Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

REAL-TIME GRAMMAR-BASED PARSING AND
RESTRUCTURING OF MUSICAL STREAMS

Dale E. Parson and Ryan R. Panuski

Kutztown University of Pennsylvania
Department of Computer Science

ABSTRACT

Processing spoken word and instrumental musical
recordings via looping has been an important
transformational approach since the early days of
recorded sound. In terms of formal language theory,
looping comprises a restricted form of finite automaton
execution, typically specified by some form of right
regular expression. Limitations on early recording and
playback technology coincide with the limitations of
regular expressions. More powerful formal language
constructs have been used in some domains for years.
The current work is an investigation into the use of
parsers specified by context-free grammars using off-
the-shelf parser generation tools for performance-time
transformation of spoken word and instrumental phrases.
Context-free grammars surpass regular expressions by
supporting nested organization and reorganization of
phrases and deeper hierarchical structures. This
approach does not require speech recognition or
complex signal analysis. Instead, a performer uses a
control device or transient pauses to align markers to
positions in an audio stream. These lexical markers
guide parsing and grammatical reorganization of phrased
audio for playback in real time. This approach yields
useful results in the macro-temporal domain of spoken
and instrumental phrase restructuring, as well as in the
micro-temporal domain of granular phrase restructuring.

1. INTRODUCTION!

“Looping” and “sequencing” are among the most
fundamental and heavily used mechanisms in computer
and electronic music generation and transformation.
Both terms refer to repetition of sonic events at various
temporal granularities. “Looping” normally refers to
repetition of recorded sound samples, with temporal
resolution ranging from the sub-note time scale used in
sample-based tone generation to repetition of recorded
phrases and verses [10]. “Sequencing” refers to the
encoding, storage and subsequent playback of control or
performance data needed to generate a series of musical
events. Both of these mechanisms are concrete
manifestations of finite automata. A finite automaton is
a hardware or software machine comprised of a finite

! This project was made possible in part by an equipment grant from
the Kutztown University Research Committee.

583

number of states, along with guarded transitions that
connect the states [1]. The guard on a transition
specifies constraints that an incoming datum must satisfy
in order for the automaton to transit from the source
state to the destination state of the transition. The
simplest guard is a literal value, such as the string “in a
Western rut” in the automaton of Figure 1. This
automaton accepts an initial string of “You folks are
stuck in a Western rut” in transiting from an initial start
state to an intermediate state labelled looping, followed
by zero or more repetitions of the prepositional phrase
“in a Western rut” in transiting from the looping state to
itself. Finally, the arrival of the input clause “You’re
either this or else you’re that” triggers transition from
the looping state to the final, ferminal state.

You folks are You’re either this
stuck in a or else you’re
Western rut that

— looping —
N2

in a Western rut

Figure 1. A rap as a finite automaton.

The automaton of Figure 1 is concisely described by the
regular expression, “You folks are stuck (in a Western
rut)+ You’re either this or else you’re that,” where the
“+” symbol signifies one or more repetitions of the
parenthesized prepositional phrase. Regular expressions
can include meta-symbols for specifying grouping,
alternatives and repetition of sub-expressions.

A finite automaton can also specify an outgoing
action on each transition, where an action is the
production of output data occurring as part of the
transition. An automaton representing a sequencer would
produce control data as actions.

Finite automata provide a powerful abstraction for
both compositional forms and performance mechanisms
such as looping and sequencing, but they have a
fundamental restriction. A finite automaton cannot
generate or recognize hierarchical phrase structures that
nest to arbitrary depth at composition or performance
time. Fixed-depth nesting is possible with finite
automata; the regular expression “You folks ((are
stuck)+ in a Western rut)+” supports multiple repetition

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

of the verb phrase “are stuck™ as a sub-phrase within the
larger repetitive clause. Such nested looping is common
in rap, in part because it assists alignment of phrase
boundaries with metric boundaries by making the former
elastic at performance time. What is missing, though, is
the ability to create recursive hierarchical structures
found in language and many forms of musical
composition.

In formal language theory the next most powerful
abstraction after the regular expression is the context-
free grammar, which supports hierarchically nested
phrase structures [1]. The sentence diagram of Figure 2
shows one possible context-free parse of the sentence,
“With the passing of the year comes another year to pass
away,” using a context-free sentence diagram. The non-
arrowed lines delimit hierarchical composition of
grammar nonterminal symbols including Sentence,
Subject, Predicate, Noun Phrase (NP), Verb Phrase
(VP), Prepositional Phrase (PP), Noun, Adjective
(ADJ), Adverb (ADV), and Infinitive Phrase from
lower-level nonterminals and terminal symbols. Each
nonterminal comprises a sentence, clause, phrase or part
of speech, acting as a subdivision of the more coarsely
grained nonterminal division in which it occurs.
Terminals are the bottommost, non-hierarchical
structures. In this example terminals are words, but they
could also be timed notes or other sonic events in a
hierarchical musical structure. The dashed up-arrows
show augmentation from modifiers to modified
nonterminals. Context-free parsers typically use regular
expressions to describe strings or other sequences of
surface features that constitute terminal symbols.
Context-free grammars and parsers are used extensively
in translating programs into machine-executable forms.

/ S

PREDICATE SUBJECT

\\\\\VP| | NP

A N
/' /\ \

. ADJ~NQUN

4 ~

INF

SENTENCE

PP ADV

With the passing of the year comes another year to pass away:

Figure 2. A context-free parse of a sentence.

A main goal of the current research project is support for
performance-time restructuring of spoken word and
instrumental phrase structures. For example, after
recording the sentence of Figure 2, the performance
system is capable of immediate restructuring and playing
back an alternative sentence such as, “Another year
comes to pass away with the passing of the year.”
Transformations include exchange, deletion and

duplication of parse sub-trees anchored at nonterminals
in the grammar. The intent is creation of real-time
software instrument capabilities that extend and exceed
standard looping-based capabilities. Preparation for
performance includes construction and compilation of a
grammar that describes sentences or musical passages to
be performed, recorded, transformed and replayed,
along with practice using the performance system.

2. RELATED WORK

Pierre Schaeffer was a pioneering investigator of the use
of disks and tape for processing recorded sounds
including looping in the early twentieth century [7,10].
Steve Reich made particularly effective early
compositional use of tape loops [8]. Control sequencing
has been used since the days of player pianos and similar
mechanical and electro-mechanical instruments.

Application of context-free grammars and parsers to
musical analysis and composition goes back to the
1970’s. Roads and Wieneke summarize formal language
theory and survey projects in progress in 1979 [9],
stating, “A representation for music should at least have
the power to handle nested phrases and motives,
constructions which are technically excluded from type
3 grammars,” where type 3 grammars include regular
expressions and finite automata. The authors thoroughly
discuss the strengths of context-free grammars in
representing musical structure.

Lerdahl and Jackendoff present a thorough
application of formal language theory to representation
of musical structure that includes practical parsing
concerns [5]. Swain relates syntax to musical tension
and release [12]. Barbar et. al. discuss syntax-directed
translation of musical structures [3]. A Markov Process
constitutes a form of finite state grammar that has been
applied extensively to musical structure analysis and
generation [2,9].

The emphasis in formal language-derived musical
work has been on the use of grammars and parsers in
musical structure representation, analysis and
composition. Roads and Wieneke predicted, “Grammars
may lead beyond unified composing and analysis models
and toward intelligent musical devices.” [9] However, a
survey of available software and electronic hardware
instruments finds the state of practice limited to the
application of finite automata / looping mechanisms.
The intent of the present project is integration of
context-free spoken word and instrumental musical
parsers and generators into a recording-based software
instrument. The one-to-many mappings of a grammar to
sentences outlined by that grammar makes improvisation
possible, given sufficient preparation of a grammar and
practice with its performance-time application.

584

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

3. PARSING AND RESTRUCTURING AUDIO
STREAMS IN REAL TIME

3.1. Manual placement of lexical markers

Figure 3 is a recasting of Figure 2 showing the
architecture of the grammar-based software instrument.
The initial implementation uses a ChucK [4] process in
the bottom of Figure 3 to capture and play back an audio
stream, and to store markers into that stream. Figure 3’s
top half represents a Python process that accepts
performer input from a graphical user interface (GUI)
and sends control messages to the ChucK recorder.
Python has several excellent parser generation tools [6]
that make it useful as a front end.

Graphical user interface for generating markers,
triggering reorganization of a recorded parse tree
and repositioning of marked substreams.

Parser and parse tree rewriter.

Streaming recording/marking/playback process.

2 marker arrays store audio segment boundaries.

Audio buffer captures recording (below).

With the passing of the year comes another year to pass away.

Figure 3. Two-process controller-recorder system.

The system begins recording when a user clicks a Start
button in the Python GUI, sending a Start message to the
recorder. During the recording phase, a user can click
grammatical Mark buttons, sending a Mark message.
The recorder maintains two arrays of markers that are
indices into the audio buffer being recorded. There are
two marker arrays so that later reorganization of the
markers can support playback using one array without
interference from the other array being reorganized.
Recording stops with the arrival of a Stop message,
optionally entering a playback loop.

In addition to sending Mark messages, the Python
parser constructs a parse tree similar to Figure 2
whenever the user clicks a Mark button. There are Mark
buttons for low-level nonterminal types of Figure 2 such
as PP, ADJ, NOUN, etc. Instead of parsing the audio
stream, the parser parses the lexical type (noun, etc.) of
the GUI Mark button being pressed at the same time that
it sends markers to the recorder process. This temporal
association between arrival of player-triggered grammar
events in the GUI and marker positions in the audio
stream supports construction of a parse tree as in Figure
2 and its correlation to phrases in the audio stream. After
completing the recording / marking phase, the performer
uses additional GUI buttons to restructure the parse tree.
Transformations include exchange, deletion and
duplication of parse sub-trees anchored at nonterminals
as previously mentioned. For example, triggering the
phrase rearrangement of the parse tree of Figure 2
leading to the sentence, “Another year comes to pass
away with the passing of the year,” causes the Python

585

process to send a new arrangement of existing markers
to the ChucK process. The ChucK playback loop uses
that new sequence of markers as soon as it is received
and stored. The recorder never actually modifies the
audio buffer, and it has no knowledge of grammar
processing. Its playback loop simply plays audio sub-
sequences whose order is determined by the markers.
Some sub-sequences may be skipped or repeated. The
timing and order of the markers is fully under the
performer’s manual control.

3.2. Linear-time detection of phrase-boundary lulls
The system as described and implemented to this point
has been used in some performances, but it has a serious
pitfall. There is a tendency for a spoken word performer
to click grammatical Mark buttons “on the beat,” i.e., in
the region of audio attack transitions. Instrumental
performances with Mark buttons triggered by MIDI foot
switches suffer from the same problem. Subsequent
rearrangement and playback exhibit clicks and pops
caused by initiation or termination of marker-delimited
sub-sequences in the middle of audio transients.
Performers can practice leaving intentional lulls at
phrase boundaries and learning to click Mark buttons at
those boundaries. This approach coupled with sub-
sequence cross-fading is an improvement, but
performance becomes stilted, performer timing becomes
irregular, and the problems of markers at transient attack
boundaries are never fully eliminated.

Our solution has been to introduce a minimum of
signal processing into the recording system. Spoken
word performers do tend to use transient lulls “before
the beat,” i.e., between phrases, as seen in Figure 4. We
now have the recording system perform ongoing lull
detection by sampling the incoming audio amplitude and
using a rolling average to maintain its own markers for
periods of relative quiet. Threshold parameters for
maximum amplitude and minimum duration of lull
periods are under performer control. Each lull period
gets two markers, one for its start and another for its
end. The temporal center point of such a period is a
candidate for a phrase boundary. The recorder correlates
the arrival of marker events from the Python control
process back to the most recent center of a lull period
and uses that time point as the actual playback marker.
Maintaining a rolling average of absolute amplitude is a
linear-time, low overhead effort. This modification of
the original approach has mostly eliminated clicks and
pops in reorganized playback.

We have also experimented with eliminating GUI
Mark buttons and using the center points of Iull periods
alone as phrase boundary markers. This approach loses
type of speech information for constructing deep parse
trees. It is possible to use the relative length and depth of
lull periods as “parts of speech.” Long, deep lulls mark
major phrase boundaries, while short, shallow lulls mark
minor phrases. The limited categories of phrase types
reduce the potential complexity of grammars and parse
trees. This approach does show promise for instrumental

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

music, as well as stochastic phrase rearrangement, where
grammar-based rearrangement is replaced by
probability-tagged restructuring rules for the limited
phrase types. The restructuring rules are in fact grammar
productions, but they apply probabilistically rather than
deterministically to the audio sub-sequences. A
reduction in available phrase types is compensated by an
increase in available transformations applied
stochastically, at the cost of predictability as with any
stochastic process.

o 50000 100000 150000 200000 250000 300000 350000

EE

25k

206

15xJ

sk

o

Ve

10k

Figure 4. Sample of “With the passing — of the year —
comes — another year — to pass — away” showing
intentional lulls in the performance.

The software instrument is to the point where the major
effort required is that of constructing a good spoken
word or instrumental piece as a template for a grammar,
then constructing the grammar, and then learning to use
that grammar in improvisation. The work load is shifting
from instrument design to composition and performance
effort, as it should. Using parser generators is a task that
some spoken word performers may not mind; we do not
anticipate that most instrumental performers will be
willing to program parser generators. Providing
graphical construction of grammars and performance-
time display of graphical parse trees similar to Figure 2,
with performer controls for interactively restructuring
those graphical trees, might make grammars more
acceptable to composers and performers. We have not
yet started this GUI work.

4. FUTURE WORK

One surprise in investigating this approach is the
discovery that, with sufficiently small thresholds for lull
period marking, the non-manual marking approach
(stochastic or deterministic) allows restructuring using
phrases of sound grains. The field of microsound [11]
examines temporal transitions from rhythm into pitch
and from pitch into timbre. We have used primitive
granular restructuring in one public web-based spoken
word performance, and we look to refine this approach.
The advent of multicore laptop computers makes
possible the use of more complex performance-time
phrase delineation based on sonic lexical properties,
such as spectral properties within a temporal region of
sound. The first key software engineering observation is
the fact that marker extraction, copying and
rearrangement do not alter the recorded audio stream.
Processor cores can manipulate marker arrays
concurrently without costly synchronization. A second
key observation is the fact that, in a live performance,
the audio buffer is captured as the audio is performed.

Low-overhead, linear-time marker extraction such as lull
extraction can occur during performance recording.
Higher overhead linear-time marker extraction can use
separate cores to extract markers during recording. Non-
linear-time spectral and granular approaches can run
concurrently on separate cores, locating markers for
later application of parsing and parse tree restructuring
based on sonic properties of audio sub-sequences.
Phrase marker extraction based on sonic properties, and
graphical interfaces for grammar capture and parse tree
reorganization, are two frontiers for future exploration.

5. REFERENCES

[1] Aho, A, Lam, Sethi and Ullman, Compilers —

Principles, Techniques & Tools, Second
Edition, Addison-Wesley, 2007.
[2] Ames, C., “The Markov Process as a

Compositional Model: A Survey and Tutorial,”
Leonardo 22(2) (1989), pp. 175-187.

[3] Barbar, K., Desainte-Catherine and Miniussi,
“The Semantics of Musical Hierarchies,”
Computer Music Journal 17(4) (Winter, 1993),
pp. 30-37.

[4] ChucK audio programming language, January,
2011, http://chuck.cs.princeton.edu/.

[5] Lerdahl, F. And R. Jackendoff, 4 Generative
Theory of Tonal Music, MIT Press, 1982.

[6] PLY (Python Lex-Yacc),
http://www.dabeaz.com/ply/.

January, 2011,

[7] Prendergast, Mark, The Ambient Century,
Bloomsbury Publishing, New York, 2003.

[8] Reich, Steve, Writings on Music 1965 — 2000,
Oxford University Press, 2002.

[9] Roads, C. And P. Wieneke, “Grammars as
Representations for Music,” Computer Music
Journal 3(1) (March, 1979), pp 48-55.

[10]Roads, C., The Computer Music Tutorial, MIT
Press, 1996.

[11]Roads, C., Microsound, MIT Press, 2001.

[12]Swain, J., “The Concept of Musical Syntax,”
The Musical Quarterly 79(2) (Summer, 1995),
pp. 281-308.

586

