Real-world use cases
Nord Quantique is accelerating the path to useful quantum error correction with Boulder Opal
Nord Quantique used Boulder Opal to design a hardware-efficient QEC protocol for a superconducting system where quantum information is encoded in GKP states.
14%
increase in logical qubit lifetime
Given the complexity of the physics at play, being able to perform closed-loop optimization of a few physically motivated parameters of the quantum error correction protocol with Boulder Opal is very valuable to us.
Improving Army logistics with quantum computing
With Fire Opal, the Australian Army tested and validated a quantum computing solution on real hardware that promises to outperform their existing methods.
12X
improvement in the likelihood of finding an optimal solution with Fire Opal over the default hardware execution
Optimally routing 120 convoys can take more than a month of classical computation. The Australian Army is evaluating the potential of quantum computing to provide improvements; however, it’s been difficult to validate the feasibility of a quantum solution due to hardware noise. With Fire Opal, an algorithmic enhancement software, we are able to achieve results on quantum computers that build confidence in our quantum roadmap.
Enabling data loading for quantum machine learning with Fire Opal
BlueQubit demonstrated groundbreaking loading of complex distribution information onto 20 qubits for a QML application by using our error suppression product.
8X
Better performance in terms of Total Variational Distance (TVD), which measures the deviation from perfect data loading.
As we develop novel techniques to solve some of the quantum industry’s hardest challenges, Fire Opal is an essential tool to reduce the impact of hardware noise and demonstrate successful results with deeper and wider circuits.
Reducing quantum compute costs 2,500X with Fire Opal
With Fire Opal a financial company was able to run algorithms on more cost-effective hardware systems while achieving results comparable to more premium systems
>2,500X
Reduction of quantum compute cost
We wanted to challenge Fire Opal’s capabilities by running a quite complex, unoptimized circuit. The results were extremely promising. The only comparable results we’ve seen have come from hardware that is currently too expensive to run extensive tests on.