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Abstract

Banded waveguides were originally introduced to al-
low for efficient physical modelling of bowed bar per-
cussion instruments. Recently the method has been
used to model instruments whose topology is more com-
plex. In this paper we discuss the use of the method on
circular topologies of conical, cylindrical and hemi-
spherical shells, specifically the Tibetan singing bowl
and the glass harmonica. The tibetan bowl poses a
special challenge to modeling as its sound production
is very resonant and also some mode-pairs lie close
together to create beating modes. In this paper we dis-
cuss how the simulation can be achieved using banded
waveguides.

1 Introduction

Though banded waveguides were initially introduc-
ed to model bar percussion instruments, that is instru-
ments that are well-described by one-dimensional par-
tial differential equations (Essl and Cook 1999), the
idea can be extended to objects of higher dimension-
ality or more complex topology (Essl and Cook 2001;
Essl and Cook 2002). Banded waveguides provide an
efficient alternative to more general finite element meth-
ods (O’Brien, Cook, and Essl 2001), but to achieve
proper spatial representation, the relation of the geom-
etry to closed wavetrains has to be studied. In a purely
modal synthesis approach the spatial information has
to be aquired by measurement over the whole object
(van den Doel, Kry, and Pai 2001). Some work in the
direction of banded waveguides on higher-dimensional
topologies has been made for two-dimensional circular
objects like drums (Essl and Cook 2001) and cymbals
(Serafin, Huang, and Smith 2001) and three-dimension-
al objects like rubbed wine glasses and glass harmoni-
cas (Essl and Cook 2001).

In this paper we look at circularily symmetric three-
dimensional structures. These are cylindrical shells,
conical shells, hemispherical shells and the like, with
the additional constraint that the dominating modes of
oscillation have circular paths. In part this is an exten-
sion of the work initially reported in (Essl and Cook
2001) for wine glasses. We study also the so-called
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“Tibetan singing bow!”. The tibetan bowl provides ad-
ditional challenges as it has more perceptually relevant
resonant modes as well as modes which are close in
frequency and yield a perceptual beating pattern. Fi-
nally the Tibetan bowl is very highly resonant, that is
has very weak internal damping and hence will ring for
a very long time.

2 Rubbing a Wine Glass

Courtesy Ed Gaida

Figure 1: Benjamin Franklin’s glass harmonica, which
he called “armonica”, as seen in the Franklin Institute
Science Museum in Philadelphia.

Drinking glasses, in particular wine glasses, can be
made to ring in many different ways. They can be ex-
cited by impact, by rubbing the top rim with a wet fin-
ger, or by radially bowing with a violin bow. While im-
pact can easily be simulated using modal models, rub-
bing and bowing cannot. Geometrically, a wine glass
is a three-dimensional object and disturbances travel
along the object in all dimensions. The object is sym-
metrical, however, and the dominant modes are essen-
tially two-dimensional (Rossing 2000). One is left with
bending modes along the cylindrical axis, which can
be excited by rubbing, plucking or bowing, but most of
the energy really goes into flexual modes of the circum-
fence of the glass. This is a closed path — essentially
a bar being bent into a circular shape, closing onto it-



self. Hence the path is quasi one-dimensional. The
path traced along the wine glass can be seen in Figure
2.

(a) 3-D model view

(b) Top view

Figure 2: The wavetrain closure on the rim of a wine
glass and corresponding flexual waves as seen from the
top (after Rossing 2000).

From the distance to be traveled along the rim, the
circumfence of a circle I = 27r, and the wave veloc-
ity of flexual waves on a uniform homogeneous bar
we can derive the actual frequency and its connection
to traveling length (Rossing 2000), which completely
determines the wavetrain closure to be modeled:
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Due to the circularity of the path, the banded wave-
guide system makes no reference to the actual position
on the rim. In practice, however, the point of inter-
action provides this reference. If the glass is struck,
the point of excitation is defined along the circle. The
same is true for bowing, which usually happens at one
point radially to the rim. Rubbing the rim is a peculiar
case because the point of interaction is moving slowly
along the path. In our model we make no difference
between rubbing and bowing as the rubbing is a very
slow motion compared to the wave traveling on the
path and hence treating the rubbing interaction as sta-
tionary does not significantly alter the non-linear be-
havior. The effect of the slowly shifting interaction
point is measurable, though not audible as it is too slow
(Rossing 2000).

The results are presented in Table 1. The struck
excitation was a quick sharp strike with a finger nail
against the glass, which was modeled using a simple
impulse. Bowing on the real glass was performed using
a rosined violin bow. The rubbing was performed with
a wet finger. With the violin bow it is possible to excite
the second harmonic as the fundamental frequency of
the bowing response. The same result can also easily
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Struck Rubbed Bowed
n | measured sim. measured measured sim.
2 2.32 2.31 2.00 2.00 2.00
3 4.25 4.20 3.00 2.99 3.00
4 6.63 6.69 4.00 4.00
5 9.38 8.81 5.00 5.00 5.00

Table 1: Spectral frequencies of dominant partials of
measured and simulated struck, rubbed and bowed
wine glass given as fp : f1.

be achieved using the simulation model. The simula-
tion model captures both the harmonic spectra as well
as a other non-linear effects of the real interaction. We
did not model a rubbed interaction separately as we
assume it follows in principle the same mechanism as
bowing (Fenny, Guran, Hinrichs, and Popp 1998).

3 Tibetan Singing Bowl

Courtesy James F. O’Brien

Figure 3: Mesh of simulated bowl.

The tibetan singing bowl are geometrically close to
spherical segments. A discretized mesh version of the
bowl can be seen in Figure 3). In typical performance
the bowl is rubbed with a wooden stick wrapped in a
thin sheet of leather along it’s rim. Depending on the
rubbing velocity and initial state of the bow (i.e. cer-
tain modes may be already ringing), various frequen-

cies can be made to oscillate. The behavior is comparable

to rubbing or bowing a wine glass in terms of dynamic
envelope, mode locking, mode duplication and related
phenomenon as a result of the non-linear interaction of
the stick-slip-based rubbing.

If struck, the bowl will show a modal response of
circular-symmetric form. The first few modal shapes
are depicted in Figure 4 with exaggerated amplitudes.
These shapes will oscillate around the circular rest po-
sition comparable to circular flexing motion of the wine
glass depicted in Figure 2. The circularily repeating
pattern is depicted in Figure 5. This picture also shows
non-circular modes, which tend not to be excited by the
circular rubbing motion.

The measured spectra of the struck bowl can be
seen in Figure 6 for various impact positions. As can
be seen, there are a number of higher modes which lie



Courtesy James F. O’Brien

Figure 4: Simulated mode shapes of the bowl.

Circular
mode

Figure 5: Path of circular mode on bowl (used with
permission from (Cook 2002).)

close together yielding audible beating. The beating
can be seen more clearly in Figure 7.
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Figure 6: Spectra of different excitations (used with
permission from (Cook 2002).)

3.1 Beating Banded Waveguides

The beating modes combined with the very weak
damping poses the main challange for modeling the dy-
namics using banded waveguides (as depicted in Figure
8.)

For two neighboring banded wavepaths whose cen-

ter frequencies get close, the respective frequency-bands

start to overlap strongly. This means that energy will
contribute to traveling waves in both bands simulta-
neously. To guarantee stability within the frequency
region the sum gain of both waveguides can not ex-
ceed unity as both are summed together for interac-
tion or feedback. More specifically the gain of the re-
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Figure 7: Beating upper partials in spectrogram of a
recorded Tibetan bowl.
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Figure 8: A complete banded waveguide system.

spective banded wavepaths can be calculated from the
maximum of the overlapping bandpass filter amplitude
characteristics. This maximum has to be tuned to the
desired gain and the respective gain of the bandpasses
is adjusted by the weight of the overlap. The result-
ing simulation of an isolated beating mode pair can be
seen in Figure 9. The relative ratio between the modes
is1:1.05.

The beating modes following this construct, com-
bined with plain modes then yields the complete sim-
ulation of the Tibetan bowl, which can be achieved
with less than 20 banded wavepaths including beating
mode-pairs.

4 Conclusion

Banded waveguide models on higher-dimensional
objects need additional consideration to understand how
quasi-one-dimensional traveling wave paths correspond
to the higher-dimensional topologies. The current work
shows how cases of cylindrical shells or related topolo-
gies of circular thin-layered symmetry can be seen as
thin bars bent into circular shape and connected at its
ends. With this observation, musical instruments like
glass harmonicas or Tibetan singing bowls can be ef-
ficiently implemented while retaining the benefits of
banded waveguide simulation with regards to non-linear
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Figure 9: Left: Evolution of an isolated simulation of a
beating mode pair. Right: Initial transient and the first
beating period.

interactions like bowing, rubbing or other related stick-
slip friction excitations.

Beating modes can be implemented by balancing
the gain of the bandpass filters of two banded wavepaths.
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