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Abstract
Whilst FPGAs have been used in cloud ecosystems, it is still extremely challenging to achieve high compute density when
mapping heterogeneous multi-tasks on shared resources at runtime. This work addresses this by treating the FPGA resource
as a service and employing multi-task processing at the high level, design space exploration and static off-line partitioning
in order to allow more efficient mapping of heterogeneous tasks onto the FPGA. In addition, a new, comprehensive runtime
functional simulator is used to evaluate the effect of various spatial and temporal constraints on both the existing and new
approaches when varying system design parameters. A comprehensive suite of real high performance computing tasks was
implemented on a Nallatech 385 FPGA card and show that our approach can provide on average 2.9× and 2.3× higher
system throughput for compute and mixed intensity tasks, while 0.2× lower for memory intensive tasks due to external
memory access latency and bandwidth limitations. The work has been extended by introducing a novel scheduling scheme
to enhance temporal utilization of resources when using the proposed approach. Additional results for large queues of mixed
intensity tasks (compute and memory) show that the proposed partitioning and scheduling approach can provide higher than
3× system speedup over previous schemes.

Keywords Multi-task processing · Data centres · Space sharing · Scheduling · FPGAs · Cloud computing

1 Introduction

Cloud computing offers users ubiquitous access to a shared
pool of resources, through centralized data centres. With
increasing device sizes and efficiency for high performance
computing (HPC), there has been an increased interest
in integrating Field Programmable Gate Array (FPGA)
technology [9, 18], but its architecture and programming
environment present a different resource sharing model
when compared to software programmable accelerators.
Furthermore, modern HPC tasks depict heterogeneity when
executed on software systems, i.e. they show variability in
terms of resource requirements such as compute, memory,
control, and execution time [24]) and accommodating
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multiple such heterogeneous tasks at one instance of time
in the FPGA space can be challenging. Optimization
of the system’s resource utilization in time and space
when executing these tasks in an area-shared manner on
FPGAs, can lead to suboptimal compute density and system
throughput.

In software-based systems, a runtime approach can
map a task flexibly to any portion of the underlying
hardware, incurring a microseconds latency context
switching between tasks. In FPGAs, the tasks have to be
custom designed and mapped spatially onto the device,
incurring a reconfiguration overhead and reducing the
efficient utilization of FPGA resources [15]. Partially
reconfigurable regions (PRRs) can be created that can
be configured independently in time and partially in
space, allowing dynamic partial reconfiguration (DPR)
at runtime. However, these homogeneous PRR regions
result in inefficient resource utilization. Whilst researchers
have created heterogeneous PRR approaches and multiple
bitstreams for a single task via intelligent off-line and
runtime PRR design [7], this still fails to address the
utilization issue.

This work is an extension of our original conference
paper [19], which showed how we were able to overcome
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the limitations in compute density imposed by PRR,
by creating multiple bitstreams per tasks for the HPC
tasks. Using the proposed design space exploration (DSE),
we were able to estimate the average FPGA resources
utilization and thus gauge the effectiveness of various
PRR optimizations. We achieved a higher compute density
by static partitioning and mapping (SPM) heterogeneous
bitstreams, thus providing complete spatial independence
for the heterogeneous tasks running on the FPGA. This
only provides partial time independence, however, as
tasks sharing the FPGA need to be reconfigured and
executed at the same time, resulting in stalling by the
longest running task. Both approaches were compared
using a new, comprehensive functional simulator which
allowed evaluation of estimated average system speedup

for runtime processing of large task queues. Moreover,
implementation of a number of selected cases on FPGA
allowed us to analyze the constraints of both approaches
for compute or memory intensive tasks. We analysed
the performance in terms of System Throughput (ST P ),
a metric defined specifically for multi-task workload
processing.

This research presented here enhances the work
through better performance estimation, analysis of targeting
dynamic environments, comparison against native FPGA
execution and a novel scheduling policy. It makes a number
of contributions:

– Extension of the background perspective covering
system design perspectives, highlighting the need for
such approaches in modern data centres.

– Better performance estimation using memory mod-
elling, analysis of reconfiguration overhead and an
extensive comparison against native FPGA execution
(NE) of single task configuration per device. The results
depict performance of various configuration schemes
against dynamics of operating parameters including the
mean and deviation of execution time of tasks.

– Creation of a novel scheduling scheme for SPM which
uses the single task DSE to enable variation in execution
time of tasks to process a workload.

– Use of a clustering algorithm to choose the appropriate
design point based on data from the DSE, such that
tasks are clustered with similar execution times in
order to avoid stalling by the longest running task.
The clustered tasks are then co-executed using SPM,
thereby enhancing temporal utilization of resources and
allowing up to 3× speedup as compared to previous
space sharing approaches.

We present an extended background in Section 2 and our
updated and revised design and implementation approach
is presented in Section 3, with new detail on the runtime
simulator, task queue generation, memory performance
modelling and input configuration variation. The evaluation

environment in Section 4 includes an additional discussion
on enabling of DSE in the use cases. Overall, the work
now provides a complete flow for implementing static
mapping, whilst highlighting the need for evaluation of
system throughput whilst deciding if, and how, to partition
the FPGA based on the dynamics of operating environment.
An extended result section (Section 5) compares both
partitioning schemes to NE and includes an analysis
of reconfiguration overhead and scheduling policy while
incorporating memory modelling. Conclusions are given in
Section 6.

2 Background andMotivation

Cloud services are being used by a range of users with
diverse computing requirements which vary with task types
and workload sizes [26]. In FPGA, the compute versus
memory intensity of the tasks, suggests the need for
FPGA sharing by heterogeneous tasks in order to achieve
maximum system utilization. However, FPGA design tools
typically still consider the fabric as a single sea of gates and
do not provide any optimum space sharing mechanism. This
provides challenges for space shared multi-task processing,
restricting commercial cloud services to support only native
FPGA execution even with increasing device sizes.

For space shared execution of multiple tasks, the tradi-
tional approach is to partition the FPGA into rectangular
fixed size PRRs which are configured typically with a new
bitstream via DPR, independently of the processing going
elsewhere [27]. This provides independence in time for each
PRR, such that a task A running in a PRR can be instantly
replaced by task B, when finished. This offers low-latency
reconfiguration of modules for different stages of a single
task or functionally similar tasks as the PRR’s design can be
custom optimized statically as per the task requirements [4,
5]. However, for large HPC tasks with complex and vary-
ing circuit design and I/0, PRR may result in suboptimal
utilization of resources.

PRR design is challenging as the spatial distribution of
various types of resources on modern tiled FPGA is unsym-
metrical, particularly along the horizontal axis (Fig. 1).
Furthermore, the FPGA is divided into multiple clock
regions across both the vertical and horizontal axes, where
the region boundary crossing requires custom logic and
cannot be supported by modern runtime bitstream reloca-
tion schemes [22]. This limits relocation to homogeneous
regions along the y-axis with a step size equal to height of
clock region (Fig. 1), in line with work on PRR systems for
independent tasks [27].

These mapping constraints require PRRs to be homoge-
neous along the y-axis, but modern HPC tasks are inherently
heterogeneous, i.e. require different number and type of
resources (i.e. memory, compute, logic) [6, 24]; mapping
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Figure 1 FPGA Partitioning for PRR.

these tasks to homogeneous PRRs may lead to inefficient
resource utilization by heterogeneous tasks. Firstly, after
omission of the static area used for memory interconnects
near I/O pins and other hard static logic, the homogeneous
region along the y-axis can be as low as 60% area of the
FPGA [27]. The concept is explained in Fig. 1 where the
marked boundaries represent the total available area and
area distribution for homogeneous PRRs and heterogeneous
PRRs (discussed in Section 3.2.2) after considering static
resources and clock regions. Secondly, within the rectangu-
lar boundaries defined for any task, the actual area being
allocated to task may be lower than the area available in that
region, namely 38% - 51% [28] which is similar to our own
implementation of HPC tasks (Section 5). This is worsened
in case of fixed PRRs due to diverse spatial placement of
different types of resources.

Previous work has looked to target various optimisa-
tions for PRR-based designs. Researchers have explored
maximising resource utilization by optimum ordering of
tasks [17], task graph based scheduling as per the under-
lying architecture [23], heuristics to reduce fragmentation
within PRRs [12] and runtime support for elastic resource
allocation [27]. However, the inherent underutilization of
resources when using PRR due to spatial mapping con-
straints on FPGA remains the same.

Whilst mapping optimizations using PRRs is well
researched, this work analyzes for the first time the effect
of the constraints of PRRs and inefficient utilization of
resources on compute density when mapping heterogeneous
tasks. Firstly, we create a large design space using a range
of real tasks while exposing the area-throughput trade-off,
using the biggest selection of the most relevant HPC tasks to
date [8, 25]. This allows us to quantify the heterogeneity in
resource utilization by modern workloads when mapping to
FPGA and to highlight the need for heterogeneous mapping.

The DSE also allows us to quantify various existing PRR
optimizations in literature using a range of real workloads.

We then propose SPM of tasks in heterogeneous regions
as a means to achieve higher compute density. Although the
technology has supported this approach, this is the first time
it has been analyzed from a high-level perspective for use
in space sharing of FPGAs in dynamic environments. The
approach aims to provide complete spatial independence
for highly optimized mapping on account of partial time
independence - as all tasks need to be reconfigured at
the same time. We quantify this and comment on design
parameters that affect system performance while comparing
both approaches.

Finally, we propose a novel scheduling approach for
executing tasks using SPM to increase the temporal
utilization of resources; it uses the DSE to vary resource
allocation per task as per the workload. The evaluation
of both partitioning schemes and scheduling policy is
enabled by a purpose designed, flexible runtime simulator
that allows corresponding variation of temporal and spatial
system design parameters and constraints.

3 Implementation and Evaluation
Methodology

The design and evaluation environment is summarized in
Fig. 2. The first step involves defining input tasks using
the OpenCL computing model and high-level synthesis
parameters to enable the DSE. For any new task to be
added to the design environment for optimised space-
shared execution, it needs to be manually programmed
to expose its area-throughput trade-off via varying imple-
mentations.

The designed tools then allow automated exploration
of the generated design space in different ways. Firstly,
they implement statistical analysis to report the resource
utilization efficiency using PRR. Secondly, a runtime
functional simulator purposefully designed for comparative
evaluation of partitioning schemes is used to explore
associated spatial mapping approaches. It takes into
consideration various constraints and configurations that
affect system performance for multiple partitioning schemes
and task queues.

Thirdly, selected tasks are provided as input to the func-
tional simulator to generate configuration for their optimum
integrated multi-task designs. These are implemented and
profiled on the hardware against varying workload sizes
and resource allocation per task to gain insights into sys-
tem throughput. Finally, the DSE forms the basis of the
proposed scheduling policy that targets an improvement
in the temporal utilization of resources when using SPM.
The implemented scheduling policy is evaluated using the
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Figure 2 Summary of
implementation and evaluation
methodology.

function simulator. Various modules are described in more
detail below.

3.1 Single Task Design Space Exploration

A key goal is to generate multiple hardware bitstreams
of the same task to ensure a speedup. This is achieved
by undertaking an area-throughput trade-off that gives
precise quantification of the variation in compute density
against resource utilization. This allows an exploration of
the throughput for various multi-task configurations against
resource utilization, including mapping efficiency against
the total resources available, as discussed in Section 5.

This is a manual process and a necessary step to
incorporate new tasks for space-shared execution. Although
similar to scaling-out processing on software-based systems
such as using threads for parallel processing, the scaling
on FPGAs is different due to spatial mapping of code. We
describe the adopted process that can be used on incoming
new tasks.

We make use of the OpenCL framework for heteroge-
neous parallel programming as it provides abstraction of
parallelism and a high-level DSE model for tuning the
underlying hardware mapping. In addition, general high-
level synthesis parameters can be used to scale the task over
multiple parallel compute units (CUs); multiple pipelines
can be defined via a Single Instruction Multiple Data
(SIMD) parameter; key compute intensive loops can be
unrolled via UNROLL (U). For some tasks, we vary task-
specific parameters e.g. block size, number of rows, as these
define the level of parallel processing. These allow us to
scale the number of custom parallel data paths for each task.

For cases where only a part of source code is unrolled,
the DSE uses dynamic profiling to identify the compute
intensive segments of the kernels and help allocate resources
to blocks of code accordingly. As we lack cycle accu-
rate visualisation of execution of OpenCL generated bit-
stream against the source code and need to incorporate
real-time memory performance, an always active counter
(written in VHDL) is incorporated to identify bottlenecks

and passed to OpenCL kernel as a software library via
the Intel OpenCL Library feature. This process is sup-
plemented by manual exploration to identify the parame-
ters that provide the highest throughput variation per unit
area.

3.2 Runtime Functional Simulator

An exhaustive runtime functional simulator has been
developed. It is the key tool that allows automated
evaluation and comparison of various partitioning schemes.
It also generates and verify optimum configuration of
tasks for hardware implementation of multi-task designs.
Furthermore, it incorporates the designed scheduling policy
for evaluation against varying design parameters. The
simulator is summarised in Fig. 3. All components have
access to the single task DSE and the resulting parameters
including the utilization of on-chip (logic, DSP, BRAM)
and off-chip (bandwidth) resources and corresponding
throughput for various generated bitstreams.

Using these parameters, a random task queue is
generated. Although the bitstream parameters are used
from real benchmarks, the associated execution time can
also be generated synthetically against an input mean and
deviation to gauge the effect on system performance. For the
generated queue, the user can decide if the simulator may
use the proposed scheduling policy or map tasks in the order
of input.

Once the order of task has been provided, a resource
manager performs multi-task DSE to optimise spatial
mapping for both PRR and SPM. The resulting designs are
provided as input to the runtime placement checker module
that ensures that the generated designs can be realistically
mapped to the underlying hardware. As input, it takes user
configurations indicating the choice of partitioning scheme,
PRR optimizations and the reconfiguration overhead of
the time that the considered task occupies the device. It
also uses spatial mapping constraints, such as the available
resource and reconfiguration overhead associated with each
design.
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Figure 3 Runtime functional
simulator.

Finally, to estimate multi-task performance of generated
designs using single task designs profiled on hardware, the
simulator uses a memory performance modelling technique
to provide the system speedup for various configurations,
measured as execution time against the set baseline.

3.2.1 Task Queue Generation

The task queue is randomly generated in order to select
the task and associated bitstream, by exploring a synthetic
execution time for a uniform distribution for which mean
and deviation is provided as input. This is needed to explore
the impact of stalling by the longest running task while
using SPM. Similarly, the mean of the execution time of
tasks is required to study the impact of reconfiguration
overhead, against the dynamics of task queue.

After the creation of an initial queue, a mapping check
verifies that the associated bitstreams can be fitted in
PRRs, otherwise they are replaced with smaller bitstreams
and their execution time is updated. This update uses the
actual difference in throughput, as profiled on hardware, to
maintain fairness. In a similar way, bitstreams are replaced
with the largest available for each for evaluation of NE.

3.2.2 System DSE / Resource Management

For resource management with SPM, once a multi-task
design has been selected, the tool checks if any of the
task designs can be updated with a bigger design offering
higher throughput. For PRR, the tool implements various
optimizations on top of previously explored homogeneous
PRRs, allowing us to compare the PRR with SPM. These
generate homogeneous regions as well as a single bitstream
for each task corresponding to that region. The Elastic
resource allocation optimization examines adjacent PRR

regions and if available, attempts to replace a larger
bitstreams of the same task in this combined region, thus
achieving a speedup [27].

Another approach partitions the FPGA into heteroge-
neous PRRs with different number of resources [7] [9],
thus supporting custom design tasks with different hetero-
geneous resource allocations. However, the device size is
not big enough here to benefit from such an approach, so we
define heterogeneous PRRs by varying the number of each
type of resources while their relative ratios remain the same
(Fig. 1). This allows us to use smaller (Contract) bitstreams
for tasks when none of the original bitstream can be fitted
into a region [7].

Finally, the simulator allows variation in step size for
bitstream relocation beyond the realistic clock region size.
This can be varied against the continuous y-axis, i.e. the
hypothetical performance gains that can be made if the
step size is reduced to a single row by future technology
support. At present, this is achieved by generating multiple
bitstreams, equal to the number of rows in each clock
region, by varying starting y-coordinates for each unique
bitstream.

3.2.3 Placement Checks

This module checks if the generated multi-task design can
be realistically mapped onto FPGA at any single time. For
the PRR, the 2D area model treats mapping as a rectangle
fitting problem and tries to find a region homogeneous
in both size and spatial distribution of resources to which
to map each incoming task [17]. For SPM, a multi-
dimensional model accommodating a dimension for each of
the heterogeneous on-chip resources, is implemented. The
system mapping optimizations try to accommodate as many
tasks as possible while meeting the total resources limit.
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For PRR, each task’s configuration is treated independently
while for SPM, a configuration waits for the longest running
task before selecting a new multi-task configuration.

3.2.4 Memory Modelling

Even when the allocated resources in the multi-task
environment are the same as the single task, the task may
not provide the same throughput due to memory contention.
To model this, the tool incorporates ridge regression [14]
as it provides a lower error when compared to other low
complexity linear regression models, e.g. ordinary least
squares. As independent variables, it uses the bandwidth
usage for single processing mode and a binary value for data
access pattern (regular, irregular) of its task and all the tasks
with which it is shares the space. Degradation in memory
performance for the considered task due to contention is
considered as a dependent variable. We generate a range of
multi-task bitstreams and measure the actual performance to
train the model.

Initial results on the accuracy for area and memory model
of both PRR and SPM were presented in [19] but we have
now incorporated both of these in the simulator to evaluate
system throughput. In particular, the memory modelling
affects SPM more due to the greater bandwidth requirement
needed in higher compute density designs.

3.2.5 Configurations

The choice of configurations involve use of various
partitioning schemes as well as various PRR optimizations.
Similarly the reconfiguration overhead can also be switched
on or off for varying analysis.

The reconfiguration overhead allows the study of its
effect on the total execution time, particularly with variation
in mean execution time of tasks due to the dynamics of
different environments such as edge vs cloud, etc. The
significance of reconfiguration overhead reduces with larger
workloads requiring higher execution times. Furthermore,
the reconfiguration overhead is directly related to the area
being mapped. Thus as the throughput increases with
more resources when going from PRR to SPM and NE,
the gains may be offset by the higher reconfiguration
overhead.

3.2.6 Constraints

In PRR, the homogeneous/heterogeneous regions are fixed
and the coordinates are provided by the user along with
mapping restrictions due to clock regions. In SPM, the total
number of available heterogeneous resources and a realistic
percentage of the maximum utilization, as found during
DSE, is provided as input. To study the effect of various

PRR constraints, the available area for the task mapping can
be varied.

3.3 Hardware Implementation

To evaluate compute density, multi-task bitstreams for a
select number of cases have been generated and profiled
on hardware against varying workload sizes. OpenCL is
used to generate intermediate design files followed by
placement scripts to constrain modules to corresponding
areas on the FPGA. For SPM, this includes all of area
available for task logic in Fig. 1. We do not implement any
further partitioning optimizations on top of those inherently
provided by the used Intel tools (for Nallatech board). For
PRR, the placement scripts constrain each task module to
one of the homogeneous PRR as described in Fig. 1. Once
the constraint file has been updated, the Quartus Prime
synthesis and bitstream generation tool is used to generate
the final bitstreams and then to map the largest possible
bitstream configurations for both of PRR and SPM within
their respective area constraints.

3.4 Scheduling

SPM can provide better resource utilisation and thus,
higher throughput but the multi-task designs are statically
implemented to create a single integrated bitstream. The
multi-task bitstream is configured on the FPGA as a single
unit. However, different tasks in that bitstream can have
varying workloads and hence, different execution times.
This means that the integrated bitstream can only be
reconfigured with a different one once all tasks sharing the
space have finished execution. In a dynamic environment
with a range of tasks and associated variable workloads,
the stalling of execution every time by the slowest
task in the multi-task bitstream can result in significant
underutilization of resources.

To counter that, the work proposes a novel pre-emptive
scheduling approach which clusters queued tasks based
on their pre-empted execution times to provide a feasible
schedule. The idea is to ensure that all tasks being executed
in a space shared fashion have similar execution times so
that they start and finish processing at a similar time. This
is ideally suited to SPM and has been validated using the
functional simulator to ensure the reduction of stalling by
the longest running task for integrated bitstreams.

The approach starts with the design space created
by single task exploration and then varies the resource
allocation per task. To maintain similar execution times for
tasks in a cluster, each task’s execution time is determined
by the resources allocated to it. Furthermore, to enable pre-
emptive scheduling, variable sized data blocks of tasks are
profiled off-line for all bitstreams where the block refers
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to input sizes batch processed in an OpenCL like model.
It is presumed that the incoming workload requests can be
represented as a summation of one of these block sizes.
Thus by knowing the estimated task’s execution time for
each design, this allows us to select the appropriate one and
then co-execute it with other tasks with similar execution
times.

Using k-means clustering [13], we explore a single
feature-based approach based on execution time. Data is
clustered by first computing centroids based on the defined
number of clusters, and then placing items in the relevant
cluster based on their Euclidean distance from the centroid.
We execute both these steps separately as explained next.

In the first step, execution times for all tasks in an
incoming queue are clustered using all of their bitstreams.
Only one bitstream is eventually used for execution,
however, using all of them increases the design space. This
results in a centroid set, {c1, c2, c3...cn}. The tasks are then
assigned clusters. For each task, one of the bitstreams is
selected, such that the relative distance of corresponding
execution time from the closest centroid, ci , defined as
a percentage of centroid value, is less than the relative
distance for any other bitstream from their closest centroid.
A second level of k-means clustering is then run on
these newly generated clusters. Finally, an outlier filtering
function is executed where tasks still having a distance
greater than threshold deviation from respective centroids,
are put in a separate cluster and executed in a native FPGA
configuration.

To enable runtime selection of appropriate clusters, the
scheduler should have access to pre-generated multiple
SPM bitstreams offering varying combinations of tasks as
well as resources allocation per task. This can be optimised
by using workload characterisation of servers to predict
the dynamic requirements. Furthermore, new integrated
bitstreams can be generated in parallel as the requirements
arise while the scheduler makes use of the available
options.

4 Evaluation Environment

The evaluation considers 10 HPC tasks belonging to
various computing dwarfs and application domains [3].
The tasks have been chosen from various cloud and
HPC benchmarks targeting accelerated computing in data
centre environments [8, 16] as they feature a good range
of challenging, heterogeneous computing characteristics.
Here, the high-level parameters used for each task for DSE
are briefly explained, without going into algorithmic details
as further explanation is given in relevant quoted references.
Various parameters scaled for each task are summarized in
Table 1.

a) Alternative Least Squares based Collaborative Fil-
tering (ALS) has been applied in a recommender sys-
tem for commercial domains such as Netflix [29]. The
DSE on ALS is performed using the number of CUs
for the kernel as well as loop unrolling for the error
calculation in recommendation estimation after each
iteration.

b) Page Rank (PR) is a graph analysis algorithm used
for link analysis of web pages, social networks, etc [21].
Bitstream scaling is performed by exploring variation in the
number of CUs and loop unrolling in order to calculate a
new rank for each page.

c) Binomial Option Pricing (BOP) is a key model in
finance that offers a generalized method for future option
contract evaluation and for options with complex features
[20]. The DSE involves allocating more CUs and the
unrolling of loop transversing the binomial tree.

d) Lower Upper Decomposition (LUD) is an impor-
tant dense linear algebra used for solving systems of
linear equations with reduced complexity [8]. Area-
throughput trade-off is generated by varying number of
CUs and loop unrolling of the compute intensive loops in
decomposition.

e) Breadth First Search (BFS) is one of the most
challenging and important graph traversal algorithm which
forms the basis of many graph-processing workloads [8].
The hardware for BFS is scaled by unrolling the loop that
transverses edges of a single node.

f) 3 Dimensional Finite Difference Time Domain’s
(FDTD) implementation [1] uses a window to slide through
the space with all points in the window being processed in
parallel. The number of points in a window are used to
scale underlying hardware.

g) Sparse Matrix Vector Multiplication’s (SpMV) is an
important sparse linear algebra algorithm used in scientific
applications and graph analytics, etc [11]. The underlying
hardware is scaled by unrolling the loop that calculates the
sum for each row.

h) Matrix-Matrix Multiply (MM) is used in various
compute intensive algorithms and benchmarks [11]. This
uses the SIMD pragma as well as unrolling of loop
calculating dot product to scale the hardware utili-
zation.

i) Video Downscaling (VD) is used by a range of media
streaming services for real-time bandwidth reductions [1].
The variation in number of rows of pixels, being processed
in parallel using channels, allows scaling of the resource
utilization and throughput.

j) Needleman-Wunsch (NW) is a bioinformatics optimi-
sation algorithm used for protein sequence alignment [8].
NW’s implementation scales the underlying hardware by
varying the size of strings that it uses to divide the bigger
problem and process in parallel on FPGA.
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Table 1 Use Cases Characteristics where the step size is 2×, unless otherwise specified.

Use Case Dwarf Bitstreams Scaling Speedup

PR Sparse Linear Algebra (CU: 1,2,4) × (U: 1, 2, 4) 6×
ALS Sparse Linear Algebra (CU: 1, 4)×(U: 1, 4) 2×
BOP Structured Grids CU1 × (U1, U2, U4, U8, U16); CU2×U16; (CU: 3, 4, 5)×U8 21×
BFS Graph Traversal U: 1 - 16 5×
SpMV Sparse Linear Algebra U: 1 - 32 190×
FDTD Structured Grids Block Size: 1 - 16 13×
LUD Dense Linear Algebra CU1×(U: 1 - 16); (CU: 2, 3)×U16 18×
VD Structured Grids Parallel Rows: 1 - 32 8×
SGEMM Dense Linear Algebra SIMD1×(U: 1 - 64); SIMD4×(U: 32 - 64) 204×
NW Dynamic Programming Block Size: 2 - 128 33×

4.1 Metrics

Assessing the system performance of a multi-task workload
running in parallel on a single processing unit is challeng-
ing, as the absolute measure of individual tasks’ throughput
does not provide an indication of system performance. This
is because the contribution to absolute processing time and
average speedup may be dominated by tasks with larger
workload sizes, so uniform metrics e.g. FLOPS will not
provide a meaningful measure for all of the tasks being
evaluated.

We use two different metrics for simulated and hardware
results in order to allow a realistic and comprehensive
assessment to be made. Firstly, the simulation of large
task queues provides the potential to estimate an average
speedup, measured as the variation in execution time of the
complete queue. To evaluate the compute density provided
by various approaches in a multi-task environment, the ST P

metric [10] is used and is defined by:

STP =
n∑

i=1

NPi =
n∑

i=1

CSP
i

CMP
i

(1)

where NP is each task’s normalised progress defined by
the number of clock cycles taken in single task mode, CSP

i ,
when the task can avail of all of the FPGA’s resources as
compared to multi-task mode,CMP

i , when it shares the space
with other tasks. Here, n defines the number of tasks sharing
the FPGA.

4.2 SystemHardware

The DSE has been coded using Intel’s OpenCL SDK for
FPGAs v 16.1 and implemented on a Nallatech 385 which
uses an Intel Stratix V GX A7 FPGA and 8GB DDR3
memory. The A7 chip has 234,720 ALMs, 256 DSPs and
2,560 M20K BRAM blocks. Runtime simulations were
performed using Python v3.3.7 running on a single core of

Intel Xeon CPU E5 − 1620 v3@3.50GHz (host).

5 Results And Analysis

The baseline throughput is defined by the serial pipelined
implementation and corresponds to the lowest area bit-
stream whereas the maximum throughput is defined by the
largest possible bitstream. We have generated 4 − 9 bit-
streams per task providing 2 − 204× maximum speedup

compared to slowest bitstream as shown in Table 1. The
parameters used for parallelism are also highlighted e.g.
number of compute units, unrolling of main computing
loop, use of SIMD pragma for work items parallelism and
data block size variation (where elements in a block are
executed in parallel and relate to resources utilized in map-
ping). The generation of multiple bitstreams is a key step in
evaluating the mapping strategies as we will demonstrate.

5.1 Analysis of Heterogeneous Tasks

Using the DSE, we analyze the heterogeneity in on-chip
resource utilization by tasks. We mainly focus on three
resources, Logic cells, DSPs and BRAMs and evaluate the
inefficiency in resource utilization caused by the rectangular
and fixed size shapes of PRRs resulting in homogeneous
regions. We present percentage utilization of resources from
two perspectives.

The first case calculates percentage resource utilization
compared to the bounding box where dimensions are
custom defined for each bitstream, as per bitstream’s
resource requirements. We use all of the bitstreams which
are smaller than the largest PRR. The second case deals with
percentage utilization compared to the PRRs available on
the FPGA. We use 4 sizes of heterogeneous PRRs (Fig. 1).

In total, there are 80 rows of FPGA that can be
configured as a single region (PRR-1) or a set of two
homogeneous regions of 40 rows each (PRR-2). We define
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Table 2 Average Resource Utilization when Using PRRs.

Resource Custom Regions Homogeneous PRRs

Avg. Util. Min. / Max. Util. Avg. Util. Min / Max Util.

Logic 52.54% 30.36% / 79.40% 37.12% 18.47% / 61.19%

DSPs 32.33% 0.0% / 97.0% 26.30% 0.0% / 97.0%

Block RAM 60.56% 15.49% / 95.82% 45.05% 10.07% / 91.91%

two more heterogeneous PRRs, namely 30 (PRR-3) and 50
(PRR-4) rows, based on the sizes of generated bitstreams.
Note that either the homogeneous or heterogeneous PRRs
can be used at a single instance of time.

We select bitstreams for each task that would maximize
the resource utilization in each of 4 PRRs, i.e. up to 4
bitstreams per task and give average percentage resource
utilization by these bitstreams compared to their respective
PRRs. The measurements in Table 2 show that due to the
homogeneous nature of PRRs, the logic, DSP and BRAM
utilization is limited to 37%, 26% and 45% on average.

5.2 Runtime Functional Simulation

In this section, we use our simulator to analyse various
mapping strategies.

5.2.1 SPM vs PRR

Firstly, we examine the speedup achieved by various
improvements on the PRR mapping, as explained in
Section 3.2.2. We use three different mapping strategies,
namely the continuous y-axis, heterogeneous PRRs and
homogeneous PRRs and their respective bitstreams (Fig. 1).
Please note that this is a study of resource utilization
efficiency of various mapping approaches and does not
consider data transfers from host CPU memory to DRAM
memory on the FPGA board.

The simulator’s resource manager performs Elastic and
Contract optimizations, as explained in Section 3.2.2. We
use the actual measured relative throughput of various
bitstreams of tasks to calculate the new execution time of
tasks. For Contract, we determined that if the difference

in speedup for a smaller bitstream replacing the bigger
is too large, the total execution time increases rather
than decreases. Thus, we limited the allowed speedup

degradation for smaller bitstreams to 5×.
The graphs in the Fig. 4 show the speedup achieved

by the optimizations for various configurations. Generally,
Elastic is more useful with gains up to 1.33× whereas the
best gain for Contract is 1.05×. Optimizations benefit more
with heterogeneous mapping in tackling segmentation;
hence, the gain is negligible for our case with only
two heterogeneous regions while no gain is achieved for
homogeneous regions.

Next we investigate gains made by SPM in comparison
to PRR. For SPM, we either use the same region as used for
PRR (Homogeneous Regions in Fig. 1) and call it P-SPM or
use whole of the available area for task logic (Fig. 1) and call
it W-SPM. This approach helps to differentiate between the
speedup achieved by heterogeneous mapping in the same
region as well, as the gains made by the availability of extra
logic when mapping statically.

As the results in Fig. 5 indicate, a key finding is that SPM
gives on average 4.2× higher throughput, measured in terms
of total execution time for a set size of task queue. A 2.2×
speedup is achieved via heterogeneous mapping while the
rest is achieved via use of higher resource availability. The
results show that if the y-axis can be made continuous, then
a throughput gain of 1.8× can be achieved.

5.2.2 Execution Time Variation

So far, the reported speedup numbers have considered an
ideal scenario for SPM by considering all of the tasks
sharing the FPGA at any time, having the same execution

Figure 4 Speedup achieved by
optimization of PRR mapping
on various bitstreams.
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Figure 5 Speedup achieved by
SPM versus PRR mapping.

time. This is not the case for real workloads. Next, we vary
the execution time of tasks and report on speedup achieved.
We use a uniform distribution for execution time and vary
the range of distribution. Also we now show results against
native FPGA implementation.

The results shown in Fig. 6 for speedup depict a
surprising trend. Even with increasing the range of
execution time, defined as a multiple (×) and represented
here by Deviation (Dev), of up to 32× (beyond this range
a reconfiguration overhead to replace the bitstream would
become negligible), the speedup by SPM decreases but
remains higher than 2.5× that of PRR. This is because on
average, the device under test may be used by 3 or less
tasks using SPM, as constrained by the size of FPGA and
tasks bitstreams. Thus, a task may stall up to two tasks or
a maximum of about 50% resources with an average much
lower than that. Stalls by smaller tasks are overcome by the
higher average compute density and gains made when the
longest running task are not the smallest. The speedup for
PRR is maintained at 0.38×.

The trend for SPM against NE follows a similar trend.
However, although there is an initial gain of 1.5×, the
speedup falls below 1 after an execution time Dev of 8×.
This suggests that even though SPM provides denser spatial
mapping than NE, the suboptimal temporal utilization can

Figure 6 Speedup Variation of SPM and PRR with variation in
execution times against NE (Tasks = 1024).

degrade performance. There are other benefits to sharing
the FPGA device particularly for smaller tasks, however, the
work argues that throughput analysis should be performed
against the dynamics of the considered task queue to
select the optimum mapping scheme. Next, we analyze the
dynamics of task queue in the context of reconfiguration
overhead.

5.2.3 Reconfiguration Overhead

So far, we considered reconfiguration overhead to be
negligible as compared to task execution time and hence,
did not include it in the analysis. It is included in the next
set of experiments which show the total execution time
for processing a queue of 1024 tasks. The reconfiguration
time for PRR is calculated as percentage of the total
reconfiguration time for the entire FPGA resources. SPM,
similar to NE, is reconfigured as a single FPGA bitstream.

For 1024 tasks, NE is reconfigured 1024 times with a
total reconfiguration time of 1996.8 seconds. We use two
homogeneous PRRs for this set of experiments resulting in
total reconfiguration time of 559.1 seconds. Finally, SPM

Figure 7 Total execution time including the reconfiguration overhead
for varying mean of tasks individual execution time.
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Figure 8 ST P Variation with
data sizes for 2 compute
intensive tasks - MM and LUD.

can take variable number of reconfigurations to process a
fixed number of tasks based on the individual sizes of tasks
and runtime resource management. In our experiments, the
number of reconfigurations ranged from 363 to 379 with a
reconfiguration overhead of 672 to 702 seconds.

The total execution time for various mapping schemes
against a varying mean execution time of tasks is shown in
Fig. 7. It includes two different ranges for each evaluated
mean. Starting from the offset of reconfiguration overhead,
the total execution time generally increases linearly with
increase in mean execution time of tasks. However, the
rate at which the reconfiguration overhead becomes less
significant while the task processing time becomes more
significant towards total execution time, varies with the
mapping scheme. The lower reconfiguration overhead
plays more significant role towards better performance for
smaller tasks with lower mean execution time while higher
throughput is more significant for larger tasks.

In the first test scenario, the range of execution time
approaches zero or in other words, all tasks have similar

execution times. In this case, even with the lowest
throughput associated with PRR, it provides the best overall
system performance by up to 1.2× owing to the lowest
reconfiguration overhead. However, the lowest throughput
and hence the highest task processing time for PRR
becomes the more significant factor towards total execution
time quickly with the increasing task size and the PRR
becomes the worst performing for tasks taking more than 1
second per task.

The second set of experiments shows the benefits
of space sharing when using an increased 8× range
of the execution times ( Dev). Without considering
reconfiguration overhead, SPM performed worse than
NE as shown in Fig. 6. However, space sharing and
lower number of resources per task results in lower
reconfiguration overhead for SPM compared to NE. This
results in SPM providing better overall performance by an
average of 1.8×. The overhead only offsets the performance
loss due to lower throughput though, as SPM may perform
worse than NE with even higher Dev. Fig. 7 provides

Figure 9 ST P Variation with
data sizes for 2 memory
intensive tasks - ALS and PR.
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Figure 10 ST P Variation with
data sizes for one compute and
one memory intensive task -
LUD and PR.

a generic picture of how the mean and the range of
execution time of tasks may affect selection of the optimal
mapping scheme and may be considered when designing a
system.

5.3 Evaluation on Hardware

A key limitation of using SPM is the need to generate
each multi-task heterogeneous bitstream separately. This
limitation can be overcome partially by benchmarking cloud
and data center workloads to estimate the frequency and
data sizes of incoming tasks [2, 24]. This can help decide
the combination of tasks that may be shared on a single
FPGA as well as the percentage resource allocation for
each task. Apart from helping with a higher resource
utilization on-chip, these decisions minimize bottlenecks
in off-chip resources, such as DRAM access. To analyze
this further as well as provide numbers for throughput
for real hardware execution, we discuss some of the
extreme cases below using the ST P metric defined in
Section 4.1.

In terms of resource utilization, SPM resulted on average
60%, 129% and 59% higher logic, DSP and BRAM
utilization compared to PRR, respectively. Furthermore,
Figs. 8, 9 and 10 show the achieved ST P for PRR and SPM
for two compute, memory and mixed (one compute/one
memory) intensive tasks, respectively. The graphs also show
the Dev between the execution times of both tasks on
the second y-axis. In our experiments, the execution time
between both tasks varied by up to 5108×, 14× and 361×
for compute intensive, memory intensive and mixed tasks.
Note that for SPM, NP for each task is calculated using the
time for longest running task.

ST P for PRR stays relatively uniform with variation in
data sizes while for SPM it generally reduces with increase
in difference of individual execution times. The results show
that for compute intensive and mixed tasks, SPM performs

on average 2.9× and 2.3× better than the PRR mapping,
respectively.

For memory intensive tasks, the increase in resource
utilization did not result in a performance increase. This
is because for memory intensive tasks, the increase in
throughput via higher utilization of on-chip compute
resources is limited by external memory access latency and
bandwidth. For memory intensive tasks, PRR has 1.25×
higher ST P on average than the SPM.

Finally, for all cases, the trend for SPM is not entirely
dependent on the variation in execution time of tasks sharing
the FPGA, as also depends on the percentage resource
utilization as well as the NP of the longest running task.
To explain this further, we present another set of results
where we have 4 tasks sharing the FPGA. However, we
focus on a single task, LUD, and use two different SPM
configurations. In SPM 1, LUD has a minimum number of
resources while in SPM 2, it is allocated more such that it
has a 10× higher individual NP in SPM 1 compared to
SPM 2. Furthermore, we select data sizes for the rest of

Figure 11 ST P Variation for PRRs and SPM for two configurations
using four tasks - SPMV, NW, LUD, PR.



J Sign Process Syst

Figure 12 Percentage of tasks clustered for different number of steps.

the tasks such that their execution time is similar to each
other. We then vary the data size of LUD (size of square
matrices from 128 to 1024 in steps of 2×). The resulting
ST P presented in Fig. 11 shows that for the SPM 1, the
PRR performs 1.9× better than the SPM while for SPM
2, the SPM performs 1.2× better than PRR for the same
data sizes of LUD. Also even for the second case, SPM
performs worse for first sample projecting that sharing 4
tasks on this size of an FPGA reduces the average system
throughput.

5.3.1 Accuracy of Performance Estimation Models

Here, we provide an analysis of the accuracy of the multi-
task performance estimation model. To evaluate the model,
we generated a set of binaries for various combinations
and scale of tasks for both PRR and SPM. The memory
model was trained on binaries different from the ones used
for testing. For PRR, the model generated, on average, a
root mean square error of 3.15% with a worst case error
of 9.8%, while for SPM an average error of 5.5% and a
worst case of 11.6% was observed. The error is calculated
for the estimated relative speedup in multi-task processing

using the NE in single task processing and compared against
the actual performance in multi-task execution for the tested
cases.

5.4 Scheduling

So far, the studies have used real bitstream parameters
but with synthetically generated execution times. For the
next set of experiments that evaluate scheduling policy, real
execution time for various sizes of workload were used. The
first step of the scheduling policy is to create clusters. At
this stage, the tunable parameters are the number of used
clusters and allowed deviation of execution time in a single
cluster. Both factors, in turn, affect the number of tasks per
cluster where the higher value gives more mapping options
to the runtime scheduler, leading to a higher compute
density in space. The higher variation in execution times in
a cluster has the impact of resulting in more stalling by the
longest task in a package, thereby giving higher compute
density in time. However, deviation and number of tasks per
cluster are directly proportional as larger deviation allows
more tasks in a cluster or in other words, requires less
clusters.

Figure 13 Speedup using clustered tasks against native FPGA execution.
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Figure 12 gives results on clustering on real data for
two varying task queue sizes where each task represents a
unique workload size. The figure highlights the same trends
as above where the higher deviation and number of clusters
result in higher number of tasks being assigned to clusters.
Furthermore, the number of tasks per cluster goes up with
increasing task queue size. For example, at 1.2× Dev and
32 clusters, there are on average 6 tasks per cluster for a task
queues of 276. However, the same parameters result in 64
tasks per cluster for 8K task queues. This suggests that the
approach can gain more on larger scale systems with bigger
task queues.

By increasing Dev, the number of clustered tasks
increases slightly, but the effect on performance drops
significantly due to longer stalling by larger tasks and hence
it is not considered. Our two step clustering and filtering
method increased the number of clustered tasks by up to
2.3× compared to single step clustering. The clustering
and filtering took 0.47s - 2.5s and 5.68s - 70s for 8 - 64
clusters for the 276 and 8K task queues respectively, using a
non-optimized, non-parallel implementation running on the
host.

The runtime scheduler maps the task queue while
maximising resource utilisation. During the clustering
process, some of the clusters end up with a single task
cluster. At runtime, the bitstreams for these, along with for
outliers tasks, are switched to the largest bitstream for the
corresponding task to run as single task per device. On a
multi-FPGA cluster, these can also run on a separate FPGA
in a non-clustered configuration.

The speedup gained against a NE configuration is shown
in Fig. 13. The smaller task queue does not provide a clear
picture as the performance varies largely by fine variation
of parameters and the change in order of tasks in the queue.
The larger task queue shows that although larger deviation
allows more tasks to be clustered, the effect on overall
performance is detrimental. Similarly using more clusters
also improves the net performance. Overall, the average
gain of 1.13× for Dev of 1.1× is lower than the results
shown earlier, because the gain is only possible in the
clustered tasks. The number of clustered tasks for a set
Dev may be increased by using a larger device that offers
more design points. The speedup for PRR stands constant
at 0.38× and thus SPM can provide 3× higher speedup for
space-shared multi-task execution.

6 Conclusion

This work analyzes the constraints of mapping bitstreams
of heterogeneous tasks to FPGA at runtime and their effect
on compute density when using partially reconfigurable
regions for space shared multi-task processing. Static

partitioning and mapping of tasks to achieve higher
speedup and system throughput is proposed and several
aspects of each approach are evaluated via DSE using
a range of HPC tasks, a comprehensive simulator and
evaluation on hardware. A novel scheduling policy utilising
execution times of tasks to cluster for co-execution is
proposed to increase temporal compute density. Static
partitioning and scheduling policy provides up to 3×
higher system throughput and facilitates a completely
software based implementation of a multi-task space shared
computing environment without requiring low level support
for PRR. The work also highlights that throughput must be
considered and evaluated against the dynamics of task queue
while deciding if to partition and how to partition.
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