
COMBINATORIAL INTERPRETATIONS OF
CONGRUENCES FOR THE SPT-FUNCTION

GEORGE E. ANDREWS, FRANK G. GARVAN, AND JIE LIANG

Abstract. Let spt(n) denote the total number of appearances of the smallest
parts in all the partitions of n. In 1988, the second author gave new combinatorial
interpretations of Ramanujan’s partition congruences mod 5, 7 and 11 in terms of
a crank for weighted vector partitions. In 2008, the first author found Ramanujan-
type congruences for the spt-function mod 5, 7 and 13. We give new combinatorial
interpretations of the spt-congruences mod 5 and 7. These are in terms of the same
crank but for a restricted set of vector partitions. The proof depends on relating
the spt-crank with the crank of vector partitions and the Dyson rank of ordinary
partitions. We derive a number of identities for spt-crank modulo 5 and 7. We
prove the surprising result that all the spt-crank coefficients are nonnegative.

1. Introduction

In [4], the function spt(n) was defined as the total number of appearances of the
smallest parts in the partitions of n, and the following congruences were proved

spt(5n+ 4) ≡ 0 (mod 5),(1.1)

spt(7n+ 5) ≡ 0 (mod 7),(1.2)

spt(13n+ 6) ≡ 0 (mod 13).(1.3)

For example, the partitions of 4 are

4̇, 3 + 1̇, 2̇ + 2̇, 2 + 1̇ + 1̇, 1̇ + 1̇ + 1̇ + 1̇,

so that spt(4) = 10 ≡ 0 (mod 5). In this paper, we prove new combinatorial interpre-
tations of (1.1) and (1.2). The congruences (1.1)–(1.3) are reminiscent of Ramanujan’s
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partition congruences

p(5n+ 4) ≡ 0 (mod 5),(1.4)

p(7n+ 5) ≡ 0 (mod 7),(1.5)

p(11n+ 6) ≡ 0 (mod 11).(1.6)

Dyson [10] defined the rank of a partition as the largest part minus the number of
parts. Let N(m,n) denote the number of partitions of n with rank m. Let N(m, t, n)
denote the number of partitions of n with rank congruent to m modulo t. Atkin and
Swinnerton-Dyer [8] proved Dyson’s conjectures that

N(k, 5, 5n+ 4) =
p(5n+ 4)

5
for 0 ≤ k ≤ 4,(1.7)

N(k, 7, 7n+ 5) =
p(7n+ 5)

7
for 0 ≤ k ≤ 6.(1.8)

Let P denote the set of partitions and D denote the set of partitions into distinct
parts. Following [12], the set of vector partitions V is defined by the cartesian product

V = D × P × P.

For π⃗ = (π1, π2, π3) ∈ V , we define the weight ω(π⃗) = (−1)#(π1), the crank(π⃗) =
#(π2) −#(π3), and |π⃗| = |π1| + |π2| + |π3|, where |πj| is the sum of the parts of πj.
The number of vector partitions of n with crank m counted according to the weight
ω is denoted by NV (m,n), so that

NV (m,n) =
∑

π⃗∈V,|π⃗|=n

crank(π⃗)=m

ω(π⃗).

Then ∑
π⃗∈V,|π⃗|=n

ω(π⃗) =
∑
m

NV (m,n) = p(n),

the number of partitions of n. Let NV (m, t, n) denote the number of vector partitions
of n with crank congruent to m modulo t counted according to the weight ω. In [12],
it was proved that

NV (k, 5, 5n+ 4) =
p(5n+ 4)

5
for 0 ≤ k ≤ 4,(1.9)

NV (k, 7, 7n+ 5) =
p(7n+ 5)

7
for 0 ≤ k ≤ 6,(1.10)

NV (k, 11, 11n+ 6) =
p(11n+ 6)

11
for 0 ≤ k ≤ 10.(1.11)

For a partition π, define s(π) as the smallest part in the partition with s(−) = ∞
for the empty partition. We define the following subset of vector partitions,

S := {π⃗ = (π1, π2, π3) ∈ V : 1 ≤ s(π1) < ∞ and s(π1) ≤ min(s(π2), s(π3))}.
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For π⃗ ∈ S we define the weight ω1 by ω1(π⃗) = (−1)#(π1)−1. The number of vector
partitions of n in S with crank m counted according to the weight ω1 is denoted by
NS(m,n), so that

(1.12) NS(m,n) =
∑

π⃗∈S, |π⃗|=n
crank(π⃗)=m

ω1(π⃗).

It turns out that

(1.13)
∑

π⃗∈S,|π⃗|=n

ω1(π⃗) =
∑
m

NS(m,n) = spt(n).

See Corollary 2.2. The number of vector partitions of n in S with crank congruent
to m modulo t counted according to the weight ω1 is denoted by NS(m, t, n), so that

(1.14) NS(m, t, n) =
∞∑

k=−∞

NS(kt+m,n) =
∑

π⃗∈S,|π⃗|=n

crank(π⃗)≡m (mod t)

ω1(π⃗).

There is an involution ι : S −→ S given by

(1.15) ι(π1, π2, π3) = (π1, π3, π2),

that preserves the weight ω1,

ω1(ι(π⃗)) = ω1(π⃗).

Thus we have

(1.16) NS(m,n) = NS(−m,n),

so that

(1.17) NS(m, t, n) = NS(t−m, t, n).

One of our main results is the following theorem.

Theorem 1.1.

NS(k, 5, 5n+ 4) =
spt(5n+ 4)

5
for 0 ≤ k ≤ 4,(1.18)

NS(k, 7, 7n+ 5) =
spt(7n+ 5)

7
for 0 ≤ k ≤ 6.(1.19)

We illustrate Theorem 1.1 with an example. Below is a table of the 16 vector
partitions π⃗ ∈ S with |π⃗| = 4.
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weight crank
π⃗1 = (1, 1 + 1 + 1,−) +1 3
π⃗2 = (1,−, 1 + 1 + 1) +1 −3
π⃗3 = (1, 1 + 1, 1) +1 1
π⃗4 = (1, 1, 1 + 1) +1 −1
π⃗5 = (1, 1 + 2,−) +1 2
π⃗6 = (1,−, 1 + 2) +1 −2
π⃗7 = (1, 2, 1) +1 0
π⃗8 = (1, 1, 2) +1 0
π⃗9 = (1, 3,−) +1 1
π⃗10 = (1,−, 3) +1 −1
π⃗11 = (1 + 2, 1,−) −1 1
π⃗12 = (1 + 2,−, 1) −1 −1
π⃗13 = (1 + 3,−,−) −1 0
π⃗14 = (2, 2,−) +1 1
π⃗15 = (2,−, 2) +1 −1
π⃗16 = (4,−,−) +1 0

From the table, we have

NS(0, 5, 4) = ω1(π⃗7) + ω1(π⃗8) + ω1(π⃗13) + ω1(π⃗16)

= 1 + 1− 1 + 1 = 2.

Similarly,

NS(0, 5, 4) = NS(1, 5, 4) = NS(2, 5, 4) = NS(3, 5, 4) = NS(4, 5, 4) = 2 =
spt(4)

5
.

In Section 2, we obtain generating function identities for the spt-crank. We express
the generating function in terms of the crank of vector partitions and the Dyson rank
of partitions using Bailey’s Lemma. In Section 3, we sketch the proof of Theorem
1.1. In Section 4, we obtain identities for the spt-crank modulo 5 and 7 using known
identities for the rank and crank mod 5 and 7. In Section 5, we prove the amazing
inequality

(1.20) NS(m,n) ≥ 0,

for all m and n. In Section 6, we close the paper with a few problems.

Notation. We will use the standard q-notation.

(z; q)n = (z)n =


n−1∏
j=0

(1− zqj), n > 0,

1, n = 0,
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and

(z; q)∞ = (z)∞ = lim
n→∞

(z; q)n =
∞∏
n=1

(1− zqn−1),

where |q| < 1.

2. Generating Function for the spt-crank

Define

(2.1) S(z, q) :=
∞∑
n=1

∑
m

NS(m,n)zmqn.

Theorem 2.1.

(2.2) S(z, q) =
∞∑
n=1

qn(qn+1; q)∞
(zqn; q)∞(z−1qn; q)∞

.

Proof. Let k ≥ 1, then

qk(qk+1; q)∞
(zqk; q)∞(z−1qk; q)∞

=

 ∑
π1∈D

s(π1)=k

(−1)#(π1)−1q|π1|


 ∑

π2∈P

k≤s(π2)

z#(π2)q|π2|


 ∑

π3∈P

k≤s(π3)

z−#(π3)q|π3|


=

∑
π⃗=(π1,π2,π3)∈S

s(π1)=k

ω1(π⃗)z
crank(π⃗)q|π⃗|.

Hence,

S(z, q) =
∞∑
n=1

∑
m

NS(m,n)zmqn

=
∑

π⃗=(π1,π2,π3)∈S

ω1(π⃗)z
crank(π⃗)q|π⃗|

=
∞∑
k=1

∑
π⃗∈S

s(π1)=k

ω1(π⃗)z
crank(π⃗)q|π⃗|

=
∞∑
k=1

qk(qk+1; q)∞
(zqk; q)∞(z−1qk; q)∞

.

�
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Corollary 2.2. For n ≥ 1,∑
π⃗∈S,|π⃗|=n

ω1(π⃗) =
∑
m

NS(m,n) = spt(n).

Proof. In (2.1) we let z = 1,

S(1, q) =
∞∑
n=1

(∑
m

NS(m,n)

)
qn

=
∞∑
n=1

qn(qn+1; q)∞
(qn; q)2∞

=
∞∑
n=1

qn

(1− qn)2(qn+1; q)∞

=
∞∑
n=1

spt(n)qn,

by [4]. The result follows. �
A pair of sequences (αn(a, q), βn(a, q)) is called a Bailey pair with parameters (a, q)

if

βn(a, q) =
n∑

r=0

αr(a, q)

(q; q)n−r(aq; q)n+r

for all n ≥ 0. We will need

Lemma 2.3 (Bailey’s Lemma). Suppose (αn(a, q), βn(a, q)) is a Bailey pair with pa-
rameters (a, q). Then (α′

n(a, q), β
′
n(a, q)) is another Bailey pair with parameters (a, q),

where

α′
n(a, q) =

(ρ1; q)n(ρ2; q)n(
aq

ρ1ρ2
)n

(aq
ρ1
; q)n(

aq
ρ2
; q)n

αn(a, q),

β′
n(a, q) =

n∑
j=0

(ρ1; q)j(ρ2; q)j(
aq

ρ1ρ2
; q)n−j(

aq
ρ1ρ2

)j

(q; q)n−j(
aq
ρ1
; q)n(

aq
ρ2
; q)n

βj(a, q).

We will apply Bailey’s Lemma using the following Bailey pairs

αn =

{
1, n = 0,

(−1)nqn(n−1)/2(1 + qn), n ≥ 1,
βn =

{
1, n = 0,

0, n ≥ 1.
(2.3)

and

αn =

{
1, n = 0,

(−1)nqn(3n−1)/2(1 + qn), n ≥ 1,
βn =

1

(q)n
.(2.4)
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For more information on these Bailey pairs, Bailey’s Lemma, and its applications see
[2, Ch.3].

Theorem 2.4.
∞∑
n=1

qn

(1− zqn)(1− z−1qn)
· (qn+1; q)∞
(zqn+1; q)∞(z−1qn+1; q)∞

=
1

(q)∞

(
∞∑

n=−∞

(−1)n−1qn(n+1)/2

(1− zqn)(1− z−1qn)
−

∞∑
n=−∞

(−1)n−1qn(3n+1)/2

(1− zqn)(1− z−1qn)

)
.(2.5)

Proof. From Bailey’s Lemma with a = 1, ρ1 = z, and ρ2 = z−1; we have

β′
n(1, q) =

n∑
r=0

α′
r(1, q)

(q; q)n−r(q; q)n+r

,

n∑
j=0

(z)j(z
−1)jq

jβj

(zq)n(z−1q)n
=

n∑
r=0

1

(q)n−r(q)n+r

(z)r(z
−1)rq

rαr

(zq)r(z−1q)r
.

We divide both sides by (1− z)(1− z−1) and let n → ∞ to obtain

1

(zq)∞(z−1q)∞

∞∑
n=0

(qz)n(qz
−1)nq

nβn

(1− zqn)(1− z−1qn)
=

1

(q)2∞

∞∑
n=0

qnαn

(1− zqn)(1− z−1qn)
,(2.6)

assuming certain convergence conditions.
Now we substitute Bailey pair (2.3) into (2.6),

(2.7)

1

(zq)∞(z−1q)∞(1− z)(1− z−1)
=

1

(q)2∞(1− z)(1− z−1)
+

1

(q)2∞

∞∑
n=1

(−1)nqn(n+1)/2(1 + qn)

(1− zqn)(1− z−1qn)
.

Next we substitute Bailey pair (2.4) into (2.6),

1

(zq)∞(z−1q)∞(1− z)(1− z−1)
+

1

(zq)∞(z−1q)∞

∞∑
n=1

(qz)n(qz
−1)nq

n

(1− zqn)(1− z−1qn)(q)n
(2.8)

=
1

(q)2∞(1− z)(1− z−1)
+

1

(q)2∞

∞∑
n=1

(−1)nqn(3n+1)/2(1 + qn)

(1− zqn)(1− z−1qn)
.

By (2.7) and (2.8), we have

1

(zq)∞(z−1q)∞

∞∑
n=1

(qz)n(qz
−1)nq

n

(1− zqn)(1− z−1qn)(q)n

=
1

(q)2∞

(
∞∑
n=1

(−1)n−1qn(n+1)/2(1 + qn)

(1− zqn)(1− z−1qn)
−

∞∑
n=1

(−1)n−1qn(3n+1)/2(1 + qn)

(1− zqn)(1− z−1qn)

)
.
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We multiply both sides by (q)∞, simplify, and obtain

∞∑
n=1

qn

(1− zqn)(1− z−1qn)
· (qn+1; q)∞
(zqn+1; q)∞(z−1qn+1; q)∞

=
1

(q)∞

(
∞∑

n=−∞

(−1)n−1qn(n+1)/2

(1− zqn)(1− z−1qn)
−

∞∑
n=−∞

(−1)n−1qn(3n+1)/2

(1− zqn)(1− z−1qn)

)
.

�

Let

(2.9) C1(z, q) :=
∞∑
n=0

∑
m

NV (m,n)zmqn.

Then

C1(z, q) =
(q)∞

(zq)∞(z−1q)∞
(2.10)

=
1

(q)∞

[
1 +

∞∑
n=1

(−1)nqn(n+1)/2(1 + qn)(1− z)(1− z−1)

(1− zqn)(1− z−1qn)

]

=
1

(q)∞

∞∑
n=−∞

(−1)nqn(n+1)/2(1− z)(1− z−1)

(1− zqn)(1− z−1qn)
,

by [12, eq. (7.15), p.70].
Let

(2.11) R1(z, q) :=
∞∑
n=0

∑
m

N(m,n)zmqn.

Then

R1(z; q) =
∞∑
n=0

qn
2

(zq)n(z−1q)n
(2.12)

=
1

(q)∞

[
1 +

∞∑
n=1

(−1)nqn(3n+1)/2(1 + qn)(1− z)(1− z−1)

(1− zqn)(1− z−1qn)

]

=
1

(q)∞

∞∑
n=−∞

(−1)nqn(3n+1)/2(1− z)(1− z−1)

(1− zqn)(1− z−1qn)
,

by [3, eq. (1.8)].
The following Corollary of Theorem 2.5 now follows using (2.9)–(2.12).
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Corollary 2.5.

S(z, q) =
1

(q)∞

(
∞∑

n=−∞

(−1)n−1qn(n+1)/2

(1− zqn)(1− z−1qn)
−

∞∑
n=−∞

(−1)n−1qn(3n+1)/2

(1− zqn)(1− z−1qn)

)

=
−1

(1− z)(1− z−1)

[
∞∑
n=0

∑
m

NV (m,n)zmqn −
∞∑
n=0

∑
m

N(m,n)zmqn

]
.

3. Proof of Theorem 1.1

For t ≥ 5 prime, let δt be the reciprocal of 24 modulo t. By using an argument
analogous to Lemma (2.2) in [12], we find that Theorem 1.1 is equivalent to showing
that the coefficient of qtn+δt in

(3.1) S(ζt, q) =
∞∑
n=1

∑
m

NS(m,n)ζmt qn =
∞∑
n=1

(
t−1∑
r=0

NS(r, t, n)ζ
m
t

)
qn

is zero, where t = 5, 7 and ζt = exp(2πi/t).
By Corollary 2.5,

S(ζt, q) =
−1

(1− ζt)(1− ζ−1
t )

[
∞∑
n=1

∑
m

NV (m,n)ζmt qn −
∞∑
n=1

∑
m

N(m,n)ζmt qn

]

=
−1

(1− ζt)(1− ζ−1
t )

[
∞∑
n=1

(
t−1∑
r=0

NV (r, t, n)ζ
r
t

)
qn −

∞∑
n=1

(
t−1∑
r=0

N(r, t, n)ζrt

)
qn

]
,

and the result follows from (1.7)–(1.10).

4. Identities for The spt-crank Modulo 5 and 7

For 0 ≤ b, c, d ≤ t− 1, we define

Sb(d, t, q) :=
∞∑
n=1

NS(b, t, tn+ d)qn,(4.1)

Sb,c(d, t, q) := Sb(d, t, q)− Sc(d, t, q).(4.2)

Using known results for the rank and crank mod 5 and 7, we derive identities for
the spt-crank differences Sb,c(d, t, q) for t = 5, 7. These identities are in terms of the
following functions:

ϕa,t(q) :=
qa

(qt; qt)∞

∞∑
n=−∞

(−1)nq
3
2
tn(n+1)

1− qtn+a
= −1 +

∞∑
n=0

qtn
2

(qa; qt)n+1(qt−a; qt)n
,(4.3)

Pa,t(q) = (qa; qt)∞(qt−a; qt)∞ (for 1 ≤ a ≤ t− 1),(4.4)

P0,t(q) = (qt; qt)∞.(4.5)
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We note that the second part of (4.3) is a special case of the following identity

−1 +
∞∑
n=0

qn
2

(z)n+1(z−1q)n
=

z

(q)∞

∞∑
n=−∞

(−1)nq
3
2
n(n+1)

1− zqn
.

See [13, eq. (4.25)].

4.1. The spt-crank Modulo 5. In this subsection, ζ = ζ5 = exp(2πi/5). We need
two identities from Ramanujan’s Lost Notebook

C1(ζ, q) = A(q5)− q(ζ + ζ−1)2B(q5) + q2(ζ2 + ζ−2)C(q5)− q3(ζ + ζ−1)D(q5),(4.6)

R1(ζ, q) =

{
A(q5) + (ζ + ζ−1 − 2)ϕ1,5(q

5)

}
+ qB(q5) + q2(ζ + ζ−1)C(q5)(4.7)

− q3(ζ + ζ−1)

{
D(q5)− (ζ2 + ζ−2 − 2)

ϕ2,5(q
5)

q5

}
,

where

A(q) =
P0,5(q)P2,5(q)

P1,5(q)2
,(4.8)

B(q) =
P0,5(q)

P1,5(q)
,(4.9)

C(q) =
P0,5(q)

P2,5(q)
,(4.10)

D(q) =
P0,5(q)P1,5(q)

P2,5(q)2
.(4.11)

For a proof of (4.6) see [12, §3]. Also in [12, §8] it was shown how (4.7) is equivalent
to a result of Atkin and Swinnerton-Dyer [8].

From (4.6)–(4.7) and some calculation, we have the following

Theorem 4.1.

S(ζ, q) =
−1

(1− ζ)(1− ζ−1)

(
C1(ζ, q)−R1(ζ, q)

)
(4.12)

= −ϕ1,5(q
5) + qB(q5)− (ζ2 + ζ−2)q2C(q5) + (ζ2 + ζ−2)

ϕ2,5(q
5)

q2
.

We may easily recast this theorem in terms of spt-crank differences.

Corollary 4.2.

S0,1(0, 5, q) = −ϕ1,5(q),(4.13)

S0,1(1, 5, q) = B(q),(4.14)

S1,2(2, 5, q) = C(q),(4.15)
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S1,2(3, 5, q) = −ϕ2,5(q)

q
;(4.16)

otherwise, Sb,b+1(d, 5, q) = 0 for 0 ≤ b ≤ 1 and 0 ≤ d ≤ 4.

Proof.

S(ζ, q) =
∞∑
n=1

∑
m

NS(m,n)ζmqn

=
4∑

d=0

(
4∑

r=0

(
∞∑
n=0

NS(r, 5, 5n+ d)q5n+d

)
ζr

)

=
4∑

d=0

(
4∑

r=0

Sr(d, 5, q
5)ζr

)
qd

=
4∑

d=0

[
S0,1(d, 5, q

5) + (ζ2 + ζ−2)S2,1(d, 5, q
5)

]
qd,

using (1.17) and the fact that 1 + ζ + ζ2 + ζ3 + ζ4 = 0. The results follow from the
theorem. �

4.2. The spt-crank Modulo 7. In this subsection, ζ = ζ7 = exp(2πi/7). We need
the analogs of (4.6) and (4.7)

C1(ζ, q) = A7(q
7) + q(ζ + ζ−1 − 1)B7(q

7) + q2(ζ2 + ζ−2)C7(q
7) + q3(ζ3 + ζ−3 + 1)D7(q

7)

(4.17)

− q4(ζ + ζ−1)E7(q
7)− q6(ζ2 + ζ−2 + 1)F7(q

7);

R1(ζ, q)
(4.18)

=

{
(ζ + ζ−1 − 1)A7(q

7) + (2− ζ − ζ−1)(1 + ϕ1,7(q
7))

}
+ qB7(q

7)

+ q2
{
(ζ + ζ−1)C7(q

7) + (ζ + ζ−1 − ζ2 − ζ−2)
ϕ1,7(q

7)

q7

}
+ q3(1 + ζ2 + ζ−2)D7(q

7)

− q4(ζ2 + ζ−2)E7(q
7)− q6

{
(1 + ζ3 + ζ−3)F7(q

7) + (ζ3 + ζ−3 − ζ2 − ζ−2)
ϕ2,7(q

7)

q7

}
,

where

A7(q) =
P0,7(q)P3,7(q)

P1,7(q)P2,7(q)
,(4.19)

B7(q) =
P0,7(q)

P1,7(q)
,(4.20)
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C7(q) =
P0,7(q)P2,7(q)

P1,7(q)P3,7(q)
,(4.21)

D7(q) =
P0,7(q)

P2,7(q)
,(4.22)

E7(q) =
P0,7(q)

P3,7(q)
,(4.23)

F7(q) =
P0,7(q)P1,7(q)

P2,7(q)P3,7(q)
.(4.24)

Neither (4.17) nor (4.18) appear in the Lost Notebook. However, according to Berndt,
Chan, Chan and Liaw [9], there are clues that Ramanujan had been working on these
identities. On page 19 of the Lost Notebook, one sees the definition of C1(ζ7, q) and
R1(ζ7, q). On page 71 we find the infinite products A7(q), B7(q), . . . , F7(q) which
appear in both (4.17) and (4.18). Equation (4.17) is a restatement of equation (5.2)
in [12, p.62]. Equation (4.18) follows from Theorem 5 in [8, p.103].

From (4.17)–(4.18) and some calculation, we have the following

Theorem 4.3.

S(ζ, q) =
−1

(1− ζ)(1− ζ−1)

(
C1(ζ, q)−R1(ζ, q)

)
(4.25)

=

{
1− A7(q

7) + ϕ1,7(q
7)

}
+ qB7(q

7)

+ q2(1 + ζ + ζ−1)

{
C7(q

7) +
ϕ3,7(q

7)

q7

}
− q3(ζ3 + ζ−3)D7(q

7)

+ q4(1 + ζ + ζ−1)E7(q
7)− q6(ζ3 + ζ−3)

{
F7(q

7) +
ϕ2,7(q

7)

q7

}
.

Again we can easily recast this theorem in terms of spt-crank differences.

Corollary 4.4.

S0,1(0, 7, q) = 1− A7(q) + ϕ1,7(q),(4.26)

S0,1(1, 7, q) = B7(q),(4.27)

S1,2(2, 7, q) = C7(q) +
ϕ3,7(q)

q
,(4.28)

S2,3(3, 7, q) = D7(q),(4.29)

S1,2(4, 7, q) = E7(q),(4.30)

S2,3(6, 7, q) = F7(q) +
ϕ2,7(q)

q
;(4.31)

otherwise, Sb,b+1(d, 7, q) = 0 for 0 ≤ b ≤ 2 and 0 ≤ d ≤ 6.
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5. The Nonnegativity Theorem

In [13], it was proved that

(5.1) NV (m,n) ≥ 0,

for all (m,n) ̸= (0, 1). This was the clue to completing the solution of Dyson’s so-
called Crank Conjecture [6]. Here we have a similar situation. In this section, we
prove the surprising result that all spt-crank coefficients are nonnegative.

Recall from (2.1) and (2.2) that

S(z, q) =
∞∑
n=1

∑
m

NS(m,n)zmqn

=
∞∑
n=1

qn(qn+1; q)∞
(zqn; q)∞(z−1qn; q)∞

.

By (1.16), we can write

S(z, q) = A0 +
∞∑
i=1

Ai(z
i + z−i),

where the Ai are power series in q with integer coefficients.

Theorem 5.1.

(5.2) NS(m,n) ≥ 0,

for all (m,n).

Proof. It suffices to prove that for i ≥ 0, the coefficients in the Ai are all nonnegative.
∞∑
n=1

qn(qn+1; q)∞
(zqn; q)∞(z−1qn; q)∞

=
∞∑
n=1

qn

(zqn; q)∞

∞∑
j=0

(zq; q)j (q
n/z)j

(q; q)j
(by [1, p.17, eq.(2.2.1)])

=
∞∑
n=1

qn(zq; q)n−1

∞∑
j=0

(qn/z)j

(q; q)j(zqj+1; q)∞

=
∞∑
n=1

qn
n−1∑
h=0

[
n− 1
h

]
(−1)hq(

h+1
2 )zh

∑
i,j≥0

(qn/z)j (zqj+1)
i

(q; q)j(q; q)i

(by [1, p.36, eq.(3.3.6)])

=
∞∑

i=−∞

zi
∞∑
n=1

qn
n−1∑
h=0

[
n− 1
h

]
(−1)hq(

h+1
2 )

∞∑
j=0

qnj+(i+j−h)(j+1)

(q; q)j(q; q)i+j−h
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(after replacing i by i+ j − h)

As noted earlier, we need only deal with i ≥ 0. So we have

Ai =
∞∑
n=1

qn
n−1∑
h=0

[
n− 1
h

]
(−1)hq(

h+1
2 )

∞∑
j=0

qnj+(i+j−h)(j+1)

(q; q)j(q; q)i+j−h

=
∞∑
j=0

qj
2+ij+2j+i+1

(q; q)j(q; q)i+j

∞∑
n=0

qnp(i, j, n),

where

p(i, j, n) :=
n∑

h=0

[
n
h

]
(−1)hq(

h
2)+j(n−h) (q; q)i+j

(q; q)i+j−h

= qjn lim
τ→0

2ϕ1

(
q−n, q−i−j; q, qn+i

τ
τ−1

)
= qjn lim

τ→0

(qi/τ)n
(1/τ)n

2ϕ1

(
q−j, q−n; q, qn

τ
qiτ−1

)
(by [14, p.241, eq.(III.2)])

= q(i+j)n

j∑
h=0

(q; q)j
(q; q)j−h

[
n
h

]
(−1)hq(

h
2)−ih−jh.

Hence
∞∑
n=0

qnp(i, j, n) =

j∑
h=0

(q; q)j(−1)hq(
h+1
2 )

(q; q)j−h(qi+j+1; q)h+1

(by [1, p.36, eq.(3.3.7)]).

To conclude our proof we need the following identity

(5.3)

j∑
h=0

(−1)hq(
h+1
2 )

(q; q)j−h(zqj+1; q)h+1

=

j∑
h=0

[
j
h

]
qh

2+h

(q; q)h(1− zqh+j+1)
.

The left-hand side of (5.3) has simple poles at z = q−h−j−1 for h = 0, 1, . . . j. Hence
the left-hand side has the following partial fraction decomposition

j∑
h=0

Ch

1− zqh+j+1
,

and for 0 ≤ s ≤ j,

Cs = lim
z→q−s−j−1

(1− zqs+j+1)

j∑
h=0

(−1)hq(
h+1
2 )

(q; q)j−h(zqj+1; q)h+1

= lim
z→q−s−j−1

(1− zqs+j+1)

j∑
h=s

(−1)hq(
h+1
2 )

(q; q)j−h(zqj+1; q)h+1
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= lim
z→q−s−j−1

j−s∑
h=0

(−1)h+sq(
h+s+1

2 )

(q; q)j−h−s(zqj+1; q)s(zqs+j+2; q)h

=

j−s∑
h=0

(−1)h+sq(
h+s+1

2 )

(q; q)j−h−s(q−s; q)s(q; q)h

=
qs

2+s

(q; q)s(q; q)j−s

j−s∑
h=0

[
j − s
h

]
(−1)hq(

h+1
2 )+hs

=
qs

2+s

(q; q)s(q; q)j−s

(qs+1; q)j−s (by [1, p.36, eq.(3.3.6)])

= qs
2+s

[
j
s

]
1

(q; q)s
,

and thus (5.3) is proved.
If we now put z = qi in (5.3), we see that

∞∑
n=0

qnp(i, j, n) = (q; q)j

j∑
h=0

[
j
h

]
qh

2+h

(q; q)h(1− qi+j+h+1)
.

Consequently for i ≥ 0

Ai =
∞∑
j=0

qj
2+ij+2j+i+1

(q; q)j(q; q)i+j

(q; q)j

j∑
h=0

[
j
h

]
qh

2+h

(q; q)h(1− qi+j+h+1)
(5.4)

=
∞∑
j=0

∞∑
h=0

qj
2+ij+2hj+2j+i+hi+2h2+3h+1

(qj+h+1; q)i(q; q)2h(q; q)j(1− qi+j+2h+1)
.

Thus Ai clearly has nonnegative coefficients and our theorem is proved. �

6. Conclusion

We pose the following problems

(1) Find a statistic on partitions that explains (5.2) combinatorially. More pre-
cisely, find a statistic s-rank : P −→ Z and a weight function φ : P −→ N
such that ∑

π∈P, |π|=n

φ(π) = spt(n), and(6.1)

∑
π∈P, |π|=n
s-rank(π)=m

φ(π) = NS(m,n),(6.2)

for m ∈ Z and n ≥ 1.
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(2) Find a crank-type result that explains the congruence spt(13n + 6) ≡ 0
(mod 13).

It is straightforward to interpret the generating function in (5.4) in terms of Durfee
squares and rectangles for fixed i. The problem is to interpret the result so that
something like (6.1) and (6.2) hold. Unfortunately the spt-crank does not work for
spt(13n + 6). The 13-analog of (1.18), (1.19) does not even hold for the first case
n = 0. At present the mod 13 congruence (1.3) remains mysterious.

We say a vector partition is self-conjugate if it is a fixed point of the involution
ι (1.15). In our next paper [7], we prove that the number of self-conjugate vector
partitions in S is related to the coefficients of a certain mock theta function studied
by the first author, Dyson and Hickerson [5]. One byproduct is an elementary q-series
proof of Folsom and Ono’s results [11] for the parity of spt(n).

7. Table

For reference we include values of the spt-crank coefficients NS(m,n) for small m
and n.

HHHHHHn
m

0 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0
3 1 1 1 0 0 0 0 0 0 0 0
4 2 2 1 1 0 0 0 0 0 0 0
5 2 2 2 1 1 0 0 0 0 0 0
6 4 4 3 2 1 1 0 0 0 0 0
7 5 4 4 3 2 1 1 0 0 0 0
8 7 7 6 5 3 2 1 1 0 0 0
9 10 9 8 6 5 3 2 1 1 0 0
10 13 13 11 10 7 5 3 2 1 1 0
11 17 16 15 12 10 7 5 3 2 1 1
12 24 24 21 18 14 11 7 5 3 2 1
13 31 29 27 23 19 14 11 7 5 3 2
14 40 40 36 32 26 21 15 11 7 5 3
15 53 51 48 41 35 27 21 15 11 7 5
16 69 68 62 56 46 38 29 22 15 11 7
17 88 85 80 70 61 49 39 29 22 15 11
18 113 112 104 94 80 67 52 41 30 22 15
19 144 139 132 118 103 85 70 53 41 30 22
20 183 181 169 154 133 113 91 73 55 42 30

Note added: Since this paper was submitted, Freeman Dyson (“Partitions and the
Grand Canonical Esemble,” this volume) has found a simpler and more elementary
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proof of Theorem 5.1. The proof depends on a new expression for the generating
function of NS(m,n) which follows easily from Corollary 2.5.
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