CONGRUENCES FOR ANDREWS’ SPT-FUNCTION
MODULO POWERS OF 5, 7 AND 13

F. G. GARVAN

Dedicated to my friend and mentor Michael D. Hirschhorn on the occasion of his 63rd birthday

ABSTRACT. Congruences are found modulo powers of 5, 7 and 13 for Andrews’
smallest parts partition function spt(n). These congruences are reminiscent of
Ramanujan’s partition congruences modulo powers of 5, 7 and 11. Recently,
Ono proved explicit Ramanujan-type congruences for spt(n) modulo ¢ for all
primes ¢ > 5 which were conjectured earlier by the author. We extend Ono’s
method to handle the powers of 5, 7 and 13 congruences. We need the theory
of weak Maass forms as well as certain classical modular equations for the
Dedekind eta-function.

1. INTRODUCTION

Andrews [3] defined the function spt(n) as the number of smallest parts in the
partitions of n. He related this function to the second rank moment. He also proved
some surprising congruences mod 5, 7 and 13. Namely, he showed that

(L1) spt(n) = np(n) — 3 Na(n),

where Nj(n) is the second rank moment function [4] and p(n) is the number of
partitions of n, and he proved that

(1.2) spt(bn+4) =0 (mod 5),
(1.3) spt(Tn +5) =0 (mod 7),
(1.4) spt(13n+6) =0 (mod 13).

Bringmann [9] studied analytic, arithmetic and asymptotic properties of the gen-
erating function for the second rank moment as a quasi-weak Maass form. Further
congruence properties of Andrews’ spt-function were found by the author [16], Fol-
som and Ono [14] and Ono [22]. In particular, Ono [22] proved that if (:=212) = 1
then

(1.5) spt(?n — £ (> —1)) =0 (mod ¢),
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for any prime ¢ > 5. This amazing result was originally conjectured by the authorﬂ
Earlier special cases were observed by Tina Garrett [I7] and her students.

We prove some suprising congruences for spt(n) modulo powers of 5, 7 and 13.
For a, b, ¢ > 3,

(1.6) spt(57n + 0,) + 5spt (52720 + S—2) = mod 5%%7%),
(1.7) spt(7Pn + X)) + Tspt(7°2n + Ay_2) =0 (mod 7Lz G0y,
(1.8) spt(13°n + 7c) — 13spt(13° 20 + 7.—2) =0 (mod 13°71),

0 (
0 (

where 04, Ay and 7. are the least nonnegative residues of the reciprocals of 24 mod
5% 7% and 13 respectively. This together with (1.2)—(1.4) implies that

(1.9) spt(5°n +0,) =0 (mod 5l ),
(1.10) spt(?bn +X) =0 (mod 7|.b+TlJ ),
(1.11) spt(13n +v.) =0 (mod 1317,

for a, b, ¢ > 1. These congruences are reminiscent of Ramanujan’s partition con-
gruences for powers of 5, 7 and 11:

(1.12) p(5*n+6,) =0 (mod 5%),
(1.13) p(7’n+ M) =0 (mod 7L ),
(1.14) p(11°n + ¢.) =0 (mod 11°),

for all a, b, ¢ > 1. Here . is the reciprocal of 24 mod 11¢. The congruences mod
powers of 5 and 7 were proved by Watson [25], although many of the details had
been worked out earlier by Ramanujan in an unpublished manuscript. The powers
of 11 congruence was proved by Atkin [7].

Following Ono [22], we define

(1.15) a(n) := 12spt(n) + (24n — 1)p(n),

for n > 0, and define

(1.16) a(z) =Y a(n)q" 24,
n>0
where as usual ¢ = exp(27iz) and J(z) > 0. We note that spt(0) = 0 and p(0) = 1.
Bringmann [J] showed that a(24z) is the holomorphic part of a weight 3 weak Maass
form. Using this observation and the idea of using the weight % Hecke operator
T(¢?) to annihilate the nonholomorphic part enabled Ono [22] to prove the general
congruence . We use a similar idea. Instead of a Hecke operator we use Atkin’s
U () operator to annihilate the nonholomorphic part.
We show that

(1.17) a(5*n +6,) +5a(5° 2n+6,_2) =0 (mod 5L2Ga=DIy,
(1.18) a(™n+ )+ 7a(7" 2n+ Ap_2) =0 (mod 7LzG0=2)]y,
(1.19) a(13°n+v.) —13a(132n +7._2) =0 (mod 13°71),

IThe congruence 1i was first conjectured by the author in a Colloquium given at the Uni-
versity of Newcastle, Australia on July 17, 2008.
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for all a, b, ¢ > 3. We note that (1.17)) is a stronger congruence than ([1.6)). The con-
gruences (1.6)—(1.7) follow from (1.17)—(1.18) and Ramanujan’s partition congru-

ences for powers of 5 and 7 that were first proved by Watson [25]. The congruence
follows easily from .

Let £ > 5 be prime. In Section 2| we use results of Bringmann [J] to show how
Atkin’s U({) operator can be used to annihilate the nonholomorphic part of the
weight % weak Maass form that corresponds to the function «(24z), and prove that
the function

i ¢
(1.20) alz) =Y (a(zn — (2~ 1)) - x12(0) L2 (%)) S

n=0
is a weakly holomorphic weight % modular form on I'g(¢). Here x12 is the character
given below in , and we note a(n) = 0 if n is not a nonnegative integer. We
determine the multiplier of this form and exact information about the orders at
cusps. See Theorem This enables us to prove identities such as
(1.21)

as(2) = i (a(5n —1)+5a (%)) T 2(5E2(5;()5;)E2(2)) (1257;7((5;))66 — 1) :

where Fs(z) is the usual quasimodular Eisenstein series of weight 2, and n(z) is
the Dedekind eta-function. We then use Watson’s [25] and Atkin’s [8] method
of modular equations to prove the congruences 7. These details are
carried out in Section [3] In Section |4 we improve some results in [I6] and [I0] on
spt(fn — o7 (2 — 1)) and Na(n — 25 (¢* — 1)) modulo £.

Since this paper was first written Ahlgren, Bringmann and Lovejoy [2] have
generalized Ono’s congruence to higher powers of £. They have also obtained
analogous results for other spt-like functions which were studied by Bringmann,
Lovejoy and Osburn [I1], [12]. We state their theorem for the spt-function. Suppose
£ > 5 is prime and m > 1. Then Ahlgren, Bringmann and Lovejoy have shown the
following two congruences.

(i) If (=235247) = 1 then

(1.22) spt(£*™n + dpom) =0 (mod £™).

(i) If n > 0 then
(1.23) spt(£2m 1 4 deom+1) = x12(0) spt(£2™ In 4 deam—1) (mod £™).
Here dy , is the least positive integer such that 24dy, =1 (mod ¢*). The congru-
ences (|[1.22)—(1.23)) are truly amazing results. For the cases ¢ = 5, 7 and 13 these
congruences follow from (1.9)—(1.11)). Our congruences (|1.6)—(1.8) do not follow

from Ahlgren, Bringmann and Lovejoy’s results. Ahlgren, Bringmann and Love-

joy’s proof of (|1.22)—(1.23) is an extension of Ono’s proof of (1.5). Their proofs

utilize the Hecke operators T'(¢2™). Our results and proofs are different in that
they involve the Atkin operators U (¢).

n=0

2. THE ATKIN OPERATOR Uy}

In this section we prove that the function ay(z), which is defined in is a
weakly holomorphic weight % modular form on T'y(¢) when ¢ > 5 is prime. The
proof uses results of Bringmann [9] and the idea of using the Atkin operator Uy to
annihilate the nonholomorphic part of a certain weak Maass form.
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Following Bringmann [9] and Ono [22] we define

3i o0 p(247) dr
5 3
™2 I (i +2)2

(2.1) M(z) = a(24z) — ,
L oo

where 7(z) := ¢24 [[,_;(1—¢") is the Dedekind eta-function and «a(z) is defined in
(1.16). Then M(z) is a weight 2 harmonic Maass form on I'¢(576) with Nebentypus
X12 Where

1  ifn=+1 (mod 12),
(2.2) x12(n) =< -1 ifn=45 (mod 12),

0  otherwise.

Let

3i [ p(24r)dr 3 [ n(24(—x +it))dt
(2.3) N(z) = a2 ) (_Z.(HZ))g B m/i/y (y+1)3/2

where z = x + 1y, y > 0, so that

(2.4) M(z) = a(242) + N (2).
We define
(2.5) Alz) = M (i) .

The following theorem follows in a straightforward way from the work of Bring-
mann [9].

Theorem 2.1. ,
3/2
A az+b :(cz—i—d) 2),
cz+d vn(A)
where A = <Z Z) € SLy(Z), and vy (A) is the eta-multiplier.

Remark. When defining 2%/ we use the principal branch; i.e. for z = re?, r > 0,
—m <0 < m, we take 23/2 = p3/2¢310/2

Proof. We note that

(2.6) S (40— Dp(m)g" 3 = - 220
' v n(z)
where Fy(z) =1—-24%>°  o(n)g" is a quasi-modular form that satisfies
b .
(2.7) By <Zid) — (c2+d)2Bs(2) — ch(chrd).

Using (2.7)) and Corollary 4.3 and Lemma 4.4 in [9],
1\ —(—iz)%? z
M () =~ M (57)

1 (i3 2 A () = T2 A
A( ) iz} A(2) A(2).

z

and hence
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Therefore,
23/2
A(Sz) =
0 -1
where S = (1 0 ) From (/1.16)), lb and
M(Z+ i) — —7rz/12M
N(z+ i) = e_m/12./\/(z),
Az +1) = e ™12 A(2),
1
ATz) = A(z),
vn(T)
where T' = (é 1) Since S, T' generate SLo(Z) the result follows.

O

In what follows ¢ > 5 is prime. We let d; denote the least nonnegative residue

of the reciprocal of 24 mod ¢ so that 24d, =1 (mod ¢). We define

24dg—1 . 24dg+ 07 -1 (2 -1)
(2.8) T@ o 77 7'2 p— T’ S@ = 24 .
so that
29 )= Y (atna) e ca (L) )
n=-rj

_Z( TL—Se X12(€)€a<%)>q"—£.

For a function G(z) we define the Atkin-type operator U} by

(2.10) = zkz <z+ 24k:> 7

so that

ay(z) = Uy (@) — x12(€) La(lz).
The usual Atkin operator Uy is defined by

-1
(2.11) U,(@) :EZG(Z;’“).
k=0

We need Uj since a(z) has fractional powers of ¢, and we note that

Uj (G) = Un(G)(2/24),

where G*(z) = G(24z). For a congruence subgroup I' we let My (T") denote the
space of entire modular forms of weight k£ with respect to the group I', and we let
My (T, x) denote the space of entire modular forms of weight & and character y

with respect to the group I'. Then we have
Theorem 2.2. If ¢ > 5 is prime, then

(2.12) Go(z) == ap(2)

€ My1(To(0)).
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In other words, the function G(z) is an entire modular form of weight £ + 1 with
respect to the group To(¢).

Proof. We assume ¢ > 5 is prime. We divide the proof into four parts:

(1) U(A) —€x12(¢) A(Lz) = ay(z) and G(z) is holomorphic for S(z) > 0.
(i) Go(Az) = (cz+ d)* 1 Gy(z) for all A = (CCL 2) e To(l).
(iii) Gy(z) is holomorphic at ico.
(iv) Ge(z) is holomorphic at the cusp 0.
Part (i). It is well-known (and an easy exercise) to show that
(2.13) Ue(n(24z)) = x12(€) n(24¢2).

Using (2.3]) and (2.13)) we easily find that
Ui(N(2)) = £x12(0) N (£2).
It follows that
Ue(./\/l) - €X12(€) M(EZ)
is holomorphic for 3(z) > 0. By replacing z by 55 we see that
Uf(A) — x12(£) A(Lz) = Uj () — £ x12(€) a(€z) = ay(2)
and it is clear that G¢(z) is holomorphic for I(z) > 0.

" a b
Part (ii). Now let A = (C d

Go(Az) = (cz + d)1Gy(2).

Since it is well-known that

) € I'p(¢). We must show that

(@)Y
(35) < imaco)

it suffices to show that
ap(Az)n(LA2) = (cz + d)?ay(2)n(£z).
‘We need to show that

(2.14) fe(Az) = (cz +d)* fu(2),
(2.15) 9e(Az) = (c2 + d)?gu(2),
where

fe(2) =Up(A)n(€z),  ge(z) = A(lz) n(lz).

« [a &b
AT = (c/f d) ’
Then A* € SLy(Z) and (2.15) follows from Theorem [2.1] and the fact that
A(lAz)n(LAz) = A(A*Lz) n(A*Lz).

Let

Now,

fe(z) = Uy (A)n(lz) = Ug (A(2)n(£z)).
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We define
(2.16) Fy(2) == A(z)n(€?2) = A(2)n(=) nv(yizj)'

Using Theorem [2.1{and the fact that "7(7%25) is a modular function on I'y(¢?) we have

Fi(C2) = (c12 + d1)* Fy(2),

a; b
for C = (Ci d1 € To(£?).

Now for 0 < k< /-1, let
1 24k
B=(p *7)

fo(2) = Uy (Fu(z ZFL; By2).

so that

Since A € T'g(¢), (a,f) =1 and we can choose unique 0 < k* < ¢ — 1 such that
24ak™ = b+ 24kd (mod ¢).

Then
BkA = AZBk*;
where A} € To(¢?). We have
= -1 o
_1 (cz+d)? )
Az) Fy(BrAz) Fy(Aj, By~ R T Fy(By~z) =
fe(Az) =7 kzo 1(BrAz) k*z_:o t(AgBy-z) = 7 k*zzjo v(Bi~z) = (cz+d)* fo(2),

which is (2.14]).

Part (iii). First we note that r} is a positive integer. We have

Golo) =au() LB — 3 (a(fnwe)—xM(ewa(’"‘*ﬁ))qnW*W

— ¥
n—= TZ

o0

E(q) = [T —a").

We see that Gy(z) is holomorphic at ico.

Part (iv). We need to find Gy (32).

-1 -1 -1
. 1 z+24kN 1 2y 1 z+24kN\ 1 rzy 1
Ué(A)’ezf A< / >e“4<z)+z Zﬁ A( / )zA(e)WkZIA(B’“Z)'
For each 1 < k < ¢ —1 choose 1 < k* < £ — 1 such that 576kk* = —1 (mod ?).

Then
B S = Cy By~

B 24k —1—5276kk‘*

where
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Then
A(BSz) = A(CpBy-z) = 2°/2 <_2;1k) e™ /1 A(By-2),

by Theorem [2.1] since
—24k*\
V’r](ck) = <€> 6—7\'15/47

0 -1
s=(3 3)

A (25’@2) = /(2232 A(£22),

A(£Spz) = e™ /42312 A(2).

by [20, p.51]. Define

By Theorem

Hence, if we define
(2.17) Hy(z) := U (A) — €xa2(£) A(l2),
then
H(S¢z)
= (z*/2emi/ (z A(22) + L emite=n/4 Zi (24k>A (= + 24) — x (e)A(z)> :
i 2\ 7 12

Replacing z by 24z gives

H4(5424z)
' 1 1y
= ((24z)*/ 2™/t (ﬁM(ﬂ?z) a0 > (g)M (= +%) - Xlz(f)M(z)> :
k=1
since
emit=b/4 (2£1> =x12(0)€;.
Here

1 if¢=1 (mod4),
€Ep =
70 ifr=3 (mod4).

By [24] p.451] we have
Hy(Se24z) = 0(242)*2™/* (M|T(£7) = x12())M(2) = U2 (M) ,
= 0(242)* 2™ (MIT(6?) = x12(0) (1 + OM(2)) — (Ug2 (M) — bx12(0)M(2)))

where T'(¢2) is the Hecke operator which acts on harmonic Maass forms of weight
%, and was used by Ono [22]. When the form is meromorphic it corresponds to the
usual Hecke operator as described by Shimura [24]. Ono [22] showed that function

M(z) = MIT(?) = x12(6) (1 + H)M(2))
is a weakly holomorphic modular form. In fact, he showed that

(2.18) Fo(2) = n(2)" My(2/24)
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is a weight (1% + 3)/2 entire modular form on SLy(Z). See [22, Theorem 2.2]. We
also note that the function

Upz (M) = £xa2(OM(2) = Up (Ue(M) = £xa2(0)M(£2))
is holomorphic for §(z) > 0 by the remarks in Part (i). Thus we find that
(2.19)

()

=20 EE 5 (vaatat ((F22) 1) e (M52) ) e

n—=—-—Sy

where s, = 622—21. It follows that G(z) is holomorphic at the cusp 0. O

Since Gy(z) € Myy1(To(€)), the function 271Gy (72) € M1 (To(£)) by [5,
Lemma 1]. Thus if we define

oo

220 5= 3 (x@am ((F2) 1)+ () o

n=-—sg

then the proof of Part (iv) of Theorem yields
Corollary 2.3. If ¢ > 5 is prime, then

20 {2
(2.21) Jo(z) = Be(z) w € Myyq1(£).
n(2)
We illustrate the case ¢ = 5. For ¢ prime we define
1

It is well-known that &2 ¢(z) € M2(I'g(¢)). We also note that & ¢(z) has integral
coefficients when ¢ = 5, 7 or 13. By [19, Theorem 3.8] dim Mg(I'(5)) = 3, and it
can be shown that

{&25(2)
is a basis. We find that

Gs(z) =5&25(2) (125 n(52)*n(2)* — 77(2)“’> 7

1(52)"° 4 4 n(2)!
W> 52,5(3)77(52) n(z) ) 52,5(2) 17(52)2 }

n(52)?

and 510

() =5 Eas(z) (00 — (521"
Thus

- _ al™)) 21 — E25(2) n(52)°

(2.23) nZ%(a(m 1)+5 (5))q o =522 (125 e 1),
and
(2.24)

2 (o ((57) =) on () e H 0580 (- 5)

n=-—1
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3. THE CONGRUENCES

In this section we derive explicit formulas for the generating functions of
(3.1) a(ln +dpq) — x12(0) €a(l* *n + dpa—2),

when ¢ = 5, 7, and 13. As before, dy, is the least positive integer such that
24dy, =1 (mod £%). The presentation of the identities is analogous to those of the
partition function as given by Hirschhorn and Hunt [I8] and the author [I5]. In
each case we start by using Theorem to find identities for ay(z). This basically
gives the initial case a = 1. Then we use Watson’s [25] and Atkin’s [8] method of
modular equations to do the induction step and study the arithmetic properties of
the coefficients in these identities. The main congruences — then follow in
a straightforward way.

3.1. The SPT-function modulo powers of 5.
Theorem 3.1. Ifa > 1 then

oo

5 & )
(32) Y (a5 'n—te) +5a(5> P —t, 1)) ¢" 2 = 25(2) > waa-14Y",
~ n(52) &
> 1 & ;
(33) > (a3™n—t,) +5a(5> *n —t, 1)) ¢" 2 = 25(2) > w90, Y7,
n=0 n(2) i>0
where .
1 n(5z)
la = 57 52(1 -1), Y = )
57 ) (2) ()
fl = (‘Tl,Oa T1,1, " ) = (753 547 Oa Oa 07 t )7
and fora > 1
. Z,A, a odd,
3.4 1 =
(34) Fatl {:E’GB, a even.

Here A = (a;,;)i>0,>0 and B = (b; ;)i>0,;>0 are defined by

(3.5) Qi = Meiitj bij = Meit1,i+js

where the matric M = (m; ;)i j>0 is defined as follows: The first five rows of M
are

1 0 0 0 0 0
0 5 0 0 0 0
0 4.52 5° 0 0 0
0 9-5 9.5 57 0 0
0 2-5 44.5% 14.5% 59 0

and for i > 5, m;o =0 and for j > 1,
(3.6) myj; =25mi_1 -1+ 25mi_g 1+ 15mi_3 1+ 5mi_sj_1+mi5 ;1.

Lemma 3.2. If n is a positive integer then there are integers ¢y, ([E] < m < n)
such that

n

Us(E252") =25 Y em¥™,

m=[%]
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where

n(52)°
3.7 Z(z) = , Y(z) = .
(3.7 (2 (=15
Proof. We need the following dimension formulas which follow from [I3] and [19]
Theorem 3.8]. For k even,

dim M, (To(5)) = 2 MJ +1,

. k
dim My (T - )=k=2|—].
i M(To(5), (1)) = k-2 |
Let n be a positive integer. Then

st i () (529)) -t (e (S20) ) (3

When n is even the function

o (252

belongs to the space Mo, +2(T'0(5)), which has as a basis
{&5(2)n(2)°" " n(52)°"" ™, 0<m < n}.
This follows from the dimension formula. We note that
ord (E2,5(2)n(2)"" ™ (52)5™ " ico) = m.

The operator Uy preserves the space Moy, 12(To(5)). It follows that there are integers
cm ([2] <m < n) such that

Us(E2,52") = E25(2) Z em 1(2)7" 0 (52)0m " (77(5z)) = &a5(2) Z emY ™.

m=[2] n(=)° m=21
When n is odd the proof is similar except this time one needs to work in the space
Map12(To(5), (£))- O
Corollary 3.3.
(3.8) Us(E25) = Ea5
(3.9) Us(E257) = 5% & 5Y
(3.10) Us(E252%) = 52 & 5(4Y + 5°Y?)
(3.11) Us(E252%) = 5E5(9Y +9- 532 + 5073)
(3.12) Us(E252%) =5E5(2Y +44-5%Y? + 14 - 5°Y? 4+ 557,

Proof. Equation (3.8)) is elementary. It also follows from the fact that dim M»(Ty(5)) =
1. Equations (3.9)—(3.12) follow from Lemma and straightforward calcula-
tion. g

We need the 5th order modular equation that was used by Watson to prove
Ramanujan’s partition congruences for powers of 5.

(3.13) 7% = (25Z* +25Z° + 15Z° + 5Z + 1) Y (52).
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Lemma 3.4. Fori >0

Us(£252") = Ea5(2 Z mi Y7,
i=l£1

where Z = Z(z), Y =Y (z) are defined in (3.7), and the m; j are defined in Theorem
[Z1

Proof. The result holds for 0 < i < 4 by Corollary By we have

Us(E252") = (25U5(E2,52" 1) + 25U5(E2,52" %) + 15U5(E2,5 2" %) + 5U5(E2,5 2" )
+U5(52,5Zi_5)) Y(z2),

for i > 5. The result follows by induction on ¢ using the recurrence (3.6]). Il

Lemma 3.5. Fori >0,

(3.14) U5(52’5Y 525 Z ah] 7
i=I%1
5141

(3.15) Us(E252Y") = Ea5(2) D biyY7,

J=154
where the a; j, b; ; are defined in .
Proof. Suppose ¢ > 0. By Lemma
Us(E25Y") = Us(&s, 5Z6iY(5z)—i) =Y Us(E252%)

=Y~ 182 5 Z me; ]
3=
5%
7525 Z me; 1+1Y *525 Z a; ;Y 7,
3=I4] 3=l
which is . Similarly
U5(5275ZY1-) = U5(5275Z6i+1Y(5Z)7i) = YﬁiU5((€275Z6i+1)
6141
= Y7i5275(z) Z m6i+1,jY
3=
5141 5141
—525 Z mei+1, z+jY —525 Z b,jY

=[] =[]

which is ((3.15). O

Proof of Theorem[3.1. We proceed by induction. The case a =1 of (3.2) is (2.23).
We now suppose a > 1 is fixed and (3.2)) holds. Thus

o

E(q°) Z (a(6**'n —ta) +5a(5" Pn —t,1)) ¢" = Ex5( sza 1Y

n=0 >0
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We now apply the Us operator to both sides and use Lemma [3.5]

E(q) Z (a(5®*n —to) +5a(5* 7 *n —t,1)) ¢" = Z T2a-1,iUs(E2,5(2)Y")
n=0 120
*825 ZIQa 1lza1,jY] 525 Z Z‘rQa 1,045 j
>0 720 720 \ >0
= &a5(2) sza,jy
j=0

We obtain (3.3]) by dividing both sides by 7(z).
Now again suppose «a is fixed and (3.3) holds. Multiplying both sides by 1(25z)
gives

E(g®) Y (a(5*n —ta) +5a(5* *n —ta_1)) ¢ = E25(2) D 72442V
n=0 >0

We apply the Us operator to both sides.

oo
E(¢°) > (a(3**(5n — 1) — ta) + 5a(5***(5n — 1) — ta_1)) ¢"
n=0
= 224,05 (E2,5(2) 2Y").
i>0
Using Lemma and the fact that t,,1 = 5%? +t, we have
E(¢®) Y (al5*'n —tap1) +5a(5* ' — ta)) ¢" = E25(2) Y w20 Y bi Y7
n=0 >0 7>0
=E5(2) Y | D waaibiy | Y7 =E25(2) Y w2011,V
§>0 \i>0 §>0

We obtain (3.2]) with a replaced by a + 1 after dividing both sides by 7(5z). This
completes the proof of the theorem. O

Throughout this section we will make repeated use of the following lemma which
we leave as an exercise.

Lemma 3.6. Suppose z, y, n € Z and n > 0. Then

(3.16) HEEE VJ“y_”HJ .

n n n

For any prime ¢ we let w(n) = m¢(n) denote the exact power of £ that divides n.
Then we have

Lemma 3.7.
ms(mig) > [3(5] —i+ 1)),
where the matriz M = (m; ;); j>o is defined in Theorem [3.1]

Proof. First we verify the result for 0 < i < 4. The result is easily proven for ¢ > 5
using the recurrence ([3.6)). O
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Corollary 3.8.
ms(aig) > 1355 —i+ 1)), ws(biy) > [53(55 — 1)),

where the a; j, b; j are defined by (3.5).

Lemma 3.9. Forb>2, and j > 1,

(3.17) 5 (22v—1,7) = 5b— 6 + max(0, [ (55 — 7)]),

(3.18) T5(wap,5) > 5b— 4+ [5(55 — 4)].

Proof. A calculation gives

Ty = (23,0, 3,1, 23,2, )
= (0,669303124 - 5%, 3328977476 - 5'1, 366098988268 - 514,
201318006648837 - 5'°, 1618593700646527 - 58, 6370852555263938 - 52,
2000024541422883 - 52°, 4237895677971369 - 528, 21327793208615511 - 53,
15532659183030861 - 53, 8481639849706179 - 53¢, 3564573506915806 - 5,
1175454967692313 - 5*2,1542192101361916 - 5**, 325171329708596 - 547,
55431641829564 - 5°°, 1532152033009 - 5°*, 171561318777 - 5°7
77490966671 - 572, 5598792206 - 5%2, 318906274 - 5%,
2799863 - 55991379 - 57210439 - 574,149 - 577,
5800, ),
7s(3) = (00,4,11,14,15,18, 21,25, 28, 30, 33, 36, 39, 42, 44, 47, 50, 54, 57, 59, 62,
65,69, 72,74,77,80, 00,00, - - ),

and (3.17)) holds for b = 2. Now suppose b > 2 is fixed and (3.17)) holds. By
(3-4)
Top,j = Z$2b—1,iai,j-
i>1
Then using Corollary 3.§|
5 (w26,1) = min({5b— 4 U{5b—6+ |1(5i—7)] + [(5(6—17)] : 2<i<5}) =5b—4,
and (3.18]) holds for j = 1. Suppose j > 2. Then

75 (x2p ) > 1%215],(775(%21771,1') + 75 (ai ;)

> min (m5(z2p—1,1) + m5(a1,;), (m5(ap—1,:) + m5(as;))
2<i<5j

> min({5b— 6+ [3(55)]}U{Bb—6+ [5(5i —T)]) + [§(Bj —i+1)] : 2 <4 <5j}).
Now
5b—6+ [3(57)] =5b—4+ [3(55 —4)].

If 2 <4 < 57, then using Lemma [3.6] we have
5b—6+ [5(5i — 7))+ [3(5j —i+1)] >5b—6+ |3(5j +4i —T7)]

>5b—6+ [3(5j+1)] =5b—4+ [3(55 —3)]
and (3.18)) holds. Now suppose b > 2 is fixed and (3.18)) holds. By ([3.4)

Topp1y = D opibij-

i>1
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We observe that 75(by.1) = 75(500) = 3. Then using Corollary
7T5(.’L'2b+1’1) Z mln({5b—1}U{5b—4+ \_%(5@—4)+ \_(%(5—2” 2 2 S ) S 4}) = 5b—1,
and (3.17)) holds for j = 1 with b replaced by b+ 1. Suppose j > 2. Then

ms(@2p 1) 2 _min (75 (22p,q) + 75 (bi j))

> 25?%%11'—1(#5(%%’1) + m5(b1,5), (75 (22b,4) + 75(bi ;)
>min({sb—4+ [2(5j — 1) JU{Bb—4+ [3(5i —4)]) + [2(5j — )] : 2<i<5j—1}).
Now

5b—4+ 255 —1)] =5b—1+ 255 —7)].
If 2 <4 <55 — 1, then again using Lemma [3.6] we have
5b—4+ 3(5i—4)])+ |2(5j —i)] >5b—4+ [5(5j + 4i —5)]

>5b—4+ [1(5j+3)] =5b— 1+ [1(5j —3)]

and (3.17)) holds with b replaced by b+ 1. Lemma follows by induction. O

Corollary 3.10. For b > 2,

(3.19) a(5% n 4+ dapi1) +5a(5% 30+ 89p_3) =0 (mod 5°7),
(3.20) a(5%n + 0) + 5a(5* 20+ d2p_2) =0 (mod 5°074).
Fora>1,

(3.21) spt(5°T2n + dag2) + 55pt(5“n +6,) =0 (mod 52*F1),
(3.22) spt(5%n + 8,) =0 (mod 555 ).

Proof. The congruences ([3.19)—(3.20) follow from Theorem [3.1]and Lemma[3.9 Let
dp(n) = (24n — 1)p(n).
Then

(3.23) dp(5*n +6,) =0 (mod 5%),

by (1.12)). The congruence (3.21)) follows from (3.19)—(3.20), and (3.23). Andrews’
congruence (|1.2)) implies that (3.22)) holds for a = 1, 2. The general result follows

by induction using (3.21)). O

We note that when a = 0 there is a stronger congruence than (3.21)). We prove
that

(3.24) spt(25n — 1) + 5spt(n) =0  (mod 25).
We have calculated

Ty = (22,0, T2,1,T2,2, )

= (=5',63-5%104- 57,189 - 511 24 . 5™ 517 0 ...).
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Thus
(3.25) i (250 — 1) + 5a(n)) ¢"~ 21
n=0
_ . &5(2) 57 0(52) 877 *(52) 1077 5(52)
_577(2) ( 1+635n()+1045 ()—1—1895 75 02)
. 131°4(52) 16170 (52)
#2105 )
and
3 (a(25n — 1) + 5a(n) "~ 21 = 20225 (1mod 25)
n=0 "7(3)
But from we see that
i (dp(25m — 1) + 5 dp(n)) ¢"~ 27 = 2022((;)) (mod 25)

and

s 1
12 Z (spt(25n — 1) + 5spt(n)) ¢"~ 24
n=0

*Z (250 — 1) +5a(n)) ¢"~ ifZ(dp(25n—1)+5dp(n))qn—%4

n=0
= O (mod 25),

which gives (3.24)).

3.2. The SPT-function modulo powers of 7.

Theorem 3.11. Ifa > 1 then

(3:26) S (a(7"'n — ug) + 7a(T* "0 — u,_y)) ¢" 21 = 2.7(2
n=0 n(7z)
.- 2 2a—2 nek  Eaq(z
(3.27) Z (a(7*n —ug) + 7a(7% 20 — ug_1)) ¢" 21 = n(z)
n=0
where
72)4
“ 2a Y _ 7](
b 24(7 1), (2) n(z)*’
fl = (x1,07x1,17 o ) = (_73 3- 737 75707 Oa U )a
and fora > 1

7o Z,A, a odd,
a+1l — -
ToB, a even.

Here A = (ai,j)i207j20 and B = (bi7j)i207j20 are deﬁned by

(3.28) Qi j = Mai ity bij = Mait1,i+j
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where the matriz M = (m; ;)i j>0 is defined as follows: The first seven rows of M
are defined so that

where
2() = 1(49z2)
n(z)
and fori > 17, mio =0, mi1 =0, and for j > 2,
(3.29)

m;; = 49 mi—1,-1+ 35 mi—2;-1+ 7mi_3,j_1 + 343 mi—1,-2 + 343 mi—2 -2

+147m; 35 2 +49mi 45 2+21m; 55 2+ Tmi 652+ mM;7; 2.
The proof of the following lemma is analogous to that of Lemma [3.2}

Lemma 3.12. Ifn is a positive integer then there are integers cm ([22] < m < 2n)

such that
2n

Ur(E272") = Ea 7 Z emY™,
m=T 21

where

(3.30) Z(2) = Zr(2) = Y(z)=

Corollary 3.13.
(3.31)
Ur(Ea7) = Ear
(3.32)
Ur(Ea7Z) = T*E07(3Y + T2 Y?)

(3.33)

Ur(E977%) = TE07(10Y +27-72Y2 +10-7T*Y? + 7°Y?)

(3.34)

Ur(E977%) = TE7(Y +190-7TY? +255 - 7 Y3 +104 - 7YV  +17-77Y® + 17 Y©)

(3.35)

Uz(Ea7Z%) = T80 7(82Y2 +352- 72 Y3 + 2535 - 73 Y* 11088 - 7°Y® +230- 77 Y
+24-79YT 471 Y®)

(3.36)

Ur(E977°) = TE97(114Y? 4+ 253 - T2 Y3 + 4169 - 7 Y* + 3699 - 70 Y + 11495 - 77 Y
+2852- 79V 7 +405- 71 Y8 3178V 4 715 Y10)

(3.37)

Uz(E272%) = TE27(9Y2 + 736 - 72 Y3 427970 - 73 Y* + 6808 - 70 YV + 38475 - 77 Y6
417490 - 7° Y7 + 33930 - 710 Y® + 5890 - 712 YO 4 629 - 714 Y10
+38. 70y 4 718 Y1)
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We need the 7th order modular equation that was used by Watson to prove
Ramanujan’s partition congruences for powers of 7.

(338) ZT=(4TZ+212>+4973 +1472* +343 2° + 343 Z5) Y (72)?
+(TZ* +352° +492°) Y (72).
Lemma 3.14. Fori >0

Ur(€272") = Ea (2 Z mi Y7,
J=1#]
where Z = Z(z), Y = Y(z) are defined in (3.30), and the m;; are defined in
Theorem [3.11.

Lemma 3.15. For¢ > 0,

(3.39) Ur(Ea7Y") = Ex7(2 Z a;;Y7,
J=T%]
Ti+2
(3.40) Ur(E27ZY") = Eyr(2 Z bi Y7

=421
where the a; j, b; ; are defined in .
Let m7(n) denote the exact power of 7 dividing n. Then we have

Lemma 3.16.
mr(mig) > [5(75 — 2i+3)],
where the matriz M = (m; ;); j>o s defined in Theorem|(3.11]

Corollary 3.17.

mr(aig) > [1(75 —i+ 3)J m7(biy) > (75 —i+1)],
where the a; ;, b; ; are defined by (3.28 .
Lemma 3.18. Forb> 2, and j > 1,

(3.41) Tr(wop—1,5) = 3b— 3+ | 1(7j —4)].

(3.42) mr(wap,;) > 3b— 1+ | 1(75 - 6)].

Corollary 3.19. For b > 2,

(3.43) a(7 '+ Aapy1) +7-a(7* 304+ Agp_3) =0 (mod 73°73),
(3.44) a(7®n + o) + 7-a(7® 2+ Agp_2) =0 (mod 73°71).
Fora>1,

(3.45) Spt (720 + Agp2) + 7-spt(7*n + Ao) =0 (mod 7Lz Getdly,
(3.46) Spt(T'n + A) =0 (mod 7L ).

We note that (3.45) also holds for @ = 0 taking A\g = 1. The proof of the
congruence

(3.47) spt(49n —2) + 7-spt(n) =0 (mod 49).
is analogous to the proof of (3.24).



ANDREWS’ SPT-FUNCTION MODULO POWERS OF 5, 7 AND 13 19

3.3. The SPT-function modulo powers of 13.
Theorem 3.20. If a > 1 then
(3.48)

oo

> (a(13*7n — v,) — 13a(13% 90 — v,_y)) ¢ 2 2 — 52 13( Z Toq_1:Y",

n=0

(3.49)
- 2 2a—2 — 52 13
Z (a(13%*n —v,) — 13a(13°* *n —v,_1)) "~ 24 = Z T2a,iY",
n=0 >0
where
1 n(132)
o= —(13% — 1), Y(z2) = ,
vo=5p (18 -1, Y=
71 = (T1,0,71,1," ")
=(13,11-13%,108 - 133,190 - 13*,140 - 135,54 - 135,11 - 137,13%,0,0,0, - - - ),
and fora > 1

. Z,A, a odd,
Tg+1 = N
ToB, a even.

Here A = (ai,]‘)iZOJ‘ZQ and B = (b’iJ)iZOJZO are deﬁned by
(3.50) i j = M2iitj, bij = M2it1,itj,

where the matriz M = (m; j)i>_12,j>—¢ 5 defined as follows: The first 13 rows of
M are

0 0 0 0 0 0 135 0 0
0 82-13 456-13% 360-13% 126-13* 18-13° 13° 0 0
0 0 0 0 0 0 13> 0 0
0 0 18-13  —36-13%2 —40-13* —14-13* —135 0 0
0 0 0 0 0 0 13* 0 0
0 0 0 —14-13 —12-13? 0 13* 0 0
0 0 0 0 0 0 132 0 0
0 0 0 0 4-13 6-132 132 0 0
0 0 0 0 0 0 132 0 0
0 0 0 0 0 0 -132 0 0
0 0 0 0 0 0 13 0 0
0 0 0 0 0 0 -13 0 0
0 0 0 0 0 0 1 0 0

and formp =0 fork>1 and —6 <€ <0; and fori >1 and j > 1,

13

7
(3.51) mg; = Z Z YrsMi—r j—s,

r=la=|3(r+2)
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where ¥ = (Y s)1<r<13,1<s<7 S the matric

(3.52)
11-13 36132 38133 20134 6-13° 136
0 —204-13 —346-13%2 —222.13% —74.13* —136
0 3613 126-13%  102-133 38.13* 7-13%
0 0 —346-13 —422-132 -—184-13% —37-13%
0 0 3813 102 - 132 56 - 133 13°
0 0 0 —222.13 —184-13%2 —51-13°
U= 0 0 0 20-13 38132 134
0 0 0 0 —74-13 —37-132
0 0 0 0 6-13 7132
0 0 0 0 0 —132
0 0 0 0 0 13
0 0 0 0 0 0
0 0 0 0 0 0

The proof of the following lemma is analogous to that of Lemma [3.2

136
—136
7-13°
- 135

15 -
—5.
19
-5.
15-

7 -

134
134
133
133
132

- 132

13

—13

1

Lemma 3.21. Ifn is a positive integer then there are integers c,, (f%] <m < Tn)

such that
™
U13(E2,132") = E2,13 Z cm Y™,
m=[T2
where
7(169z) n(132)?
3.53 Z(z) = Z13(2) = , Y(z) =
(3.53) ()= Zule) = Lo ORE =

We need a version for Lemma [3.2I] when n is negative.

Lemma 3.22. If n is a nonnegative integer then there are integers c¢,, (—6n <

m<n-— %‘]) such that

nf(%

U13(E2,1327") = &2.13 Z e Y M

m=—6mn

Proof. The proof is analogous to Lemma The main difference is that we write

Ura(€2132 ") = Uss (&2,13(2) (n(z)n* (132))" ) (" (2)n(132)) "

and use the fact that & 13(%) (77(2)7711(132'))" € Moy, (To(13), (ﬁ)n)
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Corollary 3.23.

Ui3(E2,13) = E2.13
Urs(E21327 ") = —13&213
Ur3(E213277) = 135,13
Ui3(E21327°) = =132 E313
Urs(€2132 %) =132 E13
Ui3(821327°) = 13&,13(4Y 2 +6-13Y 1 +13%)
U3(E21327%) = 13% E515
Ui3(E213277) = 13E13(—14Y 2 —12-13Y 2 +13%)
U3(E21327%) =131 515
U13(821327%) =138 13(18Y ™4 =36 - 13Y 3 —40- 132 Y 2 — 14- 133 Y ! — 13%)
U3(£2.132710) = 13° E913
Ur3(E2.1327 M) = 13E513(82Y 5 +456 - 13Y~* +360- 137 Y 2 4126 - 133 Y 2

+18-13* Yt +13%)
Us(E213Z2712) = 13585 13

We need the 13th order modular equation that was used by Atkin and O’Brien [6]
to study properties of p(n) modulo powers of 13. Lehner [21] derived this equation
earlier.

(3.54) Z13(2 Z Z s Y*(132) 2177 (2),

r=1s=|5(r+2)]

where the matrix ¥ = (¢; ;) is given in (3.52)), and Y (2), Z(z) are given in (3.53)).

The modular equation and the matrix ¥ are given explicitly in Appendix C in [0]

Lemma 3.24. Fori >0

Ui3(E2.132%) = Ea.13( Z m; ;Y7
=11
where Z = Z(z), Y = Y(z) are defined in (3.53), and the m;; are defined in
Theorem [3.20.

Lemma 3.25. Fori >0,
136

(355) Ulg(Sg,ngi)zé'g,lg(z) Z (Liyjyj,
i=[15]
13i+7
(3.56) Ur3(E2132Y") = E.13( Z bi ;Y7

S5
where the a; j, b ; are defined in .



22 F. G. GARVAN

Let m13(n) denote the exact power of 13 dividing n. Then we have
Lemma 3.26. Fori, j >0,
(3.57) miz(mg;) > |5 (135 — 7i + 13)],
where the matrizc M = (m; ;) is defined in Theorem ,
Proof. As noted in [6] we observe that
(3.58) m13(¥rs) > [17(13s — 7r + 13) ],
forall 1 <r <13and1<s< 7. We verify the result for 0 < ¢ < 12 by direct

computation using the recurrence . We use , the recurrence (3.51)) and

Lemma [3.6] to prove the general result by mductlon O
Corollary 3.27.

ma(aig) > [35(135 —i+13)],  mis(biy) > [5(135 — i +6)],
where the a; ;, b; ; are defined by .

We provide more complete details for the proof of the following lemma since
congruences for the spt-function modulo 13 are stronger than those for the partition
function.

Lemma 3.28.

(3.59) m13(2,0) = 1,

(3.60) mis(22;) > 3+ [£(135)] forj>1

(3.61) mi3(zap-1,5) > 20— 24 £ (135 —10)]  forb>2, and j > 1
(3.62) mig(zap,;) > 2b Li( ) | forb>2, and j > 1.

Proof. We have calculated & and verified (3.59)—(3.60). We note that 5 ; = 0 for

j > 91. Now,
235 =Y Taibij,
i>0

and we note that x39 = 0. We have

mg(;cz’obo,j) =1+ ms(boy) > 2+ [15(135 — 8)]
by Corollary [3.27} For i > 1

m13(w2, Zb”) = mi3(@2,) + ms(bij) > 3+ [ £ (130)] + [ (135 — i +6)]
>34 [ 413 + 120 = 7)) > 2+ | (13) - 9)),
again by Corollary [3.27] It follows that
mia(waz) > 2+ [15(135 - 9)],

and holds for b = 2. Now supposed b > 2 is fixed and that holds. We

have
Top,j = E T2b—1,i04,5-
i>1
Now

mig(Tap—1,101,5) = m3(Tow—1,1) +m3(a1,j) > 20—2+m3(a1,;) > 2b— 1+LL4(13J‘)J7
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by a direct calculation noting that a; ; = 0 for j > 13. For ¢ > 2
T13(Tap—1,i0i j) = m3(T2p—1,5) + mi3(aij) > 2b— 2+ |5 (130 — 10)| + [ (135 — i + 13)]
>2b—2+ |5 (135 +12i — 10)] > 20— 1 + [ (135)],
again by Corollary It follows that
i3 (@2,5) > 20 — 14 | 17(135)],

and (3.62]) holds. For ¢ > 1
Again suppose b > 2 is fixed, and that (3.62)) holds. We have

Tob41,j = E Zab,ii ;-

i>1
Fori>1
T13(2p,ibij) = mi3(api) + mi3(biy) = 2b— 1+ | F(130)] + [15(135 — i +6)]
> 20— 1+ |4(135 + 120 — 8)] > 2b+ | (135 — 10)],
again by Corollary It follows that
mi3(22p41,5) = 20+ | 15(135 — 10) ],
and holds with b replaced by b+ 1. Lemma follows by induction. ([
Corollary 3.29. For ¢ > 3,

(3.63) a(13°n +7.) — 13-a(13° 20 +9._2) =0 (mod 13°71).
Fora > 1,

(3.64) spt(13°T2n 4 v440) — 13 -spt(13°n +,) =0 (mod 13°T1),
(3.65) spt(13°n +7,) =0 (mod 13L"27).

We note that (3.63) holds when ¢ = 2 by taking 7 = 1. Also when a = 0 the
congruence (3.64]) has a stronger form. The proof of the congruence

(3.66) spt(169n — 7) — 13 - spt(n) =0 (mod 169).
is analogous to the proof of (3.24)).

4. THE SPT-FUNCTION MODULO /

In this section we improve on results in [I6] and [I0] for the spt-function and the
second moment rank function modulo . We let

Jo(2) = Ge(n)q",

n=sgp

where Jy(z) is defined in (2.21)), and define

(4.1) Ki(2) = Gel=) + (-1 37 Gultn)g™,
n=[%1
where Gy(z) is defined in (2.12)). Then we have

Theorem 4.1. If ¢ > 5 is prime, then K,(z) is an entire modular form of weight
(£+ 1) on the full modular group SLy(Z).
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Proof. Suppose £ > 5 is prime. We utilize Serre’s [23] pp.223-224] results on the
trace of a modular form on I'g(¢). By Theorem [2.2| we know that G¢(z) is an entire
modular form of weight (¢ + 1) on I'g(€). By [23] Lemma 7],

(4.2) Te(Ge) =G+ 020 G, | W | U

is an entire modular form of weight (¢ + 1) on SLy(Z). See [23, pp.223-224] for
definition of W, U and the notation used. From (2.19)) we find that

(4.3) Gy | W= (=1)z0=Dpzt+D) g,
From , and we see that
K, = Tr(Gy)
is an entire modular form of weight (¢ 4+ 1) on SLy(Z). O
We observed special cases of the following Corollary in [16], Theorem 6.1].

Corollary 4.2. Suppose £ > 5 is prime. Then

(4.4) S spt(fn — s¢)q" "3 =1(2)™ Le(2)  (mod )
n=[31]
for some integral entire modular form Ly(z) on the full modular group of weight
¢+1—12[%4], and where 7, and s, are defined in .
Proof. Suppose ¢ > 5 is prime. Since
(24n—1)p(n) =0 (mod ¢),

for 24n =1 (mod ¢), and using Theorem |4.1| we have

> 20 ¢
Z((e)z) Y alln —s0¢" 3 = Py(z) (mod 0),

n=0

for some integral Py(z) € Myy1(T'(1)). We note that
spt(fn —sg) #0
implies that fn — sy > 1 and n > fﬁ}. It follows that

20

7777((25)2) Z Spt(énfse)qn,%

A(2)¢ Le(z) (mod ¢),
n=[2]

where A(z) is Ramanujan’s function

(1 - qn)247

2

(4.5) A(z) == (=) = q

3
I
-

c=[£4] and Ly(z) is some integral modular form in My1_12.(I'(1)). Thus

Z spt(fn — sz)qnf;%1 =n(2)** " Ly(z) (mod ¢),
¢
n=[571
and the result follows since
re = 24c — 4.
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We conclude the paper by improving a result in [I0] for the second rank moment

function. From (1.1
(4.6) Ny(n) = 2np(n) — 2spt(n).

We note that the analog of Corollaryholds for the partition function p(n) except
the weight is 2 less. See either [16, Theorem 3.4] or [I, Theorem3]. This together

with Corollary and (4.6]) implies
Corollary 4.3. Suppose £ > 5 is prime. Then

oo
(4.7) 37 No(ln = s0)g" "3 = n(2)" (Qe(2) + Le(2))  (mod £)
n=l37]
for some integral entire modular forms Q,(z) and L,(z) on the full modular group
of weights k and k + 2 respectively where k = ¢ — 1 — 12[%].

We illustrate Theorem (.1l and Corollaries 2] and [£3] in the case ¢ = 17. We
find that

Ki7(2) = Gi7(2) + 17 Y j1r(1Tn)q" = —17 Eg(2)® — 26148 A(2) Eq(2),

n=1

Zspt(l?n + 5)q"+2l4 =147(2)" Eg(z) (mod 17),
n=0

and

> No(17n +5)q" ¥ = (2)7 (2 Ey(2) + 6 Bg(2))  (mod 17).
n=0

Here E4(z) and Eg(z) are the usual Eisenstein series

(4.8) Ei(2) :=1+240 o3(n)q",  Eg(2):=1-504)  o5(n)q",

n=1

where o4(n) =324, q~.
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