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Automatic Road Crack Detection Using Random
Structured Forests

Yong Shi, Limeng Cui, Zhiquan Qi, Fan Meng and Zhensong Chen

Abstract—The growing threat of crack to road condition
has drawn much attention to the construction of intelligent
transportation system. However, as the key part of intelligent
transportation system, automatic road crack detection has suf-
fered great challenge because of the intensity inhomogeneity
along the cracks, the topology complexity of crack, the infer-
ence of noises with similar texture to the cracks and so on.
In this paper, we propose CrackForest, a novel road crack
detection framework based on random structured forests to
address these issues. Our contributions are shown as follows: (1)
apply the integral channel features to re-define the tokens that
constitute a crack and get better representation of the cracks
with intensity inhomogeneity; (2) introduce random structured
forests to generate a high-performance crack detector which can
identify arbitrarily complex cracks; (3) propose a new crack
descriptor to characterize cracks and discriminate them from
noises effectively. In addition, our method is faster and easier to
parallel. Experimental results prove the state-of-the-art detection
precision of CrackForest compared with competing methods.

Index Terms—Road crack detection, structured learning, ma-
chine learning, random structured forests, crack descriptor, crack
characterization.

I. INTRODUCTION

CRACK is a form of road distresses that may potentially
reduce the road performance and threaten the road safety

[1]. Governments have made a great effort to achieve the goal
of constructing a high quality road network. They are now,
more than ever, fully aware of the need for adequate road
inspection and maintenance. Crack detection is an essential
part of road maintenance systems and has attracted growing
attentions in recent years. As it is known, traditional manual
road crack detection approaches are very time-consuming,
dangerous, labor-intensive and subjective [2], [3], [4], [5].
Thus, the slow and subjective traditional procedures have been
replaced gradually by automatic crack detection, which is
developed for fast and reliable crack analysis in intelligent
transportation systems [6]. Automated crack detection systems
can quantify the quality of road surfaces and assist in priori-
tizing and planning the maintenance of the road network and
thereby accomplish the objective of preserving the roads in
good condition and extending the service life.
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(a) Original image (b) Edge detection

(c) Binarization (d) Crack detection

Fig. 1. Consider the pavement surface shown in image (a). (b) shows the
preliminary detection results after applying random structured forests. Darker
color indicates that the pixel is more likely to contain a crack. After eroding
and dilating, the result is shown in (c). (d) shows the final result after the
classification stage.

With the development of image processing techniques, road
crack detection and recognition have been widely discussed in
the past few decades [7], [8], [9], [10], [11]. In early methods
[12], [13], researchers usually use threshold-based approaches
to find crack regions based on the assumption that real
crack pixel is consistently darker than its surroundings. These
methods are very sensitive to noises, since only brightness
feature is taken into consideration. Moreover, these approaches
are performed on individual pixels. Lack of global view also
makes these methods unsatisfying.

In terms of the current methods [8], [14], [9], [15], [5], [11],
most researchers try to suppress the inference of noises by
incorporating features such as gray-level value [11], the mean
and the standard deviation value [5], [16], [6]. In addition, to
improve the continuity of the existing methods, researchers
attempt to conduct crack detection from a global view by
introducing methods such as Minimal Path Selection (MPS)
[17], [18], [19], Minimum Spanning Tree (MST) [20], [21],
Crack Fundamental Element (CFE) [22], [23] and so on. These
methods can partly eliminate noises and enhance the continuity
of detected cracks.

However, these methods do not perform well while dealing
with cracks with intensity inhomogeneity or complex topology.
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(a) Most representative token (b) Mean contour structure

Fig. 2. Examples of tokens learned from manually labelled image database.
(a) shows the most representative token for each token set. (b) shows the
mean contour structure for each token set.

A possible explanation is that the used features only roughly
capture the grey-level information but some unique charac-
teristics of crack may not be presented and utilized properly.
Besides, local structured information is ignored by existing
methods. In fact, cracks in a local image patch are highly
interdependent, which often contain well-known patterns, such
as longitudinal, transverse, diagonal and so on. Therefore,
structured learning is proposed to solve similar problems in
recent years. For example, in [24], researchers apply structured
learning to semantic image labeling where image labels are
also interdependent.

In order to overcome these two shortages mentioned above,
we propose a novel road crack detection method (called
CrackForest) based on random structured forests, which is
superior to other state-of-the-art detecting techniques like
CrackTree [20], CrackIT [6], FFA [25] and MPS [17], [19].
CrackForest incorporates complementary features from mul-
tiple levels to characterize cracks and to take advantage
of the structured information in crack patches. In specific,
we first extend the traditional road crack detection feature
set by introducing the integral channel features [26] to re-
define crack tokens with structured information. After that, we
apply random structured forests [27] to exploit such structured
information. Random structured forests predict a patch crack
of structured tokens that are aggregated across the image
to compute our preliminary crack detection result. In this
step, the structured tokens assigned to each image patch
can be obtained simultaneously. Then, the structured tokens
are used to construct the crack descriptor which consists of
two statistical histograms to characterize cracks with arbitrary
topology. With the crack descriptor, a classification method is
applied to discriminate the cracks from noises. In addition,
we also propose a quantitative evaluation method for road
crack detection task. Extensive experiments demonstrate the
efficiency of CrackForest on real road crack dataset and our
method shows state-of-the-art precision.

II. RELATED WORK

In this section, we first give a brief review of crack de-
tection, after that, the related crack characterization methods

are discussed. Crack characterization exploits the spatial dis-
tribution of image tokens composing the detected cracks and
thereby transforms the structured tokens into discrete labels.

A. Crack Detection

Numerous papers have been written on road crack detection
over the past 30 years. Early works [28], [29], [1], [30]
are mainly based on intensity-thresholding for its simplicity
and efficiency. Most recent work explores crack detection
under more challenging conditions and can be divided into
five branches: methods based on saliency detection, textured-
analysis, wavelet transform, minimal path and machine learn-
ing. An assessment of various pavement distress detection
methods can be found in [31] and [32].

Salient Detection: Salient regions are visually more con-
spicuous due to their contrast with the surroundings. Although
existing methods [33], [34] demonstrate their effectiveness in
detecting salient regions in the Berkeley database [35], they
perform poor on the completeness and continuity of detected
crack.

Textured-analysis: Since road surface images are often
highly textured, textured-analysis methods [36], [8], [37] are
introduced in road crack detection. In order to distinguish the
cracks and the backgrounds, [36], [8] use the Wigner model,
and [37] uses classification method. These methods use a
local binary pattern operator to determine whether each pixel
belongs to a crack and the local neighbor information is not
taken into consideration. Therefore, the cracks with intensity
inhomogeneity can not be detected precisely.

Wavlet Transform: Wavelet transform is applied to sep-
arate distresses from noises [38]. In [4], complex coefficient
maps are built by a 2D continuous wavelet transform, wavelet
coefficients maximal values are obtained for crack detection.
As a result, differences between crack regions and crack free
regions could be raised up. However, due to the anisotropic
characteristic of wavelets, these approaches may not handle
the cracks with low continuity or high curvature properly.

Minimal Path Selection: Give both endpoints of the curve
as user’s input, minimal path based method can extract simple
open curves in images, that is first proposed by Kass et
al. [39]. In [40], Kaul et al. propose a method that is able
to detect the same types of contour-like image structures
with less prior knowledge about both the topology and the
endpoints of the desired curves. To avoid false detections that
are assimilating loops, Amhaz et al. [17], [19] propose an
improved algorithm to select endpoints at the local scale and
then to select minimal paths at the global scale. It can also
detect the width of the crack. In [25], Nguyen et al. propose
a method which takes into account intensity and crack form
features for crack detection simultaneously by introducing
Free-Form Anisotropy.

Machine Learning: With the increasing size of image
data, machine learning based methods [41], [3], [42], [15],
[5], [43] have become an important branch in detecting road
cracks. In [3], artificial neural network models are used to
separate crack pixels from the background by selecting proper
thresholds. [41] deals with the detection of poorly contrasted
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cracks in textured areas using a Markov random field model.
In [43], Cord et al. use AdaBoost to distinguish images of
road surfaces with defects from road surfaces based on textual
information with patterns. For all these methods, the training
and classification are conducted on each sub-image and as
local method, they have drawbacks in finding complete crack
curves over the whole image.

B. Crack Characterization

Existing methods on crack characterization are mainly based
on shape descriptor, crack seeds and assigning crack type on
each image block.

[14] gives the definition of cracks based on mathematical
morphology and proposes that a crack is thought to be a
succession of saddle points with linear features. But this
definition is pretty vague. [2], [44] use the direction indices
of each pixels and extensible directions for each direction to
characterize cracks. A chromosome representation is applied to
encode the different ensemble of directions and its extensible
directions. Therefore, a crack can be represented as a long
sequence of 0 and 1.

[42], [31] categorize the cracks into five types: longitudinal,
transverse, diagonal, block, and alligator. [42] uses a neural
network based method to search patterns of various crack
types horizontally and vertically. [31] uses curves and buffers
to describe certain regions of a crack. [9] uses longitudinal,
transverse, or diagonal crack seeds to identify longitudinal
and transverse cracks. Orientation and strength information
are taken into consideration by [20], which largely improves
the diversity of crack seeds.

In [6], cracks are classified into three types as defined by
the Portuguese Distress Catalog. They use two block feature
including the mean and the standard deviation values of
pixel-normalized intensities to categorize an image block as
longitudinal, transversal or miscellaneous. [5] computes CTA
(Conditional Texture Anisotropy) values over the distribution
of the mean and the standard deviation values calculated on
pixels to distinguish crack pixels from defect free pixels.

However, there are two main drawbacks in these methods.
On the one hand, new types of crack cannot be generated. By
applying the structured tokens, we extend the crack types into
thousands of dimensions. On the other hand, these methods
perform poor on the cracks with complex topology. To address
this issue, we propose a novel crack descriptor to describe the
cracks with arbitrary complex topology.

III. AUTOMATIC ROAD CRACK DETECTION

In this section, we will introduce our novel crack detection
method which can take advantage of the structured information
of cracks. Fig. 3 shows the overall procedure of our proposed
method. This framework can be divided into three parts: In
the first part, we extend the feature set of traditional crack
detection method by introducing the integral channel features.
These features extracted from multiple levels and orientations
allow us to re-define representative crack tokens with richer
structured information. In the second part, random structured
forests are introduced to exploit such structured information,

Fig. 3. Procedure of the proposed automatic road crack detection method

and thereby a preliminary result of crack detection can be
obtained. In the third part, we propose a new crack descriptor
by using the statistical character of tokens. This descriptor
can characterize the cracks with arbitrary topology. And a
classification algorithm (KNN, SVM or One-Class SVM) is
applied to discriminate cracks from noises effectively.

A. Structured Tokens

Token (segmentation mask) indicates the crack regions of
an image patch. Current block-based methods [38], [6] are
usually used to extract small patches and calculate mean and
standard deviation value on these patches to represent an image
token. These traditional features are computed on gray level
images and applied to describe the brightness and gradient
information. However, local structured information is not taken
into consideration. So in the first step, we re-define the tokens
by introducing the integral channel features which incorporate
the color, gradient information from multiple levels and facets.

1) Learning the Tokens: Assume that we have a set of
images I with a corresponding set of binary images G rep-
resenting the manually labeled crack edge from the sketches.
We use a 16 × 16 sliding window to extract image patches
x ∈ X from the original image. Image patch x which
contains a labeled crack edge at its center pixel, will be
regarded as positive instance and vice versa. y ∈ Y encodes
the corresponding local image annotation (crack region or
crack free region), which also indicates the local structured
information of the original image. These tokens cover the
diversity of various cracks, which are not limited to straight
lines, corners, curves, etc.

From Fig. 4, we can see the extracted image patches and
their hand drawn contour tokens. These image patches and
tokens will be used to train CrackForest later.

2) Feature Extraction: To describe the above tokens, fea-
tures are computed on the image patches x extracted from the
training images I , and considered to be weak classifiers in the
next step.

We use mean and standard deviation value as features.
Two matrices are computed for each original image: the
mean matrix Mm with each block’s average intensity and the
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Fig. 4. (Top) Example of original image and its ground truth. (Bottom)
Example of extracted image patches and their hand drawn contours. Notice
the variety of sketches.

standard deviation matrix STDm with corresponding standard
deviation value std. Each image patch yields a mean value and
a 16× 16 standard deviation matrix.

To characterize the cracks more comprehensively, we also
apply a set of channel features composed with color, gradient
and oriented gradient information. Integral channel features
not only perform better than other features including histogram
of oriented gradient (HOG), but also achieve fast detecting
results and integrate heterogeneous sources of information
[26].

3 color, 2 magnitude and 8 orientation channels, for a total
of 13 channels yield 3328 candidate features. Each of the chan-
nel captures a different aspect of information. Self-similarity
features are compute for each channel. These features capture
the portion that an image patch contains similar textures based
on color or gradient informations [45]. Texture information is
computed on a m×m grid over the patch. These differences
yield

(
5·5
2

)
= 300 more features per channel.

B. Structured Learning

In previous step, a set of tokens y which indicate the
structured information of local patches, and features which
describe such tokens, are acquired. In this step, we cluster
these tokens by using a state-of-the-art structured learning
framework, random structured forests, to generate an effective
crack detector. Random structured forests can exploit the
structured information and predict the segmentation mask
(token) of a given image patch. Thereby we can obtain the
preliminary result of crack detection.

In random structured forests, each decision tree ft(x) clas-
sifies an image patch x ∈ X by recursively branching left
or right down to the tree until a leaf is reached. And the
class of the node is assigned to patch x. The leaf stores the
prediction of the input x, which is a target label y ∈ Y or a
distribution over Y . By training such a tree, tokens with the
same structure will be gathered at one leaf. We use the most
representative token in each leaf to represent the token class.
The class number of tokens equals to the number of leaves.

Fig. 5. The routing path of an image patch.

A forest T can be seen as an ensemble of decision trees
ft. Each tree ft(x) gives a prediction of a sample x ∈ X .
The final class prediction of multiple trees is integrated by
a majority voting algorithm. A leaf L(π) ∈ ft can assign
a class prediction for samples it is reached by, where π
stands for the most represented token in the leaf. Each node
N(h, ft

L, ft
R) ∈ ft is associated with a binary split function:

h(x, θj) ∈ {0, 1} (1)

with feature θj for each node j. If h(x, θj) = 0, sample x
should be branched to the left sub-tree ftL, otherwise the right
sub-tree ftR.

1) Class prediction: Given a tree ft ∈ T , the class
prediction of an image patch x ∈ X can be obtained by
recursively branching it forward until a leaf is reached. An
intuitive example has shown in Fig. 5. The prediction function
ψ(x|ft) : X → Y for node j is:

ψ(x|N(h, ft
L, ft

R)) =

{
ψ(x|ftL), for h(x, θj) = 0

ψ(x|ftR), for h(x, θj) = 1

ψ(x|L(π)) = π

(2)

The final class prediction of x is obtained from the predic-
tion of each tree as the one receiving the majority voting.

2) Randomized training: Each tree is trained individually.
For a given node Nj and training set Sj ⊂ X ×Y , the goal is
to find the optimal feature θj that results in a good split of the
data. In other words, the discrepancy of tokens in the same leaf
should be as small as possible. We apply information gain to
measure this discrepancy and maximize the information gain
to choose θj . The form of information gain for node j is
defined as follow:

Ij = I(Sj , Sj
L, Sj

R) (3)

where Sj = Sj
L ∪ SjR, SjL = {(x, y) ∈ Sj |h(x, θj) = 0}

stands for a set of samples that reaches the left sub-tree of the
current node and SjR = {(x, y) ∈ Sj |h(x, θj) = 1} refers to
the other set of samples that reaches the right sub-tree.

Whether a terminal node should be further split depends on
the maximum depth, the minimum size of node or the entropy
of the class distribution. If the node is no longer splitting, a
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leaf is grown where the class prediction π is set to the most
representative token in the training data. Otherwise a node
N(h, ft

L, ft
R) is grown where h is a split function regulated

by parameter θj , maximizing the information gain about the
label distribution due to the split {SjL, SjR} of the training
data S.

For multi-class classification (Y ⊂ Z), the definition of
information gain is:

Ij = H(Sj)−
∑

k∈{L,R}

|Sjk|
|Sj |

H(Sj
k) (4)

where H(Sj) = −
∑
y pylog(py) denotes the Shannon entropy

and py stands for the proportion of elements in S with label
y. Alternatively, Gini impurity H(Sj) =

∑
y py(1− py) can

also be applied in Equation(4).
Individual decision tree tends to overfit, which may nega-

tively affected accuracy. To overcome this drawback, random
structured forests combine multiple decision trees together
to assign the final label. Random structured forests have
shown promising flexibility and generalization ability, and
most importantly, this method is easy to parallel and extremely
fast.

The randomness is embodied by randomly subsampling the
data used to train each tree and each node, and randomly
subsampling the features used to split each node. In order to
maintain the diversity of trees, only a small pool of features is
used to select the optimal θj when choosing the split function.

3) Structured mapping: Random structured forests change
the discrete outer space of the traditional decision forests
into a structured space Y . While dealing with structured label
y ∈ Y directly may cause significant computing expense, the
structured labels y ∈ Y at a leaf is mapped into a set of
discrete labels c ∈ C, where C = {1, . . . , k}. Given the discrete
label space C, information gain can be calculated efficiently via
Equation(4). We first map the label space Y into a intermediate
space Z:

Π : Y → Z (5)

Define z = Π(y) in space Z as a
(
16·16

2

)
= 32640 dimensional

vector, which encodes every pair of pixels in the segmentation
mask y. The computational cost of z appears to be significant.

While the dimension of z is still very high, we randomly
select 256 dimension of z to train each split function, using a
distinct reduced mapping function at each node j:

Πφ : Y → Z (6)

Then we apply PCA reduction to map 256 dimensions of z
into 5 dimensions, with the first dimension being the most
significant factor. To obtain the discrete label c ∈ C of
each structured label y, we use the first dimension of each
intermediate label z to cluster into two sets. Labels in the
same cluster are assigned to the same label c. With the label
c, standard information gain can be calculated at each node.

After the random structured forests are trained, the struc-
tured labels y are gathered at the leaves of each tree. An image
patch is routed though each tree based on the split function
until a leaf is reached. The most representative token in the

Fig. 6. Assigning y to each image patch. The image patches have been
assigned to the tokens below respectively (both from left to right).

(a) Binarization based on threshold (b) Erosion and Dilation

Fig. 7. (a) shows the binarization result based on threshold when α = 0.1
(removing pixels of low probability according to the given probability map).
(b) shows the result after erosion and dilation with a 4-by-4 rectangular
structuring element.

leaf is assigned to the image patch. Fig. 6 shows an intuitive
example. We select the token which has the lowest variance
with others as the most representative token.

4) Binarization: After the structured mapping, each image
patch x is assigned to a structured label y. Due to the over-
lapping, the result of detection is a map, where each element
indicates the probability that the corresponding position in the
original image is on crack region. So we use a threshold α to
obtain all the possible regions. A high α value may cause the
incontinuity of cracks and the ignorance of inapparent cracks.
Therefore, we choose 0.1 6 α 6 0.2 in this paper. Fig. 7(a)
shows the binarization result when α = 0.1.

We conduct the erosion and the dilation operation on the
preliminary edge detection results to make the cracks as
connective as possible. The inside of the crack is filled and
the fragments are connected. Moreover, some of the noises are
eliminated. From Fig. 7(b), we can see that small fragments of
the detected region have merged together and the continuity
of the crack has been improved.

C. Crack Type Characterization and Detection

Each image patch is assigned to a structured label y (seg-
mentation mask) after structured learning. Although we obtain
a preliminary result of crack detection so far, a lot of noises
are generated due to the textured background at the same
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(a) The original image (b) The detected region
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(c) The statistical histogram of the
detected region

(d) The 10 most frequent tokens of
of the detected region

Fig. 8. (a) shows the original image. (b) shows one of the detected regions.
(c) shows the statistical feature histogram of the detected region. (d) shows
what the 10 most frequent tokens look like.

time. Traditional thresholding methods mark small regions as
noises according to their sizes. However, in this way, many
inconspicuous cracks may be removed by mistake.

Cracks have a series of unique structural properties that
differ from noises. Based on this thought, we propose a novel
crack descriptor by using the statistical feature of structured
tokens in this section. This descriptor consists of two statis-
tical histograms, which can characterize cracks with arbitrary
topology. By applying classification method like SVM, we can
discriminate noises from cracks effectively.

1) Crack Descriptor: Existing crack characterization meth-
ods categorize cracks into several types, such as longitudinal,
transverse, diagonal, block, and alligator. However, the de-
scriptor proposed, which consists of hundreds of dimensions
respectively, has greatly broadened the range of representable
crack. What is more, the crack is no longer limited to a few
types, we extend the types of crack into thousands of kinds.

We use 26443 structured tokens obtained in the structured
learning procedure to characterize the cracks. The statistical
histogram and the neighborhood histogram of these tokens
within a crack can be calculated precisely.

Statistical Feature Histogram: After the structured learn-
ing procedure, we can obtain the token map. Each point in the
map indicates the label of token that the 16× 16 image patch
around the corresponding position is assigned to. Statistical
feature histogram in Fig. 8 reflects the composition of the
crack comprehensively. Each dimension of this histogram
represents the number of a certain token.

The token number from the training result is numerous.
After plotting the overall occurrence of each token in Fig. 9(a),
we notice a long tail effect of the token distribution. After
analyzing the statistical information of appeared tokens, we
find that over 90% occurrences of all the tokens are centered
on 708 specific tokens. The occurrences of most tokens make
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(a) The occurrence of all the tokens in
descending order
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(b) The occurrence of the 708 most
frequent tokens in descending order

Fig. 9. The statistical feature histogram shows the occurrence (in logs) of
each token (sorting in descending order of occurrence). (a) shows the statistical
feature of all 26443 tokens. (b) only shows the most representative tokens.

up only a small percentage of all. Therefore, we only use
these 708 tokens to construct the statistical feature histogram
and the statistical neighborhood histogram. Fig. 9(b) shows
the occurrence of these tokens.

Statistical Neighborhood Histogram: The statistical
neighborhood histogram captures the neighborhood informa-
tion of two tokens. We calculate the co-occurrence of each
pair of tokens only when they are adjacent. There would be(
708
2

)
= 250278 token pairs without reduction. Furthermore,

we also find the long tail effect of this distribution. Over 90%
occurrences of all the token pairs are centered on 956 specific
token pairs. Thus, only these token pairs will be used in the
following section.

2) Crack Detection: With the two histograms for each
separated region, we can characterized cracks with arbitrary
topology. In this section, we will introduce how to discriminate
the noises from cracks by using the two histograms.

Vectorization: The distribution of occurrence and co-
occurrence are scaled to [0, 1]. Hence, each detected region is
presented as a long vector with 708+956 = 1664 dimensions.

Classification: We consider the crack detection procedure
as a classification problem. The crack regions are assigned
to class +1 and the crack free regions are assigned to class
−1. By applying KNN(k-Nearest Neighbor), SVM (Support
Vector Machine) with linear kernel and One-Class SVM with
linear kernel, we obtain the classification model which can
discriminate cracks from noises effectively. The results of our
algorithm using SVM are shown in Fig. 10.

IV. EXPERIMENTS

In this section, we analyze the performance of our proposed
method. Part of the Matlab code is supported on Piotr’s
Computer Vision Toolbox [46] and Structured Edge Detection
Toolbox [27]. All the experiments are conducted on a desktop
with AMD FX(tm)-4300 Quad-Core Processor and 4G RAM.

In order to evaluate our method, we compare it with the
traditional method (Canny [47]), and the state-of-the-art road
detection methods (CrackTree [20], CrackIT [48], FFA [25]
and MPS [17], [19]).

We show results on two datasets measuring accuracy perfor-
mance. We demonstrate the cross dataset generalization of our
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approach by testing on each dataset using CrackForest learned
on the other.

Unlike other edge detection tasks, the evaluation of crack
detection performance is difficult. Thereby we define two
kinds of evaluation indicators for crack detection.

Crack Detection Accuracy: We use precision, recall and F1
Score to evaluate the performance of different crack detection
algorithms.

The precision and recall can be computed on true positive
(TP ), false negative (FN ) and false positive (FP ).

Prpixel =
TP

TP + FP
(7)

Repixel =
TP

TP + FN
(8)

F1pixel =
2× Prpixel ×Repixel
Prpixel +Repixel

(9)

Assume that the detected pixels which are no more than five
pixels away from the manually labeled pixel are true positive
pixels.

The precision, recall and F1 Score on detect region can be
similarly computed by Equation(7) and Equation(8).

Prregion =
TPr

TPr + FPr
(10)

Reregion =
TPr

TPr + FNr
(11)

F1region =
2× Prregion ×Reregion
Prregion +Reregion

(12)

Crack Continuity Assessment: We define the “Continuity
Index (CI)” as a degree of continuity. It measures how much
the detected regions are connected if they belong to the same
crack. Denote M as the number of images in the testing set.
Ni as the number of ground truth cracks in the ith image and
nij as the number of true positive regions that cover the jth
ground truth crack in the ith image.

CI =
1

M

M∑
i=1

(
1

Ni

Ni∑
j=1

1

nij
) (13)

The continuity is better as CI gets closer to 1.

A. CFD Results

We propose an annotated road crack dataset called CFD.
This dataset is composed of 118 images, which can generally
reflect urban road surface condition in Beijing, China. Each
image has hand labeled ground truth contours. All the images
are taken by an iPhone5 with focus of 4mm, aperture of f/2.4
and exposure time of 1/134s. The width of the images ranges

from 1 to 3 mm. From Fig. 10, we can see that these images
contain noises such as shadows, oil spots and water stains.

We use the 60%/40% training/testing split with the im-
ages reduced to 480 × 320. Example detections on CFD are
shown in Fig. 10. The first column lists the original images.
The corresponding manually labeled cracks are shown in the
second column as ground truth. The third column shows the
preliminary detection results after applying random structured
forests. Darker color indicates that the pixel is more likely to
contain a crack. After the binarization, crack pixels with less
confidence are removed. The use of crack descriptor allows us
to transform each detected region into a vector. By applying
classification method such as SVM, we can eliminate the
noise regions and keep the crack regions effectively. The final
detection results are shown in column 5. Our method is robust
to noise.

Five methods are conducted on this dataset: Canny, CrackIT,
CrackTress, FFA and CrackForest. Results are shown in Fig.
11 and summary statistics are in Table I. As it can be
observed intuitively, our method outperforms the alternatives.
Traditional edge detection method Canny is not suitable for
road crack detection due to its high sensitivity. CrackIT does
not perform well on low-resolution and low-contrast images.
As a result, it fails to detect most of the crack pixels in the
images. The accuracy of CrackTree is acceptable. But it may
hallucinate a crack that does not exist. In addition, the width
of the crack can not be observed. As for FFA, it may falsely
detect landmarks as defects.

Our method CrackForest performs better than the alterna-
tives. To be specific, CrackForest (SVM) gives both good
precision and recall.

B. AigleRN Results

AigleRN dataset [49] contains 38 images with ground truth.
We use 60% for training and the rest for testing.

We compare four methods on this dataset: CrackIT, FFA,
MPS and CrackForest. Example AigleRN results are shown
in Fig. 12 and Table II. Although CrackIT can detect most
of the cracks, a lot of noises are still remained. Besides, the
continuity of the detected cracks is not very good. As for FFA,
the precision is acceptable. But when it comes to detecting
cracks with complex topology, FFA is less competitive. MPS
performs well on detecting light cracks, but it may hallucinate
a crack that does not exist. CrackForest shows promising
results on most of the indicators. To be specific, CrackForest
(SVM) still gives both better precision and recall.

C. Cross Dataset Generalization

To study the ability of our approach to generalize across
datasets, we ran a final set of experiments. In Table III,
we show results on AigleRN using CrackForest trained on
CFD and also results on CFD using CrackForest trained on
AigleRN. Note that images in the CFD and AigleRN datasets
are qualitatively quite different, see Fig. 11 and Fig. 12,
respectively.

In Table III, top, results on AigleRN of the AigleRN and
CFD trained models are compared. The precision and recall
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Fig. 10. Part of the results of road crack detection using our proposed method. Notice that our method can eliminate the influence of oil stains, shadows and
complex background effectively, and can cope with miscellaneous crack topology.

TABLE I
CRACK DETECTION RESULTS EVALUATION ON CFD

Method Prpixel Repixel F1pixel Prregion Reregion F1region CI

Canny 12.23% 22.15% 15.76% 0.05% 0.22% 0.08% 0.004
CrackTree 73.22% 76.45% 70.80% 84.35% 85.24% 84.79% 0.22
CrackIT 67.23% 76.69% 71.64% 93.43% 91.22% 92.31% 0.32

FFA 78.56% 68.43% 73.15% 91.55% 85.58% 88.46% 0.58
CrackForest (KNN) 80.77% 78.15% 79.44% 90.88% 93.72% 92.28% 0.62
CrackForest (SVM) 82.28% 89.44% 85.71% 95.75% 95.62% 95.68% 0.67

CrackForest (One-Class SVM) 81.25% 86.45% 83.77% 96.73% 92.53% 94.58% 0.65

do not fluctuate much using two datasets for training. Results
on CFD of the CFD and AigleRN models, shown in Table III,
bottom, are likewise similar.

The experimental results show that CrackForest could serve
as a general purpose crack detector without the necessity of
retraining.
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Fig. 11. Results of different algorithms on CFD (From top to bottom: original image, ground truth, Canny, CrackIT, CrackTree, FFA and CrackForest)

V. CONCLUSION

In this paper, we propose an effective and fast automatic
road crack detection method, which can suppress noises ef-
ficiently by learning the inherent structured information of
cracks. Our detection framework builds upon representative
and discriminative integral channel features and combines
this representation with random structured forests. This also
allows us to train our framework in a completely supervised

manner from a small training set. More importantly, we can
characterize cracks and eliminate noises marked as cracks by
using two feature histograms proposed.

Our innovation is shown as follows: Firstly, to capture the
inherent structure of the road crack, we apply integral channel
features to enrich the feature set of traditional crack detection.
Secondly, the introducing of random decision forests makes
it possible to exploit such structured information and predict
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Fig. 12. Results of different algorithms on AigleRN (From top to bottom: original image, ground truth, CrackIT, FFA, MPS and CrackForest)

TABLE II
CRACK DETECTION RESULTS EVALUATION ON AIGLERN

Method Prpixel Repixel F1pixel Prregion Reregion F1region CI

CrackIT 76.85% 74.32% 76.56% 86.52% 76.47% 81.19% 0.35
FFA 73.22% 87.52% 79.73% 84.35% 85.24% 84.79% 0.67
MPS 86.66% 90.06% 88.33% 87.52% 90.23% 88.85% 0.77

CrackForest (KNN) 89.47% 82.83% 86.02% 87.45% 92.34% 89.83% 0.76
CrackForest (SVM) 90.28% 86.58% 88.39% 90.32% 86.32% 88.27% 0.87

CrackForest (One-Class SVM) 85.09% 83.67% 84.37% 89.73% 88.29% 89.00% 0.85

TABLE III
CROSS-DATASET GENERALIZATION TEST FOR CRACKFOREST. TRAIN/TEST INDICATES THE TRAINING/TESTING DATASET USED.

TRAIN/TEST Prpixel Repixel F1pixel Prregion Reregion F1region CI

AigleRN / AigleRN 90.28% 86.58% 88.39% 90.32% 86.32% 88.27% 0.87
CFD / AigleRN 87.36% 85.02% 86.17% 87.43% 85.52% 86.46% 0.79

CFD / CFD 82.28% 89.44% 85.71% 95.75% 95.62% 95.68% 0.67
AigleRN / CFD 81.27% 87.43% 84.24% 92.37% 94.33% 93.34% 0.65

local segmentation masks of the given image patch. Thirdly, a
crack descriptor, which consists of two statistical histograms,
is proposed to characterize the structured information of cracks
and discriminate cracks from noises. In addition, we also
propose an annotated road crack image dataset which can
generally reflect the urban road surface condition in China and
two indicators to evaluate the performance of crack detection
methods.

Experimental results prove the effectiveness of our method

in suppressing noises compared to several competing methods.
Our approach yields promising processing speed and state-of-
the-art accuracy.

Source code is available online: https://github.com/
cuilimeng/CrackForest. Our annotated road crack image
dataset CFD is also available online: https://github.com/
cuilimeng/CrackForest-dataset.

https://github.com/cuilimeng/CrackForest
https://github.com/cuilimeng/CrackForest
https://github.com/cuilimeng/CrackForest-dataset
https://github.com/cuilimeng/CrackForest-dataset
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VI. LIMITATIONS AND FUTURE WORK

In our experiments, CrackForest has proven to be quite
promising. However, it does have some limitations:
• Our method has only performed on static images so far.

The video streaming is not taken into consideration. In
the future, we will test our method on video datasets.

• The width of the crack is not measured in our method. We
will focus on the severity level assessment in the future
work.
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