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Abstract. Despite recent success, deep learning-based methods for pre-
dicting 3D garment deformation under body motion suffer from inter-
penetration problems between the garment and the body. To address
this problem, we propose a novel collision handling neural network layer
called Repulsive Force Unit (ReFU). Based on the signed distance func-
tion (SDF) of the underlying body and the current garment vertex po-
sitions, ReFU predicts the per-vertex offsets that push any interpene-
trating vertex to a collision-free configuration while preserving the fine
geometric details. We show that ReFU is differentiable with trainable
parameters and can be integrated into different network backbones that
predict 3D garment deformations. Our experiments show that ReFU sig-
nificantly reduces the number of collisions between the body and the gar-
ment and better preserves geometric details compared to prior methods
based on collision loss or post-processing optimization.

w/o ReFU w/ ReFU

Fig. 1: Collisions solved by applying ReFU in garment prediction neural net-
works. Our approach reduces the number of artifacts.

1 Introduction

Predicting how a 3D garment deforms in response to the underlying 3D body
motion is essential for many applications, including realistically dressed human
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body reconstruction [6], interactive garment design [45], virtual try-on [35], and
robotics control [38]. To generate accurate cloth deformations, most techniques
are based on physically-based simulation (PBS). Common physically-based mod-
els include the mass-spring system [2,9], the finite element approach [27,22], the
thin-shell model [15], etc. However, these methods tend to be computationally
intensive since they typically involve solving large linear systems and handling
collisions. In particular, robust collision handling based on collision detection
and response computation is a critical component of cloth or garment simula-
tion. Even a single missed collision can considerably affect the accuracy of the
overall simulator [7,14]. The most accurate physically-based simulators run at
0.5 seconds per frame on commodity GPUs [42], where collision handling can
take 50-80% of total simulation time. As a result, these simulators are unable to
provide real-time performance for interactive applications such as gaming and
virtual try-on.

Machine learning methods provide a promising direction to dramatically re-
duce the computational cost of cloth simulators. Hence, in recent years, various
neural network methods have been proposed to predict 3D cloth deformations.
However, a common setback of such methods is the lack of efficient handling
of collisions between the garments and the body surface as shown in the yellow
garments in Fig. 1. In our experiments (Sec. 4), we observe that only 49% of gar-
ments predicted from TailorNet [32], a state-of-the-art neural network based 3D
garment prediction method, are collision-free. For some tight clothes like shirts,
only 12% of models are collision-free. Thus, the resulting state of the cloth mesh
can collide with the body mesh, which affects the reliability and usefulness of
these methods for many applications related to rendering, simulation, and an-
imation [8,34,44]. As a result, it is important to design learning methods that
can significantly reduce or eliminate such collisions.

One option to address the body-cloth collision problem is to perform post
processing optimizations [17]. However, these optimization approaches can take
considerable CPU time (around 0.6-0.8s per frame), which can be too expensive
for interactive applications. A more common practice is to apply specialized
collision loss functions during training [4,5,3,18,35]. However, this only provides
a soft constraint to avoid collisions for network training, and the network still
cannot handle the penetrated vertices when collisions happen during inference.

Main Results: To let the network learn to solve the collisions through inference,
we propose a novel neural network layer called Repulsive Force Unit (ReFU).
ReFU is fully differentiable and can be plugged into different garment prediction
backbone networks, trained either through fine-tuning or from scratch.

Our design of ReFU is inspired by physically-based simulators [25,43,13],
which use a scheme that collects repulsive forces, friction forces, and adhesion
forces as part of time integration. Our goal is to design a learning scheme that
can model the effects of repulsive forces and can easily cope with existing 3D
garment prediction networks. We compute the force based on the implicit field of
the body geometry to quickly detect the set of penetrated garment vertices and
the repulsive direction. The repulsive strength is predicted by the neural net-
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work inside the ReFU layer. Instead of simply pushing the problematic garment
vertices to the body surface, ReFU applies a flexible offset to move them. This
improves the overall collision handling performance, avoids additional Edge-Edge
(EE) collisions that normally cannot be detected by the signed distance of the
vertices, and overcomes the artifacts in the estimated implicit functions of the
human body. To achieve real-time performance for the whole garment prediction
system, we leverage the power of neural implicit surface representation and use
a neural network to quickly estimate the approximate Signed Distance Function
(SDF) of the human body under different poses [16].

To evaluate ReFU with different backbones, we train it with TailorNet [32],
the state-of-the-art 3D garment prediction network, and a 3D mesh convolutional
neural network [47]. Our experiments show that backbone networks trained with
ReFU can significantly reduce the number of body-cloth collisions while achiev-
ing real-time performance for the whole garment prediction system during test-
ing. The ReFU layer and SDF network will only add 2 milliseconds of inference
time to the overall system. Overall, our method achieves much better results
in terms of the number of interpenetrating vertices, the number of collision-free
3D garment models, and the reconstruction error of the generated garments.
Compared to prior learning-based methods, the use of ReFU results in garment
meshes with fewer artifacts and higher visual quality.

2 Related Work

2.1 Physically-Based Collision Handling

Many accurate techniques have been proposed for collision detection between dis-
crete time intervals using continuous methods (CCD), which reduce to solving
cubic polynomials for linear interpolating motion [8,34,41,44]. There is extensive
literature on collision response computation based on constraint solvers [28], im-
pulse responses [7], and impact zone methods [34,19]. These methods have been
used to develop robust physics-based simulators that are widely used in ani-
mation and VR applications. Current learning-based methods are significantly
faster than these physics-based simulators but cannot offer the same level of
accuracy or robustness. Other techniques for collision handling are based on
optimization-based refinement [17] but have computational overhead.

2.2 Cloth Prediction using Machine Learning

Many fast techniques have been used to predict cloth deformation in 3D. These
include simple linear models such as [17,11] and motion graph methods [21].
More recent works use neural networks [5,3,18,35,36,32,4]. Many of these learning
methods have been designed for SMPL-based [23] parametric obstacle models,
including human shapes. Other methods are designed for general triangle mesh-
based obstacles [20]. The GarNet network architecture [18] can predict the cloth
deformation from the target posture with DQS pre-processing. However, these
learning methods do not explicitly account for cloth-obstacle collisions.
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2.3 Learning-Based Collision Handling

Several techniques have been proposed to handle collisions in machine learning
methods. Recently Tan et. al. [39] estimated a collision-free subspace for 3D
human models, but it is not practical to compute a similar subspace for deform-
ing garments as they have a lot of degrees of freedom. Its performance can be
improved using active learning [40], but this approach is limited by the use of nu-
merical optimization algorithm. These methods can’t be combined with general
garment prediction backbone networks. Many recent works [5,18,4,3] use colli-
sion loss to penalize penetrated garment-body pairs during training. However,
these methods have no component or feature in the network that can resolve
these penetrations during inference.

Canonical Space Posed Space

Recently, Santesteban et al. [36] proposed a self-supervised
collision handling method, but it requires strict additional re-
strictions on the training data, i.e., that both garments in
the global space and the canonical space must be collision-
free. However, most public garment datasets cannot satisfy this
restriction. We show an example on the left from TailorNet
dataset which is collision-free in canonical space, but not in the
posed space.

To solve the collision problems for the testing set, a simple approach is to
perform post-processing on the predicted cloth by detecting the vertices inside
the human body and moving them directly to the nearest point on the body
surface [35,20]. However, there are two issues with these approaches: first, com-
puting nearest points on the body surface is time-consuming; second, simply
moving the garment vertices may generate abrupt cloth movements and lose
some properties of the original garment.
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Fig. 2: A garment inference model with ReFU: Given body shape β⃗, pose θ⃗, and
garment style γ⃗ parameters, the backbone network is used generate a deformed
garment with potential body-cloth collisions. Our ReFU layer is attached to the
backbone and processes every point {xi}Ni=1 in the garment. This layer first checks
whether the point is inside the human body or not based on the SDF value f(xi).
If it is outside, ReFU directly outputs the point. Otherwise, ReFU will apply
a repulsive force along the direction of the gradient of the SDF ∇f(xi) with
a predicted amount of movement di. Finally, we collect all the vertices passed
through the ReFU layer and obtain a 3D garment mesh with fewer collisions.
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3 Collision Handling using ReFU

In this section, we will first explain the formulation of the Repulsive Force Unit
(ReFU) (Sec. 3.1) then describe how to apply and train it in the garment pre-
diction backbone network as an additional network layer using the example of
TailorNet [32] (Sec. 3.2). Finally, we will present how we train a neural net-
work to quickly estimate the SDF for the human body (Sec. 3.3). Our overall
learning-based pipeline is shown in Fig. 2. With a neural network-based SDF
approximation, our system can achieve real-time performance for garment pre-
diction given the body pose and shape parameters.

3.1 ReFU: Repulsive Force Unit

The goal of body-cloth collision handling is to find the penetrating garment
vertices and move them to the proper positions to resolve the collision while
preserving original wrinkles and other details on the garments. Let Nc be the
number of vertices that need to be moved. The degrees of freedom of this set
of vertices result in a large solution space of dimension 3Nc. Our goal is to
reduce the dimension of the solution space. Inspired by prior work in physically-
based simulation [13,43], we design the Repulsive Force Unit (ReFU) to move
the vertices only along a repulsion direction, which is toward the closest point
on the body surface. Our formulation of ReFU can be seen as applying a virtual
repulsive force to move the penetrated vertex outside the human body.

To find the repulsion direction, ReFU uses the implicit representation of the
body, i.e., the signed distance function (SDF). Given a query point x, the SDF
function f returns its distance to the closest point on the corresponding surface,
and its sign is associated with whether the point is inside (negative) or outside
(positive) the surface:

f(x) = s, x ∈ R3, s ∈ R. (1)

The zero-level set of f(x) indicates the surface.

Given the nature of SDF, we can quickly determine whether a vertex xi on
the garment mesh is inside or outside the body. For xi with negative SDF value,
the gradient of the SDF at xi is pointing towards the nearest point on the surface
along the normal direction. Thus, we formulate ReFU as

ReFU(xi) = {xi − di ̂∇xif(xi), f(xi) < 0;
xi, otherwise,

(2)

where di is a predicted offset scalar indicating the amount of movement,
and ∇̂xf(⋅) is the normalized gradient of f at x, indicating the direction of
movement, calculated as below:
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∇̂xf(x) =
∇xf(x)
∥∇xf(x)∥2

(3)

Although the gradient of accurate SDF should be a unit vector [10,16], the
approximated SDF by neural networks [24,37] might not strictly satisfy this
property. Thus, we need to normalize the gradient in practice.
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Body Mesh
Body Surface

Direction Given by the Gradient of SDF

Fig. 3: We show an example of resolving vertex-face (VF) and edge-edge (EE)
collisions. Assume the blue polyline is a part of the human body mesh, and
the light blue region is the body represented by the SDF estimator f . We show
four garment vertices xi,j,p,q, where xi,j are inside the human body and xp,q

are outside of it. The dotted arrows are the repulsive force directions given by
the gradient of f . If we set αi,j = 1 and the moving offset to be ∣f(xi,j)∣, the
vertices will moved to x′i,j . While the collision along the edges xpx′i and xqx′j
are resolved, the edge x′ix

′
j will still induce a collision. By allowing αi,j >= 1, we

can move the vertices to x′′i,j , resolving all the VF and EE collisions.

A Learned Moving Offset A straightforward way to decide the moving off-
set is to use the SDF value directly. However, as pointed out in the context of
physically-based simulators [42], this is only guaranteed to solve the Vertex-Face
(VF) collisions, but not the Edge-Edge (EE) collisions. As shown in Figure 3,
we push the two neighboring garment vertices further outside to resolve the EE
collisions. To compute this extra offset based on the mesh representation, we
need to use a global optimizer in an iterative manner. However, this compu-
tation can be time consuming and the resulting configuration may not match
the groundtruth. Instead, we use neural networks to predict αi, the scale of
movement, and multiply it with the SDF value to compute the final offset as:

di = αif(xi), α ∈ R. (4)

αi is predicted based on the global latent feature z of the whole garment and
the SDF value of vertex xi.
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αi = g(k(z)i, f(xi)),z ∈ RM , (5)

where k ∶ RM → RN×D is a topology-dependent Multilayer Perception (MLP)
network that infers the latent vector for every vertex from the global feature z,
and k(z)i ∈ RD is for i-th vertex xi. g is another MLP that outputs the movement
scale for xi. Both g(⋅, ⋅) and k(⋅) are jointly trained with the backbone network
in an end-to-end manner. We choose M = 1024 and D = 10 for our experiments.

The global garment latent vector z can be obtained from the backbone net-
work. In terms of using TailorNet as the backbone network, z is computed from
the predefined body pose and shape parameters β⃗, θ⃗ and the garment style pa-
rameter γ⃗ (as formulated in Tailornet [32] for the definition of β⃗, θ⃗, and γ⃗) with
an MLP function h.

z = h(β⃗, θ⃗, γ⃗). (6)

When the accurate groundtruth SDF is given, the output range of g can be
set as [1,+∞) so it ensures all penetrated vertices will be pushed outside. When
using a neural network based approximate SDF, we relax the range to be [0,+∞)
to account for inaccuracies in the SDF prediction. Implementation details of the
MLPs are given in Sec. 4.2.

Using the learned offset has several benefits. First, a flexible extent can han-
dle the collision more naturally and let the moved vertices blend more smoothly
with neighboring vertices. Second, it can help resolve additional Edge-Edge (EE)
collisions. Finally, the flexible offset can cope with the inaccuracies of the neural
network approximated SDF. For example, when the absolute SDF value pre-
dicted by f(x) is smaller than the ground truth, directly using the f(x) as the
offset could leave the penetrated vertex inside the human body. On the other
hand, if f(x) predicts larger distance than the ground truth, the resulting vertex
may be pushed too far away from the human body, resulting in a “pump out”
artifact, as shown in Fig. 5. However, when using ReFU during training, the
backbone network and the MLPs in the ReFU layer will foresee the quality of
the SDF function. As a result, it will learn to adjust the prediction of both xi

and αi and thereby result in a more accurate final output garment with fewer
collisions.

3.2 Train Backbone with ReFU

ReFU can be easily plugged into current neural network frameworks for garment
prediction. Here we show how to train the backbone network with ReFU with
the example of TailorNet [32]. When using ReFU, we assume that the colliding
vertices are not far from the body surface so that the repulsive force can be
estimated through the SDF. Thus, we train the ReFU layer with the backbone
network in the fine-tuning stage. One could also train the ReFU with the garment
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network from scratch. We will explain the use of Graph Convolutional Neural
Network (GCNN) [47] in the supplementary material.

The original TailorNet trains different frequency focused components sep-
arately to allow the different components realize the difference between low-
frequency and high-frequency deformations. However, the groundtruth repre-
sentation of the garment, obtained after the frequency division, may not satisfy
the collision-free condition, i.e., the high-frequency pieces may have deeper pen-
etrations inside the human body. If we plug in ReFU after computing the high-
frequency output, the new vertices will all be moved outside the body, and their
coordinates will be different from their high-frequency groundtruth. Thus, we
propose training ReFU as a finetuning process together with all the components
of TailorNet, which have the summation of all the frequencies with no collisions
in the groundtruth data.

We attached a ReFU layer to the end of the pre-trained TailorNet so that
it receives the raw output of {xi}Ni=1. Assuming the predicted garment vertex
positions after the ReFU layer is {x′i}Ni=1 and the corresponding groundtruth is
{x̃i}Ni=1, we use the following loss terms to train the backbone network and the
ReFU layer:

L = λ1Lr + λ2Lc, (7)

Lr =
N

∑
i=1
∥x′i − x̃i∥22, (8)

Lc =
N

∑
i=1
∣max(−f(x′i),0)∣, (9)

where Lr is the reconstruction loss and Lc is the collision loss to cover missed
penetrated vertices. λ1,2 are weights to balance the loss terms.

We train the network with groundtruth collision-free garment data so the
reconstruction loss will guide the prediction of the xi and αi to move x′i to
the position with no EE collisions. In this manner, it better preserves the local
smoothness and details.

It turns out that the post-processing methods in previous works [35,20] can
only move the vertex along the gradient direction of the SDF of xi. With our
method, however, although the adjustment space of each collided vertex is also
one degree-of-freedom (DOF) during inference, through the training, both the
backbone and the ReFU layer are fine-tuned so the adjustment space extends to
4 DOFs, i.e., the movement scale αi and the original network output xi. With
higher adjustment capability, our method achieves performance on par with
complex optimization-based post-processing such as [17]. Detailed comparisons
with previous methods are described in Sec. 4.5.

3.3 Neural Network for Body SDF

In physically-based simulation methods, the SDF values are computed using
analytical methods and accelerated using spatial data structures like KD-trees.
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Even with these acceleration data structures, the SDF computation is far from
real-time as shown in the running time comparison in the supplementary ma-
terial. Recent works [30,16] show that the implicit function of a 3D geometry
can be approximated by a neural network. As a result, one can use the trained
network to quickly estimate the SDF values of a 3D point set. We design the
network to predict SDF conditioned on the SMPL [23] parameters, please see
more details in the supplementary material.

Ground Truth Collision Loss 
(Acc. SDF)

ReFU (Acc. SDF) ReFU (Hybrid)Opt. Post-Process (Acc. 
SDF)

TailorNet

Fig. 4: Benefits of ReFU: The baseline models from TailorNet have collisions
(red arrow), optimization-based post-processing results in non-smooth regions
(blue arrow); collision loss cannot resolve the collisions well; our method based
on ReFU resolves the collisions and preserves the original shape with plausible
wrinkles in both offline (using accurate SDF) and real-time (“Hybrid”) modes.
The results obtained using approximated SDF (“Hybrid”) are similar to those
obtained using accurate SDF.

Ground Truth TailorNet ReFU w/ 
Fixed Scale

ReFU w/ 
Predicted Scale

Fig. 5: We zoom in to highlight the “pump out” artifacts with fixed moving
scale and approximated SDF. When αi = 1, the ReFU layer may wrongly push
out some regions (blue arrow) with higher approximated SDF values than the
ground truth. However, with predicted scale, the network learns how to cope
with the inaccuracies of the approximated SDF and generates smooth results.
This also reduces the number of VF and EE collisions (Table 3).
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4 Experimental Results

In this section, we will quantitatively and qualitatively evaluate our method.
Given our goal of achieving real-time performance for the whole garment predic-
tion system, we use an approximated neural network predicted SDF (abbrevi-
ated as Approx. SDF) and combine it with ReFU. We also want to see the upper
bound of our method, so we combine with an approach that computes accurate
SDF (abbreviated as Acc. SDF).

Table 1: We highlight the details of the datasets used to evaluate our approach.
We have selected collision-free subsets from the datasets in [32]. The resulting
datasets include different genders and garment types.

Dataset # of vertices # of Training Models # of Testing Models

Shirt Male 9723 28360 3197
T-shirt Male 7702 21097 2688
Short-pant Male 2710 14555 2691
Skirt Female 7130 15664 3525

4.1 Datasets, Metrics, and Settings

We utilize the datasets from TailorNet [32] to evaluate our method. We use
an exact collision detection algorithm available as part of FCL [29] to select
a subset of the garments from different genders and garment types that have
no garment-body collisions or any self-penetrations in the 3D garment mesh.
Except for this modification, we use the same train-test split as in [32] for both
garment networks and SDF networks on different garment types to perform a
fair comparison. The resulting dataset is summarized in Table 1. “All garments”
in Table 3 correspond to the weighted-average performance for four types of
datasets. We include more results on the dataset from Santesteban et al.’s [36]
in the supplementary material and highlight the benefits of our approach.

We use the following metrics in our comparisons with prior methods:
MPVE [33] (Mean per-vertex error): Euclidean distance between the ground-

truth and predicted garment vertices. It indicates the reconstruction error of the
predicted garments. We use millimeters as the underlying unit.

VFCP [5] (Vertex-face collision percentage): The percentage of vertices on
the garment that are inside the body surface.

CFMP [39] (Collision-free models percentage): The percentage of garment
models that are body-cloth collision-free in both types of VF and EE collisions.

For training and testing, we have three settings:
Approx. SDF: Always use the neural network approximated SDF for train-

ing, testing and post-processing.
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Acc. SDF: Always use the accurate SDF for training, testing and post-
processing. For discretized 3D models such as the human body represented by
the SMPL parameters, we compute the SDF value for one query point. This
accurate formulation can compute closest point/face and returns the distance on
the normal direction, thought it is time consuming (shown in the supplementary
material.)

Hybrid: Use the accurate SDF for computing the collision loss during train-
ing but the approximate SDF for ReFU during both training and testing.

4.2 Implementation

We implement our method using PyTorch [31]. All the training and testing are
performed on a server machine with a 96-core CPU, 740GB memory, and 4
NVIDIA V100 GPU with 32GB memory. To estimate the body surface SDF,
we design the neural network f with nine hidden layers each with 1024 neurons.
Between each layer, we use a Softplus activation layer [46] with β = 100. We
include a skip connection in the fourth layer, i.e., concatenating the query point
coordinate with the hidden vector. To train f , we feed a batch with 32 human
body models each with SDF value of 4000 random sampled points. For the
network predicting the scale αi, we use three 1024-dimension layer for h, one
N × 10-dimension layers for k, and two 10-dimension layers for g. They all use
ReLU as the activation layer in between. We set the weights of the loss terms
as λ1 = 1.5 and λ2 = 0.5. For all the training, we use an Adam optimizer with a
learning rate of 1 × 10−5.

4.3 Performance

We first evaluate how ReFU performs when using the accurate body SDF during
both training and testing. As listed in Table 3, only 49.09% of the garments
generated by the original TailorNet are collision-free. After fine-tuning TailorNet
with ReFU, the collision-free models increase significantly to 76.77%. For difficult
cases like men’s shirts, which have dense meshes and are tight fitting on the body,
collision free models increase significantly by 5.3×, from 11.92% to 63.06%. Since
we set α >= 1, all the interpenetrating vertices are pushed outside, and the
VFCP drops from 0.6% to 0%. In the meantime, for MPVE, the reconstruction
error also decreases from 8.89 to 8.64. However, querying the SDF values is
computationally expensive, adding around 0.106 seconds of time cost to each
garment inference (see in the supplementary material.).

Then we train and test how ReFU performs when using the neural net-
work approximated body SDF. In other words, we train and test ReFU with
imperfect but much faster SDF. The result shows that although this strategy
cannot achieve the same level of collision handling as using accurate SDF, it
still improves the collision and reconstruction accuracy of the original TailorNet
a considerable level. The collision-free models increase to 58.52%, MPVE drops
to 8.66, and VFCP decreases by half as shown in the third to last column in
Table 3. The inference time for the ReFU layer with approximated SDF is 2.00
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milliseconds, and the inference time for the whole garment prediction system is
22.57 milliseconds.

To improve the collision handling capability while maintaining the real-time
performance during testing, we experiment with using accurate SDF values when
computing the collision loss during training while feeding the approximate SDF
into the ReFU layer during both training and testing. The network is guided
with accurate collision loss during training while learning to accommodate the
errors in the approximated SDF, which will be provided at test time. Now the
result is much closer to the case of using accurate SDF. We call this a “hybrid”
mode for simplicity. As shown in the last column in Table 3, the collision-free
models achieve 68.71%, VFCP improves to 0.24%, and the reconstruction error
is nearly the same.

From the last two columns in Fig. 4, we can visually observe how using
ReFU improves the body-cloth collision problems in the original TailorNet.
When trained and tested with Accurate SDF, the body penetrations are al-
most solved and the predicted garments look much more like the groundtruth.
In the hybrid mode, although the network cannot achieve the same quantitative
results as in the accurate SDF mode, the visual quality is quite similar. This is
impressive for a real-time garment prediction system.

4.4 Ablation Study

Table 2: Ablation study on the predicted scale in ReFU. As we mentioned in
Sec. 3.1, we use networks to predict the scale αi to determine the moving offset of
collided vertices. Here, we show that if we use only fixed scale (αi always equals to
1), the performances are worse than the predicted ones with either approximated
or accurate SDF. These experimental results show that our approach can also
reduce the number of EE collisions.

Metric
Method

TailorNet
w/ Fixed Scale w/ Predicted Scale

Approx. SDF Acc. SDF Approx. SDF Acc. SDF Hybrid

MPVE 11.27 10.84 10.60 10.59 10.56 10.57

VFCP 1.18% 0.58% 0.00% 0.62% 0.00% 0.51%

CFMP 11.92% 4.88% 37.22% 26.9% 63.06% 49.32%

Avg. VF 180.36 287.85 1.94 110.12 1.45 78.21

Avg. EE 11.56 19.60 8.89 8.6 6.98 7.39

In ReFU, we design a network-predicted scale αi to determine the offset
length di for each vertex. Theoretically it can help solve EE collisions and im-
prove the reconstruction quality. Here we perform the ablation study to evaluate
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the effect of using predicted scale. We report the experimental results for male
shirt in Table 2. As listed in the third and fourth columns, when only using
f(xi) without scaling, the quantitative results for all metrics are worse than
with the predicted scaling. The percentage of collision-free models drops by two
times in the case of using accurate SDF and over 5 times in the case of using
the approximate SDF. Figure 5 further shows that when using the approximate
SDF resulted in some pump out artifacts. With the fixed scale, the predicted
cloth covers the pump out region of the approximate body surface (where ap-
proximated SDF values are larger than the accurate ones) in an awkward way.
However, when trained with the predicted offset scale, the network learns to han-
dle the imperfectness in the SDF and generates a smoother and more plausible
result.

We also include the average number of colliding triangles on the garment,
based on VF and EE contacts, denoted as “Avg. VF” and “Avg. EE”. The results
in Table 2 shows that our predicted αi can further reduce the number of EE
collisions, as compared with a fixed value. We also include another ablation study
related to the design choices and other components of our networks, highlighted
in Eq. 16, in the supplementary material.

4.5 Comparisons

As reported in Table 3, we compared our method with other collision handling
approaches. A typical approach is to employ a post-processing step. A näıve
method is to move the penetrating vertices directly to the body surface along
the SDF gradient direction using f(xi) ̂∇xif(xi) [35,20] to eliminate the VF-
collision. As shown in Figure 3, this method does not handle EE-collisions and
might introduce new artifacts. Our experiments verify that this näıve approach
increases the collision-free models only marginally from 49.0% to 59.39% . When
tested with approximate SDF, the collision-free models drop to 30.89% and
MPVE increases to 9.67, compared with 8.89 in TailorNet.

Guan et. al. [17] propose a more advanced technique to post-process the
collisions using optimization. While this technique is more effective than the
näıve approach, it cannot beat the performance of our ReFU-based method in
terms of both quantitative results and computational speed.

Given the accurate SDF value, it eliminates the VF collisions
and increases the ratio of collision-free models to 70.97%. Exam-
ples are shown in the third column in Fig. 4. Although this ap-
proach attempts to preserve the original details of the garments,
it still results in higher reconstruction error and the resulting gar-
ments are not smooth, as shown by the blue arrow in Fig. 4 (a
close-up view of the corresponding area is shown in the inset fig-
ure). When tested with approximate SDF, the accuracy with re-

spect to the reconstruction error and collision handling drops significantly. Fur-
thermore, the optimization requires 0.6−0.8s per frame even with approximated
SDF.
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Table 3: Comparison with baseline and different collision handling methods,
including näıve post-processing [35,20], optimization-based post-processing [17],
and soft collision loss [5,18,4,3]. We include an additional row called “Trend” to
show the rate of change for each method compared to TailorNet, the baseline
model. The report shows all methods perform better with accurate SDF than
with approximate SDF. In either situation, ReFU has the best results among all
the methods. Overall, ReFU with “hybrid” SDF works better than approximate
SDF, and ReFU with accurate SDF achieves the best results.

Dataset Metric
Method

TailorNet
w/ Näıve Post-Process w/ Opt. Post-Process w/Collision Loss w/ ReFU
Approx. SDF Acc. SDF Approx. SDF Acc. SDF Approx. SDF Acc. SDF Approx. SDF Acc. SDF Hybrid

Shirt Male
MPVE 11.27 11.45 11.26 11.30 11.26 10.85 10.61 10.59 10.56 10.57

VFCP 1.18% 0.69% 0.00% 0.41% 0.00% 1.28% 0.68% 0.62% 0.00% 0.51%

CFMP 11.92% 3.1% 27.5% 25.21% 50.36% 20.21% 39.35% 26.9% 63.06% 49.32%

T-Shirt Male
MPVE 10.77 10.81 10.75 10.76 10.75 10.60 10.59 10.58 10.57 10.56

VFCP 0.95% 0.56% 0.00% 0.39% 0.00% 0.85% 0.86% 0.53% 0.00% 0.34%

CFMP 23.96% 12.01% 38.02% 36.57% 51.60% 28.98% 28.76% 32.18% 58.77% 47.25%

Short-pant Male
MPVE 6.81 6.87 6.83 6.82 6.81 6.79 6.80 6.79 6.76 6.77

VFCP 0.27% 0.83% 0.07% 0.11% 0.00% 0.19% 0.21% 0.13% 0.00% 0.13%

CFMP 60.35% 20.07% 73.47% 68.60% 81.42% 68.38% 66.78% 73.28% 83.05% 76.89%

Skirt Female
MPVE 6.90 9.35 6.90 6.98 6.90 6.92 6.90 6.90 6.87 6.89

VFCP 0.067% 0.04% 0.00% 0.015% 0.000% 0.059% 0.047% 0.028% 0.00% 0.027%

CFMP 93.36% 78.78% 93.87% 94.01% 96.45% 93.99% 94.44% 96.03% 98.16% 96.43%

All Garments
MPVE 8.89 9.67 8.89 8.92 8.88 8.74 8.67 8.66 8.64 8.65

VFCP 0.60% 0.50% 0.01% 0.22% 0.00% 0.58% 0.43% 0.31% 0.00% 0.24%

CFMP 49.09% 30.89% 59.39% 57.42% 70.97% 54.36% 59.15% 58.52% 76.77% 68.71%

Trend
MPVE - +8.77% 0.00% +0.34% −0.11% −1.69% −2.47% −2.59% −2.81% −2.70%

VFCP - −16.67% −99.90% −97.72% −100.00% −94.00% −95.55% −96.79% −100.00% −97.52%

CFMP - −37.07% +20.98% +16.97% +44.57% +10.74% +20.49% +19.21% +56.39% +39.97%
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Instead of performing post-processing optimization, some techniques [5,18,4,3]
apply the collision loss in Eq. 9 in the garment prediction models. The colli-
sion loss provides a soft constraint during network training. According to our
benchmarks in Table 3, adding collision loss to TailorNet can reduce the overall
collision artifacts and improve the reconstruction accuracy for garment samples
close to the training set, however, it introduces even more collisions for testing
samples that are farther away from the training set (see detail analysis in the
supplementary material). After fine-tuning the TailorNet network with the colli-
sion loss using accurate SDF values, the collision-free garment models are around
56% for both approximate SDF and accurate SDF. Moreover, the reconstruc-
tion errors are around 8.7. The fourth column in Fig. 4 shows visible collisions in
the predicted garments. Overall, our approach based on ReFU offers improved
accuracy (i.e., fewer collisions), real-time performance, and higher visual quality.

5 Conclusion, Limitations, and Future Work

We propose ReFU for handling body-cloth collisions in neural networks for 3D
garment prediction. Our method is inspired by the use of repulsive forces in
physics-based simulators. Specifically, ReFU predicts the repulsion direction and
the magnitude based on the SDF of the collided vertices and the global latent
feature of the garment. ReFU can be combined with different backbone networks,
and we highlight the benefits with state-of-the-art learning methods.

While our experiments show that using ReFU for training can significantly
reduce the body-cloth collisions and improve the reconstruction accuracy, our
approach has some limitations. To achieve live performance for the whole system,
we must use a neural network approximated human body SDF for real-time com-
putation. However, the accuracies in the SDF network prediction affects ReFU’s
capability of collision handling. But using more advanced neural SDF methods
such as the articulated occupancy networks [12,26,1] can improve ReFU’s overall
performance. Furthermore, our computation of the moving offset may not fully
resolve all collisions, especially all EE collisions.
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Supplementary Material for A Repulsive Force
Unit for Garment Collision Handling in Neural

Networks

A SDF Network

In this section, we will give details about the math formulation of the SDF
network, the sampling scheme, and the loss functions we use for training the
human body SDF network.

To train a generalized SDF network that can predict the implicit function
of human bodies with different shapes and poses in real-time, we design the
network to predict SDF conditioned on the SMPL [23] parameters.

f(x, β⃗, θ⃗) ≈ SDFM(β⃗,θ⃗)(x). (10)

SMPL is a PCA model computed from a large human shape data. β⃗ and θ⃗ are
its shape and pose parameters. M(β⃗, θ⃗) is the human shape reconstructed from
β⃗ and θ⃗.

To train the SDF network, we combine both the regression loss on sampled
points in the space and the geometric regularization loss on the gradient as
proposed by Park et al. and Gropp et al. [30,16]. For each garment-body pair in
the TailorNet dataset, we collect three categories of SDF value samples:

1. Randomly sampled points from the body surface, with or without Gaussian
disturbance. For samples right on the body surface, we also collect their nor-
mals. Note that, we can only get correct SDF gradients for the surface points
which are their normals. For other points, we can estimate their gradients
through analytic methods.

2. Randomly sampled points from the garment surface, with or without Gaus-
sian disturbance.

3. Randomly sampled points inside the bounding box of the body. We use a
general bounding box for all the samples with size 4m × 4m × 4m, centering
at [0,0,0].

For points from the body surface without disturbance, we denote them as
{xi}i∈IS , their normals as {ni}i∈IS . For other points, we denote them as {xj}j∈IE .
The ground truth SDF values for all the points are {si}i∈IS∪IE . We compute the
loss for training SDF as:

LSDF = λaLv + λbLsg + λcLse (11)

Lv = Ei∈IS∪IE(∣f(xi) − si∣) (12)

Lsg = Ei∈IS(∥∇xf(xi) −ni∥) (13)

Lse = Ei∈IE(∥∇xf(xi)∥ − 1)2, (14)
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where Lv is a regression loss for the values [30], Lsg and Lse are losses for the
gradients [16]. Specifically, Lse is based on the Eikonal equation[10]. We set the
weights to balance each term as λa = 2, λb = 1, λc = 0.1.

We include the performance for the approximated SDF on the datasets we
used in Table 4. We use two metrics:

Mean Absolute Error defined in Eq. 12;
Mean Relative Error defined as

Ei∈IS∪IE (∣
f(xi) − si∣

si
∣ ⋅ 100%) . (15)

Using those loss functions, we can have supervision on the absolute values
for the SDF samples, but no supervision on the norm of the gradient for vertices
that are not on the body surfaces. Consequently, the mean relative error is
much worse than the mean absolute error. Thus, in the main paper, we use the
predicted offset scale to help ReFU improve its collision handling ability using
the approximated SDF.

Table 4: Mean absolute error and mean relative error of the SDF network.

Dataset Mean Absolute Error Mean Relative Error

Shirt Male 2.38mm 28.22%
T-shirt Male 2.37mm 25.85%
Short-pant Male 2.46mm 31.66%
Skirt Female 3.10mm 32.64%

B Penetration Energy Histogram

Although our method cannot eliminate all the collisions when using the neural
network approximated SDF due to the inaccuracies of SDF, it brings a significant
decrease in the overall penetration energy as shown in the distribution histogram
in Fig. 6 and Fig. 7. Fig. 6 shows all the results and Fig. 7 shows the zoomed-in
results with collision energy less than 2.5 × 10−3. We compute the penetration
energy as the way described in [39].

C Results with GCNN

In this section, we show how ReFU works when applied in a backbone network
based on a graph convolutional neural network (GCNN) [47] for general 3D
models. This GCNN does not have a frequency division process as in TailorNet,
thus we can directly plug in the ReFU and train from scratch. We mentioned
in Sec. 3.2. of the main paper, that SDF for collision handling is only useful
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Fig. 6: We show the histogram of the collision energy for TailorNet without ReFU
(blue) and TailorNet with ReFU trained in the “Hybrid” SDF mode (yellow).
It shows with ReFU, the network can produce much more garments with low
collision energy.
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Fig. 7: Here is a zoomed-version of Fig. 6 for output garments with collision
energy less than 2.5 × 10−3.

when the points are near the surface, so we may better train with ReFU in the
refining stage when the predicted cloth already satisfies this condition. If we
train from scratch, the initial network prediction may not satisfy the condition.
Nevertheless, we still find the network can learn to cope with these, and have
good results when the network becomes steady as shown in Table 5. The results
demonstrate significant improvements in reducing collisions by training ReFU
with GCNN from scratch. This experiment illustrates that ReFU can work with
different kinds of backbone networks.

D Results on VTO Dataset [36]

VTO dataset from [36] is a new public garment-body dataset with more com-
plex human poses. The dataset contains 17 different shapes and several different
motion sequences, including walking, running, jumping, dancing, etc. We eval-
uate our results on test sets that include four unseen sequences similar to the
original paper [36]. We choose two options for the number of shapes: one with
five shapes resulting in a similar amount of samples to the TairlorNet dataset
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Table 5: Garment prediction results of the GCNN network trained with or
without the ReFU layer.

Metric
Method

GCNN[47]
w/ ReFU

Approx. SDF Acc. SDF Hybrid

MPVE 14.05 13.05 12.82 12.93

VFCP 2.26% 0.81% 0.00% 0.72%

CFMP 8.70% 19.92% 40.98% 36.78%

and another with all 17 shapes. We use a 5-layer Multilayer Perception (MLP)
as our baseline. We show the results in Table 6. Our method works well in this
new dataset.

Table 6: Results on the new VTO dataset [36]

Shape Num. Train Num. Test Num. Metric
Method

Baseline ReFU (Approx. SDF)

5 33525 2060
MPVE 15.36 13.15

VFCP 1.78% 0.56%

CFMP 18.69 52.53%

17 113985 7004
MPVE 18.23 16.12

VFCP 3.18% 0.86%

CFMP 13.30% 38.39%

E Ablation Study for Networks Computing αi

We compare alternative options for computing the scale αi. In the final ReFU
structure, we use the following networks to compute:

αi = g(k(z)i, f(xi)),z ∈ RM , (16)

with k ∶ RM → RN×D as a topology-dependent MLP network that infers the
latent vector for every vertex from the global feature z.

There are two additional possible choices. The first one (“Alt. 1”):

αi = g(k′(z), f(xi)),z ∈ RM , (17)
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with k ∶ RM → RD′ as another MLP inferring one shared latent vector from z.
Here we let D′ ∝ N ×D to maintain the parameter size of the whole network
and ensure a fair comparison.

The second one (“Alt. 2”):

αi = g′(f(xi)),z ∈ RM , (18)

where g′ is a network directly predicting the scale from each vertex’s SDF value.
We show the comparison results on “Shirt Male” dataset in Table 7. For all

the experiments, we use approximate SDF. The results show that our final choice
in Eq. 16 achieves better results since it considers each vertex’s information to
compute the final scale.

Table 7: Results trained with different αi computing networks.

Metric
Method

Baseline Alt. 1 Alt. 2 ReFU

MPVE 11.27 10.65 10.66 10.59

VFCP 1.18% 0.76% 0.79% 0.62%

CFMP 11.92% 21.36% 20.81% 26.9%

Table 8: Per-frame running time, including approximated SDF query, accurate
SDF query computed using spatial data structures, ReFU layer inference, and
the backbone network based on TailorNet inference [32].

Dataset
Component

Approx. SDF Acc. SDF ReFU Backbone

Shirt Male 1.97ms 121.96ms 0.29ms 22.14ms
T-Shirt Male 1.77ms 99.27ms 0.28ms 21.51ms
Short-pant Male 1.58ms 89.69ms 0.21ms 18.82ms
Skirt Female 1.67ms 107.38ms 0.23ms 19.76ms

All Garments 1.75ms 105.50ms 0.25ms 20.57ms

F Running Time

We include the running time for SDF, ReFU layer, and the backbone network
TailorNet in Table 8.
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Fig. 8: We show the bar plot of the predicted scale grouped by the ratio of ap-
proximated to actual SDF values. A larger scale can push collided vertices further
to compensate for smaller than actual SDF value prediction, and vice versa. It
shows that our moving offset based on the predicted scale can compensate for
the error from the SDF approximation.

We analyze the ratio of the approximated SDF values to the actual ones with
the predicted moving offset scale α. We show the bar plot for all collision-resolved
vertices in Fig. 8. When the ratio is smaller than one, the approximated SDF
value is smaller than the actual one. A larger moving offset scale lets ReFU push
the vertices even further and compensate for the error from SDF prediction.
Similarly, when the ratio is larger than one, the approximated SDF value is
larger than the actual one; a smaller scale can avoid putting the vertex too far
away. Among the collision-resolved vertices, the minimum ratio is 0.39 with a
scale of 2.68; the maximum ratio is 9.13 with a scale 0.25. Notice that the mean
predicted scale equals 1 for the group (2.25,2.75], which shows that our layer
learns to push the vertices even further than the distance to the surface to resolve
the EE cases.

H Local Geometric Comparison with Optimization
Post-Processing

We use local Laplacian error on the collision resolving regions to show that our
method can better preserve small-scale geometric details, as compared to other
post-processing methods. For each initial collided vertex, we compute its 1-ring
neighborhood Laplacian error. We summarize the mean error on the ‘shirt male’
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Table 9: Local Laplacian error for collision resolving region on ‘shirt male’
dataset. Our method can preseve local geometry details than previous methods.

w/ Opt. Post-Process w/ ReFU
Approx. SDF Acc. SDF Approx. SDF Acc. SDF Hybrid

7.02 5.85 5.29 4.24 4.36

dataset in Table 9. Our method with different settings results in lower errors
compared to the post-processing counterparts.

I Comparison with Collision Loss
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Fig. 9: We highlight the benefits of our approach on samples distinct from the
training set over methods based on collision loss. Collision loss can only help
reduce collisions for samples close to the training set.

As we mentioned in the main paper, adding collision loss introduces even
more collisions for testing samples that are farther away from the training set.
For each sample in the test set, we compute the minimal Euclidean distance to
the training set samples in the parameter space (pose, shape, and style). In Fig. 9,
we show the mean collision error for “Shirt Male” grouped by the distance. The
soft constraint can only reduce collisions for samples near the training set and
even introduces more errors for samples far away. In contrast, ReFU can still
resolve some collisions for samples with great differences from the seen training
ones.
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J Visualized Comparison Results

We include more visulizations for the results generated with or without our
ReFU layer, in Fig. 10, Fig. 11, Fig. 12 and Fig. 13.

Fig. 10: Additional examples from Shirt Male dataset, showing collisions resolved
by applying our ReFU in TailorNet.



A Repulsive Force Unit for Garment Collision Handling in Neural Networks 27

Fig. 11: Additional examples from T-Shirt Male dataset, showing collisions re-
solved by applying our ReFU in TailorNet.
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Fig. 12: Additional examples from Short-pant Male dataset, showing collisions
resolved by applying our ReFU in TailorNet.
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Fig. 13: Additional examples from Skirt Female dataset, showing collisions re-
solved by applying our ReFU in TailorNet.
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