
Sound Processes: A New Computer Music Framework

Hanns Holger Rutz
IEM – Institute of Electronic Music and Acoustics

University of Music and Performing Arts
Graz, Austria
rutz@iem.at

ABSTRACT

Sound Processes is an open source computer music frame-
work providing abstractions suitable for composing real-
time sound synthesis processes. It posits a memory model
that automatically persists object graphs in a database, pre-
serving the evolution of these objects over time and making
them available either for later analysis or for incorporation
into the compositional process itself. We report on the ex-
perience of using a prototype of this framework for a gen-
erative sound installation; in a second iteration, a graphical
front-end was created that focuses on tape music compo-
sition and introduces new abstractions. Using this more
controlled setting allowed us to study the implications of
using a live versioning system for composition. We encoun-
tered a number of challenges in this system and present
suggestions to tackle them: the relationship between com-
positional time (versions) and performance time; the re-
lationship between text and interface and between object
dependencies and interface; the representation, organisa-
tion and querying of musical data; the preservation and
evolution of compositions.

1. INTRODUCTION

The emergence of computer music systems is often tied to
general developments in the computer science discipline,
such as the establishment of new programming languages
which serve as host languages or the appearance of new pro-
gramming paradigms—e.g. object-oriented programming—
that find their way into domain specific languages. Hard-
ware developments also play a role, for example by making
it possible in the mid 1990s to build new real-time sound
synthesis systems for desktop computers. There is probably
no abstraction or paradigm that has not been explored for
its musical potential: Functional programming, dataflow
programming, constraints and logic programming, concur-
rency abstractions, aspect-oriented programming, along
with a number of design patterns.

On the other hand, the basic questions one has to answer
when designing such a system appear to be unchanged. Al-
ready in 1976 Barry Truax listed the following: Which data
representations are chosen, which operational capabilities,

Copyright: c©2014 Hanns Holger Rutz . This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

how is the flow of control organised and what are the input
and output requirements? What are the structural levels
and what is the granularity of access to the musical data,
how can it be arranged and grouped? But also: What is
the coverage of the system, to what extent does it intend to
reflect the overall compositional process? [1]

1.1 Musical Representation

A great deal has been written about the representation of
musical data, but some of the debate such as the age-old
juxtaposition between procedural (implicit) and declara-
tive (explicit) representation [2] has obscured more rele-
vant aspects: The first concerns the understanding of rep-
resentation as knowledge representation. Michael Ham-
man discusses this problem and defines ‘representation’ as
something that «constitutes the agency through which an
interface is embodied by orienting a particular way of con-
ceiving and understanding a signal» [3]. If we rely solely
on the established cultural denotation of representations,
these might be useful, but we run into danger of confound-
ing representation with the represented.

Second, taking the previous definition, it is clear that rep-
resentations have a translational potency. A representation
can always be rewritten as another, qualitatively distinct
representation. For example, a procedural description of a
sound production can be unfolded by following the proce-
dure and recording its output, perhaps yielding an explicit
sequence of events in time. Procedures in turn can be spec-
ified declaratively, giving rise to an abstraction such as the
dataflow variable.

Finally, a representation specifies what is not represented.
In the aforementioned article Truax made two important
remarks: Before the advent of computer composition sys-
tems, the process of composing was difficult to assess, rely-
ing on artefacts such as the final score or at best sketch-book
notes. The introduction of computer programs and the use
of technical aids have resulted in «an increasing observabil-
ity of musical activity», since these aids “externalise” the
process. He then posits the thesis that any computer system
embodies a model of the musical process; it becomes a
“data source” for the study of musical activity.

The corollary that can be derived from these remarks
is that a computer music system should take the activity
of composing into account. But in the nearly forty years
that have passed, the interest in musical representations
has almost entirely focused on the way “musical time” is
formulated—the time in which elements are placed during

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1618 -

mailto:rutz@iem.at
http://creativecommons.org/licenses/by/3.0/

the performance of a piece.

2. ACCOUNTING FOR CREATION TIME

Music software already stores data in a persistent way so
that it becomes available for a later inspection. A number of
experiments that observed composers at work asked them
to store “snapshots” of these data, so that the evolution of
the composition process could be examined. Apart from
the coarse granularity of such sequences of snapshots, this
approach requires an active intervention of the composer.
As Christopher Burns notes:

«Composers are generally more interested in
producing work than in documenting it. Sketches
and drafts are often saved only if their continu-
ing availability is necessary for the completion
of a project, and mistakes and false starts are
unlikely to be preserved.» [4]

My main critique however concerns the usage of the data
thus obtained. Truax reserves the observation to “theorists”
who seek to understand the musical activity, whereas the
composers themselves are not mentioned. The externali-
sation of the storage action means that the historic trace
of the decision-making process itself has no useful repre-
sentation within the composition system itself. There is
no re-entry of the temporal embedding of the decisions
within the decision-making process. This is also implicit in
Burns’ reflection that assumes a complementarity between
production and documentation.

As an analogy, we can look at the process of software de-
velopment. Today it is not possible to imagine this process
without the employment of version control systems such as
Git or Subversion. These technologies have multiple goals,
including the review of decisions in order to find mistakes
and the possibility for multiple users to concurrently ma-
nipulate the code base and eventually “merge” their work.
What is not provided is for the developed software to en-
gage with its own history, so there is no interface back from
the versioning system to the developed software.

This is probably fine, since versioning is just a “tool” in
the software design process that helps to achieve the de-
sign goals. In computer composition, however, questions
of representation—the data structures, their interfaces and
relations—are the very materials of the composition itself.
Hamman, in looking at Agostino Di Scipio’s work and
that of Gottfried Michael Koenig, argues that «just as one
might compose musical and acoustical materials per se, one
might also compose aspects of the very task environment
in which those materials are composed.» If the process of
decision-making is itself made manifest within the com-
position system, it can re-enter that process as one of its
possible materials.

To distinguish the different temporal ascriptions of a da-
tum, we proposed the following terminology: [5]

• The (actual) performance time TP. When a musical
datum is heard in a “real-time” performance, this
happens in TP.

• The virtual performance time T(P). This is the rep-
resentational form of TP. For example, if we think
of a timeline view, the positions of elements on the
timeline are values in T(P).

• The creation time TK. This is the time when an ob-
ject is created, modified or deleted as part of the
composition process.

In Sound Processes the primary concern is the handling
of TK as it informs the underlying memory model. The
data structures employed and their interaction have been
described before [6], thus we just give a brief overview.

2.1 A Memory Model for Sound Processes

The memory model is an extension of software transac-
tional memory (STM). In STM, the basic unit of operation
is a reference cell that stores a value. The two permitted
operations are access (reading the value) and update (writ-
ing or overwriting the value). This value can be either an
immutable entity such as a number or a pointer to another
reference cell. The operations must be performed within a
transaction that provides the properties of atomicity, consis-
tency and isolation: Multiple operations performed inside
the same transaction form one compound and indivisable
operation. If an error occurs, all operations participating in
the transaction are undone together.

Transactions are also used in databases, and since version
control systems utilise databases, there are similarities be-
tween an STM and a VCS. Similar to the snapshot scenario
above, in a VCS the user explicitly decides when to make
a new snapshot. This action is called commit. This is a
manual transaction and it is the responsibility of the user
to maintain some sort of “consistency” for the state of the
code base at the moment of committing. Each commit is
tagged with a user identifier and a time stamp and consti-
tutes a new version. The VCS allows one to create new
branches from any previous version and to merge multiple
branches into one, producing a version graph.

In Sound Processes, the STM is extended with the seman-
tics of a versioning system: Each transaction is associated
with a time stamp representing TK, and the evolution of
the reference cells is automatically persisted to secondary
memory (hard-disk). From the user’s perspective, these
cells still look like ordinary STM cells, but they have to be
accessed through special transaction handles provided by
so-called cursors. A cursor represents a path into the ver-
sion graph, and when a cell is accessed or updated, behind
the scenes a complex index resolves the history of that cell
to find the value associated with it at the particular moment
in TK. From the system’s point of view, it makes no dif-
ference whether one looks at the most recent “version” of
a composition or any other moment in its history. More-
over, we can now programmatically ask when a datum was
modified or what its past states were, and we may use this
information in an artistically meaningful way.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1619 -

3. SECONDARY DATA STRUCTURES

On top of this fundamental level of an automatic and con-
comitant versioning, arbitrary structures can now be de-
fined for the “intrinsic” musical data.

Many authors have taken up on the distinction between in-
time and outside-time data prominently expressed by Iannis
Xenakis. We can now say that “outside-time” only refers
to T(P). The composer conceptually “spatialises” material,
i.e. organises it in some form of tableau or collection of
things which can be manipulated prior to assigning them
positions in T(P).

3.1 Expressions

We provide simple data types for numbers, boolean values,
strings etc. along with tuples and ordered and unordered
collections. In order to be able to establish relationships be-
tween such elements, we create a dataflow-like layer. Here
objects can propagate changes to their dependents. Un-
like variables in common dataflow programming languages
whose values are initially unknown and will be assigned
only once, we use the concept of expressions that have an
initial value and may be updated multiple times. Thus they
closer resemble objects in a PD or Max patch.

Without loss of generality, we propose to represent points
in T(P) as expressions whose value is of type Long, a 64-bit
integer number representing an offset in sample frames at
a chosen sample rate and logical offset. Time intervals use
type Span which can be thought of as a tuple of a start and a
stop point in time. Unbounded intervals are also permitted,
e.g. if an object is created in a real-time live situation, it
may have a defined start point but an undefined end point.
If the object is eventually deleted, the span is updated with
a defined end point.

The following code is an example of how a program-
matic creation of an expression tree looks like. It defines
a function that ties a span succ to an arithmetic expression
formed by an offset gap appended to another span pred:

def placeAfter(pred: Expr.Var[S, Span],
succ: Expr.Var[S, Span],
gap : Expr [S, Long])
(implicit tx: S#Tx): Unit = {

val newStart = pred.stop + gap
val newStop = newStart + succ().length
succ() = Span(newStart, newStop)

}

A visualisation of the structure is shown in Fig. 1. In
short, an object Expr[S, Long] is an expression in sys-
tem S which evaluates to a long integer. Different systems
can be used to decide whether a structure should be traced
in TK or not. An Expr.Var is a variable holding an ex-
pression. The broken arrow results from reading the old
value of succ() for determining the length of the updated
span. The graph is thus acyclic—cyclic object graphs are
currently not supported.

3.2 Sounding Objects

The symbolic nature of programming languages naturally
produces a bias towards supporting symbolically repre-
sented structures. To improve on the support for electronic

Expr.Var[S, Span]pred:

.stop

Expr[S, Long]

Expr[S, Long]

+

Expr[S, Long]

gap:

succ: Expr.Var[S, Span]

.apply

Expr[S, Long]

+

Expr[S, Long]

Expr.Var[S, Span]

Span.apply

newStart:

Expr[S, Span]

.length

:newStop

.update

Figure 1. Expression chains produced by function
placeAfter. Arrows point in dataflow direction from de-
pendency to dependent.

and electro-acoustic materials, we base our core abstraction
for sounding objects, Proc, on three members:

1. An expression graph that evaluates to a unit gener-
ator graph handled by the ScalaCollider library, a
client for the SuperCollider Server.

2. A dictionary scans that maps between logical signal
names and real-time input or output signals.

3. A dictionary attributes that maps between logical
key names and heterogeneous values used to config-
ure the sound process.

The unit generators are extended by various elements which
interact with the Proc structure, for example by reading
from a scan input, writing to a scan output, determining the
placement of the process in time, accessing the attributes
dictionary, etc.

A ‘scan’ is a connecting point, it administrates sinks (pro-
cess outputs) and sources (process inputs). A sink or source
may be either a grapheme or another scan. A grapheme
is a random access object—accessible both in real-time
and offline—producing a linear time signal from segments
of break-point functions or stored audio files. A scan sig-
nal is produced either by linking the scan’s source to an-
other scan’s sink—thus establishing “bus routing” between
processes—or a grapheme input, or it is produced by the
process’ graph function itself. This is illustrated in Fig. 2. 1

Processes are placed in T(P) by associating them with a
time span—which may be an expression and thus algorith-
mically specified and updated. A special data structure
keeps a designated group of processes indexed in T(P), and
a transport class may then iterate over this temporal dimen-
sion in real-time (or offline for the purpose of bouncing).

4. VOICE TRAP

Several pieces were realised using the system. We report
on two of them: A sound installation Voice Trap, written

1 The dashed arrow from grapheme to graph means that the implemen-
tation for plugging graphemes directly into sinks is currently missing, but
that there are work-arounds to record the real-time signal and introduce
the recording as a new grapheme.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1620 -

Figure 3. Wide shot and details of Voice Trap (top), and version graph detail (bottom)

Scan
source

sinks
in

graph

scans

Proc B

Scan

graph

sc
an

s

Proc A

source

sinks

Grapheme

out

Figure 2. Interaction between scans, graphemes and graph
functions

using the “bare-bones” framework, and a tape composi-
tion (Inde)terminus, written using an emerging environ-
ment with a graphical front-end.

Voice Trap is a collaboration between me and visual artist
Nayarí Castillo. It is spun around the story of a girl who is
haunted by voices. The story is written across four large
mirrors on the floor of the room. Large jars, “voice traps”,
are filled with different materials and placed on the mir-
rors. The jars are tagged with the written description of
a particular voice and their contents relate to the sound
qualities of the imaginary voices. The sound installation is
diffused from 96 piezo speakers grouped into twelve chan-
nels which are placed on a metal grid suspended below the
ceiling. Fig. 3 shows photos of the exhibition.

The material of the sound composition comes from a mi-
crophone that picks up the noises from the street in front
of the gallery. These are fed into a database from which
individual phrases are constructed. An algorithm searches
the database for sounds that are both similar to the currently

playing sounds as well as to an inaudible “hidden” file con-
taining different voice recordings. The idea is that from
the outside sounds those fragments will be preferred which
contain speech. Each of the twelve channels operates inde-
pendently; the evolution of each channel is captured by our
framework, and the algorithm can make references to this
history.

The bottom of Fig. 3 shows an example version graph
for four channels. Each channel has a dedicated cursor,
and each horizontal stretch is the succession of transactions
producing a certain number of iterations over the sound
phrases followed by a jump into the “past”, going halfway
back between the current transaction and the last branching
point. After a jump back in TK, the sound phrase from
that past version is heard again, but the successive evolu-
tion (overwriting of fragments with new sounds) diverges
from the previous path, because the sound database itself
is ephemeral and not reverted to a previous state.

Although I found it difficult to perceive these jumps—
perhaps due to the channel-locality of the jump or due to
the fact that the specific environmental sounds are more
difficult to distinguish than traditional musical gestures
made from pitches—this piece demonstrated that the frame-
work is functional and can handle a continuously growing
database even after tens of thousands of transactions and
several hundred megabytes file size.

There was no specific development environment that al-
lowed the composition of the algorithms in a traceable way;
they were written in the object language using a traditional
IDE, an activity which remained unobserved. On the other
hand, the traces the algorithm produced inside the observed
domain were easily captured. Constructing a whole meta
language was too much of an effort at this stage, so another

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1621 -

Figure 5. Procedure of (Inde)teminus. The edge labels
indicate the sequence in TK. The fifth iteration replaces the
first iteration in the first recursion—second row—which
“rewrites” iterations 2 to 4.

path had to be taken to validate the approach in a more
constrained setting.

5. (INDE)TERMINUS

Such a setting was established in another experiment. Its
working title (Inde)terminus refers to Gottfried Michael
Koenig’s tape piece Terminus I from 1961 which is based
on a scheme for deriving sounds from previous sounds by
applying a set of transformations [7].

To realise this electroacoustic study, a graphical tape
music environment named Mellite was written, based on
Sound Processes. A screenshot is shown in Fig. 4. On the
left side, a timeline view can be seen with several audio file
regions placed on the canvas. The supported operations are:
adding and removing, selecting, moving, resizing, muting
or un-muting a region, adjusting its gain and fade curves.

We use the concept of a workspace which is a tree of “el-
ements”, shown as a window on the right-hand side of the
screenshot. The opened popup menu shows the types of el-
ements supported: folders, process groups (timelines), arte-
fact stores (hard-disk locations), audio files, text strings, in-
teger and decimal numbers, and code fragments. Elements
can be dragged and dropped between different locations of
the interface.

The code fragment elements played an essential part. The
experiment begins with an initial hand-constructed canvas
of three minutes duration, sparsely placing sounds on an
8-channel layout. In the next step a bounce is carried out
and fed through a signal processing stage, becoming the
blueprint for the next iteration. Here, a new canvas is built
around this blueprint, possibly cutting it up, removing some
parts of it and adding new sounds. Then again a bounce
and a transformation is carried out, and so forth. This is
illustrated in the top part of Fig. 5.

The environment uses an embedded Scala interpreter and
an integrated code editor to textually manipulate objects
or, in this case, to define transformations of the bounced
sounds. The creation procedure of this transformed sound
file is memorised, so it can be re-rendered at a later point
even if the input canvas has changed. This idea is illustrated
in Fig. 6 and works as a generalisation of the expression
cells, whereby the deployed sound file artifact serves as the
“evaluated” expression.

In this study the transformation was a segmentation and
reversal of the resultant segments of the bounced file. Each
channel was bounced and transformed separately, leading

- process group
- selected time span
- output channels

Recursion Object

bounce

transform
- transform function

iterate

- deployed artifact

- product artifact

Figure 6. Algorithm for the transition to the next iteration

to different segmentations so that not only a diachronous
reversal occurs, but also a synchronous scattering. The
transformed bounces were placed on a new timeline and
cut again into chunks to remove the silent parts. The new
temporal structure was then adjusted and “composed”, pos-
sibly thinning out the material further or introducing new
elements. Since the next iteration would again reverse the
temporal succession, a specific similarity arises within the
group of even-numbered iterations and within the group of
odd-numbered iterations.

The trace of the re-imported bounces permitted the cre-
ation of a closed recursive setting: After a certain number
of iterations, the input to the initial bounce is exchanged
for the result of the most recent (fifth) iteration, retroac-
tively re-triggering the bounce and transformation of Fig. 6.
Consecutively, the iterations would be re-worked, a proce-
dure that could be repeated ad infinitum, explaining the title
of the study. Practically, this re-working was carried out
for the second (sixth), third (seventh) and fourth (eighth)
iteration, as shown in the bottom row of Fig. 5.

The “flattening operation” of the bounce establishes what
may be perceived as a crucial deferral or suspension in
the process: A time canvas is manipulated whose prod-
uct is used in another canvas, but the propagation of the
changes from the former to the latter is suspended until a
conscious decision is made. Furthermore, the flattening
bounce provides the closure of the material which makes it
possible to subject it again to general transformations such
as the segmentation and recombination. This connectivity
is an important feature of a representation, perhaps more
important than its “symbol” function (Hamman).

5.1 Ex Post Analysis

From an outside perspective, the version history can now
be used to query different aspects of the process. As an
example, Fig. 7 shows a “punch card” plot similar to the
ones given by popular open source platform GitHub. It
indicates at what times of the week someone has worked
on a piece of software. While composing is hardly an office
job, charts like this, especially when more data is available,
could reveal different profiles of composers, or they could
be used to compare different types of activities.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1622 -

Figure 4. Screenshot of the (Inde)terminus session

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
hour

Sun

Mon

Tue

Wed

Thu

Fri

Sat

Figure 7. “Punch card” of working hours distribution

While the selection of sound files was not important to the
concept of (Inde)terminus, we used a query in a different
composition to reveal when particular sound files had been
added to the piece, and it was possible to further elucidate
this trajectory in TK by taking manual sketch-book notes
into account.

Another approach is to look at the tool usage. Fig. 8
shows the relative proportions. Extracting this data from
the database was laborious, because the transactions were
not specifically tagged by the software and needed to be re-
constructed by analysing the structural differences between
successive points in TK. To see how the proportions change
over time, two charts were generated. The top chart shows
the earlier transactions, relating to the first two iterations of
the experiment. The bottom chart relates to iterations 2–4
after the recursion (or the second row in Fig. 5).

Moving and resizing amounts to more than half of the
actions performed. 2 As the process unfolds, the relative
number of additions, removals and especially movements
decreases. This is in accordance with the idea to let the
bounce transformation create a temporally reversed struc-
ture by itself and to accept that structure as a basis of each
new iteration. In contrast, the number of region splittings,

2 However, the extraction of data for gain change actions was difficult
in this particular study and is omitted in the charts.

16× Mute

62× Fade

94× Resize

45× Add

10× Remove

14× Split

55× Move

66× Mute

175× Fade

65× File

51× Add

4× Remove

33× Split

50× Move

207× Resize

Figure 8. Frequencies of Mellite tool actions in the begin-
ning (top) and at the end of the study (bottom)

adjustments of fade curves and mute/unmute actions goes
up. It may indicate more work on the detail of the sound
as well as an increased density of sounds that requires to
mute sounds temporarily in order to monitor these details.
Muting can also be used as an alternative to removing re-
gions. The black pie segment labelled “File” indicates the
actions of replacing the previously deployed artefacts with
the updated artefacts.

One can also look at the parametrisation within the groups
of actions. Fig. 9 shows the distribution of varieties among
the resize actions and the region movements. The his-
togram bins use a logarithmic time scale and labels give

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1623 -

–3
93

.6
6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

fr
eq

u
en

cy

–3
93

.6
6

–1
31

.2
2

–4
3.

74

–1
4.

58

–4
.8

6

–1
.6

2

–0
.5

4

–0
.1

8

–0
.0

6

0.
00

+
0.

06

+
0.

18

+
0.

54

+
1.

62

+
4.

86

+
14

.5
8

+
43

.7
4

+
13

1.
22

+
39

3.
66

amount [s]

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

fr
eq

u
en

cy

Figure 9. Distribution of the amount of contraction and
expansion in resize actions (top) and relative time shift in
move actions (bottom)

the lower interval margin. The vertical line in the centre
distinguishes contractions on the left and expansions on
the right (resize) or shifting backward in T(P) on the left
and forward in T(P) on the right (move). An interesting
“left-leaning” tendency can be observed in both cases: Re-
gions tend to be shortened rather than elongated, but also
material moves backward in time more often than forward,
perhaps due to an editing style which initially gives each
region some isolated space before condensing the structure
left-to-right. Besides, there is an overall bell shape in the
distribution of both action types, which may be inherent to
the type of sound material used or dominated by the typical
zoom levels used in the graphical interface.

Another analysis examined the development of the sta-
tistical moments of the regions’ durations over time, and
some characteristic motions and settlements could be ob-
served. These charts and their discussion have been omitted
for reasons of space. There are many more possible ways
of extracting information from the database: One could
compare composer with composer, piece with piece, sec-
tions within a piece, sections within the creational timeline;
one might use such information to test or support hypothe-
ses about the working process, the musical material or the
human-computer interaction. The beauty of this approach
lies in the fact that the situation is not a priori contaminated
with “musical meaning” or “musical interrogation”, but in-
deed accentuates motions which underlie the compositional
process and which may otherwise remain tacit.

Finally, we created a transcription that brings together

TK and T(P). Such “motiongrams” are shown in Fig. 10.
The blackening corresponds horizontally with the span in
T(P) affected by an action at a given vertical point in TK.
The different iterations of the experiment are preserved as
horizontal segmentation. One could interpret that diagram
again. One would find the “carriage returns” in scanning
through the timelines; discern the initial phase of each
iteration from the subsequent refinement; see moments of
obstinate distillation at a particular spot; see at which point
in TK a certain part of the piece is more or less finished. . .

6. LIMITATIONS AND FUTURE DIRECTIONS

Drawing from the experience gathered so far, we will now
highlight some limitations and make suggestions for future
refinements of the framework. First of all, the querying
possibilities should be improved and extended, especially
for collections: Finding out when elements were added or
removed requires iteration over the whole data structure for
each possible version step. What we envision is a general
indexing operation that produces auxiliary data structures
for ordered or unordered sequences. One should be able to
index a group of sound processes not just by their position-
ing in T(P) but by arbitrary parameters such as creation or
modification date in TK, timbre or dictionary key. Collec-
tions should also allow the application of (dynamic) filters.

Indices must be kept up-to-date and in- or revalidated
when a key changes. An infrastructure for forward depen-
dencies between objects already exists due to the event bus
system that drives the dataflow and expression types. The
more experience we gain from using the system, the more
desirable it seems to extend the memory model with an au-
tomatic way to trace forward references. For example, if an
object is “deleted”, we might want to determine any other
locations within the workspace that refer to this object.
Does the composer wish to remove the object only in one
particular place or across the workspace? A forward refer-
ence mechanism more general than event passing yields a
form of automatic garbage collection. We imagine that the
next iteration of the framework will implement a simple
form of GC such as reference counting.

Another consequence of forward references is that the
serialisation mechanism must be adapted. It is currently
a statically typed and strict top-down approach. While it
has many advantages, it cannot handle “blind” bottom-up
deserialisation which would be needed for these forward
references, and it is hard to extend the expression system in
an open-ended way. Blind deserialisation would also ease
the exporting of data to other formats and the automatic
deep traversal of data structures, something that would
allow the copying of objects from one workspace to another.
Currently, workspaces are isolated from each other.

In terms of programming paradigms, a generalisation of
the dataflow model with logical variables modelling con-
straint satisfaction problems (CSP) seems an interesting
direction. These types of variables are initially only known
by their bounds or the domain of values they can possibly
take on. Comparable to the way in which we construct ex-
pression chains with single valued variables, these logical
variables can be composed, and special operators establish

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1624 -

Property Current state Proposal
Memory disposal Manual Garbage collected
Serialisation Static, top-down + Dynamic
Cyclic graphs No Yes
Indices Specific Generic
Timeline objects Non-nested Nested, recursive
Expressions Determinate + Constrained
Workspace Isolated Interacting
User Single Collaborative

Table 1. Suggestions for improving the framework

constraints between them. Instead of saying that a sound
object starts this much time after another sound object (the
placeAfter example), we can just generally say that it
starts after that sound, or we could say it starts at most this
and this much time after that sound.

In terms of the representation of musical data, we feel that
the current timeline model is too limited. A more powerful
representation would allow the hierarchic and recursive
nesting of elements in T(P). Similar to the idea of filtering
collections as an expression operator, fragments of one
timeline could appear within an outer timeline.

In terms of usage scenarios, the studies have shown that
the framework scales reasonably well to be used for real-
time generative sound installations as well as mixed of-
fline/online work such as tape composition. We have also
developed a real-time graphical user interface for live im-
provisation, but it has not yet been coupled with the current
version of Sound Processes, a case we still have to explore.

A second scenario is the collaboration of multiple com-
posers on a composition, or performers improvising to-
gether; can we associate transactions with different users?
What is the nature of distributed transactions or do we need
to constantly merge multiple distributed transactions?

The previous suggestions have been summarised in Table 1.
Of course, there are many more paths to explore. Graphical
user interfaces is one of them. How should interconnected
dataflow expressions be represented and edited? How do
we convey links and dependencies between different ele-
ments across the user interface, without resorting to “patch
cords”? How continuous are the transitions between a live
improvisation view and a tape editing view? What is the
relation between code fragments and graphical, symbolic
or iconic elements?

7. CONCLUSIONS

We concluded our previous paper [6] by saying that the
most important task would be to put the framework into
production in different contexts and see how it scaled un-
der real-world conditions. We believe this task has been
successfully completed, and the current paper showed that
a great number of interesting questions arise from the pos-
sibility to concomitantly trace the version history or to
analyse it ex post facto.

Our next research focuses on the challenges and sugges-
tions described in the previous section, as well as the exten-

sion of the Mellite front-end to a full-blown environment
usable by other composers. The conflict between such us-
ability and the critical value software plays in the artistic
episteme is aptly worded by Hamman: [3]

«When well-designed, the interface should
tell us, by reminding us of our history of ex-
perience, how it works. We shouldn’t have
to think about how to use a door knob, for in-
stance . . . At precisely the moment when an in-
terface becomes sensible and useful, however,
the shapes, materials, and structures which
constitute its physical and epistemological frame,
cease to exist in themselves. . . »

We should thus not forget the advantage of having—and
retaining—a prototypical situation that can be understood
as a “foregrounding” of representations, viewing music
composition «as a task that is as much concerned with the
theories and procedures by which musical artifacts might
be generated as it is with the actual generation of those
artifacts.» (Hamman)

Acknowledgments

The research was supported by a PhD grant from the Uni-
versity of Plymouth. The (Inde)terminus study was carried
out during a studio residency provided by ZKM Karlsruhe.

8. REFERENCES

[1] B. Truax, “A communicational approach to computer
sound programs,” Journal of Music Theory, vol. 20,
no. 2, pp. 227–300, 1976.

[2] T. Winograd, “Frame representations and the declar-
ative/procedural controversy,” in Representation and
Understanding: Studies in Cognitive Science, D. G. Bo-
brow and A. Collins, Eds. New York: Academic Press,
1975, pp. 185–210.

[3] M. Hamman, “From Symbol to Semiotic: Represen-
tation, Signification, and the Composition of Music
Interaction,” Journal of New Music Research, vol. 28,
no. 2, pp. 90–104, 1999.

[4] C. Burns, “Tracing Compositional Process: Software
synthesis code as documentary evidence,” in Proceed-
ings of the 28th International Computer Music Confer-
ence (ICMC), Göteborg, 2002, pp. 568–571.

[5] H. H. Rutz, E. Miranda, and G. Eckel, “On the Trace-
ability of the Compositional Process,” in Proceedings of
the 7th Sound an Music Computing Conference (SMC),
Barcelona, 2010, pp. 38:1–38:7.

[6] H. H. Rutz, “A Reactive, Confluently Persistent Frame-
work for the Design of Computer Music Systems,” in
Proceedings of the 9th Sound and Music Computing
Conference (SMC), Copenhagen, 2012, pp. 121–129.

[7] G. M. Koenig, “Genesis der Form unter technischen Be-
dingungen,” in Ästhetische Praxis, ser. Texte zur Musik.
Saarbrücken: PFAU Verlag, 1993, vol. 3, pp. 277–288.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1625 -

Fi
gu

re
10

.M
ot

io
ng

ra
m

s
fo

r(
In

de
)t

er
m

in
us

.T
he

ite
ra

tio
ns

ar
e

sh
ow

n
fr

om
le

ft
to

ri
gh

t,
tr

an
sa

ct
io

ns
ad

va
nc

in
g

fr
om

to
p

to
bo

tto
m

.I
n

ea
ch

di
ag

ra
m

,t
he

ho
ri

zo
nt

al
ex

te
nt

co
ve

rs
th

e
ca

nv
as

du
ra

tio
n

of
th

e
pa

rt
ic

ul
ar

ite
ra

tio
n.

D
ot

te
d

lin
es

in
di

ca
te

th
e

be
gi

nn
in

g
of

th
e

re
cu

rs
iv

e
re

-w
or

ki
ng

s.
If

an
in

vi
si

bl
e

gr
id

is
su

pe
ri

m
po

se
d,

th
e

m
at

ri
x

of
Fi

g.
5

ca
n

be
se

en
.

Proceedings ICMC|SMC|2014 14-20 September 2014, Athens, Greece

- 1626 -

