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ABSTRACT

In the past few years, there has been an increased de-
mand for new tools and methods to design and generate
high quality sounds effects and natural sounds for gaming,
and virtual reality applications. A number of analysis-
synthesis methods have been developed to synthesize mu-
sical and everyday sounds using predefined analysis tech-
niques. In this paper, we present a new dictionary-based
analysis, parameterization, and synthesis method for the
generation of clapping sounds. The main objective is to
use audio grains to create finely-controlled synthesized
sounds which are based on recordings of clapping sounds.
During the analysis stage, sequences of pre-recoded clap-
ping sounds are initially segmented into individual claps,
and are then decomposed into multi-level time-scale com-
ponents or grains. The extracted audio grains are opti-
mized using K-SVD dictionary learning algorithm, which
forms the basis for an adaptive dictionary. For the pa-
rameterization, each recorded individual clap is projected
onto the trained dictionary, which produces the synthesis
pattern. During the generation of a clap sound, the syn-
thesis pattern and atoms from the dictionary are selected
and tuned according to the parameters received from the
physical interaction or via the graphical user interface. A
method for expressive synthesis is also presented, which
generates non-repetitive clapping sounds.

1. INTRODUCTION

Clapping sound of hands is one of the simplest percussive
sounds because its production does not involve any tools
or musical instruments. It is used virtually in everyday
aspect of human life, and this form of human expression
is found in almost every culture, and in particular as a
rhythmic musical instrument. Clapping is also used to in-
dicate agreement and appreciation where it is repeated for
few seconds, and often replicated by the group. From an
acoustician’s viewpoint, clapping can be studied individ-
ually as a sound generated by the act of hitting both hands
together, or collectively, as claps generated by a group of
people.

Sound synthesis is used extensively in the music and
film industry, as well as in the development of games and
virtual reality applications. For example, synthetic sounds
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of hand clapping can enhance or even replace live record-
ings in sport games by allowing the modeling of the ap-
plause generated by a large audience. It can also be used
to provide the performer with direct audio cues on his/her
performance, such as producing an enthusiastic applause
for an outstanding performance. Hand clapping has also
been used as a substitute for language. For instance, Hana-
hara et al. [5] developed a human-robot communication
method based on hand clapping sound, where formal lan-
guage specifications were defined to represent syllables,
spoken words and syntax.

Despite the significant and widespread use of clapping
in our everyday life, very few researchers have addressed
the subject of analysis and synthesis of clapping sounds.
Repp [18] was one of the first who studied hand clap-
ping sound and presented a number of important results.
He observed that the shape of the average clap spectra of
each subject varies considerably between individuals. To
explore the source of this variability, Repp investigated
the possible linkage between average clap spectra and the
clappers’ sex, hand configurations (clapping style), and
hand size. He discovered that clappers’ sex and hand size
had no significant influence on the spectrum of clap but
hand configuration of the clappers was the major source of
variability in the clap spectrum. Using auditory informa-
tion, Repp also studied the subjects’ ability to recognize
clapper identity, sex, hand size, and the hand configura-
tion. He observed that about half of the subjects were able
to recognize themselves but overall recognition was very
poor. From subjects’ feedback, Repp also found that sub-
jects were not very successful in identifying the sex and
the hand size of the clappers but they were very good at
recognizing the different hand configurations. Jylhd and
Erkut [6] presented a technique that can classify the clap-
ping styles of a clapper from synthetic and recorded hand
clapping sounds. On the synthesis side, Peltola et al. [15]
presented physics-based synthesis algorithms and various
control methods to generate sounds of single and a group
of clappers. In the first synthesis system, the modes of vi-
bration present in the clapping sound were modeled using
resonator filters, and their parameters were derived from
the recoded clapping sounds. The second system was de-
vised to synthesize the sound of various clapping styles
using a number of derived parameters from the experi-
mental measurement.
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In this paper, we propose an analysis based synthesis
algorithm, which parameterizes the pre-recoded clapping
sounds in the form of atoms and synthesis patterns, and
generate a sequence of claps from these parameters on the
fly. During the analysis process, the recorded sequences
of claps are initially segmented into individual claps, and
then stationary wavelet transform (SWT) is used to de-
compose them into sound grains. These sound grains form
the basis of the initial dictionary, which is further opti-
mized to produce a compact and adaptive version of dic-
tionary. The segmented claps are projected onto the adap-
tive dictionary which generates the synthesis patterns for
them. During the synthesis of clapping sounds, these pat-
terns are tuned according to the reported synthesis param-
eters either from the physical interaction or via the graphi-
cal user interface (GUI). This technique generates realistic
and expressive claps sound for interactive and multimedia
applications.

The detailed introduction of dictionary-based signal
analysis and representation methods is presented in sec-
tion 2. In section 3, the different blocks of the proposed
analysis-synthesis model are explained in detail. The need
for an expressive synthesis model and its importance in
the natural sound synthesis context are discussed in Sec-
tion 4. In section 5, the summary of achievements are
recapitulated and the future directions of the research are
highlighted.

2. DICTIONARY-BASED SIGNAL
REPRESENTATION TECHNIQUES

Conventional signal analysis and representation techniq-
ues, such as Fourier transform (FT) and short-time Fourier
transform (STFT), use Fourier basis to represent the signal
as a superposition of fixed basis functions i.e. sinusoids.
The Fourier basis functions provide a useful representa-
tion when considering stationary signals, but most real-
world everyday signals are nonstationary and transient.
Therefore, these analysis and representation techniques
are inadequate for such signals because of their poor lo-
calization both in time and frequency.

Over the last few years, researchers have been inves-
tigating new techniques which can represent signals in
a compact form and are specialized to the signal under
consideration. As a result, a number of basis functions
and representation techniques [19, 10, 2] have been de-
veloped, so that any input signal can be represented in a
way that is more compact, efficient and meaningful. One
of such techniques, which has gained a lot of recognition
in recent years, is the dictionary-based method as it offers
compact representation of the signal and is highly adap-
tive. Dictionary-based methods have been used in many
signal processing applications including analysis and rep-
resentation of audio signals [4, 20] and music [7].

In dictionary-based methods, an input signal is repre-
sented as a linear combination of atoms. These atoms are
prototype discrete-time signals, and a collection of K such
signals is referred to a dictionary. Let s be a discrete-time
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real signal of length n, i.e. s € R", and D = [¢1, 92, . . ., Pk]
be a dictionary, where each column ¢ represents an atom
and its length is n, i.e. D € R"*X. Using dictionary-based
methods, the aim is to represent s as a weighted sum of
atoms, which can be written as,

K
s=Y O u
k=1

where u is a column vector in RX and represents the ex-
pansion coefficients or weights. Generally, an overcom-
plete dictionary D (n < K) is used, which means the ma-
trix D has a rank n and the weights vector u in Eq. (1) will
not have a unique solution. Therefore, some additional
constraints need to be introduced to determine a unique or
particular decomposition.

The representation of a signal given in Eq. (1) is usu-
ally approximated instead of solving for an exact solu-
tion. An adequate and commonly used approximation of
Eq. (1) is the one where the signal s is represented by
selecting only j number of atoms from the dictionary D
corresponding to highest weights ;. Such representation
shows that the signal energy is predominated in few atoms
that have highest weights. Therefore, the approximation
of the signal s can be represented as,

€]

S = O up+r = Du+r 2)

J
k=1
where j is the number of selected atoms (j < K), and
r € R” is residual or approximation error. The selection
of atoms and their numbers are controlled by limiting the
value of approximation error. By applying such criterion,
the approximation solution given in Eq. (2) can be rede-

fined as,

s~ Du such that |[s—Dul|, <€ 3)

where € is a given small positive number. The approxi-
mation solution with the fewer number of atoms and cor-
responding weights is certainly an appealing representa-
tion. Sparse or compact approximation of a signal s is
measured using the ¢y criterion, which counts the number
of non-zero entries of the weights vector u € RX. Finding
the optimally sparse representation consists in finding the
solution of

“)

min |[ul|, such that ||s—Du|, <&
u

where ||ul|, is the £y-norm, which counts the number of
non-zero coefficient in weight vector u. The problem of
finding the optimally sparse representation, i.e. with min-
imum ||uf|,, is in general a combinatorial optimization
problem. Constraining the solution u to have the min-
imum number of nonzero elements creates an NP-hard
problem [13] and cannot be solved easily. Therefore, ap-
proximation algorithms, such as basis pursuit (BP) [2],
matching pursuit (MP) [10], and orthogonal matching pur-
suit (OMP) [14], are employed to compute an optimal ap-
proximation solution of Eq. (4). The MP and OMP algo-
rithms are classified as greedy methods, because they ap-
proximate the signal iteratively where at each iteration an
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Figure 1. Overview of proposed analysis-synthesis algorithm for clapping sounds.

atom is selected from the defined dictionary which maxi-
mally reduces the residual signal. These algorithms con-
verge rapidly, and exhibit good approximation properties
for given criterion [10].

The sparse approximation of Eq. (4) can also be im-
proved by using a specialized dictionary, which is trained
from the signals under consideration. Instead of using pre-
determined dictionaries, dictionary learning methods [1,
7] can be used to refine them. This topic is addressed in
detail in section 3.4.

3. ANALYSIS-SYNTHESIS ALGORITHM

A dictionary-based synthesis algorithm presented here ge-
nerates the clapping sounds using the parametric represen-
tation modeled from the recorded sounds. Fig. 1 depicts
the building blocks of the proposed analysis-synthesis sc-
heme. The algorithm takes recorded continuous clapping
sounds and split them into sound grains. During parame-
terization phase, the clapping sounds are represented by
synthesis patterns and an adaptive dictionary, which is
trained from these sound grains. The target clap is gen-
erated at the synthesis stage where a pattern is selected
and adjusted according to the reported parameters. In the
following sections, each part of the algorithm is discussed
in detail.

3.1. The Database

The proposed synthesis scheme models the hand clapping
sounds through the analysis of generated sounds. There-
fore, a set of hand clapping sounds were recorded. The
recordings of hand clapping sounds were made in an acou-
stical booth (T60 < 100 ms) at a sampling rate of 44.1
kHz. The recording was made with two males and one
female subject, all aged between 20 and 35. Each subject
was seated in the acoustical booth alone and a microphone
was placed about 100 cm away from their hands. Each
subject was asked to clap at their most comfortable or nat-
ural rate (i.e. clapping mode) using his/her conventional
hand configuration (i.e. clapping style). Then the subject
was asked to clap at very enthusiastic and very bored rates
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using the same clapping style. A sequence of 20 claps was
recorded in each clapping mode from each subject.

3.2. Segmentation and Peak Alignment

The first step during the analysis of recorded hand clap-
ping sound is to segment each sound signal into individ-
ual sound events i.e. single clap, which is represented by
s;. Each clap from a sequence of 20 is isolated by detect-
ing and labeling its onset and offset points. Onset of each
clap is labeled by using the energy distribution method
proposed by Masri et al. [11]. This method detects the
beginning of an impulsive event, such as clap, by observ-
ing the suddenness and the increase in energy of the attack
transient. Short-time energy of the signal is used to locate
the offset of each clap. Starting from the onset of each
event, the short-time energy is calculated with overlapped
frames, and compared against a constant threshold to de-
termine the offset.

There is no constraint on the number of claps or events
taken from each clapping mode. Equal or different num-
ber of events can be selected from each clapper and their
clapping modes. For simplicity, an equal number of claps,
i.e. 20, were taken from each clapping mode of a clap-
per. Once the claps are selected and segmented, they are
peak aligned by means of cross-correlation such that the
highest peaks occur at the same point in time. This in-
creases the similarities between the extracted sound grains
and improves the dictionary learning process. The set of
collected sound events are put into a matrix form as,

®)

S =[s1,82,...,Sm]

where each column represents a clap (sound event) and
length of each clap is n. Zero padding is used for any
segmented clap whose length is less than n. For this ex-
periment, n = 2048 and m = 180.

3.3. Sound Grains

The main idea behind the proposed analysis scheme is
that we want to represent the recorded clapping sounds
in a way that 1) the similarities and differences between
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Figure 2. (a) Decomposition tree of SWT, (b) SWT filters, (c) construction of a sound grain.

clapping sounds recorded from different subjects can be
observed and parameterized, and ii) this parametric repre-
sentation can be manipulated in various ways to generate
sound effects at synthesis stage. Clapping sounds belong
to transient signal family that is non-stationary. Based
on the frequency resolution properties of the human audi-
tory system, such signals can be split into layers of grains,
where the energy of each grain is present at particular fre-
quency or scale. The information in each grain and the
overall structure of these grains are analyzed and repre-
sented based on human auditory system. Such parametric
representation can be used to compare the characteristics
of different sounds [21]. Furthermore, during the synthe-
sis process, the parameters representing these grains can
be manipulated in various ways to control the generated
sound.

The discrete wavelet transform (DWT) has gained wi-
despread recognition and popularity due to its ability to
underline and represent time-varying spectral properties
of many transient and other nonstationary signals, and of-
fers localization both in time and frequency. Stationary
wavelet transform (SWT) [12, 16] is a real-valued exten-
sion to the standard DWT, which intended to solve the
shift-invariance problem of the DWT. Therefore, in the
proposed analysis scheme, the SWT is used to extract the
sound grains from the clapping sound.

The SWT is applied to each clap s; which decom-
poses it into two sets of wavelet coefficient vectors: the
approximation coefficients caj and the detail coefficients
cdy, where the subscript represents the level of decompo-
sition. The approximation coefficient vector cay is further
split into two parts, ca, and cda, using the scheme shown
in Fig. 2(a). This decomposition process continues up to
L™ level which produces the following set of coefficient
vectors: [edy,edy,...,cdy,car]. The approximation coef-
ficients represent the low-frequency components, whereas
the detail coefficients represent the high-frequency com-
ponents. To construct the sound grains from coefficients
vectors, the inverse SWT is applied to each coefficient
vector individually by setting all others to zero, which pro-
duces the following bandlimited sound grains: [A;,42,...,
Ar+1]. The block diagram of the process of acquiring the
sound grains from coefficient vectors is shown in Fig. 2(c).
Each grain contains unique information from the sound
event and its length is the same as the sound event. The
entire clap matrix S is split into sound grains which pro-
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duce grain matrix A = [A; : i = 1,2,..., p|, where A; form
the columns of the grain matrix and the number of total
grains are p =m x (L+1).

The selection of wavelet type from the family of wave-
lets (i.e. Haar, Daubechies, etc.) and their decomposi-
tion level depend on the input sound signal, application
area, and the representation model. This is an iterative
process where the best wavelet type and optimum decom-
position level are obtained by evaluating the perceived
quality of the synthesized sounds generated from the dif-
ferent wavelet types and decomposition levels. Based on
listening tests, db4 wavelet with 5-level decomposition
(L =5) is used in the presented work.

3.4. Dictionary and Synthesis Patterns

The proper parameterization of the sound features extract-
ed from the analysis part is an essential element of the
synthesis systems. In the proposed scheme, a dictionary-
based approach is used to create a parametric represen-
tation of the recorded sounds. The similarities and dif-
ferences of the sound grains, as well as their relation-
ships to the input sounds are preserved and reflected in
the presented parametric representation. One key advan-
tage of dictionary-based signal representation methods is
the adaptivity of the composing atoms. This gives the
user the ability to make a decomposition suited to specific
structures in a signal. Therefore, one can select a dic-
tionary either from a prespecified set of bases functions,
such as wavelets, wavelet packets, Gabor, cosine pack-
ets, chirplets, warplets etc., or design one by adapting its
content to fit a given set of signals, such as dictionary of
instrument-specific harmonic atoms [7].

Choosing a prespecified basis matrix is appealing be-
cause of its simplicity, but there is no guarantee that these
basis will lead to the compact representation of all type of
signals. The performance of such dictionaries depends on
how suitable they are to describe these signals. However,
there are many potential application areas, such as tran-
sient and complex music sound signals, where fixed basis
expansions are not well-suited to model this type of sig-
nals. A compact decomposition is best achieved when the
elements of the dictionary have strong similarities with
the signal under consideration. In this case, a fewer set
of more specialized basis functions in the dictionary is
needed to describe the significant characteristics of the
signal [7, 17, 8]. Ideally, the basis itself should be adapted
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to the specific class of signals which are used to compose
the original signal. As we are dealing with a specific class
of transient signals, we believe that it is more appropriate
to consider designing dictionaries based on learning.

Given training clapping sound and using adaptive trai-
ning process, we seek a dictionary that yields compact
representations of the claps matrix, S. Aharon et al. [1]
proposed such a method, named as K-SVD algorithm, wh-
ich trains a dictionary from the given training signals. The
K-SVD algorithm is a very effective technique, and has
been used in many image processing applications [3, 9]. It
is based on an iterative process of optimization to produce
a sparse representation of the given samples using the cur-
rent dictionary, and updating the atoms until the best rep-
resentation is reached. Dictionary columns are updated
along with the sparse representation coefficients related to
it which accelerate the convergence.

In the proposed scheme, the K-SVD algorithm is used
to train an adaptive dictionary D which determines the
best possible representation of the given clapping sounds.
The K-SVD algorithm takes the sound grains matrix A, as
initial dictionary Dy, a number of iterations j, and a set of
given example signals, i.e. claps matrix S. Finding sparser
representation of the sound events in S consists in solving
the optimization problem

min|[s; — Du;|3 such that Vi |[u], < To (6)
u;

where Ty is the number of non-zero entries in u;. The it-
eration of K-SVD algorithms is performed in two basic
steps: 1) given the current dictionary, the sound events in
S are sparse-coded which produce the sparse representa-
tions matrix U, and ii) using these current sparse represen-
tations, the dictionary atoms are updated. The algorithm
consists in updating the dictionary atom, one at a time,
and optimizing the defined target function associated with
it.

The orthogonal matching pursuit (OMP) is used to
find the decomposition pattern of the input claps over the
trained dictionary. The OMP is a greedy step-wise regres-
sion algorithm, and it is applied in the proposed scheme to
approximate the solution of the sparsity-constrained sparse
coding problem given in Eq. (6), where the dictionary
atoms have been normalized. This algorithm selects at
each stage the dictionary atom having the maximal pro-
jection onto the residual signal. The selected atom is sub-
tracted from the current signal and the residual is recom-
puted. The algorithm stops after a predetermined number
of steps, selecting a fix number of atoms 7y in every it-
eration. Now the claps matrix S can be fully represented
as a dictionary D and synthesis patterns U. The infor-
mation about the subjects and clapping modes are labeled
onto each synthesis pattern for future reference and for the
possible use during synthesis process.

3.5. Synthesis

To synthesize the target clap sound, the reported param-
eters and the controlling variables are employed to select

the best sound parameters. During synthesis process, a
clap sound from the claps matrix S can be synthesized by
selecting and adding the corresponding synthesis pattern
and the dictionary atoms, which can be written as,

82 ) 9 wi)) ™)

where vector J contains the 7p number of indices of the
non-zero entries in w;. The perceptual quality of the syn-
thesized clap sound §; is directly related to the number of
non-zero entries in u;. The quality of synthesized clap
sound §; improves sharply for the first few atoms but be-
come imperceptible after a particular value of Tp.

The synthesis Eq. (7) is used to generate a set of three
synthesized claps taken from three different subjects at
Ty = [5,10,15]. It can be observed from Figs. 3, 4, and 5
that as the number of non-zero entries 7j increases in the
weights vector u;, the synthesized clap closely approxi-
mate the original sound with the best approximation achi-
eved at the least value of Ty = 15, after which the gain in
the approximation is insignificant.
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Figure 3. Original and synthesized claps from subject-1
at Tp = [5,10,15].
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Figure 4. Magnified portion of original and synthesized
claps from subject-2 at Ty = [5,10, 15].
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Figure 5. Magnified portion of original and synthesized
claps from subject-3 at Ty = [5, 10, 15].

4. EXPRESSIVE SYNTHESIS

Two sound events generated consecutively by the same
sound source will be similar but not identical. For exam-
ple, when a person claps twice in the same way with the
same applied force, the generated clapping sounds will
be similar but not identical. The proposed algorithm can
synthesize example claps sound approximately from the
represented parameters, i.e. synthesis patterns U and a
dictionary D. A limited sequence of clapping sounds can
be generated from this representation, as the numbers of
synthesis pattern vectors are limited and fixed. Therefore,
the same set of claps’ sound will be repeated during long
impact sound sequences, which will make it perceptually
artificial in the ears of the listeners.

To generate more natural and customized sounds, an
expressive synthesis process is presented here. The pro-
posed method modifies the synthesis process given in Eq.
(7). This equation uses the represented parameters, U
and D, to synthesize a clap sound. Every time Eq. (7)
is executed to synthesize a clap sound §;, a weights vec-
tor w; is used to combine the dictionary atoms to generate
a clap. For expressive synthesis, when a clap sound §; is
generated, a small random vector & is added to the se-
lected weights vector u; such that the overall time-varying
spectrum of the clap sound is unchanged. The value of
«a is generated randomly over a hypersphere of radius R
with the origin at the weights vector of the generated clap
sound. Different ¢ vector is generated for every clap and
the length of « is equal to T because only non-zero en-
tries in u; are changed. Hence, The synthesis equation
given in Eq. (7) is modified for the expressive synthesis
process and can be rewritten as,

§i= Y ¢ wi+a]()).

jET

®)

The clapping sequence generated using Eq. (8) will be
similar but not identical, and they will also not be exact
copies of claps matrix U.

To generate example expressive claps sound, the ex-
pressive synthesis model defined in Eq. (8) is used. Two
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different settings of & are generated and used to modify
the selected u;. The original, approximated, and two ex-
pressive claps sounds are synthesized using 7o = 15. The
modified weights vectors and corresponding synthesized
claps are plotted in Figs. 6 and 7. It may be observed that
the synthesized claps using the expressive model are not
identical to the originals but perceptually similar. The lis-
teners gave the same feedback when these samples were
played back.
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= = =u +alphat
== =u+alpha2

I S-m-ns
e

Figure 6. Original and modified u; at 7o = 15.
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Figure 7. Magnified portion of original, synthesized ap-
proximated and expressive claps sound at 7p = 15.

5. CONCLUSIONS AND FUTURE WORK

An analysis based synthesis algorithm was presented here
which can synthesize clapping sounds from the represent-
ed parameters i.e. a set of atoms and synthesis patterns.
The atoms of the dictionary were first adaptively trained
from the recorded clapping sounds using K-SVD algo-
rithm, and then the synthesis patterns were generated by
projecting the sound events over the trained dictionary.
The target clapping sound was synthesized by selecting
and tuning the synthesis patterns and their correspond-
ing atoms from the dictionary. In addition, an expressive
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synthesis method was presented which can generate non-
repetitive and customized clapping sounds. The simulated
claps showed that as the number of non-zero entries in
weights vector increased to generate the target clap, the
synthesized clap sound gets closer to the original clap. In
some cases, even five weights (i.e. 7o = 5) and their cor-
responding atoms were sufficient to generate a clap with
a satisfactory level of perceived sound quality. It was also
observed that an approximation sound with Tp = 15 was
sufficient to yield an excellent perceived sound quality.

In future, we will create control models for a single
clapper and for several clappers with different clapping
modes. We would also like to further investigate the ex-
pressive synthesis model and analyze the distribution of
synthesis patterns of real life sound events and their pos-
sible statistical or mathematical modeling. We will then
evaluate the perceptual quality of the synthesis model us-
ing subjective tests.
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