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Abstract

This paper and panel discussion will cover the growing and
exciting new area of Music Information Retrieval (MIR), as
well as the more general topic of Audio Information
Retrieval (AIR). The main topics, challenges and future
directions of MIR research will be identified and four
projects fromindustry and academia are described.

1 Introduction

The internet is destined to beacome the dominant medium
for disseminating recorded multimedia content. Currently,
music downloads, such as MP3 files, are amajor source of
internet traffic. As more music is made available via
networks, the need for sophisticated methods to query and
retrieve information from these musicd databases increases.
The projeded growth in musicd databases parall els that of
pubishing: text databases have grown in size ad
complexity at arapid pace

One of the major technologicd consquences of content
on the web has been the accéerated development of
sophisticaed seach engines. As more content becmes
available, users demand more sophsticaed seach
processs. As users employ more sophisticaed seach
processes, they quickly demand more ntent. The same
user-driven model for information and retrieval has already
started to develop for multimedia search and retrieval.

In the past, the majority of AIR and MIR research was
condwted using symboalic representations of music like
MIDI, becaise they are eay to work with and require
modest amounts of processng paver. There has been a
large history of work in this area and there ae many
existing tools that analyze and parse these representations.
In recent yeas the large amounts of music available & raw
or compresed dgita audio and the improvements in
hardware performance network bandwidth and storage
cgpadty have made working dredly with dgital audio
possble.

Music seach engines require an entirely different
methoddogy than text search. These search engines require
primarily a sonic interfacefor query and retrieval. Such an
interface #ows the user to explore the rich perceptual cues
that are inherent in music listening.

Music is a multifaceed, multi-dimensional medium that
demands new representations and processng techniques for
effedive seach. Furthermore, constructing a music seach
engine with the scde and efficiency needed for the large
amourt of music available today requires fundamental
reseach.

Music Information Retrieval (MIR) isnot just interesting
becaise of the commercial consumer applicaions that it
enables. There ae important applicaions to musicology,
music theory, and music scholarship in general. Seaching
for examples of music feaures or analyzing a corpus of
music for compositional techniques are just two examples of
how MIR can asdst music reseach.

Of even greaer importance to the mputer music
community are the dose ties between music information
retrieval and aher computer music reseach. MIR implies
the use of analysis procedures for music in a variety of
representations. What are good computer representations for
music? What charaderizes a style of music? What
distinguishes one mposer from another? Can we
synthesize eamples of style, genre, compaositional
techniques, rhythmic patterns, instruments and orchestration
to render queries into sounds and to better understand ou
representations? These ae fundamental questions for
computer music reseach in genera, not only for music
information retrieval.

In this paper and panel we will provide an overview of
current AIR reseach and topics. Areas relevant to MIR are
Information Retrieval, Signa Processng, Pattern
Remgrition, Al, Databases, Computer Music and Music
Cogrnition. A list of general referencesis given at the end o
the paper. Many references are acaemic papers, but many
are company web sites, refleding the commercia interest
and pdential of MIR technology and applications. The list
of company web sites and acalemic papers is representative
of the increasing adivity in MIR but it is by no means
complete and exhaustive.

The paper is dructured as follows: Sedion 2 provides a
short descriptions of the main topics of MIR research as
have been identified by academic and commercial work in
this areawith representative dtations. Sedion 3 4, 5 and 6
describe spedfic MIR projeds, that the panelists have been
involved, both from acalemia and from the industry.



2 MIR topics

Althoughdtill i n itsinfancy, severa different topics have
been identified by the published papers on MIR reseach.
These topics are related and would al be integrated in afull
MIR system. For example, genre dassficaion can inform
play list generation a segmentation can improve
clasgficaion results. This close relation is refleded in the
papers than many times gan more than ore topic.

The following list provides a short description and
rerpesentative references for ead of these topics:

» Content-based similarity retrieval.

Given an audio file & a query, the system returns a list
of similar files ranked by their similarity. The similarity
measure is based onthe adual audio content of thefile.
(Wold et a, 1996,1999, Foote 1997,1999)

» Playlist generation.

Closely related to similarity retrieval. The input is a set
of metadata constraints like genre, mood o bea. The
result isalist of audio files that fulfil these mnstraints.
Ancther play list generation method is to morph between
audio file queries. In bah cases snooth transitions
between successve play list files are desred.
(Algoriemy and Tewfik, 2000

e Thumbnailing

Given an audio file aeae anew file of smaller duration
that captures the esential charaderistics of the origina
file. Thumbnailing is important for presentation of
multiple files, for example in similarity lists. (Logan,
200Q Tzanetakis and Cook, 2000)

» Fingerprinting

The goal of thistechnique isto cdculate a ontent-based
compad signature that can be used to match an audio
file in a large database of audio file signatures. No
metadata information like the filename is used for the
cdculation d the signature. The cdculated signatures
must be @mpad, robust to dfferent audio
transformation like compresson and must alow fast
matching in a large database.

» Classification

In classficaion an audio file is asdgned to a
clasgcaegory from a predefined set. Examples of
possble dasdficaions are: Genre, Male/Female voice,
Singing vs. Instrumental etc. To express more complex
relations, hierarchicd classficaion schemes can be used
(Wold et a., 1996, 1999, Tzanetakis and Cook, 2000,
Scheirer and Slaney, 1997, Soltau et al. 1998).

e Segmentation

Segmentation refers to the processof deteding segments
when there is a change of “texture” in a sound stream.
The chorus of asong, the entrance of a guitar solo, anda
change of speker are examples of segmentation
boundaries. (Foote 2000a, Tzanetakis and Cook, 2000,
Sundaram and Chang, 2000)

e Browsing

In many cases the user does not have a spedfic seach
goal in mind. In those caes, browsing is used to explore
the spaceof audio filesin a structured and intuitive way.

¢ Beat detection

Bea detedion algorithms typicdly automaticdly deted
the primary bea of a song and extrad a measure of how
strong the bea is. (Scheirer and Slaney, 1998, Guyon et
al., 2000, Foote and Uchihashi 2001)

¢ Polyphonic transcription

Polyphoric transcription systems are one of the bridges
that can conned the world of symbolic analysis to red
world audio. Unfortunately, despite various efforts at
automatic transcription in restricted domains, a robust
system that can work with red world audio signals has
not yet been developed.

e Visualization

Visudlizdtion techniques have been used in many
scientific domains. They take alvantage of the strong
pattern reaognition abiliti es of the human visual system
in order to reved similarities, patterns and correlation
baoth in time and space Visualizaion is more suited for
areas that are exploratory in nature and where there ae
large anounts of datato be analyzed like MIR.

e User interfaces

In addition to the standard design constraints, user
interfaces for MIR must be able to work with sound, be
informed by automatic analysis techniques and in many
cases updated in red-time.

e Query synthesis

An interesting dredion of reseach is the aitomatic
synthesis of queries. The query rather than being a sourd
file is diredly synthesized by the user by manipulating
various parameters related to musicd style and texture.
This reseach dredion hes close ties with automatic
music style generation.

e Music Metadata

In addition to content-based information aher types of
information like atist name, record label, etc. need to be
suppated in MIR. Standards like MPEG 7 are designed
to provide reseachers and industry with suggested
attributes and toadls for working with them. When sing
musicd metadata traditional text information retrieval
techniques and databases can be used.

¢ Multimodal analysistools

An interesting dredion of reseach is combining
anaysis information from multiple streams. Although
speedr analysis has been used with video analysis
(Hauptmann and Witbrook, 1997) very little work has
been done with music analysis.



3 Theautomation of the M SN Search

Engine: a commercial perspective
(Christopher Weare, Microsoft)

Recent advances in the field of machine listening have
opened up the posshility of using computer to creae
automated musicd seach engines. Whil e several automated
systems now exist for searching limited sets of recordings,
much work remains to be done before a completely
automated system that is suitable for searching the universe
of recorded music is avail able.

The reseach a MSN music is focused on the
development of a commercially-viable music seach engine
that is iitable for non-experts (MSN 2001). To be
effedive, the seach engine must present a simple ad
intuitive interface the database must contain a database of
milli ons of songs, and seaches foud complete within a
few semnds at most. Of course, the results need to be
meaningful to the user.

3.1 Background

The MSN Music Seach Engine (MM SE) interface is
centered on the idea of musicd similarity. The imagined
user scenario is illustrated in the following: “I like this
known piece of music, plese give me other musicd
recordings that “Sound Like” this recording.” The “Sound
Like” metaphor implies osme measure of similarity or
metric.

The first challenge is to determine what adualy
congtitutes distance between songs. At first glance this
might not seem a difficult task. After all, most individuals
can redily discern music of differing genres. They can even
go o to describe various aspeds of the music that they fed
distingushes ongs of differing style. However, identifying
the sdlient perceptual attributes that are useful in
distingushing a wide cdalog of music is a nontrivial
undertaking; just ask your locd musicologist. Add to this
task the mndraint that there must be some hope of
extrading said perameters from the musicd recordings
withou human intervention and the task bewmmes even
more difficult.

3.2 Perceptual Space

The perceptual attributes used by the MMSE were
identified by musicologists at MongoMusic (aayuired by
Microsoft in the fall of 2000) and have been refined over
time @ user feadbadk comes in. The set of perceptual
attributes form the perceptual space Each musicd recording
is assgned a pasition in this perceptual space The distance
function that determines the distance between songs along
with the perceptual spaceform a metric space(Mendelson,
1975).

The set of perceptua attributes can be broken into two
groups. objedive and subjedive. The objedive dtributes
include dements such as tempo and rhythmic style,
orchestration, and musicd style. The subjedive atributes

focus on elements that are more descriptive in nature, such
as the weight of the music, isit heavy or light, the mood of
the music, etc. The subjedive atributes can be described as
terms that non-experts might use to describe music.

After identifying the salient perceptual attributes, their
relative weights were determined. By far the most important
attribute identified by the musicologists is the musicd style.
The weights of the remaining attributes were iteratively
hand tuned over the period of several months as the
database & MongaViusic grew in size

Once the perceptual attributes were identified the
process of manually classfying a cdalog of music was
begun Additional musicologists were brought as full-time
employess to classfy a cdaalog o music that eventually
contained a few hundred-thousand songs. This processtook
abou 30 man-yeas. Speda attention was paid to the
training o the musicologists and a rigorous quality
asaurance procedure was put in place

While the dassfication eff orts of the musicologists yield
excdlent results, the process does not scde well. The goal
of classfying several milli on records is smply not feasible
using the above described process aone. In addition, the
process is extremely fragile. In oder to add a new
parameter, one must re-analyze the entire cdalog. Clealy,
an automated approach is nealed.

3.3 Parameter Space

The human-classfied results form an excdlent corpus of
data with which to train an automated system. First,
however, one must determine what parameters need to be
extraded from sound files and fed into a mapping system so
that the mapping system can enable etimations of
perceptua distance. Once the parameters are identified one
can attempt the mnstruction o a suitable mapping system.
In pradice the two steps are intertwined since one canot
know, in general if the proper parameters have been
extraded from the sound file until the mapping system has
some results.

The purpose of the parameterization phase is to remove
as much information from the raw audio data & possble
without removing the “important” pieces of data, i.e., the
data that alows a mapping from parameters to perceptual
distance Thisis necessary because arrent macine leaning
algorithms would be swamped by the shea amount of data
represented by the raw PCM data of audio files. The
prospeds of training a system under such a torrential
downpour of data are not bright. The @gproach o
parameterization also takes place in an admittedly more
sophigticaed fashion, in the human hearing system, so the
approach has some precalence

The mapping of the parameter spaceto the perceptua
spaceis caried ou by the mapping system using traditi onal
machine learning techniques. It is important to note that
systems which map similarity based on parameterization
aone do nd perform well acoss a wide range of music.
What these systems are not able to cegpture is the subtle
interdependence between the parameters that the human



heaing system uses to determine perceptual similarity.
Because of this, it is the opinion d this reseacher that a
successul MIR system must include amodel of perceptual
simil arity.

3.4 Resaults

The performance of the aitomated system is comparable
to that of the human musicd experts over most of the
perceptual parameters. The human musicad experts dill have
a dight edge but that gap is closing. Accuracy in this
context refers to the percentage of clasdficaions made by
either a musicd expert or the automated classficaion
system that agreewith a seaond musicd expert. The human
expertstypicdly have a accuracy rating of about 92 to 95%
depending on the parameter in question. The aitomated
system has an acairacy range of about 88 to 94%.

Musicd style, however, is not even addressd by the
system. At this point humans must till be used to assgn
musicd style. Early attempts at classfying musicd style
showed littl e promise.

3.5 Future directions

Automating the assgnment of musicd style is a major
goal of future research at MSN Music. The task, however, is
daunting. Recent results in musicd classficaion wing a
smal caalog d music (Soltau, 1998), while important
contributions, ill ustrate how much more work needs to be
dore. Currently, there exist over one thousand musicd style
caegories in the MM SE. In order for an automated system
to replacehumans, it would have to acarrately remgnize a
significant subset of these styles. Accurate here mean close
to 100% acarracy with gracdul errors. In other words, if the
styleiswrong, it is not so bad if an “East Coast Rap” song
is classified as “Southern Rap” song but if that song is
mistakenly classfied as “Baroque” than the error is quite
painful.

4 TheMusart Projed

(William P. Birmingham, Roger B. Dannenberg, Ning
Hu, Dominic Mazzonni, Colin Meek, William Rand and
Gregory Wakefield, University of Michigan and
Carnegie Médllon)

The University of Michigan and Carnegie Mellon are
collaborating onMusic Information Retrieval research. The
work draws upon efforts from both unversities to ded with
music representation, analysis, and classficaion, with
suppat from the National Science Foundation (Award
#0085%45). There ae around a dozen faaulty and students
working together on a number of projeds. Musart is an
aaonym for MUSic Analysis and Retrieval Techndogy.

We believe that Music Information Retrieval is
interesting because it cuts aaoss many music problems.
One of our guiding principles is that music astradion is
necessary for effedive ad useful music search. Abstradion
refers to qualiti es of music that reside beneah the “surface”

level of melody and ather diredly accessble properties. We
believe that seach systems must understand and ded with
deeper musicd structure including style, genre, and themes.
Seaching hkased on abstrad musicd properties requires
sophigticaed techniques for analysis and representation.

These problems are not unique to music seach.
Composition systems, interadive music systems, and music
understanding systems al ded with problems of music
representation, analysis, and abstradion. Thus, some of the
most fundamental problems in music seach are shared by
many other areas of computer music reseach.

4.1 Themeabstraction

A good example of abstradion is the theme extradion
program, which is based onthe observation that compaosers
tend to repea important musicd themes. The program
extrads all sub-sequences of nates up to a given length from
a MIDI representation of a composition. The program then
seaches for common sub-sequences. Although the gproach
is smple in musicd terms, the performance is quite good.
To evaluate the system, output was compared to themes
from Barlow's A Dictionary of Musical Themes (1983).
Barlow and the program agreein 95.6% of test pieces.

4.2 Markov modelsand style

We ae airrently studying the use of Markov models to
cgpture compositional style. As these models an to be
useful for melodic representation, we are dso applying them
to problems of melodic search.

States, cdled concurrencies, are defined as a lledion
of pitch classes and a duration. Scanning a score from
beginning to end, eat paint in time @rrespondngto anaote
beginning or ending defines the start of a new concurrency.
Zero-order and first-order Markov models are constructed
from concurrencies and transitions from one concurrency to
anather.

Markov models are @mpared by computing their
correlation. One can aso compute the probability that a
query is generated by the Markov model for a particular
piece It turns out that models constructed from large works
such as piano concertos do impressvely well at
charaderizing the “style” of different compaosers. Smaller
works guch as a simple melody have much less predse
information, but these ae still useful for music search.

4.3 Query synthesis

One way to assst in the formation of music queries is to
synthesize music that is representative of the query. We
have wnstructed a demonstration in which users can dal in
various parameters to generate avariety of popular music
rhythmic styles. The resulting set of dimensions along
which we placed musicd styles is interesting and indicates
some of the feaures we might want to identify from
recorded audio in a database. We dso want to synthesize
sung queries. For example, it might help to apply a female
pop-singer’s voice to a sung @ hummed query, and we ae



working on &ing reseach on voice analysis for this task.
Speedt analysis for searching lyrics and for time-aligning
lyrics with audio is another task where we have made some
progress
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Fig. 1: Audio Analysisexample

4.4 Audio Analysis

While much of our work has taken placein the symbolic
domain of MIDI and music notation, we are dso very
interested in audio data. We have applied various macine
leaning techniques to classfy audio and MIDI data
acording to style and genre. This work has produced good
classfiers for small numbers of genres, but it is clea that
we need more sophisticaed fedures, espedally for audio
data

Toward this goal, we have looked at the problem of
madine listening to red examples. Figure 1 illustrates a
jazzbalad (“Naima,” composed and performed by by John
Coltrane) in audio form at the top. In the middle of the
figure, pitch analysis has extraded most of the notes. At the
bottom of the figure, notes are grouped into reaurring
patterns. Thus, we not only have aroudh transcription of
the piece but we have an analysis that shows the structure,
e.g. AABA.

Ancther audio analysis effort has been to deted the
chorus of a pop song by looking for repedaing petterns of
chroma. Chroma is esentidly an amplitude spedrum
folded into a pitch-class histogram. (Wakefield, 1999) This
approach has worked well for finding choruses. A pradicd
applicaionis “audio thumbnailing,” or choasing salient and
memorable sedions of music for use in browsing music
seach results.

4.5 Frame-based contour searching

One of the difficulties of deding with audio is that
music is difficult to segment into notes, so even a smple
hummed query can be difficult to transcribe. We have
developed a new tednique for melodic comparison in
which the melodic contour is compared rather than
individual notes. The advantage of this method is that audio
is not segmented. This means that there ae no segmentation

errors that could leal to an indicaion of “wrong notes.”
Unfortunately, contour comparison proceals frame-by-
frame using small time steps, which is more expensive even
than nae-by-nate matching. Future work may look at more
efficient implementations. Preliminary results indicae that
thisform of seach is better than string-matching methods.

4.6 Scaling Issues

We ae dso concerned with the problems of scding up
to larger databases. This concern includes the problems of
melodic seach: simple astrad queries of relatively few
notes will tend to match many database entries. Identifying
themes and more robust melodic similarity measures will
help, but ultimately, we need to search more dimensions, so
style will becme very important.

A seoond isaue is efficiency in a large database. We
clealy neal sub-linea agorithms, that is, algorithms whaose
runtimes do nd increase linealy with the size of the
database. Some sort of indexing scheme may be possble,
but we think that good search will require multiple levels of
refinement, with fast but impredse seach used to narrow
the seach, combined with increasingly sophisticaed (but
increasingly expensive) seach tedniques to narrow the
seach results further. Searchable astradions are a key to
progressin thisarea

Third, we hope to evaluate our results and techniques in
terms of predsion and recdl. Toward this goal, we have
asembled a test database of music, and we ae
implementing a moduar seach system architedure to
fadlit ate experimentation.

5 Just what problem are we solving?
(Jonathan Foote, FX Pal Alto, Fuji Xerox)

In the “Cranfield” model of information retrieval, users
approach a crpus of “documents’ with an “information
need”, which is expressd in a “query” typicdly composed
of “keywords’. This is appropriate and can work
surprisingly well for text as snown in web seach engines. It
is not often obvious what these terms mean when
considering music. Several music IR (MIR) systems take
the gproac of using humming or musicd inpu as a query
(Ghias et al. 19%, Bainbridge 1999). This is completely
appropriate for many kinds of music, but not as useful for
some other genres (rap and eledronic dance music spring to
mind). Even if a“relevant” document is found, there is no
guarantee that it satisfies the “information need”. As an
aneadotal example, there is arecording of "New York, New
York" that was played on a colledion of automobile horns
(Chambers, 2001). Though the notes are corred, it can be
imagined that this "document” would na be satisfadory asa
seach result for a user seeking a Sinatra performance.
Undouliedly the reader knows of similar examples that
have the wrred note sequence but the wrong "fed." Thus
there is room for many aher types of "queries’ and other
definitions of "relevance’.



An dternative gproad attempts to capture the “fed” of
amusicd reoording with data-driven signal processng and
madiine leaning techniques. One of the first music
retrieval-by-simil arity systems was developed by one of the
panelists (Foote, 1997) while & the Ingtitute of Systems
Science in Singapore. In this gstem, audio is first
parameterized into a spedral representation (mel-frequency
cepstral coefficients). A learning algorithm then constructs a
quantization treethat attempts to put samples from different
training classes into dfferent bins. A histogram is made for
ead audio sample by looking at the relative frequencies of
samples in ead quantization bin. If histograms are
considered vedors, then simple Euclidean o cosine
measures can be used to rank the corresponding audio files
by similarity (Foote, 1997). David Pye & ATT Reseach has
compared this approach with Gaussan dstance measures on
the same orpus (Pye, 2000). Gausdan models improve
retrieval performance dightly but at a higher computational
cost. In these experiments, "relevance’ was assumed to be
by artist, in ather words all music by the same atist was
considered similar. Although this has obvious
disadvantages, it simplifies experimentation, as relevance
can be eaily determined from metadata.

As abowe, retrieval strategies are often predicaed on the
relevance dasses, which may be highly subjedive. One
experimental strategy is to choose relevance dasss that are
not subjed to debate, such as different performances of the
same orchestral work. This approach was used in ancther
retrieval system, dubbed ARTHUR (after Arthur P. Lintgen,
an audiophile who can determine the music on LP
recordings by examining the grooves). ARTHUR retrieves
orchestral music by charaderizing the variation o soft and
louder passages. The long-term structure is determined from
envelope of audio energy versus time in one or more
frequency bands. Similarity between energy profiles is
cdculated using dynamic programming. Given a query
audio document, other documents in a @lledion are ranked
by similarity of their energy profiles. Experiments were
presented for a modest corpus that demonstrated excdlent
results in retrieving dfferent performances of the same
orchestral work, given an example performance or short
except as a query (Foote, 2000b). However it is not clea
that thisis lving a particularly pressng information reed,
or one that couldnt be satisfied by even the most
rudimentary metadata, such as the name of the orchestra
work.

Recant research at FX Palo Alto Laboratory is based on
self-similarity analysis. This is a relatively novel approach
that charaderizes music and audio by a measure of its slif-
similarity over time. Rather than explicitly determining
particular feaures such as pitch, timbre, or energy, the
locaion and degree of repetition is analyzed. Because of its
independence from particular acmustic dtributes, this has
proved to be robust aadoss a wide range of genres: in
esence the audio is used to model itself. In addition, it
provides ome interesting Misualizaions of structure ad
rhythm (for examples, see(Foate, 2001b) in this volume).

Locding times where audio ceaes to be highly self-
similar has proved to be agoad way of segmenting complex
audio (Foote ad Uchihashi, 2000). This approach is
currently being wsed to automaticdly generate music videos
by aligning video shots with musicd events.

It is possble to generate a measure of self-similarity
versus time lag that we cdl the "bed spedarum.” Analyzing
the bea spedrum gives an excdlent way of measuring
tempo (Foote and Cooper, 2001). Additionally, the bea
spedrum can charaderize different rhythms or time
signatures even at the same tempo. For example, the
following figure shows a "bea spedrogram” with time on
the X axis and repetition lag on the Y axis. Bright horizontal
bars s1ow periodicities at those lag times. In the figure a
transition from 4/4 to a 7/4 time signature is visible & an
increase of repetition intensity at the lag time labeled " 7".

lag time (s)

Fig. 2: Beat spedrogram showing transition from 4/4 to
7/4 timein an excerpt of Pink Floyd's Money

A retrieval system based on bed-spedra similarity is
currently undcer development at FXPAL; ealy results
indicate that the bea spedrum cgptures rhythmic “fed"
much better than purely tempo-based approaches (Scheirer
1998 CIiff, 2000).

6 MARSYAS
(George Tzanetakisand Perry Cook,
Princeton University)

MARSYAS (Musical Analysis and Retrieval SYstems
for Audio Signals) is a software framework, written in C++,
for rapid prototyping of computer audition reseach. In
addition, a graphicd user interfacefor browsing and editing
large wmlledions of audio files, written in JAVA, is
provided. The primary motivation behind the development
of MARSYAS has been reseach in content-based audio
information retrieval. As a @nsequence a significant
number of AIR related tools have been implemented and
integrated into this framework. A frequent problem with
current MIR implementations is that typicdly a single
analysis technique is developed and evaluated. Since the
field of MIR is dill initsinfancy it is very important to use
as much information as possble and allow the user to
interad with the system at al stages of retrieva and



browsing. This is achieved in MARSYAS by interading
with all the developed todls and algorithms under a ommon
graphicd user interface ad alowing the exchange of
information between dfferent analysis techniques. The
main design goal has been to implement a system for
reseaching and developing new MIR agorithms and
techniques, rather than focusing on asingle gproad.

6.1 Feature extraction and clasdfication

The @re of MARSYAS is ot time audio fedure
extradion. The avail able feaures famili es are based on the
following time-frequency analysis techniques. Short Time
Fourier Transform (STFT), Linea Prediction Coefficients
(LPC), Mel Frequency Cepstral Coefficients (MFCC),
Discrete Wavelet Transform (DWT) and the MPEG analysis
filterbank (used for compressng mp3 files). Complicated
fedures can be constructed by creding arbitrary graphs of
signal processng Hocks. This flexible achitedure
fadlit ates the aldition d new feaures and experimentation
with the aurrently avail able feaures. The supported feaures
represent timbral, rhythmic and hermonic aspeds of the
analyzed sounds withou attempting to perform polyphonic
transcription. Multiple feaure aitomatic segmentation and
classficaion and similarity retrieval of audio signals are
suppated.
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Fig. 3 Genregram and Timbrespace

The following classficaion schemes have been
evaluated: Music/Speed, Male/Female/Sports annauncing,
7 musicd genres (Clasdgcd, Country, Disco, Easy Listening,
Hip Hop, Jazz Rock), Instruments and Sound Effeds. In
addition it is easy to crede other classficaion schemes
from new audio colledions. The currently supported
classfiers are Gaussian Mixture Model (GMM), Gaussan,
K Neaest Neighba (KNN) and K-Means clustering.
Content-based similarity retrieval and segmentation-based
thumbnaili ng are dso supported.

MARSYAS has been designed to be flexible and
extensible. New fedures, clasdfiers, and analysis techniques
can be aded to the system with minimal effort. In addition,
utiliti es for automatic and user evaluation are provided.
User studies in segmentation, thumbnailing and similarity
retrieval have been performed and more ae planned for the
future.

6.2 Graphical User Interfaces

Several different browsing and \visualizaion 2D and 3D
displays are supported. All these interfaces are informed by
the results of the feaure based analysis. Some examples of
novel user interfaces developed using MARSYAS are:

1. An augmented waveform editor that in addition to
the standard functionality (mouse seledion,
waveform and spedogram display, zooming) is
enhanced with automatic segmentation and
clasdficaion. The dlitor can be used for
“intelligent” browsing and annotation. For example
the user can jump to the first instance of a female
voicein afile or can automaticdly segment a jazz
piece ad then locate the saxophone solo.

2. Timbregram : a static visualizaion o an audio file
that reveds timbral similarity and periodicity using
color. It consists of a series of verticd color stripes
where eat stripe @rresponds to a feaure vedor.
Time is mapped from left to right. Principal
Comporent Analysis (PCA) is used to map the
fedure vedorsto color.

3. Timbrespace (Figure 3): a 3D browsing space for
working with large audio colledions based on PCA
of the feaure space Each file is represented as a
singe point in a 3D space Zooming, rotating,
scding, clustering and classficaion can be used to
interad with the data.

4. GenreGram: a dynamic red-time display of the
results of automatic genre dasdficaion. Different
clasdficaion dedsions and their relative strengths
are combined visually, reveding correlations and
clasdficaion petterns. Since the boundaries
between musicd genres are fuzzy, a display like this
is more informative than a single dl or nothing
clasdficdion dedsion. For example, most of the
time arap song will trigger Mae Speed, Sports
Annourting and HipHop.

6.3 Architecture — I mplementation

The software follows a dient server architedure. All the
computation-intensive signal  processng and dtatisticd
pattern recognition algorithms required for audio analysis
are performed using a server written in C++. The code is
optimized resulting in red time feaure cdculation, analysis
and gaphics updates. For further numericd processng
utiliti es for interfadng MARSYA S with numericd padkages
like MATLAB or OCTAVE are provided. The use of
standard C++ and JAVA makes the mde eaily portable to
different operating systems. It is available & free software
under the GNU pulic license. It can be obtained from:

http://www.cs.princeton.edw/~marsyas.html
This work was funded under NSF grant 9984087, by the
state of New Jersey Commisson on Science ad
Techndogy grant 01-2042-007-22 and from gifts from Intel
and Aria Foundation.



7  Summary

Music information retrieval is becoming increasingly
important as digital audio and music ae becoming a major
source of internet use. In this paper, the main topics and
diredions of current reseach in MIR were identified. Four
spedfic projeds from indwstry and academia were
described. These projeds $how the increasing interest in the
evolving field o MIR and the diversity of different
approaches to the problem. A panel discusson abou the
current state, challenges and future diredions of MIR by the
authors of this paper will be mnducted during the
conference and we hope that this paper will serve & a
foundation for discusson during this panel.
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