
In Situ Identification of Student Self-Regulated Learning
Struggles in Programming Assignments

Kai Arakawa
Western Washington University

hicksk5@wwu.edu

Qiang Hao
Western Washington University

qiang.hao@wwu.edu

Tyler Greer
Western Washington University

greert2@wwu.edu

Lu Ding
Eastern Illinois University

lding@eiu.edu

Christopher D. Hundhausen
Washington State University

hundhaus@wsu.edu

Abigayle Peterson
Western Washington University

peter390@wwu.edu

ABSTRACT
Effective self-regulated learning (SRL) is important to student aca-
demic success. Understanding what SRL struggles students face
in programming assignments is critical to guide many efforts in
computing education, such as designing scalable interventions and
developing effective learning technologies. Prior studies on this
topic contributed to understanding what SRL strategies CS students
typically use in programming assignments, and the interventions
for some SRL struggles such as procrastination. However, few stud-
ies have investigated student SRL struggles in programming sys-
tematically. To fill this gap, we investigate student SRL struggles
in the context of CS2 through a case study. We used multiple ap-
proaches to collect real-time data and validate our findings, such as
tracking student progress, identifying potential SRL struggles, and
interviewing identified struggling students to confirm our identifi-
cations. This study contributes to a deeper understanding of what
SRL struggles students face in programming at a fine-grained level,
and provides guidance on interventions for SRL struggles.

CCS CONCEPTS
• Social and professional topics → Computing education;

KEYWORDS
self-regulated learning, learning behaviors, struggle identification,
computing education, automated testing, automated feedback

ACM Reference Format:
Kai Arakawa, Qiang Hao, Tyler Greer, Lu Ding, Christopher D. Hundhausen,
and Abigayle Peterson. 2021. In Situ Identification of Student Self-Regulated
Learning Struggles in Programming Assignments. In Proceedings of the 52nd
ACM Technical Symposium on Computer Science Education (SIGCSE ’21),
March 13–20, 2021, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3408877.3432357

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCSE ’21, March 13–20, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8062-1/21/03. . . $15.00
https://doi.org/10.1145/3408877.3432357

1 INTRODUCTION
Effective self-regulated learning (SRL) is important to student aca-
demic success. SRL refers to a process in which students monitor
and adapt their learning progress, using strategies related to moti-
vation, cognition, and metacognition, in order to achieve learning
goals [1, 2]. Prior studies have shown that effective SRL is positively
related to different aspects of learning, such as self-efficacy, aca-
demic performance, and persistence [3, 4]. When students conduct
effective SRL, that is typically evidenced by their application of SRL
strategies to different learning stages, such as careful estimates of
the needed time for learning tasks and reflection of the learning
progress based on feedback [5–7].

Understanding what SRL struggles computer science (CS) stu-
dents face in programming is important for computing educa-
tors and researchers. Novice students in entry-level programming
courses are typically in their first or second college year; most of
these students have not fully mastered effective SRL yet [8, 9]. SRL
struggles (e.g., time management) has been identified as a main
factor that contributes to CS students dropout rate, and particularly
for those novice students [10]. Instilling effective SRL strategies
and practices can substantially increase the learning efficacy of CS
courses [8, 11]. A systematic understanding of what SRL struggles
students have in programming can provide a full picture of where
students need help the most, and enable effective intervention de-
signs. Additionally, such an understanding can provide practical
guidance for devising learning technologies that address these chal-
lenges on a large scale [12, 13].

Prior studies on this topic contributed to multiple different as-
pects of SRL, such as examining the relationship between SRL and
student performance in programming courses, and what SRL strate-
gies CS students tend to use [11, 14–19]. In addition, some studies
examined interventions for some specific components of SRL, such
as procrastination and poor help-seeking behaviors [12, 20]. De-
spite the contributions of prior studies, few efforts have been made
to investigate student struggles of SRL in this context systemati-
cally. More importantly, previous studies were limited by a heavy
reliance on retrospective data collection methods such as surveys
and self-reflection to measure student SRL. Such data can hardly
reflect the authentic experience of student programming that un-
folds over many hours or days across multiple contexts, missing
nuances of SRL which students can not accurately recall or may
not even be aware of.

To fill this gap, this study aims to investigate student struggles
of SRL in programming assignments in the context of CS2. We used

Paper Session: CS Instruction SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

467

https://doi.org/10.1145/3408877.3432357
https://doi.org/10.1145/3408877.3432357

multiple approaches to collect data at the fine-grained level, includ-
ing tracking student progress of programming, identifying students
who had SRL struggles on a real-time basis, reaching out to these
students, and interviewing them on what SRL struggles they have
on a daily basis. The findings of this study contribute to a deeper
and more systematic understanding of student struggles of SRL in
programming assignments, and provide guidance for interventions
and learning technologies that address these struggles.

2 BACKGROUND
SRL is defined as a process in which students actively monitor and
adapt their learning progress, using regulation strategies on behav-
iors, motivation cognition, and metacognition, in order to achieve
their learning goals [2]. Several models have been postulated to
categorize SRL process, but most models of SRL are composed of
at least four cyclical phases, including task analysis, planning, en-
actment, and self-evaluation [21, 22]. In the phase of task analysis,
students first need to define a task as an easy or a hard task, and
analyze the task based on both the difficulty level of the task and
individual cognitive factors [23]. In the phase of planning, students
set a standard for satisfactory task performance, and set goals and
plan actions based on the standard [24]. In the phase of enactment,
students perform the planned task, continuouslymonitor and utilize
strategies to regulate their behaviors and emotions, and gather en-
vironmental resources (e.g., teacher feedback and help from peers)
[23, 25]. In the last phase of self-evaluation, students evaluate their
performance and identify the causal attributions that positively or
negatively influence their performance and reflect on how to make
improvements in subsequent tasks based on feedback [26].

SRL has been studied from different angles in computing ed-
ucation, including the relationship between SRL and CS student
academic success, interventions for specific SRL elements, and how
CS students at different levels conduct SRL. These studies confirm
some findings of studies on SRL in other disciplines, and deepened
our understanding of the specific challenges and issues CS stu-
dents may face. On the one hand, computing education research
on this topic largely confirmed the findings on the relationship
between SRL and academic success from other disciplines. Bergin
et al. [18] surveyed 35 students enrolled in a CS1 course, and found
that students who used more metacognitive strategies performed
better than those who used fewer metacognitive strategies, and
higher-performing students generally tend to have a higher level
of intrinsic motivation of learning than lower-performing students.
Loksa and Ko [11] examined the problem-solving process of 37
students. They found that successful SRL relies on adequate pro-
gramming knowledge, and students who engage in more planning
and comprehension monitoring had overall fewer errors in their
code than their counterparts who did not. On the other hand, many
studies found that CS students, especially novice learners, need
facilitations or help on performing effective SRL [15, 27]. Ko et al.
[14] found that students had difficulties in regulating their choices
of problem-solving strategies, despite knowing which one is more
effective, and recommended explicit teaching and learning on SRL
to strengthen student capabilities in problem-solving.

A handful of studies investigated what the strategies that stu-
dents apply when working on their programming assignments are.

Pedrosa et al. [28] interviewed 38 students in two programming
course, and found that the common SRL strategies that students
used were information searching, work reviewing, and time man-
agement (planning). When students self-monitored that they en-
countered difficulties in solving a problem, they often searched
online for related information or self-evaluated their work for er-
rors (e.g., misspellings, sentence construction, theoretical content).
A similar study was conducted with 85 college students taking
an introductory software development course [8]. Data was col-
lected through reflection essays, and the authors identified a set
of SRL strategies CS students use, such as task difficulty assess-
ment, designing before coding, and problem decomposition. In the
same line, Falkner et al.[29] further found that expert programmers
used substantively more planning (design before coding, time man-
agement) and self-evaluation (testing) strategies than novice pro-
grammers. Prather et al. [30] studied whether providing an explicit
metacognitive prompt assisted novice programmers in overcoming
the metacognitive difficulties. Marin et al. [20] studied using email
alert intervention to help students overcome procrastination prob-
lems. The efforts to investigate how students perform SRL focused
on understanding what SRL strategies students tend to use when
working on programming assignments.

Despite the contributions, there are a few limitations and gaps in
the literature on this topic. First, the majority of prior studies were
conducted retrospectively through surveys or by asking students to
reflect on the work they completed a long time afterward [31]. The
retrospective data might not generalize to authentic settings, be-
cause of missed nuances and the lack of verification of the reliability
of this method. Second, although these methods that relied on self-
reported data can provide some information about what students
did and how they thought, the results are substantially subject to
individual interpretations and understanding. When students lack
strong self-reflection capabilities, they may not accurately depict
their process of SRL, resulting in biased or inaccurate data [32, 33].
Third, few studies focused on investigating what SRL struggles
students typically face when programming. A systematic under-
standing of SRL struggles in programming is critical to provide
a full picture of where students need the help the most, and pro-
vide guidance for the development of interventions and learning
technologies. This study aims to fill the gaps by investigating what
SRL struggles students face in programming through multiple data
collection approaches, including observing student programming
at a fine-grained level, identifying students who are potentially
struggling in SRL, and communicating with them through emails
and invited interviews. To overcome the scalability challenge of
observation in situ, we will utilize the learning technologies such
as automated testing and automated feedback, and track student
programming activities daily.

3 RESEARCH DESIGN
This study is guided by one research question: What SRL struggles
do CS students have when working on programming assignments?.

3.1 Experiment Design
To answer this question, we explore student SRL struggles in pro-
gramming through a case study. An instrumental case study was a

Paper Session: CS Instruction SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

468

suitable approach to answer this research question because it cap-
tures the complexities of a phenomenon at a substantially detailed
level that can not be achieved by surveys or controlled experimental
designs [34]. Our case study is on a complex programming assign-
ment in the context of CS2. 135 students from a large university in
the northwestern United States participated in this case study. The
assignment asked students to code a command-line interface that
allows users to manipulate any string input in various ways, such as
character replacement, insertion, and removal. It takes about 250 to
300 lines of Java code to complete the assignment. The assignment
lasted for two weeks; during the two weeks, six lab sessions were
arranged for students to work on the assignment with the support
and facilitation from two teaching assistants. To strengthen the idea
of decoupling, we designed the assignment in a way that required
students to code seven independent unit functions and to utilize
them in the main function.

To achieve observing student progress towards completing the
assignment in situ, we deployed an automated feedback system for
this programming assignment using version control and contin-
uous integration tools [i.e., GitHub and Travis-CI(travis-ci.com)].
All students participating in this case study had sufficient knowl-
edge in using version control tools (e.g., Git) through command-
line tools before taking this course. They were all encouraged to
push their code to GitHub whenever they got a chance to work
on the assignment every day. Every push to GitHub would trig-
ger automated testing on Travis-CI. Sequentially, students would
be notified of the feedback from the automated testing immedi-
ately after they pushed their code to GitHub. By tracking the log
information from the automated feedback system, we were
able to observe student coding behaviors in situ on a daily
basis, such as lines of changed code, which test cases were
passed successfully, and snapshots of student code per push
to GitHub.

To tailor the automated feedback for the programming assign-
ment, we developed unit testing for each of the required functions.
Our efforts aimed to (1) provide multiple test cases reaching suf-
ficient test coverage, and (2) provide customized feedback that
addresses the gap between the expected and actual output per in-
dividual function [6, 13]. An example of what students receive for
automated feedback is demonstrated in Figure 1. Students’ assign-
ments were graded based on (a) the percentage of test cases that
were passed through the automated testing system by the deadline
and (b) manual testing with more randomized testing cases on all
required functions, including both the unit and main functions. To
achieve a reliable result on the manual testing, each assignment
was graded by two graders. The inter-rater reliability of grading
(Cohen’s Kappa) was .96.

3.2 Data collection and analysis
We collected all student performance on the programming assign-
ment, and tracked the data associated with each student’s push
of code to Github, including the number of lines of changed code,
which test cases were passed successfully, and snapshots of student
code. To identify the potential struggles of SRL, we set up an alert
microservice that sent us a list of potentially struggling students on
a daily basis. The microservice identified potential struggles based

Figure 1: A partial screenshot of the automated feedback
that students received.

Figure 2: An example of how we reached out to potentially
struggling students.

on two criteria. We identified a student as potentially struggling in
SRL when a student:

• failed to start working on the assignment in time (e.g., not
starting before 1/2 of the allowed time passed) or make little
efforts in an extended period of time (e.g., no commits in
seven days)

• failed to pass the same test case in three sequential commits
& pushes to GitHub

To confirm if our "observation" is accurate and what SRL strug-
gles these students have, we reached out to them individually on a
daily basis (see Figure 2) to (1) address their knowledge or problem-
solving gaps if there are any, (2) confirm if they were struggling,
and (3) invite them to have a brief face-to-face interview within
two days, focusing on a simple question "What do you think you
were struggling in terms of SRL?". We documented all the email
communications and transcribed all face-to-face interviews.

To answer the proposed research question, we applied grounded
theory analysis to the collected data. Different from other qualita-
tive analysis, the grounded theory does not start with a structured
coding framework. Instead, the grounded theory involves the devel-
opment of a coding framework from the data itself [35]. There are
two steps in the grounded theory analysis: The first step is open
coding, where the data is broken down into distinct segments in

Paper Session: CS Instruction SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

469

Table 1: Students’ SRL struggles in programming assign-
ments.

Struggles of SRL Freq %Freq
Task Analysis 18 35%
Misunderstand requirements 7 13%

Lack of fundamental skills 4 8%
Coding before thinking 4 8%

Fail to decompose problems 3 6%
Self-Control 20 38%

Procrastination 12 23%
Underestimate time 8 15%

Self-Reflection 14 27%
Lack of reflections on feedback 10 19%

Fail to seek help 4 8%
An individual student may encounter more than one
type of SRL struggles.

order to obtain the full collection of concepts in the data, so a cod-
ing framework can be generated. The second step is axial coding,
where the coding framework is further refined based on theoretical
frameworks and comparison within the data. The grounded theory
analysis avoids force-fitting observations into rigid categories and
misclassification [36].

4 RESULTS
4.1 Coding framework
The development of a coding framework for student SRL struggles
in programming is a multi-step process. First, we identified and
reached out to 47 students who demonstrated behaviors of struggles
by two criteria (see Section 3.3), and confirmed that 37 students
were struggling through either email communications or face-to-
face meetings. Second, we analyzed all collected data of these 37
students, including both the tracked data and other qualitative data,
such as email responses and transcribed interview texts through
open coding. Two coders worked independently at this step, either
coding the data to existing codes, or creating a new code, identifying
a description of the newly created code and examples. The open
coding process yielded a total of 23 distinct codes. Third, at the
step of the axial coding, the two coders worked collaboratively
to iteratively rene the established codes into categories, merging
codes where appropriate. Overall, our coding process is informed
by the existing SRL framework developed by Zimmerman [37] and
CS-specific SRL strategies framework developed by Falkner et al.
[8]. Our final framework is presented in Table 1.

4.2 Quantitative analysis results
Our analysis reveals that students encountered a range of SRL
struggles when working on programming assignments, such as
lack of reflections, underestimating the needed time, and failure
to decompose problems. Using the grounded theory analysis, we
classified these struggles into three main categories, including (1)
task analysis, (2) self-control, and (3) self-reflection. Table 1 presents
the three categories in our finalized coding framework. Among

Figure 3: A Venn diagram of failures to pass all the test cases
and struggles in SRL.

our quantitative analysis results, we would like to highlight three
findings.

First, students who demonstrated SRL struggles tend to have
weaker performance than their counterparts. 91.9% of (34 out of
37) confirmed struggling students did not pass all the test cases
of this programming assignment. Vice versa, students who have
weaker performance in the programming assignment also tend to
encounter SRL struggles. 77.2% (34 out of 44) of students who did
not pass all the test cases were confirmed as struggling in SRL. This
relationship is presented in Figure 3.

Second, more students are identified struggling in SRL as the
deadline approaches. The assignment lasted for two weeks, and
over 80% of the confirmed struggling students were identified in
the second week. As the deadline is approaching, substantially
more students were confirmed as struggling. Regardless of the rela-
tionship between student performance and struggles in SRL, it is
interesting to note that the conventional metrics of automated test-
ing systems are less useful to capture these struggles (see Figure 4).
Student average performance based on automated testing showed
consistent improvement over time, but failed to capture any SRL
struggles.

Third, self-control is themost frequent SRL struggle that students
encounter. There are two subcategories of struggles in self-control:
procrastination and underestimating the needed time. This is ev-
idenced by (1) failing to participate in the required lab sessions
and (2) starting the assignment too late. Among the 37 individual
students confirmed as struggling, 11 failed to participate in the
required lab sessions. When we applied the coding frame to these
11 students, we found that they also tend to have other types of
SRL struggles (see Table 2).

The assignment lasted for two weeks; among the 37 individual
students, 19 did not start working on the assignment until the
first week passed. When we plot the time when students started
working on the assignment against the ratio of passed test cases,
it is apparent that students who began late tended to do less well
than their counterparts (see Figure 5). To quantify this observation,
we applied correlation analysis to the starting time and student

Paper Session: CS Instruction SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

470

Figure 4: Average passed test cases and confirmed struggling
students over time.

Table 2: SRL struggles in programming assignments of stu-
dentswho (1)were confirmed struggling and (2) failed to par-
ticipate in the required lab sessions

Struggles of SRL Freq %Freq
Task Analysis 12 40.0%
Misunderstand requirements 5 16.7%

Lack of fundamental skills 3 10.0%
Coding before thinking 4 13.3%

Fail to decompose problems 0 0.0%
Self-Control 11 36.7%

Procrastination 7 23.3%
Underestimate time 4 13.3%

Self-Reflection 7 23.3%
Lack of reflections on feedback 6 20.0%

Fail to seek help 1 3.3%
An individual student may encounter more than one
type of SRL struggles.

performance on this assignment, and found that starting time to
be negatively correlated with performance, r(133) = -.38, p < .05. In
other words, the later a student begins working on the assignment,
the less likely the student is to perform well.

4.3 Qualitative analysis results
Our qualitative analysis of our communications with struggling
students indicates that such students lack knowledge about the
effective practice of SRL, and may face challenges that are beyond
academics. Among all of our findings in qualitative analysis, we
would like to highlight three results. First, students struggle in task
analysis in various ways that they may not be aware of. A thor-
ough understanding of the task is always necessary for effective
programming and problem-solving, yet we found multiple evidence

Figure 5: The time when a student started working on the
assignment vs. the ratio of passed test cases (using jittering
to avoid overlapping).

in the lack of understanding in the assignment requirements, such
as putting all code under the main function, and making changes
to function parameters that were not allowed to be changed. For
instance, several students expressed doubts, confusion about coding
the required unit functions at one point in time, and expressed re-
grets of not following the requirements later during the interviews.
One student said: "(Although) I coded everything in the main method,
I thought I was being systematic and broke down the problem to pieces
that I can tackle. I know what decoupling is ... I just didn’t realize why
that can be useful until I started debugging my code by the feedback
on Travis(-CI)."

Second, the lack of self-reflection slowed down students’ progress
substantially in completing the assignment. As is indicated in Sec-
tion 3.2, students were provided instant automated feedback that
breaks down to each of the required unit functions and main func-
tion. Multiple students repeatedly told us that they were doing fine
despite failing the same test cases in more than three sequential
commits & pushes to GitHub, and eventually did not succeed in
passing all the test cases. Surprisingly, many of these students did
not see the automated feedback as the feedback that they should re-
flect upon and take advantage of. Instead, they saw it as a reference
that is useful only when they need it. For instance, one student
said: "I see the Travis(-CI) feedback as just a reference (that) shouldn’t
interfere with my progress. (I believe) I have my own thinking, and I
will pass all test cases when I finish everything." As for not seeking
help in time, several students expressed hesitation to admit that
they need help or let other people know that they need help. This
led them to change a few lines of code, make frequent commits and
pushes to GitHub, and check to see if the automated testing results

Paper Session: CS Instruction SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

471

have changed. One student who failed to pass the same test case
for five times mentioned: "I don’t know ... I just think all other people
experienced the same, so it’s not the right time for me to reach out for
help yet. Maybe if I try a few more times, I will pass that test case ..."

Third, struggles in self-control have various contributing factors.
In many cases, procrastination and underestimating the needed
time are due to academic reasons. Two main reasons are (a) the lack
of skills in assessing difficulty and (b) bad learning habits. Several
students indicated that they always started their assignments when
deadlines were approaching, while some others thought the assign-
ment would take them a day or two, but realized more time was
needed when it was too late. In some extreme cases, self-control
struggles were actually due to non-academic reasons, such as un-
expected heavy study load and the need to balance academic and
personal life. For instance, one student had to take five courses for
personal reasons and barely could give enough time and effort to
any course he/she was taking. For another instance, a student had to
take two part-time jobs to support his/her academic life, and had no
choice but to miss all the lab sessions where his classmates worked
on the assignment with the support from teaching assistants.

5 DISCUSSION
Using in situ data collection technique, we identified a set of SRL
struggles CS students tend to have in programming assignments,
confirming some previous findings as well as revealing new insights
into student SRL struggles. Several previous studies have identified
challenges for students to perform effective task analysis. The iden-
tified issues range from assessing problem difficulties, assessing
the requirements of the given problems, and composing a given
problem [8, 15, 27]. Our combinations of observation and inter-
views confirmed these findings. These findings highlight the need
to explicitly teach task analysis skills and reinforce the teaching
through purposeful practice in programming courses [11, 18, 30].
Given that students even have problems understanding problem
requirements, a simple intervention that requires students to sum-
marize the requirements may force them to put more effort and
attention to task analysis, thereby reducing mistakes and struggles
at this step [30].

Self-control is the other major SRL struggle students face. Stu-
dents may put little time and effort into working on the assignment
due to underestimating the needed time and bad learning habits [8].
We found that as it got closer towards the deadline, the more likely
such struggles will be observed. It may not be the responsibility
of CS instructors to cultivate good learning habits in college stu-
dents, but innovative intervention approaches can undoubtedly be
used to help students do a better job in monitoring their progress.
Marin et al. [20] found that email alert reminding students of lack-
ing progress was hated, but effectively pushed them to put effort
into their assignments. Prior educational psychology studies may
shed light on how we design and implement effective interventions
that strengthen student self-control, such as precommitment and
subgoals [19, 38].

Different from some previous studies, we found that many stu-
dents who had SRL struggles lack the knowledge or skills to perform
effective self-reflection, even with the support from automated feed-
back. When surveys and self-reflection journals are used to collect

data only retrospectively, students can only recall what happened,
and provide a perspective that is limited by the memory and their
own understanding [8, 28]. When examining student self-reflection
in programming in situ, Loksa et al. [31] found that many students
struggled in performing basic self-reflection, and some of themwere
even not aware of this process. Surprisingly, even as we made the
feedback immediately available to students, some of them still chose
not to use or largely ignored it. There are two possible explanations
for this finding: (1) the lack of adaptivity of automated feedback
that makes it difficult to understand, and (2) there is an urgent need
to help students recognize the importance of self-reflection, such
as how to use feedback and seek help when needed [39, 40].

We believe further research into understanding the SRL strug-
gles novice learners face in programming is warranted. Replica-
tion studies are critical to achieving a thorough and systematic
understanding of what struggles novice learners tend to have in
programming [41]. Future research may consider replicating our
data collection methods that combine observation, identification
of struggles, and interviews with struggling students in a different
context, using a different programming language. Future work may
consider comparing and exploring the strengths and weaknesses
of the coding frameworks developed by Falkner et al. [8] and in
our study. Falkner et al. [8] used self-reflection journals as the main
instrument to measure student SRL while we mainly relied on track-
ing and observing the data generated from automated testing tools.
A comparison like this may further demonstrate the effectiveness
of the different approaches to addressing the same problem.

Our results suggest that educators seeking to scaffold the devel-
opment of self-regulation skills should be more targeted. Students
have different SRL struggles to a vastly different extent, and some of
these struggles can be inferred based on tracking student learning
progress, such as procrastination or failure of self-reflection. The
advances in learning technologies, especially automated testing
and feedback, provide a valuable opportunity to observe student
progress (or lack of) in situ at a fine-grained level. Interventions
driven by such data may be more effective in delivering the most
needed help to the right individuals, promoting just-in-time learn-
ing. Prior studies found that SRL interventions intended to help
build SRL skills may needlessly slow down and hinder students’
ability to be productive, especially for students with little to no
struggles [31]. Future studies may consider integrating data-driven
approaches in their design of SRL interventions.

6 CONCLUSION
We investigated student SRL struggles in the context of CS2 through
a case study using multiple in situ data collection approaches, such
as tracking student progress, identifying struggling students, and
confirming the struggles through emails and follow-up interviews.
We performed data collection on a daily basis. We identified and
ranked common student SRL struggles, including task analysis,
self-control, and self-reflection, and revealed findings on each type
of struggle through quantitative and qualitative data analysis. This
study contributes to a deeper understanding of what SRL struggles
students face in programming, and provides guidance on interven-
tion designs for the identified SRL struggles.

Paper Session: CS Instruction SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

472

REFERENCES
[1] Paul R. Pintrich. A conceptual framework for assessing motivation and self-

regulated learning in college students. Educational Psychology Review, 16(4):
385–407, 2004. doi: 10.1007/s10648-004-0006-x.

[2] Barry J Zimmerman. From cognitive modeling to self-regulation: A social cogni-
tive career path. Educational psychologist, 48(3):135–147, 2013.

[3] Paul R Pintrich and Elisabeth V De Groot. Motivational and self-regulated
learning components of classroom academic performance. Journal of educational
psychology, 82(1):33, 1990.

[4] Maria K DiBenedetto and Barry J Zimmerman. Differences in self-regulatory
processes among students studying science: A microanalytic investigation. The
International Journal of Educational and Psychological Assessment, 5(1):2–24, 2010.

[5] Bernardo Tabuenca,Marco Kalz, Hendrik Drachsler, andMarcus Specht. Timewill
tell: The role of mobile learning analytics in self-regulated learning. Computers
& Education, 89:53–74, 2015.

[6] Qiang Hao and Michail Tsikerdekis. How automated feedback is delivered
matters: Formative feedback and knowledge transfer. In 2019 IEEE Frontiers in
Education Conference (FIE), pages 1–6. IEEE, 2019.

[7] Barry J Zimmerman and Dale H Schunk. Reflections on theories of self-regulated
learning and academic achievement. In Self-regulated learning and academic
achievement, pages 282–301. Routledge, 2013.

[8] Katrina Falkner, Rebecca Vivian, and Nickolas JG Falkner. Identifying computer
science self-regulated learning strategies. In Proceedings of the 2014 conference on
Innovation & technology in computer science education, pages 291–296, 2014.

[9] Qiang Hao, Bradley Barnes, and Mengguo Jing. Quantifying the effects of active
learning environments: separating physical learning classrooms from pedagogical
approaches. Learning Environments Research, pages 1–14, 2020.

[10] Ilias O Pappas, Michail N Giannakos, and Letizia Jaccheri. Investigating factors
influencing students’ intention to dropout computer science studies. In Pro-
ceedings of the 2016 ACM Conference on Innovation and Technology in Computer
Science Education, pages 198–203, 2016.

[11] Dastyni Loksa and Andrew J Ko. The role of self-regulation in programming
problem solving process and success. In Proceedings of the 2016 ACM conference
on international computing education research, pages 83–91, 2016.

[12] Ayaan M Kazerouni, Stephen H Edwards, T Simin Hall, and Clifford A Shaffer. De-
veventtracker: Tracking development events to assess incremental development
and procrastination. In Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education, pages 104–109, 2017.

[13] Qiang Hao, Jack P Wilson, Camille Ottaway, Naitra Iriumi, Kai Arakawa, and
David H Smith. Investigating the essential of meaningful automated formative
feedback for programming assignments. In 2019 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 151–155. IEEE, 2019.

[14] Andrew J Ko, Thomas D LaToza, Stephen Hull, Ellen A Ko, William Kwok, Jane
Quichocho, Harshitha Akkaraju, and Rishin Pandit. Teaching explicit program-
ming strategies to adolescents. In Proceedings of the 50th ACM Technical Sympo-
sium on Computer Science Education, pages 469–475, 2019.

[15] Murali Mani and Quamrul Mazumder. Incorporating metacognition into learning.
In Proceeding of the 44th ACM technical symposium on Computer science education,
pages 53–58, 2013.

[16] Davin McCall and Michael Kölling. A new look at novice programmer errors.
ACM Transactions on Computing Education (TOCE), 19(4):38, 2019.

[17] Christopher Hundhausen, Anukrati Agrawal, Dana Fairbrother, and Michael
Trevisan. Integrating pedagogical code reviews into a cs 1 course: an empirical
study. In ACM SIGCSE Bulletin, volume 41, pages 291–295. ACM, 2009.

[18] Susan Bergin, Ronan Reilly, and Desmond Traynor. Examining the role of self-
regulated learning on introductory programming performance. In Proceedings of
the first international workshop on Computing education research, pages 81–86,
2005.

[19] Qiang Hao, Robert Maribe Branch, and Lucas Jensen. The effect of precommit-
ment on student achievement within a technology-rich project-based learning
environment. TechTrends, 60(5):442–448, 2016.

[20] Joshua Martin, Stephen H Edwards, and Clfford A Shaffer. The effects of pro-
crastination interventions on programming project success. In Proceedings of the
eleventh annual International Conference on International Computing Education

Research, pages 3–11, 2015.
[21] Philip H Winne. Self-regulated learning viewed from models of information pro-

cessing. Self-regulated learning and academic achievement: Theoretical perspectives,
2:153–189, 2001.

[22] Barry J Zimmerman. Attaining self-regulation: A social cognitive perspective. In
Handbook of self-regulation, pages 13–39. Elsevier, 2000.

[23] Dale H Schunk. Goal setting and self-efficacy during self-regulated learning.
Educational psychologist, 25(1):71–86, 1990.

[24] Anastasia Efklides. Interactions of metacognition with motivation and affect in
self-regulated learning: The masrl model. Educational psychologist, 46(1):6–25,
2011.

[25] Qiang Hao, Brad Barnes, Robert Maribe Branch, and Ewan Wright. Predicting
computer science students’ online help-seeking tendencies. Knowledge Manage-
ment & E-Learning: An International Journal, 9(1):19–32, 2017.

[26] David H Smith IV, Qiang Hao, Vanessa Dennen, Michail Tsikerdekis, Bradly
Barnes, Lilu Martin, and Nathan Tresham. Towards understanding online ques-
tion answer interactions and their effects on student performance in large-scale
stem classes. International Journal of Educational Technology in Higher Education,
18, 2020.

[27] Anneli Eteläpelto. Metacognition and the expertise of computer program com-
prehension. Scandinavian Journal of Educational Research, 37(3):243–254, 1993.

[28] Daniela Pedrosa, José Cravino, Leonel Morgado, and Carlos Barreira. Self-
regulated learning in higher education: strategies adopted by computer program-
ming students when supported by the simprogramming approach. Production,
27(SPE), 2017.

[29] Katrina Falkner, Claudia Szabo, Rebecca Vivian, and Nickolas Falkner. Evolution
of software development strategies. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, volume 2, pages 243–252. IEEE, 2015.

[30] James Prather, Raymond Pettit, Brett A Becker, Paul Denny, Dastyni Loksa,
Alani Peters, Zachary Albrecht, and Krista Masci. First things first: providing
metacognitive scaffolding for interpreting problem prompts. In Proceedings of the
50th ACM Technical Symposium on Computer Science Education, pages 531–537,
2019.

[31] Dastyni Loksa, Benjamin Xie, Harrison Kwik, and Amy J Ko. Investigating
novices’ in situ reflections on their programming process. In Proceedings of the
51st ACM Technical Symposium on Computer Science Education, pages 149–155,
2020.

[32] Wayne T Roberts and Philip A Higham. Selecting accurate statements from the
cognitive interview using confidence ratings. Journal of Experimental Psychology:
Applied, 8(1):33, 2002.

[33] Elizabeth J Halcomb and Patricia M Davidson. Is verbatim transcription of
interview data always necessary? Applied nursing research, 19(1):38–42, 2006.

[34] Pamela Baxter, Susan Jack, et al. Qualitative case study methodology: Study
design and implementation for novice researchers. The qualitative report, 13(4):
544–559, 2008.

[35] Kathy Charmaz. Constructing grounded theory. Sage, 2014.
[36] Kathy Charmaz, Liska Belgrave, et al. Qualitative interviewing and grounded

theory analysis. The SAGE handbook of interview research: The complexity of the
craft, 2:347–365, 2012.

[37] Barry J Zimmerman. A social cognitive view of self-regulated academic learning.
Journal of educational psychology, 81(3):329, 1989.

[38] Carola Grunschel, Malte Schwinger, Ricarda Steinmayr, and Stefan Fries. Effects
of using motivational regulation strategies on students’ academic procrastination,
academic performance, and well-being. Learning and Individual Differences, 49:
162–170, 2016.

[39] David J Nicol and Debra Macfarlane-Dick. Formative assessment and self-
regulated learning: A model and seven principles of good feedback practice.
Studies in higher education, 31(2):199–218, 2006.

[40] Qiang Hao, Ewan Wright, Brad Barnes, and Robert Maribe Branch. What are
the most important predictors of computer science students’ online help-seeking
behaviors? Computers in Human Behavior, 62:467–474, 2016.

[41] Qiang Hao, David H Smith IV, Naitra Iriumi, Michail Tsikerdekis, and Andrew J
Ko. A systematic investigation of replications in computing education research.
ACM Transactions on Computing Education (TOCE), 19(4):1–18, 2019.

Paper Session: CS Instruction SIGCSE ’21, March 13–20, 2021, Virtual Event, USA

473

	Abstract
	1 Introduction
	2 Background
	3 Research Design
	3.1 Experiment Design
	3.2 Data collection and analysis

	4 Results
	4.1 Coding framework
	4.2 Quantitative analysis results
	4.3 Qualitative analysis results

	5 Discussion
	6 Conclusion
	References

