Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Package to support simplified application of machine learning models to datasets in materials science

Project description

PyPI Tests Tests NSF-1931306

Foundry-ML simplifies the discovery and usage of ML-ready datasets in materials science and chemistry providing a simple API to access even complex datasets.

  • Load ML-ready data with just a few lines of code
  • Work with datasets in local or cloud environments.
  • Publish your own datasets with Foundry to promote community usage
  • (in progress) Run published ML models without hassle

Learn more and see our available datasets on Foundry-ML.org

Documentation

Information on how to install and use Foundry is available in our documentation here.

DLHub documentation for model publication and running information can be found here.

Quick Start

Install Foundry-ML via command line with: pip install foundry_ml

You can use the following code to import and instantiate Foundry-ML, then load a dataset.

from foundry import Foundry
f = Foundry(index="mdf")


f = f.load("10.18126/e73h-3w6n", globus=True)

NOTE: If you run locally and don't want to install the Globus Connect Personal endpoint, just set the globus=False.

If running this code in a notebook, a table of metadata for the dataset will appear:

metadata

We can use the data with f.load_data() and specifying splits such as train for different segments of the dataset, then use matplotlib to visualize it.

res = f.load_data()

imgs = res['train']['input']['imgs']
desc = res['train']['input']['metadata']
coords = res['train']['target']['coords']

n_images = 3
offset = 150
key_list = list(res['train']['input']['imgs'].keys())[0+offset:n_images+offset]

fig, axs = plt.subplots(1, n_images, figsize=(20,20))
for i in range(n_images):
    axs[i].imshow(imgs[key_list[i]])
    axs[i].scatter(coords[key_list[i]][:,0], coords[key_list[i]][:,1], s = 20, c = 'r', alpha=0.5)
Screen Shot 2022-10-20 at 2 22 43 PM

See full examples

Contributing

Foundry is an Open Source project and we encourage contributions from the community. To contribute, please fork from the main branch and open a Pull Request on the main branch. A member of our team will review your PR shortly.

Developer notes

In order to enforce consistency with external schemas for the metadata and datacite structures (contained in the MDF data schema repository) the dc_model.py and project_model.py pydantic data models (found in the foundry/jsonschema_models folder) were generated using the datamodel-code-generator tool. In order to ensure compliance with the flake8 linting, the --use-annoted flag was passed to ensure regex patterns in dc_model.py were specified using pydantic's Annotated type vs the soon to be deprecated constr type. The command used to run the datamodel-code-generator looks like:

datamodel-codegen --input dc.json --output dc_model.py --use-annotated

Primary Support

This work was supported by the National Science Foundation under NSF Award Number: 1931306 "Collaborative Research: Framework: Machine Learning Materials Innovation Infrastructure".

Other Support

Foundry-ML brings together many components in the materials data ecosystem. Including MAST-ML, the Data and Learning Hub for Science (DLHub), and the Materials Data Facility (MDF).

MAST-ML

This work was supported by the National Science Foundation (NSF) SI2 award No. 1148011 and DMREF award number DMR-1332851

The Data and Learning Hub for Science (DLHub)

This material is based upon work supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357. https://www.dlhub.org

The Materials Data Facility

This work was performed under financial assistance award 70NANB14H012 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Material Design (CHiMaD). This work was performed under the following financial assistance award 70NANB19H005 from U.S. Department of Commerce, National Institute of Standards and Technology as part of the Center for Hierarchical Materials Design (CHiMaD). This work was also supported by the National Science Foundation as part of the Midwest Big Data Hub under NSF Award Number: 1636950 "BD Spokes: SPOKE: MIDWEST: Collaborative: Integrative Materials Design (IMaD): Leverage, Innovate, and Disseminate". https://www.materialsdatafacility.org

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

foundry_ml-1.0.4.tar.gz (38.1 kB view details)

Uploaded Source

Built Distribution

foundry_ml-1.0.4-py3-none-any.whl (42.5 kB view details)

Uploaded Python 3

File details

Details for the file foundry_ml-1.0.4.tar.gz.

File metadata

  • Download URL: foundry_ml-1.0.4.tar.gz
  • Upload date:
  • Size: 38.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for foundry_ml-1.0.4.tar.gz
Algorithm Hash digest
SHA256 7e0126c85deb6e0ed5e4f92adbc625e35bfdfc24836aa248c04e40a50a078c39
MD5 45480311a9f381644622bc9e32c32673
BLAKE2b-256 ad819006762abea652d8f192321f2378b1c9782acfd3c0587f338a485b923f4f

See more details on using hashes here.

File details

Details for the file foundry_ml-1.0.4-py3-none-any.whl.

File metadata

  • Download URL: foundry_ml-1.0.4-py3-none-any.whl
  • Upload date:
  • Size: 42.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.4

File hashes

Hashes for foundry_ml-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 0176bb65bbea6b238a5b23cabae33528cd4453892ecb418bdbb0db0c74123610
MD5 0601b668a2d6ecb5c13f4286a8e59d15
BLAKE2b-256 da60867285ecbcec4e8d1ec03f60e6edbe215a29c0875a24715b15cf9b7e92ef

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page