploiting this fact
and (59), we have

K
VTP ) Bk i + R i

k'=1

E{eng? } =0. (67)

Finally, substituting (60) into (58), we get E {e},[Vimi} ~ 0,
which completes the proof. [ |
APPENDIX F: PROOF OF LEMMA 8

Firstly, note that E {SZ (B> + B4 + Bs) IU} = 0, as none
of the terms B4, and Bs include si, which has zero mean



and is independent of U. In the following, we prove that
E {5} (B3) |U} = 0. Next we have:

E {siBsl&mi} ~ 07 E{si By} &k

M K
) YH = YH M
= oy kE Sk vak ZVQk'gmk’Sk’ Sk (8mk
) m=1 k’=1
M
oy YH = YH 2y
m=1
) S (&)
) YH = 9. 5
Lo VA Y (Ve Bl e £ 0. (@)
m=1

where in step (f;) we used the fact that s;s are independent
variables. The elements of émk are uncorrelated and indepen-
dent of the input of the quantizer and E{g,«&" } = 0. The
step (f2) comes from the fact that the channel estimate émk
and the channel estimation error g,,; are uncorrelated and in-
dependent. This completes the proof. [ |

APPENDIX G: PROOF OF LEMMA 9

It can be easily shown that E {Bjs} (B, + B4+ Bs) |U} =
0, as none of the terms B,, B4 and Bs include si, which
has zero mean and is independent of U. In the following, we
show that E {B’l‘sz (B3) |U} = 0. First, we aim to show that
E {BTSZB.%@mk} ~ 0, as follows. Approximating the Bayesian
estimator with a linear estimator, we have:

E {B}s;B3|&mi} ~ o-é_jkE {B}s3B38, } Gk

M * M K
2 YH ¥ * YH = vH |¥
_O-émkE vakgmk Sk ZmGZ YAk 8mk' Sk’ |8,k (Bmk
m=1 m=1 k'=1
M M
(g1) 2 YH ¥ YH x M : 8
émkE vakgmk ZmG\/CIkgmk sk |BH b 8mk
m=1 m=1
M (M
(82) o YH ¥ YH P vH |y
émkE vakgmk ZmGVngmk &k (Smk
m=1 m=1
*
_ =2 B YH = vH |y (g3) 0 69
= 0y VKB Vi Bk | | Vok Bk | B (B % 0, (69)

where in step (g;) we used the fact that s;s are independent
variables. Moreover, step (g2) is due to the fact that s, has
zero mean and independent of Q and E{|s¢|?} = 1. The step
(g3) comes from the fact that the channel estimate émk and
the channel estimation error g, are uncorrelated and indepen-
dent. This completes the proof. [
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