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Abstract
An artificial neural network known as SONNET [Nigrin, 1993], which is capable of classifying
temporal patterns from a continuous sequential input, is described. When the network is exposed to a
sequence of inter-onset-intervals, it is able to detect rhythmic repetition without being supplied with any
additional information, e.g. metrical structure. Therefore, the network can be incorporated within a
model of rhythm perception to assist with the determination of grouping and metrical structures.

Results of network simulations are presented.

1 Introduction

Repetition is an important factor when considering
rhythm perception, as it contributes towards the
formation of the grouping and metrical structures.
When discussing grouping principles, Deutsch
[1986] states that "repetition of a subsequence within
a sequence induces the listener to group the elements
of the subsequence together”. Repetition is also a
perceptual cue for metre [Palmer and Krumhansl,
1990], as a repeated rhythmic pattern is likely to
occur in the same metric position. Lerdahl and
Jackendoff [1983] refer to similar passages of music
as being "parallel”. Parallelism is included in their
"Preference Rules" for grouping and metrical
structure. Longuet-Higgins and Lee [1982] have
developed a model for the perception of musical
rhythms. They concluded that the inability of the
model to take account of rhythmic repetition was a
serious limitation.

The current paper describes an artificial neural
network which is capable of detecting rhythmic
repetition. Similar research has been carried out by
Rosenthal [1989], who developed a computer model
that constructs a hierarchical description of a rhythm.
Rosenthal's model uses information about metrical
structure to assist with the segmentation of the
incoming events. ‘The motivation for the work
presented in the current paper, is to develop a system
which will support the determination of a rhythm's
grouping and metrical structures. Therefore,
segmentation is based only on the regularities
inherent within the input environment. The neural
network encodes information about the structure of
recurring rhythmic patterns, and is also able to
generate expectations. This is beneficial for a model
of rhythm perception [Desain, 1992].

2 SONNET Overview

SONNET (Self-Organising Neural Network)
[Nigrin, 1993] is an artificial neural network which
is capable of classifying patterns from a continually
changing input. When the network is exposed to an
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environment it self-organises, using unsupervised
learning, to form stable categories for recurring
patterns which exist within the environment. The
network creates its own segmentations in response to
a stream of incoming events, and is therefore
potentially suitable for real-time operation.

SONNET can recognise patterns which are
surrounded by extraneous information (embedded
patterns) in a context-sensitive manner. That is,
when a long, previously learned pattern is presented
to the network, SONNET allows the category for that
pattern to mask out categories which represent
constituent parts of it. (Neural networks which
possess this property are known as masking fields.)
Alternatively, if a sub-part of the long pattern is
presented, then a corresponding smaller category is
able to classify the shorter pattern. In addition,
SONNET allows multiple existing categories to
represent novel large patterns.

SONNET also has a number of other desirable
features, such as the ability to operate using different
learning  speeds, create arbitrarily coarse
classifications, generate expectations, and represent
hierarchical structures.

3 Description of SONNET

The network consists of two fields of cells: F; and
F,. The input is applied at F;, which acts as a short-
term memory (STM) and converts a temporal
sequence of events into a spatial pattern. The
activities of the cells in F; are fed forward to each of
the cells in the F, field via bottom-up excitatory
connections. The F, cells classify the F; patterns.
When a novel pattern exists at F;, many F, cells will
obtain low activations. After learning, a single F,
cell will activate strongly whenever its corresponding
pattern exists at F,. The F, cell is said to be
committed to the pattern. The long-term memory
representation is stored by the magnitude of the
excitatory weights on the bottom-up connections to
each F, cell. The network architecture described
above is based on the Adaptive Resonance Theory
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circuits developed by Carpenter and Grossberg. (See
for example [Carpenter and Grossberg, 1987]).

As learning progresses, the network self-organises
into a masking field, where the F, cells have different
"sizes”. The "size" of an F, cell increases with the
number of strong bottom-up connections associated
with that cell, thus "larger” F, cells classify longer
patterns. The F, cells compete to gain a high
activation via lateral, non-uniform inhibitory
connections. The inhibitory connectivity pattern is
initially uniform, but as the network is exposed to an
environment the inhibitory weights self-organise.
Eventually, only F, cells which respond to
overlapping patterns provide mutual inhibition,
i.e. patterns which have items in common. Top-
down feedback connections from the F, field to the F,
field allow expectation to be introduced. The
feedback weights self-organise so that they become
approximately parallel to the bottom-up weights.

4  Application of SONNET to the

Detection of Rhythmic Repetition

The network was implemented with each F, cell
representing a particular inter-onset-interval (IOI),
measured in musical time, i.e. beats at some metrical
level. An additional system is required to identify
and track the beats of a particular metrical level,
e.g.tactus, to allow the network to be tempo
invariant. Also, some form of pre-processing is
required to convert an IOl to a place on a spatial
map, to allow the correct F; cell to be fired. A
supervised neural network, such as a multi-layer
perceptron trained using back-propagation of error,
could be used in the input stage. In the network
simulations, the correct mapping was contrived and
the F; cells were fired accordingly.

After firing, an F cell's activation increases. When
the next IOl is detected, its corresponding F; cell will
fire and the currently active F; cells will increase
their activity. The activitics increase with time to
enable expectations to be correctly generated. (See
Nigrin [1993] for further details.) However, in the
simulations, the top-down feedback connections were
disabled, so no expectations were generated. To
prevent F; overload, a number of the most active F;
cells are reset after the total activity in the F, field
has exceeded some threshold. In the simulations, the
threshold was set so that F; reset would occur after
7I0Is were held in the STM. This value is the
typical STM depth for humans [Miller, 1956]. After
an F, cell has become committed to a pattern, it is
able to chunk-out its pattern from the STM, thus
reducing the total activity in the F field.

A restriction is placed on the length of a pattern
which can be learnt by an F, cell. The maximum
length was chosen to be commensurate with the
number of items which humans can recall before
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order information becomes confused. This is known
as the transient memory span and has a typical value
of 4 items [Miller, 1956].

Rhythms often only consist of a few different IOIs,
so it is necessary for multiple F; cells to correspond
to the same IOI, to allow repeated 10Is to be present
in the STM. So, the number of required F, cells is
dependent on the number of different IOIs to be
represented, and the maximum number of
occurrences of a particular IOI to be held in the STM.
The latter was taken to equal the STM depth, ie. 7 F,
cells relate to the same IOI. Now, when an IOI is
presented to the network, one of its associated
inactive F cells will fire. The network architecture
is shown in Figure 1.

Allowing multiple F, cells to represent a single I0I
increases the complexity of the network. The reason
for this is best explained using an example. Let Q;,
Q,,...Q7 denote 7 F, cells, each of which represents a
quarter-note IOL. If 3 of these cells are activated in
the order Q;, Q,, Q4 and an F, cell starts to learn this
pattern, then this F, cell should respond to 1]
regardless of how it is stored in the STM. Therefore,
the F, cell should respond equally well to the patterns
Q3Q,Q;, QsQ4Qy or any other permutation of 3 F,;
cells representing consecutive quarter-notes.

Nigrin {1993] achieves this behaviour by allowing
multiple links to exist from each F; cell to each F,
cell. Each link represents an occurrence of the F;
cell's associated IOI, in a particular position in the
pattern encoded by the F, cell. The earlier the
position in the pattern, the larger the excitatory
weight on the link. This mechanism can self-
organise assuming that an F, cell can identify which
F, cells represent the same IOL.

Network Output

1 |

0O 0O...0 "

N\ S

N\ S

Spatial Map (Pre-processor)

Figure 1: SONNET architecture with multiple F| cells
representing the same IOl. F is fully connected to Fy via
bottom-up excitatory links, with multiple links from each
Fj cell to each Fy cell. The lateral inhibitory connections
in the F) field and the top-down feedback connections are
not shown.

126 ICMC Proceedings 1994



We developed slight modifications to enable
embedded patterns to be recognised, when multiple
occurrences of an IOl could be stored in the STM.
For example, suppose an F, cell has leamed the
pattern )ﬁ . The modifications were necessary to
allow this cell to recognise that its pattern had
recently occurred, when sequences like dJddJdJ
were held in the STM.

5 Simulations

The same network architecture and network
parameters were used for each of the sequences that
were presented. The sequences collectively contained
8 different 10Is, so 56 F; cells were used to allow
7 occurrences of each IO! to be held in the STM.
Twenty-five F, cells were used, i.e. a maximum of
25 patterns could be encoded by the network. The
cell activities and all of the weights were only
permitted to change during a fixed time period after
each IOl was presented. This time period will be
referred to as the attention-span. An attention-span
of 0.2s was chosen by considering the shortest IOI,
from each sequence, at a typical tempo. (NB: The
simulations were run in pseudo real-time.)

A parameter which greatly affects SONNET's
ability to detect rhythmic repetition is known as the
learning rate. A high leaming rate enables the
network to learn patterns very quickly, but may
prevent regularities in the input from being
identified. A low learning rate allows recurring
patterns and embedded pattemns to be learnt, but more
sequence presentations are required. A low learning
rate was chosen to allow the network to learn
regularities from the sequences.

Each sequence was presented 30times in a
continuous manner, i.e. the first IOl of the sequence
followed directly on from the last IOl of the previous
presentation. The input sequences were based on the
rhythms displayed in Figure 2. These rhythms differ
by length, complexity of rhythmic structure, and time
signature.  Figure 3 shows how the network
segmented each sequence on the 30th presentation.

Bolero
TR ThI \rTAr rR |
Greenslecves

S5 DI HITII D) B
14250 AN

Kong Kristian (Danish Royal Anthem)

10000100010 1 10 %y
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[JJ3d 10 0310 0 30011
03 1LNIl 3

Figure 2: Rhythms used to form input sequences
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Figure 3: The segmentation of each sequence, performed
by the network on the last sequence presentation.

When SONNET was exposed to a sequence, it
gradually formed categories, with the most frequently
occurring patterns being encoded the earliest. The
ability to recognise a recurring pattern is dependent
on the number of contexts in which that pattern
appears. For example, when the Bolero sequence was
presented, the network failed to recognise every
occurrence of I, because SONNET could not form a
category for J ] (which occurs at the end of the first
bar), as this pattern always occurred in the same
context. Unless short patterns are presented in
multiple contexts, SONNET lumps them together
with the surrounding IOIs. This problem could be
overcome if top-down feedback were used. A
committed F, cell would then be able to suppress
other F, cells when its pattern is only partly present
at F;, and the remainder of its pattern is expected.

For Bolero, no F, cell encoded the pattern th
because, after an F, cell had become committed to ITh,
an uncommitted F, cell could only respond to the
triplet alone when it was not preceded by an eighth-
note (otherwise it received a large inhibitory signal),
This only happens at the end of the second bar, so an
uncommitted F, cell could only respond to the triplet
in one context. Consequently, a maximal length
pattern of 4 IOIs was formed.

After SONNET had classified the commonly
recurring pattemns, categories continued to form until
a stable representation was obtained for the entire
sequence. The number of presentations necessary to
achieve a stable representation increased with the
complexity of the sequence structure.  Bolero
required 6 presentations, Greensleeves required 13
and Kong Kristian required 20 presentations.

For Greensleeves, SONNET only failed to detect
the repetition of JJJ. This was because d. was
always preceded by this pattern and so the network
lumped all of these IOIs together.

As Kong Kristian has a more complex structure,
the repeating patterns occur in multiple contexts, and
therefore SONNET was able to detect all of the
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rhythmic repetition. During the presentation of this
sequence, SONNET allowed 2 F, cells to
simultaneously classify their patterns, as there was no
overlap between these patterns. This occurred when
the F, cell encoding a quarter-note combined with the
F, cell encoding ¢ 4to representJ {.

After SONNET was exposed to the Greensleeves or
Kong Kristian sequences, some committed F, cells
had become redundant, i.e.these. cells never
classified their patterns on later presentations. The
reason for this was that the patterns which these cells
encoded became partly chunked-out of the F; field, as
further regularities were classified by other F, cells.
For example, during the first presentation of
Greensleeves, an F, cell became committed to J3.3) .
After the patterns ﬁ and J-3) had been encoded by the
network, this cell became redundant.

As SONNET only uses regularities in the input to
form its categories, the resulting segmentations are
not necessarily human-like, as humans involve many
principles when grouping IOIs together. If the
attention-span increased with IOI, then segmented
patterns are likely to end with a long [OI, thus the
network would produce more  human-like
segmentations. This grouping organisation is known
as the gap principle [Deutsch, 1986]. Music
psychologists can benefit from SONNET, because
factors which affect the segmentation of a continuous
stream of I0Is can be investigated in isolation. For
example, the attention-span can be varied to analyse
to what extent longer 1OIs affect grouping.

6 Further Work

The above simulations served as a preliminary
investigation into the performance of SONNET for
the detection of rhythmic repetition. A number of
alterations are required to create a more compact and
elegant system. In the work discussed above, there
are 2 distinct representations for time: a particular F,
cell represents a specific IOl and the F; activity
pattern encodes‘the order information. The STM can
be implemented so that the F, activity pattern
represents both the IOIs and the order in which these
occur. This is achieved by continuously modifying
the F; cell activities at short, regular intervals in
time, as opposed to only allowing modification to
take place during a fixed time period after an event
occurs. The firing of an F; cell would then simply
correspond to the occurrence of an event onset, thus
the number of F,; cells would depend only on the
required STM depth. Fewer F, cells is advantageous
for the simulations, because the computation time
increases dramatically with the number of cells in the
network. Also, with this STM implementation, no
pre-processing is required to convert an IOI to a place
on a spatial map. The absence of a pre-processing
system overcomes the need to deal with expressive
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timing in the input stage. Expressive timing can now
be processed directly by the SONNET network, as a
vigilance parameter controls the coarseness of the
classifications.

Multiple SONNET networks can be lumped
together to form a hierarchical structure. This
property is desirable for the classification of patterns
which are inherently hierarchical, such as musical
rhythms. Future work will investigate the
performance of lumped SONNET networks.

7 Summary

An artificial neural network, known as SONNET,
which can classify temporal patterns from a
continuous sequential input, has been described.
SONNET's ability to detect rhythmic repetition has
been demonstrated, by exposing it to 3 different
sequences of I0Is. The network is useful for rhythm
perception models because grouping structure and
metrical structure are dependent on repetition.
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