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Abstract

There are musical activities in which we are faced
with symbolic and sub-symbolic processes. This
research focuses on the question whether there
is any advantage in integrating a neural network
together with a distributed artificial intelligence
approach in the musical domain.

In this work, we present a new approach for
composing and analyzing polyphonic music. As
a case study, we began experimenting with first
species two-part counterpoint melodies. Qur sys-
tem design is inspired by the cognitive process of
a human musician. We have developed a hybrid
system composed of a connectionist module and
an agent-based module to combine the symbolic
and sub-symbolic levels to achieve this task.

The network produces aesthetic melodies
based on the training examples it was given. The
agents choose which are the next notes in the
two-part melodies by negotiating over the possi-
ble combinations of notes suggested by the net-
work.
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1 Introduction

The researchers in computer music that chose to
use techniques from Artificial Intelligence (AI)
and Neural Networks (NN) explore complex mu-
sical tasks such as composing, listening, analyz-
ing, and performance. Research in Al and NN
can itself benefit from results in music research;
in music, for example, terms like time and hi-
erarchical structure are inherent to the domain.
Simulating and modeling a musician activities
are tasks adequate for experimenting with in the
framework of artificial intelligence. The cogni-
tive processes a musician undergoes are complex
and non trivial to model. Whenever we are in-
volved in any musical activity we are faced with
symbolic and sub-symbolic processes. While lis-
tening, our aesthetic judgment is not necessarily
achieved by following explicit rules. Applying a
learning mechanism has been shown to be a con-
venient (and appropriate) way to overcome the
explicit formulation of rules. Nevertheless, some
of these aesthetic processes might have a sym-
bolic representation and might be specified by a
rule-based system. We also think the research in
Distributed Artificial Intelligence (DAI) [BG88]
can contribute to developing new methods for
computer music. For example, an interesting
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research question to investigate is the analogy
between the dynamics of the performance of a
group of musical instruments or voices in a vocal
ensemble to agents [WFG*95] and their interac-
tions in the DAI sense.

The primary purpose of our work is to build a
hybrid system architecture for composing poly-
phonic music in real time. This system can serve
as an interactive work tool for a composer or
as a real time performance tool. The system is
also useful for composition and analysis. The
approach we suggest in this work, enables the
musician to encode his knowledge, intuitions and
aesthetic taste in different modules. The system
captures these aspects by computing three dis-
tinct functions: rules, fuzzy concepts and learn-
ing.

The implementation we present in this paper
considers the composition of polyphonic music in
real time. The case study we have chosen to ex-
periment with is the polyphonic vocal style of the
sixteenth century; more specifically, we investi-
gate two-part species counterpoint (i.e, bicinia).
Our system, NetNeg, is composed of two main
sub-systems. It creates both counterpoint parts
dynamically. One sub-system is implemented by
a modified version of Jordan’s sequential neu-
ral network [Jor86]. The second one is a two-
agent model based on Distributed Artificial In-
telligence [BG88]. These agents negotiate with
one another to maximize the global utility of the
whole system, which for our purposes should be
interpreted as the global quality of the composi-
tion.

In spite of the simplicity of the problem our
current system can serve as a basis for further
investigation of more complex musical problems.

2 The General Architecture

The overall design of our system reflects the cog-
nitive processes that a musician undergoes when
he is involved in a musical activity. We distin-
guish among three main aspects that are impor-
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tant for a musician to take into consideration.
We suggest to enable the musician to encode his
knowledge (e.g., rules for a known style, or rules
he has invented), intuitions (i.e. fuzzy concepts
about the music he is interested in composing),
and aesthetic taste, in different modules.

The system will be composed of agents [BG8S].
The agents will communicate, cooperate and
share tasks in order to improve the global per-
formance of the system. Each agent knows rules
of a specific style and heuristic rules that take
into consideration different aspects of the prob-
lem, that the system is aimed at solving. The
aesthetic taste referred to above, might be cap-
tured by a learning mechanism (e.g. a neural
network) that will give advice to the agents.

An example, that we have implemented and
will present in the following sections, refers to
the problem of composing polyphonic music in
real time. This implementation demonstrates a
specific solution using the approach presented in
this section.

3 NetNeg’s Architecture

In many musical styles, the composer needs to
create different sequences of notes (i.e., melody
lines) that will be played simultaneously. Each
sequence should follow some aesthetic criterion,
and in addition the sequences should sound ap-
propriate when combined. This overall composi-
tion is the result of many interactions among its
components. The musician achieves his overall
result by compromising between the perfection
of a single component and the combination of se-
quences as a whole. Thus, in this activity there s
a constant tradeoff between the quality of a sin-
gle sequence versus the quality of the combined
group of sequences. When a musician is faced
with such task, he is involved in a cognitive pro-
cess, that we suggest it might be seen as a nego-
tiation process. He has to compromise between
the melodies’ notes by choosing from among the
permitted notes those that are preferable.
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The case study we chose to experiment deals
with first species of two part counterpoint
melodies. In NetNeg, we create both parts dy-
namically, in real time. Therefore, the system
is not allowed to perform backtracking. How-
ever, the current context is taken into account
to produce the next note in the melody. A gen-
eral view of the architecture of NetNeg is shown
in Figure 1.

mapping to
13 values

(Do,Re)

(La,Fa)
State Units

\/\/ o2

Plan Units

Figure 1: The NetNeg Architecture

NetNeg is composed of two sub-systems: a
connectionist sub-system and a DAI-based sub-
system. Each part of the melody is produced
independently by a neural network. In the train-
ing phase, the network learned to reproduce
a series of learning examples that were taken
from [Jep92]. In the generalization phase, the
network predicts in the output layer a vector of
expectations for the next note in the melody.
Fach agent receives a different output vector
from the network. On the one hand, each agent
has to act according to his voice’s aesthetic crite-
ria; and on the other hand, he has to regard the
other voice-agent such that both together will
result in a two-part counterpoint. Both agents
will have to negotiate over all the other possible
combinations to obtain a globally superior re-
sult. Thus, they influence the context with their
agreement. Then, the network will predict an-
other output vector given this new context and
the initial values of the plan units. This pro-
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cess continues sequentially until the melodies are
completed.

3.1 The Connectionist Subsystem

Each part of the melody is produced inde-
pendently by a neural network impemented in
Planet [Miy91]. Todd [Tod89] has already sug-
gested a sequential neural network that can learn
a sequence of melody notes. Currently, our neu-
ral network is based on the same idea, although
we have extended it to include the representation
of the contour of the melody.

We built a three-layer sequential net, that
learns series of notes. Each series is a one part
melody (i.e., cantus firmus). Each sequence of
notes is labeled by a vector of plan units. The net
is a version of a feedforward backpropagation net
with feedback loops from the output layer to the
state units (in the input layer). The state units
in the input layer and the units in the output
layer represent the pitch and the contour. The
state units represent the context of the melody,
which is composed of the notes produced so far.
The output unit activations vector represents the
distribution of the predictions for the next note
in the melody for the given current context. The
role of the plan units is to label different se-
quences of notes. In the generalization phase,
we can interpolate and extrapolate the values of
the plan units so as to yield new melodies (i.e.,
new cantus firmi). At each step, the net is fed
with the output values of the previous step in the
state units together with the values of the plan
units. These values will cause the next element
in the sequence to appear in the output layer and
it will be propagated as feedback into the state
units (these connections do not appear in Fig-
ure 1). The current values of the state units are
composed of the previous values multiplied by a
decay parameter and the current output values.

The state units and the output layer can rep-
resent the notes in different ways. In this imple-
mentation, we choose to represent the notes as a
vector of 19 units. The first eight units encode
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the pitch. The next nine units represent intervals
between the notes. The last two units describe
whether the movement of the melody is ascen-
dent or descendent (we will refer to these units
as the movement units). For example, if the cur-
rent tone is DO(C), the net predicts both RE(D)
and FA(F) as the next best tones, and the ascen-
dent movement unit is on, then the interval can
help us to decide which tone to choose (i.e., one
tone or two and a half tones). If after the net
has chosen the tone SOL(G), it predicts LA(A)
or FA(F) and the interval is of one tone, then
we could choose whether to descend or ascend
based on the activations of the movement units.
In order to exploit the information encoded out
in the output units activations, we have com-
bined the pitch activations with the interval and
the movement activations We have mapped the
activations of the output units into a vector of
thirteen activations corresponding to the notes
in more than an octave and a half.

Each agent receives the 13-length vector, and
feed the state units with their agreement (see
Figure 1 and Subsection 3.2). Then, the net-
work will predict another output vector given
this new context and the initial values of the plan
units. This process continues sequentially until
the melodies are completed.

3.2 The DAI-Based Subsystem

We have implemented the agent module using
the Mice testbed [MLM*92]. We consider each
part (i.e., voice) of the melody as an agent. Each
agent’s goal is to compose his melody by choos-
ing the right notes. On the one hand, he has to
act according to the aesthetic criteria that exist
for his voice; at the same time, he has to compose
the voice in a manner compatible with the other
voice-agent such that both together will result in
a two-part counterpoint.

At every time unit in our simulations, each
agent receives from the network a vector of ac-
tivations for all the notes among which he can
choose. Were the agent alone in the system, he
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would have chosen the note that got the high-
est activation from the neural network, meaning
that this note is the one most expected to be next
in the melody. But, in order to compose species,
both agents will have to negotiate [RZ94] over
all the other possible combinations to obtain a
globally superior result.

In principle, each agent can suggest any of the
n possible notes received from the network. Not
all of these pairs of notes combinations are legal
according to the rules of the species. In addition,
there are specific combinations that are preferred
over others for the current context. This idea is
expressed in this module by computing a utility
function for each pair of notes. In this sense, the
goal of the agents is to agree on the pair of notes
that is legal and has also achieved the maximal
utility value among all the other options.

At each time unit, for each pair of notes, the
agents start a negotiation process at the end of
which a new note is added to each of the current
melodies. Each agent sends to the other all of its
notes, one at a time, and saves the pair consisting
of his note and the other agent’s note that is legal
according to the first species style rules and that
has yielded the maximal utility so far. At the
end of this process the pair that has achieved the
maximal utility is chosen. Both agents feed the
network with this result as the current context
so that the network can predict the next output.
Each agent, then, receives a new input based on
this output and the negotiation step is repeated
until the melody is completed.

We define the system utility function to ex-
press the rules given by Jeppesen in [Jep92]. A
pair of notes is considered legal according to the
following rules:

1. The intervals between pairs of notes in the
two part melodies should not be dissonant.

2. There should be perfect consonance in the
first and last place of the melody.

3. Unison is only permitted in the first or last
place of the melody.

4. Hidden and parallel fifths and octaves are
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not permitted.

5. The difference between the previous and the
current interval (when it is a fifth or an oc-
tave) should be two.

6. The interval between both tones cannot be
greater than a tenth.

7. At most four thirds or sixths are allowed.

8. If both parts skip in the same direction,
none of them will skip more than a fourth.

9. In each part, the new tone is different from

the previous one.

In our system, we also don’t allow to have

more than two perfect consonants in the two

part contra-punct (not including the first
and last notes).

10.

The utility function we chose is one example of
a function that computes all the aspects we de-
scribed in Section 2. The intuitions in this exam-
ple are captured by preferring contrary motion.
The function values will be determined accord-
ing to whether the pairs of notes are legal or ille-
gal based on the rules given above, and whether
they are more preferred or less preferred, based
on the net advice and fuzzy concepts given by
the musician (e.g., contrary motion).

We have considered the contrary motion in
this function because this type of motion pro-
duces the most natural and appropriate effect
for this kind of music (as noticed by Jeppe-
sen [Jep92]).

4 Experiments

We have first run every subsystem separately to
examine the ability of each one of the two ap-
proaches (i.e, Neural Nets and agents) in order
to cope with the general problem. We, then run
the integrated system, and present results from
all these simulations. In this way, we can show
the ability of the whole system in producing bet-
ter results, as opposed to the performance of each
of the subsystems. Taking into consideration all
the modules together gave us a more natural way
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to deal with the processing and the representa-
tion of our task.

4.1 Running the Net module

The task of the net was to learn to produce two
new part melodies. This is a different case as the
one faced by the whole system, in which only one
part melodies were taught. Therefore, we needed
to represent both parts of the melody simulta-
neously. We used the same sequential net that
was described in Subsection 3.1. In this case, we
doubled the number of the units in each layer to
represent two notes simultaneoulsy, one for each
part. In the learning phase the net was given
four melodies, containing the two parts. One ex-
ample from this set of melodies follows:
Vi:re8 do8 mi8 la do8 si la do8 re8
V2:7e8 la8 sol8 fa8 mi8 re8 fa8 mi8 re8
Since our notes are taken from one and a half oc-
tave, we represent the notes by their names (i.e,
re) and those in a higher octave have an & con-
catenated to their names (i.e., re8). In this phase
the net learned the examples in the set with high
accuracy after a short training !. Each melody
had a different label coded as a unique value in
the plan units. After training, we tested the net
by supplying as input the four labels 1000, 0100,
0010, 0001, one for each of the four melodies in
the set, and the net was able to reproduce com-
pletely the sequence without mistakes. In the
generalization phase we have chosen to interpo-
late the values of the plan units to produce new
melodies. Todd [Tod89] demonstrated that the
resulting sequences have non-linear similarities
to the sequences in the learning set depending
on the activations of the plan units. An example
of a typical result follows:
The plan vector: (0.3 0.7 0.3 0.7).
Vi:re8 sol si do8** mi re™™* do8 re8
V2:7e8 fa8* sol8 la8 sol8 fa8 mi8 re8

This resulting sequence reflects typical prob-
lems we encountered when dealing with this sim-

'For 20 hidden units it took less than 100 epochs to
achieve an average error around 0.0001
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ple approach. The examples in the learning set
imposed two different constraints on the net.
The constraints regard the melodic intervals be-
tween the pitches in each part, and the combina-
tions of pitches in both parts. The net is not able
to cope with both constraints consistently, and
then it satisfies each one at a time. For example
in *, the combination chosen is not allowed in
the specific style, although the melodic interval
is fine. In ** and * * % the descending skip is not
permitted, but the combination is.

4.2 Running the Agents’ module

The agents in our system know the rules of the
specific style of the melodies we want to com-
pose. They also know how to compute the sys-
tem utility for a given pair of notes. We have run
experiments with the agents’ module solely. We
cancel the influence of the recommendations pro-
duced by the neural network by giving the agents
a vector of zero activations for all the possible
notes. In this way, we wanted to check that the
voices we will get by applying only the knowledge
about the interactions between the two parts will
lack the features learned by the net in its training
phase (i.e. the aesthetics of one part).

We run the module with the utility function
described in Section 3.2, where the net’s advice
was assigned to zero. We observed that melodies
can get to a dead end, when there is no pair of
notes that can satisfy the rules for the specific
style. Since we choose the pair of notes that got
the maximal utility value at each step, the result
we got is:

Vi:re8 do8 la sol la mi la re8

V2:re8 mi8 fa8 sol8 fa8 sol8 fa8 re8

The melody lacks the features requested from
each part. In both voices there are redundant
notes (i.e, the appearance of note la in V1, and
the series of notes in V2 from the third place to
the sixth). There is no unique climax in none of
the voices. There are two continouos skips in the
last three notes in V1. There are too many steps
in V2 (i.e., there is no balance between the skips
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and the steps).

4.3 Running NetNeg

In this subsection we present the main simula-
tions performed on the whole system. In the
training phase, the network learned to reproduce
four melodies that were taken from [Jep92]. See
Figure 2.
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Figure 2: The learning examples

In the generalization phase, given a specific
vector of plan units, the network produces a new
cantus firmi. We have chosen two different plan
vectors for the net that will output the notes for
each agent. We run the net, each time with the
correspondent plan vectors, and mapped their
outputs to two different thirteen activation val-
ues. Then, we run the DAI-based module with
these inputs. The agents negotiate over the dif-
ferent pairs of possible combinations, computing
for each the system utility. Finally, the agents
will agree upon a legal pair of notes that has
yielded the maximal utility or might decide that
no combination is legal, given the previous note
in the melody. In our current case, the nets are
fed with the agents agreement and the system
continues to run. This process is executed until
the two part melodies are completed. Currently
the length of the melodies is fixed. A melody
that resulted from an experiment we performed
is shown in Figure 3. The net was presented with
two different plan vectors ((0.8 0 0.8 0) and (0
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10 1)). The agents computed the utility of the
system taking into account the rules described in
Section 3.2 and the contrary motion term.

“

Figure 3: A new two-part melody

From Figure 3, we can observe that the system
gives aesthetic results, quite appropriate for the
species style we have experimented with. Both
parts are consistent with the combinations con-
straints, as opposed to the simulation we run
with the network, where this constraint was not
satisfied. Comparing with the simulation run
with the agents alone, no redundancy was found
in this example. Nevertheless, there is a contour
problem as pointed in (1) and (2) in A1’s melody
in Figure 3. According to Jeppesen [Jep92] it is
preferred to descend by a step and then perform
a descending skip. After a descending skip, we
are expected to have a compensating ascending
movement. In (3), we prefer to approach the last
note by a step. A2’s melody is perfect with re-
gard to the contour. There is a single climax as
shown in (4).

5 Summary and Future Work

We have presented a novel computational ap-
proach for encoding knowledge, intuitions and
aesthetic taste of a musician in different modules.
As a case study, we built a system for composing
two-part counterpoint melodies. Our system de-
sign has been inspired by the cognitive process of
a human musician, and the hybrid system is in-
tended to broadly reflect that process. Another
work that.investigates how the cognitive process
can guide the design of the architecture of a sys-
tem that is involved in some musical activity can
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be found in [GL95].

The system is composed of a connectionist
module and an agent-based module. The agents
decide upon the notes in both melodies. The
neural network predicts the expectation for ev-
ery note to be the next one in the melody. The
agents then negotiate over the possible combi-
nations of notes until they reach an agreement
on notes that, added to the melody, will most
greatly “benefit” the system.

We have implemented a specific utility func-
tion, but as we have explained in Section 2, our
architecture opens the possibility to run differ-
ent kinds of functions. In a multi agent system,
agents are self interested. This can be expressed
by giving each agent a different utility function
or non deterministic functions. We refer to a
function as non deterministic when for the same
pair of notes, it will return a different value. In
our case, we started to investigate functions in
which the contrary motion term was weighted by
a coin toss. Issues to be further investigated in-
clude more natural ways to integrate both mod-
ules, the study of other species (second, third,
and fourth species), and polyphonic music in a
more flexible and more abstract style. We will
in the future examine how other representations
and negotiation protocols can influence the per-
formance of the system.
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