
_76 _77

PLAYING WITH TIME - MANIPULATION OF TIME AND RATE IN A
MULTI-RATE SIGNAL PROCESSING PIPELINE

Georg Essl

Computer Science & Engineering and Music
University of Michigan

Ann Arbor, Michigan, USA
gessl@eecs.umich.edu

ABSTRACT

Time is a central notion in synthesis engines, and manip-
ulating time is an important part of structuring an instru-
ment, a sound or a performance. We discuss how time can
be treated in a flexible-rate and multi-rate dataflow engine
that does not operate on a preferred rate. We describe how
rates can be locally controlled, now interweaving rates can
be managed. A multi-rate pipeline has benefits both for
computational load as well as ease of building dataflow
interactively in live performance.

1. INTRODUCTION

In this paper we address the manipulation of time and
rate within a multi-rate signal processing pipeline. Time
is of course a central notion to audio processing, as it
is intrinsically a time-based medium. Many perceptual
qualities change critically with time differences such as
the transition of temporal to frequency hearing [16] and
manipulation of time has long been recognized as a cen-
tral aspect of control. Many classical techniques in dig-
ital sound synthesis are modifications of parameters over
time. For example amplitude envelopes are the such time-
based changes of the overall signal amplitude [6].

Not only controls are subject to timing. In fact the
audio or other relevant signal data is streamed over time,
usually with a constant sample rate. In fact the vast ma-
jority of sound synthesis environments use the audio rate
as the single given rate for all its signal flows. This choice
is quite natural if indeed the purpose of the pipeline is pri-
marily audio processing. This dominance of the audio rate
has lead to signal data and the control data to be seen as
distinct types of information that vary over time. Signal
data is updated at a fixed single data rate while the con-
trol signal can change whenever a control event happens,
which may be at regular intervals, or in irregular patterns.

However, as already described in [9] this distinction
between signal and control can be abandoned. They can
be treated in some sense as different versions of a gen-
eral stream of data that changes discretely over time. This
automatically leads to a digital signal processing pipeline
that operates on variable rates.

A major reason for removing the distinction was the
goal of building a digital synthesis dataflow paradigm that

is well-suited for on-the-fly live performance. Here the
goal is to make changes to the pipeline easy and fast. This
distinction proved to be an obstacle to rapid switching of
units. Consider using a microphone as input to the am-
plitude of a sine oscillator. Hence the microphone signal
would serve as a kind of amplitude modulator. Tradition-
ally the microphone would be considered providing an au-
dio signal, hence the semantics of it is that of a signal.
However if we want to switch the microphone for say an
accelerometer, or an interface slider, or some other tradi-
tional control input, that semantics changes. In the tradi-
tional view the new connection would be seen as control.
So the performer changing that input live, would have to
not only change the input but the semantics of the connec-
tivity.

A related issue emerges when switching outputs. For
example someone may want to not only process data for
audio output, but also provide processed information for
a visualization, and send data over the network. However
visual information renders at a different rate as audio, and
the need for sending networked data may depend on the
goals of the particular performance and too may not be
best serviced at audio rates. This immediately leads to
a very related undesirable effects of having a preferred
sample rate. Some possible output modality do not match,
hence there is a need to translate. Yet we want to support
these changes on-the-fly in live performance, hence extra
steps to ensure this translation again is a burden.

Be removing that the user pay attention to these dif-
ferences, rapid patching becomes possible, but it leave the
requirement of the dataflow pipeline to handle these dif-
ferences in rates and timings.

Here we will discuss in detail the design of such a
pipeline with an eye toward manipulating time and rates
and the characteristics of the pipeline design that help de-
cide local timing and rates. And we will discuss the kinds
of time and rate based processing units we suggest for
such an audio processing pipeline.

2. RELATED WORK

The work presented here is currently in use in the mobile
programming environment UrMus [7]. Audio processing
engines have a long-standing history going back to its ori-

gins with Music I by Max Matthews. Ultimately mul-
tiple paradigms have emerged addressing how to allow
users to generate and process music. The most dominant
paradigms are text-based systems, such as CSound [3],
Arctic/Nyquist [5, 4], SuperCollider [15] or ChucK [21]
on the one hand, and graphical patching systems, such as
Max/MSP [20] or Pure Data (Pd) [19] on the other hand.

The importance of time has been recognized for a long
time and many systems described above have a wealth
of mechanisms to deal with timing, rate and changes in
dataflow.

However a single audio-rate is the dominant paradigms
even in systems that do offer rich primitives to control
time itself, such as is the case in ChucK or SuperCol-
lider. Even though Pure Data is in principle a single-rate
dataflow system, aspects of multi-rate processing can be
implemented in Pd via the sub-patching mechanism [14].

The question of incorporating timeliness into multi-
rate dataflow architectures, as well as a range of time-
based flow patterns was addressed by Azumi and co-workers
[2, 1] and they also addressed suitable visual representa-
tions for time-based patterns [10]. The use of serializa-
tion, vectorization, decimation and selection operators to
offer pathways to multi-rate processing was explored in
the contexts of the designs of Faust [12, 13]. Our concern
here is somewhat different to these prior proposals as we
discuss in the following section.

Perhaps the closest to the current work is the recent
work by Norilo [18] on the Functional Reactive Paradigm
invented by Nordland in the context of functional pro-
gramming [17]. The key idea here is that from the call
order in a functional evaluation, the local frame rate re-
quirements can be deduced when considering sources (he
used the word spring) are found in the functional evalu-
ation path and their rate propagated to points of intersec-
tion and ultimately connected all the way to the rendering
hardware called sinks. In our work we arrive at similar
conclusions, however outside the functional paradigm and
we arrive at a structure that is directional. In addition our
introduction of directionality, the approaches also differ
in the way they resolve rate conflicts. Norilo proposes a
priority scheme. Here we will consider direct interven-
tions to decide locally within the dataflow graph how rate
is determined.

3. WHERE DOES TIMING INFORMATION
COME FROM?

Here we want to addresses the question: Where should the
local time advancement in a dataflow come from? Hence
we want to address how to reason about timing control lo-
cally, how to understand how timing propagates, or stops
propagating within the network and how it can be con-
trolled and manipulated.

There are numerous sources of timed information. In-
put happens over time, or the source of input may itself
be driven by a regular or irregular time-pattern. For ex-
ample microphone input happens at audio rates, while ac-

Figure 1. The depiction of directionality in our multi-rate
dataflow. (a) A Push refers to the rate being derived from
the input side. (b) A Pull refers to the rate being derived
from the output side.

celerometer input happens at a significantly lower yet also
regular rate, touch input happens irregularly. Similarly
output modalities have their intrinsic timing. A network
request may demand process in an irregular fashion, vi-
sual, or audio information is rendered at different regular,
and in the case of visual scenes, even irregular basis.

From this we would argue that typically time in a dataflow
pipeline has the following typical sources:

1. Rates of input and output hardware connected to the
data flow.

2. Irregular events induced by user actions or authored
time lines.

However there are further considerations that impact
computational cost. For example a long-time averaged
signal needs to be updated much less frequently than a
live audio signal, even if the control signal it is based on
was triggered more quickly. Hence within the network
there may be trade-offs in terms of local rates.

Ultimately we want as principle that the local time
update, whether rate or irregular timed event dictates the
computation, rather than a global pulse operating at a high
sample rate.

4. DIRECTIONALITY AND COUPLING

A key observation is that a typical data flow processing
block (we will use the word flowbox) can actually be up-
dated in more than one way. Either there is a demand for
new output hence requiring computation. Or there is a
new input that could have a similar effect. In this paper
we will call data that is brought to an input a push and we
will call data that is being requested at an output a pull.
A graphical interpretation of this difference is depicted in
Figure 1. A push is a right-pointing connection arrow,
while a pull is a left-pointing.

We observe that whether a flowbox is pushed or pulled
has the effect of deciding where the update timing is com-
ing from. If it is pushed, the output-side drives the operat-
ing rate, whereas if if is a pull, it is the input side. Hence
this choice of directionality is linked to a choice in the
source of timing.

There are two types of relationships between input and
output of a flowbox. One is that updating one requires an



_76 _77

PLAYING WITH TIME - MANIPULATION OF TIME AND RATE IN A
MULTI-RATE SIGNAL PROCESSING PIPELINE

Georg Essl

Computer Science & Engineering and Music
University of Michigan

Ann Arbor, Michigan, USA
gessl@eecs.umich.edu

ABSTRACT

Time is a central notion in synthesis engines, and manip-
ulating time is an important part of structuring an instru-
ment, a sound or a performance. We discuss how time can
be treated in a flexible-rate and multi-rate dataflow engine
that does not operate on a preferred rate. We describe how
rates can be locally controlled, now interweaving rates can
be managed. A multi-rate pipeline has benefits both for
computational load as well as ease of building dataflow
interactively in live performance.

1. INTRODUCTION

In this paper we address the manipulation of time and
rate within a multi-rate signal processing pipeline. Time
is of course a central notion to audio processing, as it
is intrinsically a time-based medium. Many perceptual
qualities change critically with time differences such as
the transition of temporal to frequency hearing [16] and
manipulation of time has long been recognized as a cen-
tral aspect of control. Many classical techniques in dig-
ital sound synthesis are modifications of parameters over
time. For example amplitude envelopes are the such time-
based changes of the overall signal amplitude [6].

Not only controls are subject to timing. In fact the
audio or other relevant signal data is streamed over time,
usually with a constant sample rate. In fact the vast ma-
jority of sound synthesis environments use the audio rate
as the single given rate for all its signal flows. This choice
is quite natural if indeed the purpose of the pipeline is pri-
marily audio processing. This dominance of the audio rate
has lead to signal data and the control data to be seen as
distinct types of information that vary over time. Signal
data is updated at a fixed single data rate while the con-
trol signal can change whenever a control event happens,
which may be at regular intervals, or in irregular patterns.

However, as already described in [9] this distinction
between signal and control can be abandoned. They can
be treated in some sense as different versions of a gen-
eral stream of data that changes discretely over time. This
automatically leads to a digital signal processing pipeline
that operates on variable rates.

A major reason for removing the distinction was the
goal of building a digital synthesis dataflow paradigm that

is well-suited for on-the-fly live performance. Here the
goal is to make changes to the pipeline easy and fast. This
distinction proved to be an obstacle to rapid switching of
units. Consider using a microphone as input to the am-
plitude of a sine oscillator. Hence the microphone signal
would serve as a kind of amplitude modulator. Tradition-
ally the microphone would be considered providing an au-
dio signal, hence the semantics of it is that of a signal.
However if we want to switch the microphone for say an
accelerometer, or an interface slider, or some other tradi-
tional control input, that semantics changes. In the tradi-
tional view the new connection would be seen as control.
So the performer changing that input live, would have to
not only change the input but the semantics of the connec-
tivity.

A related issue emerges when switching outputs. For
example someone may want to not only process data for
audio output, but also provide processed information for
a visualization, and send data over the network. However
visual information renders at a different rate as audio, and
the need for sending networked data may depend on the
goals of the particular performance and too may not be
best serviced at audio rates. This immediately leads to
a very related undesirable effects of having a preferred
sample rate. Some possible output modality do not match,
hence there is a need to translate. Yet we want to support
these changes on-the-fly in live performance, hence extra
steps to ensure this translation again is a burden.

Be removing that the user pay attention to these dif-
ferences, rapid patching becomes possible, but it leave the
requirement of the dataflow pipeline to handle these dif-
ferences in rates and timings.

Here we will discuss in detail the design of such a
pipeline with an eye toward manipulating time and rates
and the characteristics of the pipeline design that help de-
cide local timing and rates. And we will discuss the kinds
of time and rate based processing units we suggest for
such an audio processing pipeline.

2. RELATED WORK

The work presented here is currently in use in the mobile
programming environment UrMus [7]. Audio processing
engines have a long-standing history going back to its ori-

gins with Music I by Max Matthews. Ultimately mul-
tiple paradigms have emerged addressing how to allow
users to generate and process music. The most dominant
paradigms are text-based systems, such as CSound [3],
Arctic/Nyquist [5, 4], SuperCollider [15] or ChucK [21]
on the one hand, and graphical patching systems, such as
Max/MSP [20] or Pure Data (Pd) [19] on the other hand.

The importance of time has been recognized for a long
time and many systems described above have a wealth
of mechanisms to deal with timing, rate and changes in
dataflow.

However a single audio-rate is the dominant paradigms
even in systems that do offer rich primitives to control
time itself, such as is the case in ChucK or SuperCol-
lider. Even though Pure Data is in principle a single-rate
dataflow system, aspects of multi-rate processing can be
implemented in Pd via the sub-patching mechanism [14].

The question of incorporating timeliness into multi-
rate dataflow architectures, as well as a range of time-
based flow patterns was addressed by Azumi and co-workers
[2, 1] and they also addressed suitable visual representa-
tions for time-based patterns [10]. The use of serializa-
tion, vectorization, decimation and selection operators to
offer pathways to multi-rate processing was explored in
the contexts of the designs of Faust [12, 13]. Our concern
here is somewhat different to these prior proposals as we
discuss in the following section.

Perhaps the closest to the current work is the recent
work by Norilo [18] on the Functional Reactive Paradigm
invented by Nordland in the context of functional pro-
gramming [17]. The key idea here is that from the call
order in a functional evaluation, the local frame rate re-
quirements can be deduced when considering sources (he
used the word spring) are found in the functional evalu-
ation path and their rate propagated to points of intersec-
tion and ultimately connected all the way to the rendering
hardware called sinks. In our work we arrive at similar
conclusions, however outside the functional paradigm and
we arrive at a structure that is directional. In addition our
introduction of directionality, the approaches also differ
in the way they resolve rate conflicts. Norilo proposes a
priority scheme. Here we will consider direct interven-
tions to decide locally within the dataflow graph how rate
is determined.

3. WHERE DOES TIMING INFORMATION
COME FROM?

Here we want to addresses the question: Where should the
local time advancement in a dataflow come from? Hence
we want to address how to reason about timing control lo-
cally, how to understand how timing propagates, or stops
propagating within the network and how it can be con-
trolled and manipulated.

There are numerous sources of timed information. In-
put happens over time, or the source of input may itself
be driven by a regular or irregular time-pattern. For ex-
ample microphone input happens at audio rates, while ac-

Figure 1. The depiction of directionality in our multi-rate
dataflow. (a) A Push refers to the rate being derived from
the input side. (b) A Pull refers to the rate being derived
from the output side.

celerometer input happens at a significantly lower yet also
regular rate, touch input happens irregularly. Similarly
output modalities have their intrinsic timing. A network
request may demand process in an irregular fashion, vi-
sual, or audio information is rendered at different regular,
and in the case of visual scenes, even irregular basis.

From this we would argue that typically time in a dataflow
pipeline has the following typical sources:

1. Rates of input and output hardware connected to the
data flow.

2. Irregular events induced by user actions or authored
time lines.

However there are further considerations that impact
computational cost. For example a long-time averaged
signal needs to be updated much less frequently than a
live audio signal, even if the control signal it is based on
was triggered more quickly. Hence within the network
there may be trade-offs in terms of local rates.

Ultimately we want as principle that the local time
update, whether rate or irregular timed event dictates the
computation, rather than a global pulse operating at a high
sample rate.

4. DIRECTIONALITY AND COUPLING

A key observation is that a typical data flow processing
block (we will use the word flowbox) can actually be up-
dated in more than one way. Either there is a demand for
new output hence requiring computation. Or there is a
new input that could have a similar effect. In this paper
we will call data that is brought to an input a push and we
will call data that is being requested at an output a pull.
A graphical interpretation of this difference is depicted in
Figure 1. A push is a right-pointing connection arrow,
while a pull is a left-pointing.

We observe that whether a flowbox is pushed or pulled
has the effect of deciding where the update timing is com-
ing from. If it is pushed, the output-side drives the operat-
ing rate, whereas if if is a pull, it is the input side. Hence
this choice of directionality is linked to a choice in the
source of timing.

There are two types of relationships between input and
output of a flowbox. One is that updating one requires an



_78 _79

Figure 2. Flowboxes can have different behavior with
respect to propagating timing. (a) Coupled input-output
pairs propagate timing. (b) A decoupled pair will not. (c)
A fully decoupled flowbox has no coupling input-output
pairs.

update of the other. We call this property coupled. For ex-
ample standard linear time-invariant filters are coupled. A
new output has to be computed when a new input arrives,
or if updated on the output side, a new input has to be ac-
quired if a new output is requested. Coupled flowboxes
occur often in dataflow and they typically correspond to
being fed through in a fashion that is dictated by arriving
(or leaving data). Usually that means that the sample rate,
or irregular timing is unchanged, though one can design
coupled flowboxes that do not have this characteristic. For
example a down-sampler may emit only half the samples
that arrive at its input but the rate of emission is still di-
rectly linked to the rate at that input.

However, not all relationships between input and out-
put have to be coupled. Take for example a simple gain
with a gain input and a signal input and output. Clearly
changes in the gain input do not require an immediate
change in the signal input or output. It is sensible be-
havior to only apply the current gain when the signal path
is being updated. We call this property of the gain input
with regards to the signal output decoupled.

Decoupling has an important consequence for timing,
as it breaks the relationship of input and output with re-
spect to timing. Timing does not have to, but could be
forced across a decoupled input-output pair. This prop-
erty is central to deciding and controlling timing in vari-
ous sub-flows of the dataflow network.

For example a gain is set to a certain value. After that,
no change in the signal flow through the gain requires an
update of the gain value. Another way to think about the
difference between coupled and decoupled input-output
pairs is with respect to required computation (and its cost).
A coupled pair will require computation when invoked,
whereas the decoupled pair may not. For the rest of the
paper we will use the symbols as depicted in Figure 2 to
represent the different cases. The coupled flowbox sim-
ply uses a blackbox representation. Decouple either uses
semi-circles around the decoupled input or output, or if all
inputs and outputs are decoupled, uses a diagonal separa-
tion line. We call this last instance fully decoupled.

Figure 3. If flowboxes couple, timing information will
propagate through them. In general they may be motified
though often that is not the case. (a) Input-side or “push”
timing information. (b) Output-side or “pull” timing in-
formation.

Fully decoupled are actually also regular entities within
typical dataflow processing pipelines. Consider traditional
unit generators, such as a sine oscillator. It has as output a
signal, and a number of input parameters that control the
nature of that signal (amplitude, frequency, phase). Notice
that none of these inputs has to be a signal and no update
of any of them necessarily means that a new output has to
be computed right away. Hence a sine oscillator is fully
decoupled.

4.1. Consequences of Directionality and Coupling

Most generally, a flowbox may indeed be used in both
direction even in a concurrent or interleaved fashion. In
principle invoking a coupled input-output pair simply in-
vokes the internal computation of the unit. However, given
that a flowbox is connected to other flowboxes there is a
propagating consequence to directionality. If a coupled
flowbox is updated in one direction and connected to an-
other flowbox, that flowbox is invoked with this direction-
ality as well. As long as all flowboxes in the chain are
coupled, clearly all of the flowboxes will be updated (see
Figure 3.

A decoupled flowbox ends this requirement to prop-
agate updates. Hence coupled chains of flowboxes have
their timing determined at either the output, or the input of
the chain (or perhaps a rate generating flowbox in the mid-
dle of the chain, to be discussed later). A decoupled flow-
box can make the timing undetermined. It is easy to con-
struct examples with undetermined timing for a subflow
of a dataflow network. Consider Figure 4. We have two
cascaded sine oscillators connected to an accelerometer
input on one side, and the digital analogue converter (dac)
for audio playback on the other side. The input of the first
oscillator will be updated at the accelerometer rate, while
the the output of he second oscillator is updated at audio
rates. Notice however that due to the fully decoupling na-
ture of both sine oscillators, the flow between the two has
no determined timing.

Figure 4. (a) Due to the decoupling nature of the sine os-
cillator flowbox, the timing between two connected sine
oscillators is not inherently determined. (b) Choosing a
push connection informs the system to take input side tim-
ing. (c) Choosing a pull connection directs the system to
use output side timing.

4.2. Overcoming undetermined timing

In single-rate architectures, this problem of undetermined
timing does not occur, because a global update rate is im-
posed on all parts of the dataflow network. But as dis-
cussed in the previous section, in the proposed multi-rate
design, parts of the dataflow network can become isolated
from timing mechanisms and hence have no determined
timing.

There are numerous possible mechanisms to overcome
this problem. Perhaps the most natural is to choose to
propagate timing through a decoupled input-output pair.
Figure 4 shows the two possible solutions in this case. If
the timing is fed through from the dac, that is, the second
oscillator pulls from the first, the rate on that connection
and the update of the output of the first oscillator will be
at audio rates. However if we push the accelerometer rate
through the first sine oscillator to the input of the second,
that input will now update at the input rate. Notice how
these two options are not equivalent, and the pushing into
an input, or pulling from an output dictate which rate is
going to be used.

For this reason directionality becomes an important
piece of information and we always draw the connections
between input and output as arrows. In terms of timing,
this describes a master-clock relationship. The tail of the
arrow is the source (or master) of the timing information,
and the tip of the arrow is the recipient of the timing in-
formation.

4.3. Controlling undetermined timing via Pumps

Aside the two options we just discussed one might want
to be able to inject a timing behavior different from the in-
put and output sources surrounding the decoupled patch.
We solve this requirement by introducing a special class
of flowboxes that we call pumps. It has a coupled input-
output pair, as well as additional special inputs or outputs.

Figure 5. Pumps allow for rate injection in data-flows
with undetermined timing. (a) A pushing pump. (b) A
pulling pump or drain. (c) A variable time push event
driven pump. (d) A visual update driven drain.

The idea of the pump is that the rate at those special con-
nectors (whether pushed into it, if it is an input, or pulled
from it, if it is an output) will dictate the rate of the cou-
pled connection pair. Figure 5 shows example pumps in-
serted between the two sine oscillators of our example. If
a pulling connection is used to drive a pump we call it a
drain. Here the visual update rate is used to control the
timing. Notice how the link between the two oscillators
operates on a different timing schedule than either input
or intended output. The second pump is driven by a push
flowbox. This is a flowbox that can be programmed or
linked to event-based user input (like touching the screen)
to create timing information. Hence the update between
the two sine oscillators is now determined but completely
arbitrary.

One can define pumps with or without side-effects.
Pumps without side effects simply use the rate of the sig-
nal at the pump input to drive timing but ignore the data.
These pumping mechanisms without side-effect have in
special form already appeared. For example in ChucK, a
blackhole [21] is a pulling pump (drain) without side ef-
fects linked to the audio rate. In our multi-rate system this
can be accomplished using a drain as seen in Figure 5 but
connecting it to the dac to get audio rates.

Pumps with side-effect use this data to additionally
affect the pumped signal. For example one can define
a gain-pump, which is a hybrid of a gain and a pump.
When the gain is set, the pump also update the coupled
input-output. If both gain and input-output are connected



_78 _79

Figure 2. Flowboxes can have different behavior with
respect to propagating timing. (a) Coupled input-output
pairs propagate timing. (b) A decoupled pair will not. (c)
A fully decoupled flowbox has no coupling input-output
pairs.

update of the other. We call this property coupled. For ex-
ample standard linear time-invariant filters are coupled. A
new output has to be computed when a new input arrives,
or if updated on the output side, a new input has to be ac-
quired if a new output is requested. Coupled flowboxes
occur often in dataflow and they typically correspond to
being fed through in a fashion that is dictated by arriving
(or leaving data). Usually that means that the sample rate,
or irregular timing is unchanged, though one can design
coupled flowboxes that do not have this characteristic. For
example a down-sampler may emit only half the samples
that arrive at its input but the rate of emission is still di-
rectly linked to the rate at that input.

However, not all relationships between input and out-
put have to be coupled. Take for example a simple gain
with a gain input and a signal input and output. Clearly
changes in the gain input do not require an immediate
change in the signal input or output. It is sensible be-
havior to only apply the current gain when the signal path
is being updated. We call this property of the gain input
with regards to the signal output decoupled.

Decoupling has an important consequence for timing,
as it breaks the relationship of input and output with re-
spect to timing. Timing does not have to, but could be
forced across a decoupled input-output pair. This prop-
erty is central to deciding and controlling timing in vari-
ous sub-flows of the dataflow network.

For example a gain is set to a certain value. After that,
no change in the signal flow through the gain requires an
update of the gain value. Another way to think about the
difference between coupled and decoupled input-output
pairs is with respect to required computation (and its cost).
A coupled pair will require computation when invoked,
whereas the decoupled pair may not. For the rest of the
paper we will use the symbols as depicted in Figure 2 to
represent the different cases. The coupled flowbox sim-
ply uses a blackbox representation. Decouple either uses
semi-circles around the decoupled input or output, or if all
inputs and outputs are decoupled, uses a diagonal separa-
tion line. We call this last instance fully decoupled.

Figure 3. If flowboxes couple, timing information will
propagate through them. In general they may be motified
though often that is not the case. (a) Input-side or “push”
timing information. (b) Output-side or “pull” timing in-
formation.

Fully decoupled are actually also regular entities within
typical dataflow processing pipelines. Consider traditional
unit generators, such as a sine oscillator. It has as output a
signal, and a number of input parameters that control the
nature of that signal (amplitude, frequency, phase). Notice
that none of these inputs has to be a signal and no update
of any of them necessarily means that a new output has to
be computed right away. Hence a sine oscillator is fully
decoupled.

4.1. Consequences of Directionality and Coupling

Most generally, a flowbox may indeed be used in both
direction even in a concurrent or interleaved fashion. In
principle invoking a coupled input-output pair simply in-
vokes the internal computation of the unit. However, given
that a flowbox is connected to other flowboxes there is a
propagating consequence to directionality. If a coupled
flowbox is updated in one direction and connected to an-
other flowbox, that flowbox is invoked with this direction-
ality as well. As long as all flowboxes in the chain are
coupled, clearly all of the flowboxes will be updated (see
Figure 3.

A decoupled flowbox ends this requirement to prop-
agate updates. Hence coupled chains of flowboxes have
their timing determined at either the output, or the input of
the chain (or perhaps a rate generating flowbox in the mid-
dle of the chain, to be discussed later). A decoupled flow-
box can make the timing undetermined. It is easy to con-
struct examples with undetermined timing for a subflow
of a dataflow network. Consider Figure 4. We have two
cascaded sine oscillators connected to an accelerometer
input on one side, and the digital analogue converter (dac)
for audio playback on the other side. The input of the first
oscillator will be updated at the accelerometer rate, while
the the output of he second oscillator is updated at audio
rates. Notice however that due to the fully decoupling na-
ture of both sine oscillators, the flow between the two has
no determined timing.

Figure 4. (a) Due to the decoupling nature of the sine os-
cillator flowbox, the timing between two connected sine
oscillators is not inherently determined. (b) Choosing a
push connection informs the system to take input side tim-
ing. (c) Choosing a pull connection directs the system to
use output side timing.

4.2. Overcoming undetermined timing

In single-rate architectures, this problem of undetermined
timing does not occur, because a global update rate is im-
posed on all parts of the dataflow network. But as dis-
cussed in the previous section, in the proposed multi-rate
design, parts of the dataflow network can become isolated
from timing mechanisms and hence have no determined
timing.

There are numerous possible mechanisms to overcome
this problem. Perhaps the most natural is to choose to
propagate timing through a decoupled input-output pair.
Figure 4 shows the two possible solutions in this case. If
the timing is fed through from the dac, that is, the second
oscillator pulls from the first, the rate on that connection
and the update of the output of the first oscillator will be
at audio rates. However if we push the accelerometer rate
through the first sine oscillator to the input of the second,
that input will now update at the input rate. Notice how
these two options are not equivalent, and the pushing into
an input, or pulling from an output dictate which rate is
going to be used.

For this reason directionality becomes an important
piece of information and we always draw the connections
between input and output as arrows. In terms of timing,
this describes a master-clock relationship. The tail of the
arrow is the source (or master) of the timing information,
and the tip of the arrow is the recipient of the timing in-
formation.

4.3. Controlling undetermined timing via Pumps

Aside the two options we just discussed one might want
to be able to inject a timing behavior different from the in-
put and output sources surrounding the decoupled patch.
We solve this requirement by introducing a special class
of flowboxes that we call pumps. It has a coupled input-
output pair, as well as additional special inputs or outputs.

Figure 5. Pumps allow for rate injection in data-flows
with undetermined timing. (a) A pushing pump. (b) A
pulling pump or drain. (c) A variable time push event
driven pump. (d) A visual update driven drain.

The idea of the pump is that the rate at those special con-
nectors (whether pushed into it, if it is an input, or pulled
from it, if it is an output) will dictate the rate of the cou-
pled connection pair. Figure 5 shows example pumps in-
serted between the two sine oscillators of our example. If
a pulling connection is used to drive a pump we call it a
drain. Here the visual update rate is used to control the
timing. Notice how the link between the two oscillators
operates on a different timing schedule than either input
or intended output. The second pump is driven by a push
flowbox. This is a flowbox that can be programmed or
linked to event-based user input (like touching the screen)
to create timing information. Hence the update between
the two sine oscillators is now determined but completely
arbitrary.

One can define pumps with or without side-effects.
Pumps without side effects simply use the rate of the sig-
nal at the pump input to drive timing but ignore the data.
These pumping mechanisms without side-effect have in
special form already appeared. For example in ChucK, a
blackhole [21] is a pulling pump (drain) without side ef-
fects linked to the audio rate. In our multi-rate system this
can be accomplished using a drain as seen in Figure 5 but
connecting it to the dac to get audio rates.

Pumps with side-effect use this data to additionally
affect the pumped signal. For example one can define
a gain-pump, which is a hybrid of a gain and a pump.
When the gain is set, the pump also update the coupled
input-output. If both gain and input-output are connected



_80 _81

Figure 6. User input can provide timing information.
Push (a) and Pull (b) flowboxes allow user-based, or
scripted timing to be feed into the dataflow.

Figure 7. The depiction of directionality in our multi-rate
dataflow. (a) A Push refers to the rate being derived from
the input side. (b) A Pull refers to the rate being derived
from the output side.

to audio-rate data, this would be the same as a ring mod-
ulator [6] whose overall rate is driven by the timing at the
gain input.

4.4. User, event, or script based timing

So far we have only discussed a certain set of timing sources
in detail, namely rated inputs (like accelerometers) and
rated outputs (like audio output). However there clearly
is a need for timing that is driven more directly by the
user. Say a user pushes a button on the screen as part
of a drumming performance. This timing clearly should
be usable within the dataflow. In order to allow this, we
create a new source and a new sink, which we call Push
and Pull. These are flowboxes that can have their input
set programmatically as is the case for a Push (see Fig-
ure 6). That program can either be linking the push to a
user action such as a button press, or some other event,
or a script that generates timing. A Pull does the same
except that it allows the program to read out data using
programmed timing. Here too the timing can come from
user action on the interface. Their behavior is similar to
bangs or number events in MAX/MSP or Pd in principle
[19] except that due to the directionality choice we intrin-
sically consider dual pairs (Push and Pull).

5. HANDLING MULTIPLE SOURCE OF TIMING

An immediate consequence of a multi-rate pipeline is the
presence of more than one source of timing and that those
sources of timing can have different patterns. For exam-
ple a pipeline may want to have two sinks update the over-
all flow. We allow this by simply allowing multiple pull
links to connect to an output. However that means that the
effective time pattern is the interweaving of the time pat-

Figure 8. The use of a Sniff flowbox to allow a dataflow
with one rate to observe another dataflow’s timed stream
without interfering with the timing itself.

terns of each of the sinks. In some cases this may be un-
problematic, or even desirable. For example imagine that
two user-driven events can progress time. Then the inter-
weaving of those events is precisely the desired behavior.
If two interweaved timing are steady rates, then the inter-
weaved rate is very likely an irregular time pattern with
an effective rate different from either of the interweaved
rates. The exception is the case when both rates are the
same, in which case we get a doubled regular rate.

Consider the example depicted in Figure 7. Here both
the dac and the visual output are connected to a dataflow
network as sinks. The dac updates at 48kHz and the visual
output updates at an irregular but averaged steady rate of
60Hz, depending on CPU load. Hence with interweaving,
the dataflow network is updated at an effective irregular
rate of 48060Hz. Clearly this is not desirable for audio
playback due to artifacts introduced by the injected up-
dates from the visual side and it may not be the desired
behavior for the visualization either. In fact what is likely
the desirable outcome in such as case is that indeed one
source of timing dictates the timing of the dataflow net-
work, while the other sink only wants to read out infor-
mation.

However we already have a mechanisms that in prin-
ciple can address this: decoupling. Hence by taking any
decoupled output of a timed dataflow that we want to ob-
serve without affecting the rate of that dataflow we can do
this. However we may want to provide a decoupled flow-
box with that explicit function without additional side-
effects. We call this flowbox Sniff. It consists of a coupled
input-output pair, as well as a decoupled output. The ef-
fect of this flowbox is to observe a running timed dataflow
at some chosen times. Hence it acts as a resampling of one
stream by another. In fact resampling in this naive fashion
may not be the best choice in some situations, hence the
simple Sniff serves as the simplest prototypical examples

of a general class of resampling flowboxes, that may not
only observe but use a derived observation (such as inter-
polations) to achieve a desired resampling outcome (see
Figure 8).

The dual argument also applies for inputs. Input-side
timing if connected to the same input will interweave.
However pragmatically we found this to be not a partic-
ular issue. Inputs tend to either be well mixed by exist-
ing decoupled flowboxes, such as gain, or terminate in a
decoupled input, hence the interleaved pattern having no
particularly relevant impact.

However in principle a merged input with a steady
rate can be achieved by synchronizing injection of one
dataflow with the other and this synchronization too may
be subject to processing such as interpolation. There is a
wide choice of thinkable injection functions. In fact the
gain flowbox we have discussed earlier is a form of injec-
tion.

Finally one can give control to the rate choice to the
dataflow network itself by providing. This can be achieved
through a pair of flowboxes that allow the selection of the
input or output, respectively that is currently used to de-
rived rate. For inputs lines that are not selected to provide
rate information can either be ignored, or injected. For
output, those lines too can either be ignored or allow ob-
servation of the data stream.

6. MANIPULATING TIME AND RATES
DIRECTLY

We call a flowbox time-manipulating if part of its effect
is the change in temporal pattern between coupled input-
output pairs.

A range of such effects is thinkable. An illuminat-
ing example is the ZPuls flowbox. ZPuls observes a data
stream and emits an impulse whenever it observes a zero-
crossing. More generally we call flowboxes who emit data
based on conditions on the data stream conditionals [9].
It will, however be silent if no such zero crossing occurs.
Clearly this flowbox is time-manipulating. The timing of
the pulse pattern generated by it is very likely very differ-
ent from the rate of the signal observed. ZPuls in fact is
a very general flowbox that can be used to generate rich
regular and irregular timing patterns with the pattern con-
trolled by the wave form. The key property here is of
course that an impulse and hence followup computation
is only invoked when it is relevant, and this can be made
arbitrarily rare. ZPuls is a prototype for a mechanism that
we call retriggering. Not all incoming timed data propa-
gates. Rather whether some outcome timed event is trig-
gered is conditional on some property.

Another class of time-manipulating flowboxes have to
do with downsampling. Consider downsampling by a fac-
tor of two. The simplest possible way to achieve down-
sampling is to simply omit every other sample from a sig-
nal. Traditionally in this is often seen as setting the omit-
ted samples to zero. We have however to the option here
to simply only send data half of the time, hence manipu-

late time at the same time as we reduce the actual data. A
general down-sample at an arbitrary downsample rate will
have to interpolate, hence leading to a general solution to
down-sample to arbitrarily lower rates.

An adaptive downsampler can be build from a simple
differentiator, which we call DiffGate. This flowbox will
only emit data if there is change input-side from previous
data. If the data is indeed slow-changing and over large
stretches constant this flowbox will remove the constant-
rate behavior that does not actually give changed data. A
related flowbox QuantGate will only emit a new sample
if the accumulated difference to the last emitted data is
larger than some specifiable threshold. The effect is that
only changes above a specified quanta will create a timed
event. This flowbox can be used to adaptively downsam-
ple slowly changing but non-constant signals. This too
is a very general flowbox that works well to adaptively
downsample slow-changing effects such as amplitude en-
velopes.

7. UNIVERSALIZATION OF PROCESSING
UNITS WITH TIME-VARIABILITY

Already in [9] we discussed the property of universal plug-
ability with respect to being able to connect processing
units with different input and output semantics by defining
a normed data-stream and making each processing unit
understand how to translate the normed data into its own
suitable semantics.

Here we also get a universalization with respect to
time primitives. For example consider that a drum ma-
chine is to be built, where different weights of impact
should be stored in a circular buffer. However we already
have flowboxes that are meant to store circular buffered
data and allow its playback and rate control. This flow-
box is called Looper and was originally designed to allow
recording and looped playback of audio samples. How-
ever, in our pipeline design there is nothing privileged
about the audio rate, or even a regular rate. We can hence
use Looper at an arbitrary, if we want significantly slower,
or irregular rate, Hence we can use the samples stored in
Looper as the intensity levels of a drum and play it back
at rates appropriate for a typical drum rhythm. We can
even chose to make the timing irregular, to perhaps al-
low a swing pattern to apply, without having to define a
Looper block different from the one we already have. In
this sense all flowboxes that we do have now can be used
in different timing situations. For example an averaging
filter can be used on irregular data.

8. REALIZATION IN URMUS

What we have discussed here is realized in urMus, a in-
teraction environment for commodity mobile devices [8].
However urMus hides many aspects of the rate control
from the user in the default interface. For example the
directionality of the flow is not visible in the visual rep-
resentation of the interface (see Figure 9). This is purely



_80 _81

Figure 6. User input can provide timing information.
Push (a) and Pull (b) flowboxes allow user-based, or
scripted timing to be feed into the dataflow.

Figure 7. The depiction of directionality in our multi-rate
dataflow. (a) A Push refers to the rate being derived from
the input side. (b) A Pull refers to the rate being derived
from the output side.

to audio-rate data, this would be the same as a ring mod-
ulator [6] whose overall rate is driven by the timing at the
gain input.

4.4. User, event, or script based timing

So far we have only discussed a certain set of timing sources
in detail, namely rated inputs (like accelerometers) and
rated outputs (like audio output). However there clearly
is a need for timing that is driven more directly by the
user. Say a user pushes a button on the screen as part
of a drumming performance. This timing clearly should
be usable within the dataflow. In order to allow this, we
create a new source and a new sink, which we call Push
and Pull. These are flowboxes that can have their input
set programmatically as is the case for a Push (see Fig-
ure 6). That program can either be linking the push to a
user action such as a button press, or some other event,
or a script that generates timing. A Pull does the same
except that it allows the program to read out data using
programmed timing. Here too the timing can come from
user action on the interface. Their behavior is similar to
bangs or number events in MAX/MSP or Pd in principle
[19] except that due to the directionality choice we intrin-
sically consider dual pairs (Push and Pull).

5. HANDLING MULTIPLE SOURCE OF TIMING

An immediate consequence of a multi-rate pipeline is the
presence of more than one source of timing and that those
sources of timing can have different patterns. For exam-
ple a pipeline may want to have two sinks update the over-
all flow. We allow this by simply allowing multiple pull
links to connect to an output. However that means that the
effective time pattern is the interweaving of the time pat-

Figure 8. The use of a Sniff flowbox to allow a dataflow
with one rate to observe another dataflow’s timed stream
without interfering with the timing itself.

terns of each of the sinks. In some cases this may be un-
problematic, or even desirable. For example imagine that
two user-driven events can progress time. Then the inter-
weaving of those events is precisely the desired behavior.
If two interweaved timing are steady rates, then the inter-
weaved rate is very likely an irregular time pattern with
an effective rate different from either of the interweaved
rates. The exception is the case when both rates are the
same, in which case we get a doubled regular rate.

Consider the example depicted in Figure 7. Here both
the dac and the visual output are connected to a dataflow
network as sinks. The dac updates at 48kHz and the visual
output updates at an irregular but averaged steady rate of
60Hz, depending on CPU load. Hence with interweaving,
the dataflow network is updated at an effective irregular
rate of 48060Hz. Clearly this is not desirable for audio
playback due to artifacts introduced by the injected up-
dates from the visual side and it may not be the desired
behavior for the visualization either. In fact what is likely
the desirable outcome in such as case is that indeed one
source of timing dictates the timing of the dataflow net-
work, while the other sink only wants to read out infor-
mation.

However we already have a mechanisms that in prin-
ciple can address this: decoupling. Hence by taking any
decoupled output of a timed dataflow that we want to ob-
serve without affecting the rate of that dataflow we can do
this. However we may want to provide a decoupled flow-
box with that explicit function without additional side-
effects. We call this flowbox Sniff. It consists of a coupled
input-output pair, as well as a decoupled output. The ef-
fect of this flowbox is to observe a running timed dataflow
at some chosen times. Hence it acts as a resampling of one
stream by another. In fact resampling in this naive fashion
may not be the best choice in some situations, hence the
simple Sniff serves as the simplest prototypical examples

of a general class of resampling flowboxes, that may not
only observe but use a derived observation (such as inter-
polations) to achieve a desired resampling outcome (see
Figure 8).

The dual argument also applies for inputs. Input-side
timing if connected to the same input will interweave.
However pragmatically we found this to be not a partic-
ular issue. Inputs tend to either be well mixed by exist-
ing decoupled flowboxes, such as gain, or terminate in a
decoupled input, hence the interleaved pattern having no
particularly relevant impact.

However in principle a merged input with a steady
rate can be achieved by synchronizing injection of one
dataflow with the other and this synchronization too may
be subject to processing such as interpolation. There is a
wide choice of thinkable injection functions. In fact the
gain flowbox we have discussed earlier is a form of injec-
tion.

Finally one can give control to the rate choice to the
dataflow network itself by providing. This can be achieved
through a pair of flowboxes that allow the selection of the
input or output, respectively that is currently used to de-
rived rate. For inputs lines that are not selected to provide
rate information can either be ignored, or injected. For
output, those lines too can either be ignored or allow ob-
servation of the data stream.

6. MANIPULATING TIME AND RATES
DIRECTLY

We call a flowbox time-manipulating if part of its effect
is the change in temporal pattern between coupled input-
output pairs.

A range of such effects is thinkable. An illuminat-
ing example is the ZPuls flowbox. ZPuls observes a data
stream and emits an impulse whenever it observes a zero-
crossing. More generally we call flowboxes who emit data
based on conditions on the data stream conditionals [9].
It will, however be silent if no such zero crossing occurs.
Clearly this flowbox is time-manipulating. The timing of
the pulse pattern generated by it is very likely very differ-
ent from the rate of the signal observed. ZPuls in fact is
a very general flowbox that can be used to generate rich
regular and irregular timing patterns with the pattern con-
trolled by the wave form. The key property here is of
course that an impulse and hence followup computation
is only invoked when it is relevant, and this can be made
arbitrarily rare. ZPuls is a prototype for a mechanism that
we call retriggering. Not all incoming timed data propa-
gates. Rather whether some outcome timed event is trig-
gered is conditional on some property.

Another class of time-manipulating flowboxes have to
do with downsampling. Consider downsampling by a fac-
tor of two. The simplest possible way to achieve down-
sampling is to simply omit every other sample from a sig-
nal. Traditionally in this is often seen as setting the omit-
ted samples to zero. We have however to the option here
to simply only send data half of the time, hence manipu-

late time at the same time as we reduce the actual data. A
general down-sample at an arbitrary downsample rate will
have to interpolate, hence leading to a general solution to
down-sample to arbitrarily lower rates.

An adaptive downsampler can be build from a simple
differentiator, which we call DiffGate. This flowbox will
only emit data if there is change input-side from previous
data. If the data is indeed slow-changing and over large
stretches constant this flowbox will remove the constant-
rate behavior that does not actually give changed data. A
related flowbox QuantGate will only emit a new sample
if the accumulated difference to the last emitted data is
larger than some specifiable threshold. The effect is that
only changes above a specified quanta will create a timed
event. This flowbox can be used to adaptively downsam-
ple slowly changing but non-constant signals. This too
is a very general flowbox that works well to adaptively
downsample slow-changing effects such as amplitude en-
velopes.

7. UNIVERSALIZATION OF PROCESSING
UNITS WITH TIME-VARIABILITY

Already in [9] we discussed the property of universal plug-
ability with respect to being able to connect processing
units with different input and output semantics by defining
a normed data-stream and making each processing unit
understand how to translate the normed data into its own
suitable semantics.

Here we also get a universalization with respect to
time primitives. For example consider that a drum ma-
chine is to be built, where different weights of impact
should be stored in a circular buffer. However we already
have flowboxes that are meant to store circular buffered
data and allow its playback and rate control. This flow-
box is called Looper and was originally designed to allow
recording and looped playback of audio samples. How-
ever, in our pipeline design there is nothing privileged
about the audio rate, or even a regular rate. We can hence
use Looper at an arbitrary, if we want significantly slower,
or irregular rate, Hence we can use the samples stored in
Looper as the intensity levels of a drum and play it back
at rates appropriate for a typical drum rhythm. We can
even chose to make the timing irregular, to perhaps al-
low a swing pattern to apply, without having to define a
Looper block different from the one we already have. In
this sense all flowboxes that we do have now can be used
in different timing situations. For example an averaging
filter can be used on irregular data.

8. REALIZATION IN URMUS

What we have discussed here is realized in urMus, a in-
teraction environment for commodity mobile devices [8].
However urMus hides many aspects of the rate control
from the user in the default interface. For example the
directionality of the flow is not visible in the visual rep-
resentation of the interface (see Figure 9). This is purely



_82 _83

Figure 9. (a) An amplitude-modulation patch in urMus.
Notice how the directionality of the connectivity is hidden
in the representation. (b) The actual patch structure as
implemented, using our symbolic notation.

a choice of representation. The actual connectivity gener-
ated from the representation does retain the directionality
we described here. To allow this, urMus uses an algo-
rithm for finding sensible sources for rate control for its
network. This algorithm is based on two principles: In-
put should dictate rates if there is undetermined rates as
input rates tend to be lower, hence less computationally
expensive. The second is to propagate rates from inputs
and outputs until points of decoupling.

The complete algorithm is as follows:

1. Connect from all inputs in push
direction until a decouple (or an
output) has been reached.

2. Connect from all outputs to
all unconnected flowboxes until
a decouple (or an input) has been
reached.

3. For all undetermined directions,
pick the input for rate control.

It is easy to see that this algorithm covers all possible
cases that can be constructed by the urMus interface.

A general principle in urMus is the separation of vi-
sual representation from programming concept. Hence
there is no canonical way to represent the dataflow. In fact
the dataflow network could easily be reskinned to look
like other familiar or new representations, whether textu-
ral or graphical.

However the choice of the current representation has
to do with the requirement to allow rapid patching in a
live setting. The multi-rate property of the flow is com-
putationally efficient and allows to remove the distinction

betweeen control and signal flows, but often knowledge
of rates is actually not explicitly required. Notice also
that individual inputs are presented as separate interaction
entities (SinOsc(1) Amp and SinOsc(1) Freq are separate
widgets). This too is justified to organize interactions into
finger-sized elements.

8.1. The Lua interface

UrMus itself has a Lua layer. Lua is a fast, embeddable
script language with certainly attractive properties for mal-
leable user interface design [11]. Within the Lua lan-
guage, aspects of UrMus that are otherwise separate can
be programmatically related. The dataflow pipeline dis-
cussed here is exposed to lua through API functions.

Key aspects of the interface is the possibility to create
new instances of flowboxes, and to change the connectiv-
ity between them. The function to create a new instance
is CreateFlowBox(prototype). For example

mySinOsc = CreateFlowBox(_G["FBSinOsc"])

creates a new instance of the SinOsc flowbox from the
global prototype FBSinOsc. Some flowboxes are state-
less and hence do not require instancing. Many hardware
sources and sinks are of this type. For example we can use

dac = _G["FBDac"]

to get the global instance of the audio playback sink. In
order to establish a pull link between the sin oscillator and
the dac we use the method outflowbox:SetPullLink(inindex,
inflowbox, outindex).

dac:SetPullLink(0, mySinOsc, 0)

Or alternatively one can use member functions of the flow-
box itself.

dac.In:SetPull(mySinOsc.Out)

The moment this is executed, a sine will play at default
frequency of 440 Hertz and at normed amplitude. To con-
nect this to an accelerometer that pushes into the frequency
we do the following:

accel = _G["FBAccel"]
accel:SetPushLink(0, mySinOsc, 0)

And one can of course also use the flowbox member no-
tation.

accel.X:SetPush(mySinOsc.Freq)

To undo connections one can use :RemovePullLink()
and :RemovePushLink() or RemovePull() and
RemovePush() in flowbox member notation, with the
same arguments that one used to create the connection.
These sets of functions and methods are already suffi-
cient to generate fully functional dataflow networks and
through directionality control rates. However there are
further methods provided that allow an interface to sen-
sibly represent a flowbox in whichever form it prefers. So
can a flowbox be queried for the number and labels of each
input and output it offers via the methods :NumOuts()

:NumIns() :GetOuts() :GetIns(). One can find
out if a flowbox can be instanciated by querying via
:IsInstantiable(). There are also methods to query
the (de-)coupling property via :GetCouple() and
:IsCoupled(), and to push numbers into or pull num-
bers from a data network via :Push() and :Pull().

9. CONCLUSIONS

In this paper we presented the design of a flexible-rate
and multi-rate dataflow architecture that does not have an
intrinsic master rate. The rates of local sub-flows of the
dataflow network are derived from the rates of the hard-
ware and interaction elements that are connected to it. We
gave how the variable rates within the network can be de-
termined and controlled and gave a range of mechanisms
to manipulate time.

There are a number of benefits to this design. One is
that it is well-behaved for live-patching [9]. Furthermore
it allows subparts of the network to run at computationally
relevant speeds, not the usually higher audio rates, allow-
ing better performance specifically on the still slower mo-
bile hardware. Finally having flexible control over time
within a dataflow leads to a universalization of the use of
flowboxes that is liberated from the assumption of a dom-
inant single rate.

10. REFERENCES

[1] P. Arumı́ and X. Amatriain, “Time-triggered static
schedulable dataflows for multimedia systems,” in
Proceedings of SPIE, vol. 7253, 2009, p. 72530D.

[2] P. Arumı́, D. Garcı́a, and X. Amatriain, “A dataflow
pattern catalog for sound and music computing,” in
PLoP ’06: Proceedings of the 2006 conference on
Pattern languages of programs. New York, NY,
USA: ACM, 2006, pp. 1–23.

[3] R. Boulanger, The Csound book: perspectives in
software synthesis, sound design, signal processing,
and programming. Cambridge, MA, USA: MIT
Press, 2000.

[4] R. Dannenberg, “Machine Tongues XIX: Nyquist,
a Language for Composition and Sound Synthesis,”
Computer Music Journal, vol. 21, no. 3, pp. 50–60,
Fall 1997.

[5] R. Dannenberg, P. McAvinney, and D. Rubine, “Arc-
tic: A Functional Approach to Real-Time Control,”
Computer Music Journal, vol. 10, no. 4, pp. 67–78,
Winter 1986.

[6] C. Dodge and T. Jerse, Computer Music: synthesis,
composition and performance. Macmillan Library
Reference, 1997.

[7] G. Essl, “UrMus – an environment for mobile instru-
ment design and performance,” in Proceedings of the

International Computer Music Conference (ICMC),
Stony Brooks/New York, June 1-5 2010.

[8] ——, “Urmus-an environment for mobile instru-
ment design and performance,” Proceedings of the
International Computer Music Conference, 2010.

[9] ——, “UrSound — Live Patching of Audio and
Multimedia using a Multi-Rate Normed Single-
Stream Data Flow Engine,” Proceedings of the In-
ternational Computer Music Conference, 2010.

[10] D. Garcia, P. Arumi, and X. Amatrinain, “Visual
prototyping of audio applications,” LINUX AUDIO,
p. 88, 2007.

[11] R. Ierusalimschy, Programming in Lua, Second Edi-
tion. Lua.Org, 2006.

[12] P. Jouvelot and Y. Orlarey, “Semantics for multirate
faust,” New Computational Paradigms for Computer
Music-Editions Delatour France, 2009.

[13] ——, “Dependent vector types for data structuring
in multirate faust,” Computer Languages, Systems &
Structures, 2011.

[14] V. Lazzarini, “Music programming systems for dsp
research,” Lecture Notes. Unpublished. Retrieved
online on January 20, 2012. [Online]. Avail-
able: https://noppa.aalto.fi/noppa/kurssi/s-89.3580/
luennot/S-89 3580 lecture handouts.pdf

[15] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Comput. Music J., vol. 26,
no. 4, pp. 61–68, 2002.

[16] B. Moore, Introduction to the Psychology of Hear-
ing, 4th ed. Academic Press, 1995.

[17] J. Nordlander, “Reactive objects and functional pro-
gramming,” Ph.D. dissertation, Chalmers University
of Technology, Department of Computing Science,
1999.

[18] V. Norilo, “Introducing kronos: A novel approach to
signal processing languages,” in Proceedings of the
Linux Audio Conference, Frank Neumann and Victor
Lazzarini, Eds., Maynooth, Ireland, 2011, pp. 9–16.

[19] M. Puckette, “Pure data: another integrated com-
puter music environment,” in in Proceedings, Inter-
national Computer Music Conference, 1996, pp. 37–
41.

[20] ——, “Max at seventeen,” Comput. Music J.,
vol. 26, no. 4, pp. 31–43, 2002.

[21] G. Wang and P. R. Cook, “Chuck: a programming
language for on-the-fly, real-time audio synthesis
and multimedia,” in ACM Multimedia, 2004, pp.
812–815.



_82 _83

Figure 9. (a) An amplitude-modulation patch in urMus.
Notice how the directionality of the connectivity is hidden
in the representation. (b) The actual patch structure as
implemented, using our symbolic notation.

a choice of representation. The actual connectivity gener-
ated from the representation does retain the directionality
we described here. To allow this, urMus uses an algo-
rithm for finding sensible sources for rate control for its
network. This algorithm is based on two principles: In-
put should dictate rates if there is undetermined rates as
input rates tend to be lower, hence less computationally
expensive. The second is to propagate rates from inputs
and outputs until points of decoupling.

The complete algorithm is as follows:

1. Connect from all inputs in push
direction until a decouple (or an
output) has been reached.

2. Connect from all outputs to
all unconnected flowboxes until
a decouple (or an input) has been
reached.

3. For all undetermined directions,
pick the input for rate control.

It is easy to see that this algorithm covers all possible
cases that can be constructed by the urMus interface.

A general principle in urMus is the separation of vi-
sual representation from programming concept. Hence
there is no canonical way to represent the dataflow. In fact
the dataflow network could easily be reskinned to look
like other familiar or new representations, whether textu-
ral or graphical.

However the choice of the current representation has
to do with the requirement to allow rapid patching in a
live setting. The multi-rate property of the flow is com-
putationally efficient and allows to remove the distinction

betweeen control and signal flows, but often knowledge
of rates is actually not explicitly required. Notice also
that individual inputs are presented as separate interaction
entities (SinOsc(1) Amp and SinOsc(1) Freq are separate
widgets). This too is justified to organize interactions into
finger-sized elements.

8.1. The Lua interface

UrMus itself has a Lua layer. Lua is a fast, embeddable
script language with certainly attractive properties for mal-
leable user interface design [11]. Within the Lua lan-
guage, aspects of UrMus that are otherwise separate can
be programmatically related. The dataflow pipeline dis-
cussed here is exposed to lua through API functions.

Key aspects of the interface is the possibility to create
new instances of flowboxes, and to change the connectiv-
ity between them. The function to create a new instance
is CreateFlowBox(prototype). For example

mySinOsc = CreateFlowBox(_G["FBSinOsc"])

creates a new instance of the SinOsc flowbox from the
global prototype FBSinOsc. Some flowboxes are state-
less and hence do not require instancing. Many hardware
sources and sinks are of this type. For example we can use

dac = _G["FBDac"]

to get the global instance of the audio playback sink. In
order to establish a pull link between the sin oscillator and
the dac we use the method outflowbox:SetPullLink(inindex,
inflowbox, outindex).

dac:SetPullLink(0, mySinOsc, 0)

Or alternatively one can use member functions of the flow-
box itself.

dac.In:SetPull(mySinOsc.Out)

The moment this is executed, a sine will play at default
frequency of 440 Hertz and at normed amplitude. To con-
nect this to an accelerometer that pushes into the frequency
we do the following:

accel = _G["FBAccel"]
accel:SetPushLink(0, mySinOsc, 0)

And one can of course also use the flowbox member no-
tation.

accel.X:SetPush(mySinOsc.Freq)

To undo connections one can use :RemovePullLink()
and :RemovePushLink() or RemovePull() and
RemovePush() in flowbox member notation, with the
same arguments that one used to create the connection.
These sets of functions and methods are already suffi-
cient to generate fully functional dataflow networks and
through directionality control rates. However there are
further methods provided that allow an interface to sen-
sibly represent a flowbox in whichever form it prefers. So
can a flowbox be queried for the number and labels of each
input and output it offers via the methods :NumOuts()

:NumIns() :GetOuts() :GetIns(). One can find
out if a flowbox can be instanciated by querying via
:IsInstantiable(). There are also methods to query
the (de-)coupling property via :GetCouple() and
:IsCoupled(), and to push numbers into or pull num-
bers from a data network via :Push() and :Pull().

9. CONCLUSIONS

In this paper we presented the design of a flexible-rate
and multi-rate dataflow architecture that does not have an
intrinsic master rate. The rates of local sub-flows of the
dataflow network are derived from the rates of the hard-
ware and interaction elements that are connected to it. We
gave how the variable rates within the network can be de-
termined and controlled and gave a range of mechanisms
to manipulate time.

There are a number of benefits to this design. One is
that it is well-behaved for live-patching [9]. Furthermore
it allows subparts of the network to run at computationally
relevant speeds, not the usually higher audio rates, allow-
ing better performance specifically on the still slower mo-
bile hardware. Finally having flexible control over time
within a dataflow leads to a universalization of the use of
flowboxes that is liberated from the assumption of a dom-
inant single rate.

10. REFERENCES

[1] P. Arumı́ and X. Amatriain, “Time-triggered static
schedulable dataflows for multimedia systems,” in
Proceedings of SPIE, vol. 7253, 2009, p. 72530D.

[2] P. Arumı́, D. Garcı́a, and X. Amatriain, “A dataflow
pattern catalog for sound and music computing,” in
PLoP ’06: Proceedings of the 2006 conference on
Pattern languages of programs. New York, NY,
USA: ACM, 2006, pp. 1–23.

[3] R. Boulanger, The Csound book: perspectives in
software synthesis, sound design, signal processing,
and programming. Cambridge, MA, USA: MIT
Press, 2000.

[4] R. Dannenberg, “Machine Tongues XIX: Nyquist,
a Language for Composition and Sound Synthesis,”
Computer Music Journal, vol. 21, no. 3, pp. 50–60,
Fall 1997.

[5] R. Dannenberg, P. McAvinney, and D. Rubine, “Arc-
tic: A Functional Approach to Real-Time Control,”
Computer Music Journal, vol. 10, no. 4, pp. 67–78,
Winter 1986.

[6] C. Dodge and T. Jerse, Computer Music: synthesis,
composition and performance. Macmillan Library
Reference, 1997.

[7] G. Essl, “UrMus – an environment for mobile instru-
ment design and performance,” in Proceedings of the

International Computer Music Conference (ICMC),
Stony Brooks/New York, June 1-5 2010.

[8] ——, “Urmus-an environment for mobile instru-
ment design and performance,” Proceedings of the
International Computer Music Conference, 2010.

[9] ——, “UrSound — Live Patching of Audio and
Multimedia using a Multi-Rate Normed Single-
Stream Data Flow Engine,” Proceedings of the In-
ternational Computer Music Conference, 2010.

[10] D. Garcia, P. Arumi, and X. Amatrinain, “Visual
prototyping of audio applications,” LINUX AUDIO,
p. 88, 2007.

[11] R. Ierusalimschy, Programming in Lua, Second Edi-
tion. Lua.Org, 2006.

[12] P. Jouvelot and Y. Orlarey, “Semantics for multirate
faust,” New Computational Paradigms for Computer
Music-Editions Delatour France, 2009.

[13] ——, “Dependent vector types for data structuring
in multirate faust,” Computer Languages, Systems &
Structures, 2011.

[14] V. Lazzarini, “Music programming systems for dsp
research,” Lecture Notes. Unpublished. Retrieved
online on January 20, 2012. [Online]. Avail-
able: https://noppa.aalto.fi/noppa/kurssi/s-89.3580/
luennot/S-89 3580 lecture handouts.pdf

[15] J. McCartney, “Rethinking the computer music lan-
guage: Supercollider,” Comput. Music J., vol. 26,
no. 4, pp. 61–68, 2002.

[16] B. Moore, Introduction to the Psychology of Hear-
ing, 4th ed. Academic Press, 1995.

[17] J. Nordlander, “Reactive objects and functional pro-
gramming,” Ph.D. dissertation, Chalmers University
of Technology, Department of Computing Science,
1999.

[18] V. Norilo, “Introducing kronos: A novel approach to
signal processing languages,” in Proceedings of the
Linux Audio Conference, Frank Neumann and Victor
Lazzarini, Eds., Maynooth, Ireland, 2011, pp. 9–16.

[19] M. Puckette, “Pure data: another integrated com-
puter music environment,” in in Proceedings, Inter-
national Computer Music Conference, 1996, pp. 37–
41.

[20] ——, “Max at seventeen,” Comput. Music J.,
vol. 26, no. 4, pp. 31–43, 2002.

[21] G. Wang and P. R. Cook, “Chuck: a programming
language for on-the-fly, real-time audio synthesis
and multimedia,” in ACM Multimedia, 2004, pp.
812–815.




