Spruce: A Fast yet Space-saving Structure for Dynamic Graph
Storage

JIFAN SHI, University of Science and Technology of China, China
BIAO WANG, University of Science and Technology of China, China
YUN XU, University of Science and Technology of China, China

Dynamic graphs have been gaining increasing popularity across various application domains. With the
growing size of these graphs, the update performance as well as space occupancy is becoming a crucial aspect
of dynamic graph storage. Although existing dynamic graph systems can handle massive streaming updates
(e.g., insertions and deletions), they cannot achieve both high throughput and low memory footprint. Drawing
inspiration from the basic operations of the van Emde Boas (VEB) tree in double-logarithmic time, we designed
Spruce, a high-performance yet space-saving in-memory structure to store dynamic graphs. Spruce uses a
compact representation to construct the tree-like multilevel structure, which shares the common prefixes of
vertices and has no merging or splitting of nodes to achieve the requirements of low memory consumption and
high-efficiency dynamic operations. Furthermore, Spruce incorporates a read-optimized concurrency protocol,
which refines ROWEX and Optimistic Locking, to facilitate efficient simultaneous read/write operations. Our
experiment demonstrates that compared to Sortledton (the best of competitors), Spruce is up to 2.4x faster in
ingesting graph updates, while saving up to 38.5% of memory space. As for graph analytics, Spruce shows high
adaptability to different analytical workloads, and achieves comparable performance to other state-of-the-art
dynamic graph structures.

CCS Concepts: » Information systems — Graph-based database models; Data structures.
Additional Key Words and Phrases: Graph data structures, Index, Streaming

ACM Reference Format:
Jifan Shi, Biao Wang, and Yun Xu. 2024. Spruce: A Fast yet Space-saving Structure for Dynamic Graph Storage.
Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 27 (February 2024), 26 pages. https://doi.org/10.1145/3639282

1 INTRODUCTION

Graph analytical techniques have been under rapid development and are widely implemented in
our daily lives. They are used in various fields, including economics, physics [74], chemistry [37]
and biology (for DNA analysis) [25], etc. For example, Facebook and Twitter use social networks to
manage social relationships among users [48], while JPMorgan Chase uses the graph database to
help generate risk management measures [61]. These graphs not only have large scales, containing
up to billions of vertices and trillions of edges [36, 46], but also are continuously changing [7, 31],
with streaming updates reaching at a high rate [51]. Nowadays, lots of applications are built on
evolving graphs, such as dynamic social recommend systems [66] and real-time events discovery

“Corresponding author.

Authors’ addresses: Jifan Shi, University of Science and Technology of China, Hefei, China, shijifan8@mail.ustc.edu.cn; Biao
Wang, University of Science and Technology of China, Hefei, China, wangbiao0814@mail.ustc.edu.cn; Yun Xu, University
of Science and Technology of China, Hefei, China, xuyun@ustc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/2-ART27

https://doi.org/10.1145/3639282

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

https://doi.org/10.1145/3639282
https://doi.org/10.1145/3639282

27:2 Jifan Shi, Biao Wang, and Yun Xu

[4]. Therefore, there is an urgent need for both high-performance and space-saving dynamic graph
data systems.

The storage scheme is a crucial part of graph systems, which affects the memory footprint,
graph analytics run time, and update performance. Most existing graph systems organize graph
data based on two types of data structures: adjacency list [35] and Compressed Sparse Row (CSR)
[47]. The adjacency list organizes each vertex’s adjacency edges in a linked list, which is easy
to edit and suitable for streaming updates. But the pointers in lists not only take up extra space
but also lead to pointer chasing (irregular memory access) when accessing adjacency edges [8].
Besides, it stores vertices in a static array, which is unsuitable for storing evolving graphs. CSR is
a kind of compressed sparse matrix, which stores the non-zero elements of the matrix in several
arrays [68]. Intrinsically, CSR uses a compact storage scheme that stores elements consecutively in
dense arrays. It has good spatial locality as well as space efficiency, making it ideal for static graph
storage [63, 64]. However, when it comes to dynamic graphs, CSR is inconvenient because it has to
reconstruct the whole array when performing insertions or deletions on the graph.

Recently, many data structures have been developed from the adjacency list and CSR to better
meet the growing need for evolving graph storage. These structures mainly focus on three aspects
of efforts: (1) enabling fast modification and mapping of vertices, (2) providing good editability and
accessibility of adjacency edges, and (3) supporting concurrent read/write operations. For (1), recent
works usually construct a high-performance index for vertices, including hash table, B+ tree, radix
tree, purely-Functional tree and multilevel vectors [3, 22-24, 29, 43]. Regrettably, these indexes
cannot avoid reconstructing, splitting or merging part of their structures when the vertices suffer
from frequent changes, which leads to performance degradation on write-heavy workloads. For (2),
typical methods include using skip lists to accelerate queries, adopting block-based list structure to
improve locality, pre-allocating spaces in arrays for upcoming insertions, etc [27, 29, 43, 72, 73].
For (3), multi-version concurrency control (MVCC) along with optimistic locking is widely adopted
[29, 43, 75] to satisfy the growing requirement of running graph analytics along with graph updates.

However, existing data structures for evolving graph storage are difficult to juggle both space
consumption and dynamic performance, which still presents opportunities for improvement.

In this paper, we present Spruce, a high-performance yet space-saving structure for dynamic
graph storage. Our method borrows the idea from van Emde Boas tree (VEB tree) [69], a tree
data structure that implements an associative array and guarantees operations in O(lglg(u)) time
when using O(u) space to store n elements of universe U = {0, 1,2,...,u — 1} [71]. Spruce takes
advantage of the shared prefix nodes and compact format of the vEB tree to save space, as well
as the no splitting and merging of nodes to improve operational performance. Moreover, we use
a block-based strategy to organize vertices to optimize their space consumption. For storage of
adjacency edges, we introduce a combination of dynamically changeable buffers and compact
sorted blocks like CSR to balance space overhead and operation performance. Besides, we design a
lightweight concurrency protocol that benefits from the features of no splitting and merging of
index nodes, significantly improving system concurrency performance and throughput.

We compared Spruce with other state-of-the-art dynamic graph systems on different datasets.
The experiment result shows that Spruce notably outperforms all existing graph systems for
insertion and deletion throughput while using the least runtime memory. Also, Spruce provides
comparable graph analytics performance on read-only workloads and supports graph pattern
matching algorithms (e.g., local clustering coefficient). As for mixed workloads, Spruce achieves
over 10X speed up compared to LiveGraph when ingesting updates, and has lower run times for
concurrent graph analytics.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

Spruce: A Fast yet Space-saving Structure for Dynamic Graph Storage 27:3

0o 1 2 3
summary | 0 | 1|0 | 1 |+/u bits

fofJoJofo] [afoJa]r] [oJofoJo] [a]a]r]a] wits
0o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Node 0 Node 1 Node 2 Node 3

Fig. 1. The prototype of VEB tree. This instance represents the set {4,6,7,12,13,14,15} of universe
U=1{0,12,..15}.

2 PRELIMINARIES
2.1 Van Emde Boas tree

A bitvector is a bit array B that compactly stores bits, which is the base structure of the vEB tree. The
bitvector can efficiently map a range of integers to values in the set {0, 1} using less space (e.g., the
set A ={0,2,5,6,7} of 5 bytes can be represented as the 8-bit bitvector B[8] = {1,0,1,0,0,1,1,1}).
Van Emde Boas tree (VEB tree) [69] supports dynamic operations on a set S of n keys chosen from
the universe U = {0, 1,2, ...,u — 1} in worst case time O(lglg(u)). The prototype of the VEB tree is a
multiway tree consisting of bitvectors using O(u) space, as shown in Figure 1. The bitvectors at the
bottom contain u bits in total, where each bit indicates the presence or absence of the corresponding
integer in U. The upper nodes are treated as a bitvector summary|0, ..Afu — 1]. If summary[i] is 0,
the bits in the bitvector of size 4/u at the lower level are all 0. Otherwise, at least one of these bits is
1.

Dynamic operations are easy to perform on this structure. Take the vEB tree in Figure 1 as an
example. To insert 2, we set the corresponding bit in Node 0 to 1 and also set the summary|[0] to 1.
To delete 15, we first set the 4th bit in Node 3 to 0, then set summary[3] the result of logical-or of
the bits in Node 3, which is 1. These operations only take O(lglg(u)) time on the VEB tree since
the size of total bits in bitvectors shrinks by the square root at each level. Unlike B tree [10], B*
tree [20], prefix tree [28], and many of their variants [14, 50, 54], these operations do not cause
resizing splitting or merging of nodes, which demonstrates superiority over them.

A standard vEB tree requires O(u) space to store a subset of size n in the integer universe U.
This upper bound can reduced to O(nlglg(u)) by using hash tables to replace bitvectors and only
allocating space and entries for non-empty nodes (i.e., nodes that have at least one value) [6]. Each
level takes at most O(n) space, and there are O(lglgu) levels. Therefore, the total space bound is
O(nlglg(u)). However, such a representation requires a lot of different hash tables, which is still
expensive for space and lowers the vEB tree’s performance.

2.2 Optimistic Locking and ROWEX

Optimistic locking [39] is a concurrency control method based on the optimistic assumption that
there will be few concurrent modifications on the same resources. An optimistic lock usually
consists of an exclusive lock and a timestamp. For each writer, it modifies the data exclusively and
updates the timestamp at each write. For each reader, it takes the timestamp as an argument and
reads data when the lock is free. After reading, it rechecks the timestamp to make sure no changes
have occurred during the reading process. If the check detects stale data, the read result is invalid,
and corresponding operations need to be restarted. The advantages of optimistic locking are that it
can prevent deadlocks and avoids the overhead of frequently locking the data.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

27:4 Jifan Shi, Biao Wang, and Yun Xu

1 2 (w 6 |w 5 |w:)

N T e R nE i B D
zl»(sw»—>5w4o EdgcArraylZlGS 1l65 1[4[1[4]
Gl IR] oy I A Weight Ay [un [z [z [ws [[[[s
6| &1T—>1 |w2| @&—> 4 (W5 @

Vertex Table Egde Lists
(a) (b) (c)

Fig. 2. Graph Representation: (a) an example of a weighted graph; (b) adjacency list of (a); (c) CSR of (a).

Optimistic locking behaves well when few conflicts occur among writers, but the restart strategy
may result in a significant performance slowdown for reads on write-heavy workloads. Read-
Optimized Write EXclusion (ROWEX) [41] was proposed and firstly used in adaptive radix tree
(ART) [40] to solve this problem. The main component of ROWEX is the write lock. This lock only
provides exclusion among writers, and readers can read data ignoring the locks. To avoid restarts
while ensuring the correctness of reads, any read or write must execute atomically. Besides, the
internal data structures in ROWEX generally need some modifications to coordinate with atomic
operations. For example, to apply ROWEX, ART adds a lock for each node in the trie. It takes the
read-copy update (RCU) for updates because ensuring consistency across the entire node structure
is difficult within a single atomic operation. To update a node, ART first locks the node and its
parent. After that, a copy of the node is created, and updates are done on the copy. Then, the pointer
points to the old node is changed to the new copy using an atomic store. Finally, the old node is
marked obsolete, and the locks of the old node and its parent are released.

3 BACKGROUND AND MOTIVATIONS
3.1 Classical Methods of Graph Representation

Adjacency list [35] and Compressed Sparse Row (CSR) [47] are two of the classical graph represen-
tation methods. For the example of weighted graph in Figure 2(a), the adjacency list is composed
of a vertex table and edge lists, as shown in Figure 2(b). The vertex table is a static array indexed
by vertex identifiers, and the edge list is a singly linked list that stores information of connected
edges, including adjacency vertices and edge properties. The adjacency list has the advantage that
it is easy to perform insertion or deletion on edge lists. However, it cannot efficiently support the
changes of vertices as the size of the vertex table is determined by the scale of the initial graph.
Besides, the pointers in the lists occupy considerable space and usually cause irregular memory
access.

CSR is more space-efficient compared to the adjacency list. As shown in Figure 2(c), CSR only
has several static arrays, i.e., offset array, edge array, and edge property arrays. The offset array
keeps the offsets of the beginning and the end of edges in the edge array for each vertex. The edge
array consecutively stores the outgoing edges of vertices, and the edge property array maintains
the properties (weight, name, etc.) of these edges. Insertions and deletions are expensive in CSR
since all arrays need to be reconstructed, making it unsuitable for storing evolving graphs.

3.2 Existing Solutions and Limitations

The key to dynamic graph storage is to enable concurrent graph updates (insertion, deletion,
property change, etc.) with low latency. Most of the existing dynamic graph systems refine the
structure of the adjacency list or CSR to store evolving graphs.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

Spruce: A Fast yet Space-saving Structure for Dynamic Graph Storage 27:5

Dynamic graph systems based on the adjacency list mainly focus on two efforts: (1) make vertex
table support dynamic operations and (2) improve access and update speed of edge lists. For (1), most
systems use an index to map explicit vertex identifiers to logical vertex identifiers and store logical
vertices in arrays. For example, hash tables, adaptive radix tree, and multilevel vectors are used to
index logical vertices. Hash tables are known to take up much more space than other indexes to deal
with collisions, and existing tree-like indexes for graph systems cannot avoid merging, splitting, or
resizing nodes when executing graph updates, reducing their efficiency. For (2), the methods are
diverse. Stinger [24] aggregates nodes in edge lists as blocks to improve read efficiency and uses
a hash table as the secondary index to accelerate point queries. Graphone [38] novelly combines
adjacency list with edge log array. Any changes on the graph are firstly appended to the tail of the
edge log array and then merged into the adjacency list in batches. Sortledton [29] applies unrolled
skip list [56] to replace edge lists. An unrolled skip list manages multiple edges in the list nodes
and borrows the concept of the skipped list to provide logarithmic time complexity for lookup,
insertion, and deletion. Aspen [26] and Pac-trees [22] develop a new compressed purely-functional
search tree data structure, which could store compressed edge data with low space occupation at
the cost of slowdown in updates. Regrettably, none of these methods could both well reduce the
space usage of edge lists and gain high throughput for updates.

There are three typical ways to make CSR support graph updates. The first one is dividing
CSR into segments [27] to avert the reconstruction of the whole array. The vertices are stored in
separate segments indexed by a global array, and each vertex’s edges are stored in an edge array.
The insertion only needs to edit a single segment and shift values in the corresponding edge array.
Though such a design enables CSR for updates, the cost of shifting values at each insertion restricts
the system’s throughput to some extent. The second one is using snapshots for graph updates
[49]. Any batch changes on the initial graph are written to a new snapshot, and the query on
the graph may iterate through multiple snapshots. The snapshots would grow rapidly and take
up a lot of space when graphs are frequently updated. Thus, this method only works well with
seldom-changed graphs. The third one is using packed memory arrays (PMA) [13] to store edges
[73]. Empty slots or gaps are arranged between elements in PMAs, so there is no need to shift
existing elements when inserting new elements. However, these gaps need to be rebalanced when
the gaps are few or distributed very unevenly, which leads to significant latency when the array is
large. Besides, the gaps occupy extra space and fail to embody the space efficiency of CSR.

In addition to the above findings, the concurrent protocol design is critical to the performance of
the graph system. Early works only provide parallelization support [18, 53, 62]. In order to improve
concurrency efficiency, these systems generally execute updates and queries in turn, which means
that updates wait for all queries to finish before updating the graph, and queries wait for updates to
finish before accessing the graph. Recent research shows a new concern for concurrent execution
of graph updates along with queries [22, 29, 43, 75]. Most studies use the optimistic locking strategy
and multiversion concurrency control (MVCC) to allow running graph algorithms on continuously
evolving graphs. For example, LiveGraph uses two timestamps per edge to preserve the sequential
nature of scans on graphs, and Teseo uses a variant of the optimistic latch for transactions. We
noted that such a method could be optimized with ROWEX, which can improve read efficiency.

3.3 Opportunities

Given the limitations of existing graph systems, we now identify several opportunities for our
design.

Opportunity One: Replace vertex table with the vEB-tree-like structure to support
changes of vertices. Compared to other indexes for the vertex table, the VEB tree has a remarkable
advantage in that its nodes do not merge, split, or copy for updates. Moreover, graph data are

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

27:6 Jifan Shi, Biao Wang, and Yun Xu

usually extracted using graph labeling techniques [30], where unique, densely packed integers
are used as vertex identifiers [3, 32, 43] to provide efficiency for storage and computation. Such
a feature could benefit from the bitvector representation. However, the scale of bitvectors in the
original vEB-tree is only related to the universe size of the given integers. For 64-bit integers,
there are 6 levels of bitvectors, and the bottom bivectors should have 24 bits in total, resulting in
unbearable space consumption. To address it, we borrow the concept of the vEB tree and design a
block-based, tree-like vertex index, which has a lower memory footprint and access latency.

Opportunity Two: Redesign the edge list consisting of bufferblock and sortedblock
to strike a balance between space usage and update speed. The adjacency list offers good
support for graph updates, while CSR offers excellent memory access performance. The majority
of real-world evolving graphs are sparse [19, 44], where most vertices have relatively low degrees.
Thus, for each vertex, we maintain a sortedblock that compactly stores its neighbors like CSR in
sorted order and use a bufferblock indexed by an indicator to replace the list structure for fast
insertions. The high-degree nodes usually take only a very small part of the vertices, and the overall
maintenance cost for them is relatively low, so we do not specially design complicated structures
for them.

Opportunity Three: Develop a lightweight concurrency control protocol to support
concurrent operations. The most distinctive advantage of ROWEX is that readers are never
blocked. To achieve this goal, traditional designs of ROWEX usually adopt the exclusive lock, CAS,
and read-copy update (RCU) techniques [41]. However, the implementation of RCU will bring
additional space and time costs when copying blocks. We note that there has been no prior work
on supporting parallelism on VEB trees [5], and the nonexistence of node splitting and merging
in the vEB tree provides opportunities to refine ROWEX by editing data in nodes/blocks without
RCU. For the range-scan consistency needed for getting neighbors of a vertex, optimistic locking is
an ideal solution. Hence, a blend of ROWEX and optimistic locking is well suited to our tree-like
data structure.

4 DATA STRUCTURE DESIGN

The data structure of Spruce is composed of a vEB-tree-like vertex index and edge storage blocks
(bottomblocks), as shown in Figure 3. Spruce’s index is composed of a hash table and multi-level
bitvectors. The bitvectors are segmented into fixed-sized blocks (topblocks and middleblocks),
which are allocated as needed. The vertices’ edges, along with their properties, are stored in the
bottomblocks that are connected to the middleblocks. For vertex identifiers, Spruce employs 8-byte
integers, which is enough to accommodate up to 2% vertices and is sufficient to support large-scale
graphs commonly used in practice. For edge properties, Spruce supports fixed-length properties
(or fixed-length pointers to variable-length properties). In the following subsections, we give the
structure of Spruce and its operations in detail.

4.1 Vertex Index

Spruce stores the explicit vertex identifiers in its index structure, which map vertices to their
connected edges. We divide the 8-byte vertex identifier into 4 + 2 + rest bytes and store them
separately in the hash table, topblocks, and middleblocks. By such division, the maximum scale
of each level shrinks by the square root: a middeblock can cover at most 2'° vertices, a topblock
can cover at most 232 vertices, and the hashtable at the top of our index covers at most 2% vertices.
Thus, there are O(lglg(u)) levels in the index, and dynamic operations (e.g., insertion, deletion)
can be performed in O(lglg(u)) time. All the blocks in these levels are allocated and deallocated in
need, which allows Spruce to dynamically fit in the size of the evolving graph.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

Spruce: A Fast yet Space-saving Structure for Dynamic Graph Storage 27:7

MiddleBlock (The last 2 bytes of vertex ID, level 3)

|
i
I
I i
! | address 0 | «««««« | address i | ~~~~~~ | address t | !
. i 0 i j+63 65472 65535

i i
I |
I |
,,,,,, i,,,,,,,,,,,,,,,,,,i,,,,”,”””,Wﬁt,ﬁﬁj i 63 i
I |
I |

0/1 bits bitvector
topblock | ... | topblock | ------ | topblock | i / L L L i
- - I i I
T I I
I |
I |
I |
I |

------ | middleblock | | middleblock |
T

® ‘

ez T _____IC o= 8B entries | | ------ | | »»»»»» | | pointers
1

| TopBlock (The middle 2 bytes of vertex ID, level 2) ! 0 k 1023

! 0 i 65535 | e)

I Y

. . | i

i 0/1 bits | """ | | """ | | bitvector ! | BottomBlock (Adjacency list like, level 4) |

! ! 1 0 t 63 !

I I

Cweme [[e | smese Lo][] e

I ! I

! ! ! i

ff | !
! I
! I
| bufferblock | - | bufferblock | - !
! I
! I
! I
! I
! I
! I
! I
! I

Fig. 3. The data structure of Spruce for 8-byte vertex identifiers. Spruce is based on adjacency lists and is
divided into four levels, which are the hash table, topblocks, middleblocks, and bottomblocks, respectively.
The first three levels take the function of vertex table, and the last level takes the function of edge lists.

The first level is a hash table. The first 4 bytes of the vertex identifier are hashed to various cells
in the hash table, which is the address of the blocks storing the middle 2 bytes (i.e., topblocks). That
is, all vertices with the same 4-byte prefix are mapped to the same topblock. We have two reasons
for choosing the hash table technology: (1) the vertex identifiers with the same 4-byte prefixes
share the same hash address, which can significantly save space, and (2) lookups in a hash table
could be accomplished in O(1) time. In Spruce, we use Junction hash [57], which is a concurrent
hash map using linear probing for collisions.

The middle 2 bytes are encoded in topblocks. Each topblock contains a bitvector of 21¢ bits
denoting the middle 2 bytes and an array storing pointers. Each bit in the bitvector indicates the
existence of the 2-byte value and the corresponding pointer to the blocks storing the last 2 bytes
(i.e., middleblocks), like the global bitvector of the VEB tree. By using the bitvector, only 1 bit is
needed to represent a value. Here, we use 1 for present and 0 for absent. For example, if the bitvector
in topbolck is the sequence of 000100..., then the fourth bit indicates that the value 0x0003 of the
middle 2 bytes exists, and the fourth pointer points to the corresponding middleblock. The bitvector
is designed to accelerate the range-scan of vertices, which is used in the deletion (see Section 4.3
for details) and many graph algorithms (e.g., PageRank, WCC, and LCC). Scanning a bitvector is
much faster than scanning an array of pointers due to the fewer memory accesses.

The remaining bytes are encoded in middleblocks, which are similar to topblocks. A middleblock
only contains a bitvector having 2¢ bits and a pointer array of 2!° group pointers. The jth group
pointer points to the jth bottomblock, which contains the aggregated adjacency edges for the
vertex identifier values from (2° - j) to (2° - (j + 1) — 1) of the last 2 bytes. In our index, if the ith
bit of the topblock’s bitvector is 1, then the ith middleblock exists, and there is at least a 1 in the
middleblock’s bitvector. That is, the upper level is a summary of the lower level. Note that the
number of topblocks shrinks by a factor of 2!¢ compared to that of middleblocks, so we do not use
aggregation techniques to reduce their space.

4.2 Edge Storage

The bottomblock is an adjacency-list-like structure that stores adjacency edges for a group of
vertices (corresponding to the last 6 bits of vertex identifiers). A bottomblock is composed of three

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

27:8 Jifan Shi, Biao Wang, and Yun Xu

BufferBlock | header |indicat0r | sortedptrl logptr | edges | edges’ properties |

SortedBlock | header | edges | edges’ properties |

Fig. 4. The data layouts for bufferblock and sortedblock. For a directed edge (u, v), the bufferblock stores the
identifier v and the property (optional) of the edge. Here n = 2k forkin {2,3, ..., 1gC}, and m is the multiple
of n.

parts: a pointer array, bufferblocks, and sortedblocks. As shown in Figure 3, the pointer array in the
bottomblock pointed by the kth group pointer has 64 subpointers, each pointing to a bufferblock
which stores adjacency edges for a value of vertex’s last 2 bytes in range [j, j + 63]. The adjacency
information is stored in bufferblock and sortedblock, and the bufferblock is an insertion buffer of
the sortedblock to improve writing efficiency.

The bufferblock is designed to temporarily store the edges. The data layout for bufferblock is
shown in Figure 4. A bufferblock includes a header, an 8-byte indicator, two pointers (sortedptr and
logptr, one to sortedblock and one to logs), and two arrays (one for edges and the other for edges’
properties). The header indicates the types of the bufferblock and contains lock-related information
(which we will discuss in the next section). If the number of a vertex’s edges is less or equal to the
maximum capacity C of a bufferblock (we set C to 64 for alignment with the indicator), all the edges
are stored in the bufferblock. Otherwise, a sortedblock is needed to support storing more edges. In
bufferblock, neighbor identifiers and edge properties (optional) are stored following the same order
in two arrays, and the indicator shows the occupancy status of the arrays. We set several base types
for the array to allow it to dynamically change with the adjacency edges’ scale, and the type is
stored in the header. If the ith bit of the indicator is 0, then the ith cell in the neighbor identifier
array is empty. Otherwise, the cell stores corresponding adjacent information. Such representation
provides the following advantages:

e Accelerate insertions: In order to find an empty position in the block for insertion, Spruce
only needs to do a bitwise operation on the indicator instead of scanning the entire array
sequentially.

e Improve read efficiency: When accessing a vertex’s adjacency edges, Spruce uses the indicator
to directly extract data from non-empty cells, avoiding checking them one by one.

The sortedblock is designed to store edges as an expansion of the bufferblock. A sortedblock
includes a header, a neighbor identifier array, and an edge property array. The header indicates the
capacity of this block and the number of deleted edges in the block. The adjacency edges (except
deleted edges) in the sortedblock are stored consecutively without gaps, and they are sorted from
the smallest to the largest by vertex identifiers. When an edge is deleted, Spruce will simply mark
the edge invalid. When the edges from a full bufferblock are moved to the sortedblock, a merge
sort will be triggered to merge newly added edges. The advantages of sortedblocks are as follows:

e Speed up queries: An edge could be located in logarithmic time using binary search. The
ordered sequence is beneficial to basic pattern-matching algorithms like LCC (Local Clustering
Coefficient).

e Minimize space usage: Sortedblock compactly stores edges in arrays to efficiently use the
space. Compared to the linked list structure, it avoids the extra overhead of pointers and
enhances data locality, while maintaining considerable update performance by organizing
insertions in batches.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

Spruce: A Fast yet Space-saving Structure for Dynamic Graph Storage 27:9

Algorithm 1: Insert Edge into Bufferblock
Input: the pointer b to the bufferblock , the directed edge e = (v1, v, W)
Output: the pointer b to the bufferblock

1 if ! isfull(b— > indicator, C) then

2 idx = ranky (b — indicator,0) ;

3 if idx > b — size then

4 ‘ b = expand_buffer(b) ; // double its size
5 end

6 else

7 idc =0;

8 if !(b — sortedblock) then

9 ‘ b — sortedblock = new sortedblock ;

10 end

11 sort (b — edges) ;

12 merge_move (b — edges, b — sortedblock) ;
13 clear_bitvector (b — indicator) ;

14 set_value(b — edges[idx],e);
15 set_bit(b — indicator, idx) ;
16 return b;

4.3 Operations in Spruce

In Spruce, undirected graphs are implemented by directed graphs, where each undirected edge is
viewed as two directed edges. Generally speaking, dynamic graph operations include insertion,
deletion, update, and query of vertices and edges, which we will introduce as follows:

Vertex Operations. Vertex operations include Locate, Insert, Delete and GetNeighbours. Locate
(Query) is the fundamental operation in Spruce. It checks whether a vertex v exists in Spruce and
returns the pointer to the bufferblock storing its adjacency edges. To locate v, Spruce will first use
the 4 bytes of its vertex identifier to hash to the address of the topblock. Then, it will continue to use
the middle 2 bytes to locate the middleblock by checking the bitvector inside the topblock. A similar
process will be done in the middleblock and the bottomblock to finally locate the bufferblock. Insert
adds a vertex into the index. The execution process for Insert is similar to Locate. The difference is
that Insert will set bits in the bitvectors of different levels’ blocks according to the vertex identifier.
If the block does not exist, Spruce will allocate a new one and store the corresponding pointer in
the upper level. Delete removes a vertex in the index. It will first locate the vertex position. After
that, the vertex’s bufferblock and sortedblock (if they existed) are freed, and the subpointer in
the bottomblock is set to NULL. Then, the process will check whether the bottomblock is empty
through the bitvector. If true, the bottomblock is freed, and the corresponding bit and the group
pointer in the middleblock are cleared. Finally, similar maintenance will be done for the topblock
and the hash table. GetNeighbours accesses a vertex’s adjacency edges and gets the vertex’s all
adjacency vertices’ identifier. It will first locate the vertex position, then traverse the bufferblock
and sortedblock to extract all valid neighbor vertices’ identifiers.

Edge Operations. Edge Operations include Insert, Update and Delete. Insert (vq, v2, w) adds a
new edge into the bufferblock. It will first locate vertex v;’s bufferblock, then get an empty position
through the indicator. If the bufferblock is full, the following operations are executed to generate
spaces: If the size of the bufferblock is smaller than C, the bufferblock will be expanded to twice the

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

27:10 Jifan Shi, Biao Wang, and Yun Xu

‘ address 0 ‘ address 1 ‘ ‘ ‘ address 0 ‘ address 1 ‘ ‘

o] o]
01...001 ‘ 01...001 ‘ seees ‘ 00...001 ‘
1
Hash Table [(adaress 0 Jaadresst [] 4 [of«]-T¢] LT
. (LR [
MiddleBlocks () ©

BufferBlocks

SortedBlocks [(address 0 [address 1 || [(address0 [address 1 [o]

[wm]
(a)
‘ ‘ 01...001 ‘ ‘ 00...001 ‘
[l]I O OO T
DEBD L[]
) (O]

Fig. 5. A running example of Spruce (auxiliary structures and entries are ignored) : (a) the initial state, (b) ~(c)
insertion of edge (0, 3), (d) ~ (e) insertion of edge (217, 7). A vertex’s identifier is broken into three parts to
locate its bufferblock. Here, 0, 0, 0 is used for vertex 0, and 0, 2, 0 is used for vertex 217.

original size. Otherwise, Spruce will merge the bufferblock’s edges into the sortedblock, then empty
the bufferblock. Finally, the neighbor identifier v, and edge property w will be inserted into the
arrays of the bufferblock. The pseudocode for modification on bufferblock is shown in algorithm 1.
Update (v1,v2, w) updates an edge’s property. After locating the vertex v;’s position, it will check
the non-empty cells in the bufferblock to find the edge (v1, v). If the edge is not in the bufferblock,
a binary search will be performed on the sortedblock to find it. Then, the corresponding property
w for the edge will be updated. Delete (v1,v;) delete an edge from the bufferblock or sortedblock. It
uses the same approach as the update to find the edge. If the edge to be deleted is in the bufferblock,
the bit of the indicator corresponding to its position is set to 0. If the edge to be deleted is in a
sortedblock, the value in its storage position is marked as invalid.

A running example of insertion is shown in Figure 5. To insert edge (0, 3), Spruce first needs to
locate its bufferblock. Since the bufferblock’s parent middleblock does not exist, Spruce allocates
a new middleblock and sets the corresponding bit to 1 in the bitvector of the topblock (Figure
5(b)). Then, it allocates a new bufferblock and sets the corresponding bit to 1 in the bitvector of the
middleblock. Finally, it insert 3 directly into the bufferblock (Figrue 5(c)). To insert (27, 7), Spruce
locates 2!7’s bufferblock (Figrue 5(d)). Since the bufferblock is full, the edges in the bufferblock
are merged into the sortedblock to spare spaces. Then, the value 7 is inserted into the bufferblock
(Figrue 5(e)).

4.4 Discussions

In this subsection, we specify the following advantages that distinguish Spruce from other dynamic
graph data structures:

Operation Complexity. We analyze the time complexity of fundamental operations on Spruce
and compare them with previous state-of-the-art work in Table 1. For vertex operations, Spruce’s
time complexity is second only to Stinger, which uses a single hash table to index all vertices. For

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

Spruce: A Fast yet Space-saving Structure for Dynamic Graph Storage 27:11

Table 1. Time complexity of fundamental operations. n is the number of vertices, u is the size of integer
universe and d is the average degree of vertices.

Operation Stinger Teseo Sortledton Spruce
locate_vertex o(1) O(lg(u)) O(lg(n)) O(lglg(u))
insert_vertex o(1) O(lg(u)) O(lg(n)) O(lglg(u))

delete_vertex 0o(d) O(lg(u) +d) O(lg(n) +d) O(lglg(u) +d)
insert_edge 0(d) O(lg(u) +1g(d)) O(lg(n) +1g(d)) O(lglg(u) +d)
delete_edge 0(d) O(lg(u) +1g9(d)) O(lg(n) +1g(d)) O(lglg(u) +1g(d))
update_edge O(d) O(lg(u) +1g(d)) O(lg(n) +1g9(d)) O(lglg(u) +1g(d))
get_neighbours O(d) O(lg(u) +d) O(lg(n) +d) O(lglg(u) +d)

edge operations (which need first to locate the edges’ corresponding vertices), Spruce demonstrates
superiority over other methods in terms of edge updates and deletion. For insertions, the cost for
inserting an edge into a bufferblock and merging a bufferblock into a sortedblock is O(1) and O(d)
(d is the degree of the vertex), respectively. As real-world graphs are sparse [19, 44], the merge
operations are not frequently triggered for most vertices.

Memory consumption. Spruce uses the vEB-tree-like index and represents it by blocks sharing
the same prefixes, which reduces the levels and saves space compared to the original vEB-tree. The
most significant difference of this index compared to other graph indexes is that in Spruce, the
vertex identifiers are separated and stored in different levels, sharing prefixes to reduce memory
consumption, while others need to store the whole identifiers. Besides, the compact data structures
(bitvector and sortedblock) help further reduce memory consumption. We note that the space
savings also result in performance improvement for most operations due to performing fewer
memory accesses.

Graph data are extracted using graph labeling techniques, which map vertex in the graphs to a
set of integers [30] (vertex identifiers). Generally, these integers are nearly sequentially numbered
to provide efficiency for storage and computation [3, 32]. We define the gap as the difference of two
contiguous integers in an ordered set. Let graph G = (V, E), n, = |V|, n, = |E|, and d; be the number
of edges connected to vertex i. Let U = {0, 1, 2, ...,u—1} be the set of integers in the universe and G, B
be the average gap between contiguous vertex identifiers in V and the size of a bitvector in a block,
respectively. For vertex identifier set V = {0y, vy, ...} where v; < v;41, G = (Z:’;’l_l (vig1 —03)) /0y =
(v, — v1)/n,. Thus, Gn, denotes the scale of bits needed to store all keys within the range
[vl,vnv]. In the middleblock level, we store bits in blocks of bitvectors, so there should be no
more than n, blocks. Therefore, the total space of middleblock level considering the block size
is O(min(B[Gn,/B], Bny)) = O(min(Gn,, Bn,)). Since the size of upper levels shrinks by square

root, the upper bound of the total space complexity is O(min(ZZlOg(u)_1 (Gny)?™"', Bnylglg(u))).
Ignoring lower-order terms, it is O(min(Gny,, Bn,lglg(u))). For the common case when a large
amount of 8-byte vertex identifiers in graphs are sequentially numbered (G=1~2), Gn, is far less than
Bnylglg(u), so the space complexity of Spruce is about O(Gn,) and the consumption in practice is
low. According to Spruce index, when G=1~2, only 1~2 bits of the bitvector in middleblock level are
used to represent a vertex identifier, a bit of the bitvector in topblock level can be shared by 2!°~216
vertex identifiers and a slot of the hash table is shared by at most 231~2%2 vertex identifiers. The
worst case occurs when the gap between every two vertex identifiers is greater than u'/?, where
each block (excluding the hash table) has only one element. However, such a case is rare in practice
and can be resolved by relabeling them [43]. For edge storage, the buffer block and sorted block
dynamically adjust their size according to the number of edges stored in them, so vertex i uses

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

27:12 Jifan Shi, Biao Wang, and Yun Xu

O(d;) space to store edges. Since n, = ;*, d;, we can easily deduce that the total space for storing
edges in graph G is O(n.).

Efficiency of data access. Compared to other methods, Spruce accesses fewer blocks when
getting adjacency edges. For example, to find a directed edge and then delete it, Spruce only needs
to access the source vertex’s bufferblock and sortedblock. Stinger and GraphOne need to traverse
O(d/B) (d and B references to the vertex’s degree and block capacity, respectively) blocks in the
linked list, while Teseo and Sortledton need to access O(lg(d/B)) blocks. Thus, the compact storage
scheme for bufferblocks and sortedblocks provides better data locality when accessing memory,
which further benefits its performance.

5 CONCURRENCY SUPPORT

The method of concurrency control is another important factor affecting the performance of a
graph system. An ideal concurrency protocol for a graph system should have good scalability
and space efficiency while well satisfying the requirement of running updates concurrently with
computations. For this, we take advantage of the VEB tree’s feature of no splitting and merging of
nodes, present a lightweight protocol using a combination of ROWEX and optimistic locking, and
further introduce MVCC to support transactions concurrent operations.

5.1 General Idea

The core architecture of Spruce consists of two main components: the vertex index and the edge
storage blocks. We have implemented concurrency control mechanisms for two components
independently. For the vertex index, as discussed in section 4, Spruce’s index is designed such that
there’s no need for merging, splitting, or resizing of blocks. The operations only relevant to the
index are block allocation and deallocation. Based on these, we introduced the Improved ROWEX,
which is an enhancement of ROWEX, using only exclusive locks and atomic operations for write
procedures, thereby eliminating the need for the RCU technique. The underlying principle of
Improved ROWEX is simple: when a block needs modification, the writer acquires only that block’s
lock (as opposed to acquiring locks for both the block and its parent). The modification is executed
through atomic operations. During this process, an additional verification checks that the target
data hasn’t been altered by another process after the lock’s acquisition, ensuring concurrency
correctness. If this verification fails, the writer releases the lock and restarts the operation for the
block. In our designed data structure, this verification does not require a timestamp.

For edge storage blocks, there is a requirement to ensure the correctness of neighbor queries,
which works similarly to the range scan. To achieve this, we implement an optimistic locking
strategy. However, a limitation of this strategy is that when a reader accesses frequently modified
data, it might undergo numerous restarts. To address this, we’ve refined the lock to be upgradeable.
Specifically, if the number of restarts surpasses a predetermined threshold, the reader updates its
optimistic lock to an exclusive one. To further enhance the system’s capabilities, we’ve integrated
version logs, enabling transactions in Spruce.

5.2 Concurrency Protocol

In the topblock and middleblock, every 64 bits in the bitvector as well as their corresponding
pointers share a single exclusive lock. In the bottomblock, the subpointer array uses the same
lock with the pointer to the bottomblock, and each vertex’s bufferblock and sortedblock has an
optimistic lock, which includes an exclusive lock and a timestamp.

Concurrency Protocol for Vertex Index. We first discuss the protocol for writers. In Spruce,
only insertion and deletion can modify the index structure. The protocol for modifying the topblock

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

Spruce: A Fast yet Space-saving Structure for Dynamic Graph Storage

27:13

Algorithm 2: Concurrently Insert Value into MiddleBlock

O e N A U s W N

= e
N = O

-
o

14
15
16
17
18

Input: the pointer midblock to the middleblock, the value sufidx (last 2 bytes of vertex id)

to be inserted.

Output: the pointer bu fblock to the value’s corresponding bufferblock.

acquire(midblock — locks[sufidx/64]);

if midblock — obsolete_flag then

release(midblock — locks[sufidx/64]) ;

return NULL ; // restart from upper level

end

if !(midblock — bitvector.get(sufidx)) then

if !(midblock — pointers(sufidx/64)) then
botblock = new bottomblock ;

else

bufblock = new bufblock ;

botblock — pointers[sufidx%64] = bufblock ;
midblock — bitvector.set(sufidx) ;

else

‘ bufblock = (midblock — pointers[sufidx/64]) — pointers[sufidx%64] ;

release(midblock — locks[sufidx/64]);
return bufblock;

midblock — pointers[sufidx/64] = botblock ;

‘ botblock = midblock — pointers[sufidx/64];

and middleblock is similar, and we use the middleblock as an example. As the pseudocode shown in
algorithm 2, the modification process on a middleblock during the insertion is performed in 4 steps:

(1) Acquire the lock based on the vertex identifier.

(2) Check whether the middleblock is obsolete. If the block is invalid (has been removed before

being locked), the insertion restarts from the upper level; else, continue the process.

(3) Reread the bitvector to check whether the bufferblock to be inserted in the lower level already
exists. If the block does not exist, allocate and insert a new block and edit associated pointers
and bitvector. In this process, the pointer array in the bottomblock may need to be allocated

or edited. If the block already exists, the pointer to the bufferblock is got directly.
(4) Release the lock and continue the insertion process in the bufferblock.

The modification on a middleblock during the deletion is triggered when a vertex is deleted, which
is performed differently from insertion:

(1) Acquire the lock based on the vertex identifier.

(2) Edit the bitvector and pointer. If the pointer array in the bottomblock is empty, the bot-

tomblock is marked obsolete.
(3) Release the lock.

(4) Check the whole bitvector in the block. If all bits are 0s, acquire all the locks in the block
and go to step 5. Otherwise, the deletion will be finished. The locks should be acquired

sequentially for each writer to avoid deadlock.

(5) Recheck the obsolete flag and the whole bitvector in the block. If the block is already marked
as obsolete, then the process completes directly. If all bits in the bitvector are 0s, clear the
block and mark it as obsolete, then continue the maintenance process in the upper level.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

27:14 Jifan Shi, Biao Wang, and Yun Xu

Otherwise, the deletion completes because the bitvector indicates that new data has been
inserted between step 3 and 5.

For readers, they simply read data atomically, ignoring the locks. A similar check of the obsolete
flag is needed to ensure concurrency.

Concurrency Protocol for Edge Blocks. To modify a buffer-block or sortedblock, the writer
will first gain the exclusive lock before accessing the data, then edit the data without checking the
timestamp. The timestamp will be changed twice during this process: one before the modification
and the other after the modification. For readers, each holds a restart counter for the read. When
accessing a vertex’s bufferblock and sortedblock, the reader checks the timestamps before and
after the read. If the timestamps are not changed, then the read is successful. Otherwise, the reader
restarts reading these blocks and the restart counter plus one. If the restart count exceeds the
pre-defined threshold, the reader will acquire the exclusive lock for reading.

5.3 Correctness of Improved ROWEX

This subsection shows the correctness of our improved ROWEX on Spruce. Here we take the
middleblock as an example, and the proofs of ROWEX on the bottomblock and the topblock are
similar. Assume that two threads T; and T, concurrently access the same middleblock. If they both
perform Locate (Lookup), no conflict occurs and the result is obviously correct. If they both perform
Insert and need to set bits in the middleblock’s bitvector and corresponding pointers, the exclusivity
is guaranteed by the lock, and the recheck process in step (3) of Insert makes sure that the former
inserted value would not be overwritten by the latter.

If T; and T, both perform Delete on the middleblock, the cases are similar to that of Insert. The
only difference is that after deleting the value in the bitvector and the pointer array, the thread
needs to decide whether the block is empty and should be deleted at step (3) of Delete. If the block
is empty, the thread will acquire all locks in that block and delete the whole block. If T; and T, both
have detected that the block is empty, the one who gets the locks later will find the obsolete flag
true and quit the delete process since the block has already been deleted.

Then consider that Ty performs Delete and T, performs Insert. If the target delete value is not
the only value in the middleblock, the cases are similar to the above; else, the following cases may
occur:

e Case 1: Delete completes before Insert. In this case, the middleblock is marked obsoleted
before Insert. T, will find that the obsolete flag is true and restart Insert from the upper level
to get a new middleblock for insertion.

e Case 2: Insert completes before Delete. After T, inserts the value, T; will find that the
bitvector is not empty at step (4) or step (5) of deletion and finish Delete without clearing
the whole middleblock.

When T; performs Locate and T, performs Insert/Delete, the cases are more complicated. The
cases for Insert and Delete are similar. Due to the page limit, we only discuss the cases for concurrent
Locate and Delete on a middleblock. Delete firstly set the corresponding bit in the bitvector to 0
(then modify the pointer in the pointer array) while Locate reads the bitvector and the pointer
sequentially. If T, has deleted the whole middleblock before T; reads it, Ty will find the block
obsoleted and restart reading from the upper level to get the latest result. For other cases, assume
that T; attempts to read i and T, attempts to delete j. If i # j, the correctness is obvious since the
operations are done atomically. Otherwise, the possible interleavings of T; and T; are listed as
following;:

e Case 1: T, modified the bitvector before T; reads it. T has deleted the value before Ty
accesses it, thus T; will return false, indicating that the value does not exist in the index.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

Spruce: A Fast yet Space-saving Structure for Dynamic Graph Storage 27:15

bufferblock I I logblock I I logblock |—> ~~~~~~

s -~

’ ~ -

’ -

LogBlock | record 0 | record 1 | ------ |nextblock|

op type | log timestamp | ori timestamp
LogRecord

original data

Fig. 6. Version design of Spruce.

e Case 2: T, modified the bitvector after T; reads it. In this case, T} may get an empty
pointer or a pointer to an obsoleted bottomblock, which will trigger T; to restart reading the
middleblock to get the latest correct result.

5.4 Version Management

Many real-time graph analytics need to access a consistent snapshot of the graph using transactions.
In Spruce, MVCC is supported to enable transnational concurrent operations. One of the goals of
Spruce is to save space. Thus, we gather all the versioned edges of a vertex in a log list structure
rather than maintaining a version list for each edge. As shown in Figure 6, each vertex has associated
a pointer in its bufferblock, which points to a linked list of logblocks storing the versions. Each
version record in the logblock is composed of 4 fields: (1) op_type, which indicates the operation
type on the data (e.g., edge deletion/update), (2) log_timestamp, which indicates the time when this
operation was committed, (3) ori_timestamp, which indicates the last modification time before
this record, (4) original_data, which stores the versioned edge/vertex data corresponding to the
ori_timestamp. Note that the initial insertions of edges or vertices are not recorded in logblocks.
Instead, we store them along with their timestamp directly in the bufferblock and sortedblock to
save space.

6 EVALUATION

Experimental Setup. We do our experiments on a dual-socket machine equipping Intel Xeon
Gold 5120 @ 2.20GHz processors and 500GB DDR4 RAM. Each CPU has 19.25 MB L3 Cache, 14
cores, and supports at most 28 threads. All the codes were complied with GCC 11.3.0 and the O3
parameters.

Graph Data. A variety of graphs are used in our experiment to evaluate the time and space
performance, as shown in Table 2. Com-Livejournal is an undirected graph of the LiveJournal
social network [16]. DOTA League is a weighted graph representing the relationship between many
game entities [33]. Orkut is a relationship graph of ground-truth communities from the Orkut
social network. Yahoo-Songs is a bipartite person-song rating network, which contains over 250
million ratings performed by over 1 million users [60]. The Graph500-X and Uniform-X datasets are
undirected power-law graphs and uniform-law graphs, respectively. Com-friendster is an undirected
graph of the Friendster social network [45].

Graph Benchmark. We run the experiment for Spruce and its competitors based on the GFE
(Graph Framework Evaluation) Driver, a C++ driver to evaluate updates and analytics on dynamic
structural graphs [42]. For graph algorithms, we implement kernels from LDBC Graphalytics
[34], which is an industrial-grade benchmark including several algorithms that cover real-world

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

27:16 Jifan Shi, Biao Wang, and Yun Xu

Table 2. Analysis of graph datasets. "K", "M", "B" stand for "thousand", "million" and "billion", respectively.
The "Top 0.1% Degree" means that this degree surpasses 99.9% of all the other vertices’ degrees.

Graph Dataset \Y [E| Avg.Deg. Max. Deg. Top 0.1% Deg. Avg. Gap Max. Gap Size(GB)

com-livejournal 4M 34M 17.35 14815 473 1.010 86 0.47
dota-league 61K 5IM 1663.24 17004 12988 5.194 720 0.76
orkut 3M 117M 76.28 33313 1174 1.000 12 1.6
yahoo-songs 1.6M 256M 513.04 468425 23751 1.000 1 3.0
graph500-24 9M 260M 58.70 406416 7019 1.891 18 4.1
uniform-24 9M 260M 58.70 103 84 1.500 2 4.1
graph500-26 33M 1B 64.13 1003338 5340 2.046 21 17.5
uniform-26 33M 1B 64.13 111 90 1.500 2 17.5
com-friendster 65M 2B 55.06 5214 1612 1.903 1874 30.1

- Stinger - GraphOne

Throughput (meps)
Throughput (meps)

iveGraph == Teseo [[[[llll Sortledton EEEH Spruce
5

0 I IS 5 5
£500-24 g500-26 uni-24 uni-26 livejournal ~ dota

orkut friendster

Dataset Dataset

(a) (b)

Fig. 7. Insertion with random access pattern on (a) distribution-specific graphs and (b) real-world graphs.

workloads: breadth-first search (BFS), single-source shortest paths (SSSP), PageRank (PR), local
triangle counting (LCC), etc.

Competitors. We choose the recent state-of-the-art dynamic graph data structures for com-
parison: Stinger [24], GraphOne [38], LiveGraph [75], Teseo [43] and Sortledton [29]. LiveGraph,
Teseo, and Sortledton are transactional graph systems, while Stinger and GraphOne only provide
parallelization support for operations.

6.1 Dynamic Operations

In this subsection, we evaluate the throughput of dynamic operations (including insertion and
deletion) on a variety of graphs with multiple threads. Note that some methods did not finish the
experiment within the given time, so their results are not depicted in the provided figures.

6.1.1 Insertions. In this experiment, we randomly insert all edges (along with vertices) with weights
(they are generated randomly if the raw data does not contain weights) from the graph dataset
to an empty graph structure and report the average throughput. Figure 7(a) shows the insertion
throughput on graphs with certain distributions. For power-law graphs, Spruce performs best
among all the methods. For uniform-law graphs, though Stinger achieves the highest throughput on
unifrom-24, it cannot load uniform-26 and graph500-26 within the time limit. This is because Stinger
performs a linear search to check whether the edge exists, which leads to unbearable running
time for very large graphs. Spruce gets first place and second place on uniform-26 and uniform-24,
respectively. We note that support for transactions does have performance overhead, which is an

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

Spruce: A Fast yet Space-saving Structure for Dynamic Graph Storage 27:17

B stinger N Graphone B LiveGraph = Tesco [Sortledton EEF Spruce [stinger NN GraphOne [LiveGraph Sortledton EEE Spruce

=

“

Throughput (meps)
Throughput (meps)
Throughput (meps)

0
insert(rand) insert(seq) delete(rand) delete(seq)

6

Operation Type

Fig. 8. Deletion with random access pattern on (a) Fig. 9. Comparison of sequential ac-
distribution-specific graphs and (b) real-world graphs. cess pattern and random access pat-
tern.

important reason why transactional structures like Spruce and Sortledton have lower throughput
on some of the datasets (e.g., uniform-24) compared to non-transactional structures (Stinger).

Different from graphs with specific distributions, real-world graphs present a more practical
and complex form of data distribution. Therefore, we also test the performance of operations on
real-world graphs. Figure 7(b) depicts the throughput for insertion on four different real-world
graphs. The results demonstrate that Spruce has greater adaptability to real-world graphs, whose
insertion speed is up to 7.5% faster than GraphOne, 3.2 faster than Teseo, and 2.4X faster than
Sortledton. LiveGraph inserts no more than 1 million edges per second, which owes much to its
intricate transaction design.

Compared to some recent state-of-the-art techniques, such as the fat tree in Teseo and multilevel
vectors in Sortledton, our index doesn’t involve merging, splitting, or resizing of nodes and has a
better time complexity, enhancing the dynamic performance of the vertex index. The design of
bufferblocks and compact storage scheme for sortedblocks also provides edibility and good data
locality for edge modifications, which is suitable for real-world graphs where a majority of vertices
tend to have lower degrees (as indicated in Table 2).

6.1.2 Deletions. The deletions experiment starts with the data structure storing the input graphs
and deletes all the edges in the graph in random order.

Figure 8(a) shows the deletion throughput on distribution-specific graphs for all methods. For
power-law graphs, Spruce is up to 1.7X faster than Teseo and 1.9 faster than Sortledton. For
uniform graphs, Teseo and Sortledton are slightly faster than Spruce on uniform-24 while slower on
uniform-26. Stinger does not support edge versioning. On small, uniform graphs, the time required
for a linear search to find the edges that need to be deleted and the time for maintaining its hash
index are both relatively short. Thus, it outperforms all other competitors on uniform-24.

Figure 8(b) reports the deletion throughput on the real-world graphs. Spruce outperforms most
of the competitors with the throughput of 4.0 ~ 4.6 meps, which is 0.9x ~ 15.8x of Stinger and
1.4X ~ 1.5% of Sortledton. Other competitors show relatively low throughput, less than 3 meps.

It is noted that in the deletion experiment, most of the modification operations are concentrated
at the adjacency edges of vertices, and an artful vertex index could provide quick access to these
vertices. GraphOne and LiveGraph do not perform well in this experiment due to the lack of an
efficient index. The performance of Stinger on different datasets varies widely because it leaves the
adjacency edges unsorted, and the time cost for linear search in linked lists mainly depends on the
degree of vertices. Spruce outperforms other methods thanks to the high-performance index and
compact storage scheme for sorted edges.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

27:18 Jifan Shi, Biao Wang, and Yun Xu

[stinger NN GraphOne B8R LiveGraph D= Teseo ([l Sortledton EEEH Spruce
25

128

64

32

16

Memory (GB)
Memory (GB)

— o & o

friendster

Dataset Dataset

(a) (b)

—=— Stinger —— GraphOne LiveGraph Teseo Sortledton —<— Spruce
40
60
35
30 50
@ 25 @ 40
<) " e
20 =
e £
£ 15 — 3 £
s 0 L P = 20 e
- - - 2
2 g == P = |
5 s e 107 ,4./"'/:;:1” -
7 — e
0 as 0 ==

0 20 40 60 80 100 0 20 40 60 80 100

Progress (%) on graph$00-24 Progress (%) on uniform-24

(©) (d)

Fig. 10. Memory consumption of different methods. (a) shows the memory consumption on graphs with
certain distributions. (b) shows memory consumption on real-world graphs. (c) and (d) report the memory
footprint of the system while experiments on graph500-24 and uniform-24 progressed, respectively.

6.1.3 Sequential Access Pattern. A number of real-world dynamic graphs show a sequential access
pattern. That is, the modification of edges within a certain period of time relates to the same
group of vertices and exhibits a strong temporal locality. In this experiment, we evaluate sequential
operation performance on Yahoo-Songs, which presents a strong sequential access pattern (vertices
and edges being inserted/deleted in sequential order of vertex identifiers). In the experiment, the
edges are inserted/deleted continuously with no sleep time, and we report the average throughput
of the whole process.

Figure 9 shows the result for evaluation in the form of a bar chart. GraphOne, LiveGraph, Sor-
tledton, and Spruce are able to finish all operations within the time limit. The result demonstrates
that Spruce takes the first place among all the methods when executing sequential operations. For
sequential insertion, Spruce reaches 3.0 meps per second, which is 1.9x faster than GraphOne. For
sequential deletion, Spruce reaches 1.8 meps per second, which is 1.8X faster than Sortledton. Com-
pared to random execution, all methods experience different degrees of performance degradation
with sequential execution. The slowdown is mainly caused by competition for accessing resources,
especially for methods using the vertex-centric locking strategy such as Livegraph and Sortledton.
GraphOne uses a global edge array to arrange insertions in batches, thus gaining considerable
throughput for sequential insertion. Even though Spruce uses one lock per vertex, the buffer design
undercut the performance degradation when inserting edges.

6.2 Memory Consumption

Here, we evaluate the amount of physical memory used to store dynamic graphs for different
methods. The Resident Set Size (RSS) in /proc/[pid]/statm [65] is used to trace the memory
footprint of the program or application. In the following, we first analyze the memory consumption
for loading the graphs and then evaluate the memory footprint during the loading process.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

Spruce: A Fast yet Space-saving Structure for Dynamic Graph Storage 27:19

Table 3. Performance of different graph algorithms. For baseline, we report the explicit execution time. For
all the methods, we report the slow-down over the baseline. The "-" means the graph algorithm does not
finish within the time limit.

Graph | Method BFS PR SSSP WCC LCC | Graph | Method BES PR SSSP wCC LCC
baseline 0.54s 2.11s 5.56s 8.24s 81.31s baseline 0.51s 3.14s 6.39s 1.12s 3.29s

=% Stinger 1.75% 3.30x 1.75X 4.09% - X Stinger 2.27x 2.87X 2.12x 2.31X 18.45%
S | GraphOne 5.27x 3.67x 1.68x 2.17x - L | GraphOne 11.45x 337x 246X 5521x 1970
2 LiveGraph 5.75X 3.67x 1.69% 2.35% - 5 LiveGraph 4.27x 3.21x 3.02x 2.25% 12.55%
? Teseo 4.19% 3.52x 2.47X 3.35%x 5.34x E Teseo 2.65% 3.18% 3.33%x 2.32% 22.46X
o0 Sortledton 2.80x 2.26X 1.34X 3.55% 1.72x = Sortledton 1.91x 2.42% 2.50x 1.48% 2.05%
Spruce 1.45x 1.80x 1.07x 1.91x 2.90x Spruce 1.36x 1.55x 1.43x 1.39% 5.50x
baseline 0.13s 0.54s 1.72s 0.16s 2.80s baseline 0.12s 2.04s 0.48s 0.33s 61.41s
Stinger 3.06X 5.58x 2.16X 6.99% 63.89% g Stinger 8.90x 4.80% 2.61x 6.28% 19.13%x

3 GraphOne 40.46x 12.23x 4.70x 161.54x 33.06x s GraphOne 383.40x 24.70x 10.52x 133.84X 6.14X
= LiveGraph = 5.02x 4.91x 2.21X 4.35% 31.70x < LiveGraph ~ 9.94x 2.09%x 1.37x 2.51% 7.92%x
° Teseo 3.81x 3.32x 238X 533X 196.1X % Teseo 5.19x 1.52x 1.25X 2.45x 8.57x
Sortledton 3.77x 3.78x 2.13x 5.14X 2.63% = Sortledton 3.63x 1.23x 0.92x 1.95% 1.04x
Spruce 1.69x 2.97x 1.23x 3.04X% 5.22% Spruce 3.04x% 1.01x 1.11x 2.39% 1.01x

Figure 10(a) and Figure 10(b) give the results of memory consumption for loading the whole
graph. The y-axis is the memory consumption shown in the logarithmic scale, and the x-axis
represents different graph datasets. We note that the physical memory used by all systems are
higher than the raw data size because (1) an undirected edge is stored as two directed edges, (2)
random 8-byte weights are generated during the insertion process (3) additional structures such
as timestamp and pointers are taken into consideration. For graphs with certain distributions
(Figure 10(a)), Spruce uses the least memory to dynamically load the graphs. Compared to the best
of competitors (Sortledton), Spruce saves about 5.5% ~ 28.7% of memory. For real-world graphs
(Figure 10(b)), this gap is further widened: Spruce’s memory consumption is up to 38.5% lower
than Sortledton and 41.0% lower than GraphOne, respectively. LiveGraph suffers from severe space
overhead because it stores two timestamps per edge. Although Teseo implements the Compressed
Sparse Row (CSR) to store graphs, the memory consumption is still high due to the extra cost of
gaps in packed memory arrays. Spruce surpasses other methods owing to its compressed dynamic
index and compactly stored edges.

Figure 10(c) and Figure 10(d) record the variation of memory footprint with the progress of
insertions on two datasets of graphs having the same scale: graph500-24 and uniform-24. All of the
methods have an approximately linear relationship between the memory consumption and the
edges stored in the system, while Spruce gains the lowest slope on average. The curve of LiveGraph
rises more sharply on uniform-24 than graph500-24 because when a block is full, LiveGraph will
copy its data to a new block of twice its current size [75], which is unsuitable for uniform-law
graphs.

6.3 Graph Analytics

Now we evaluate the read performance of all the methods on different graphs using the benchmark
kernels of LDBC Benchmark Suite mentioned at the beginning of section 6. BFS, SSSP, PR, WCC,
and LCC are included to test the performance for various data access patterns. Table 3 reports the
run times of these graph algorithms. We use CSR as the baseline, and the run times of the other
methods are normalized to it. For each algorithm, we took the average run time of 5 trials, and the
best results excluding the baseline in the table are marked in bold font.

Breath-first Search and Single Source Shortest path. For all methods, we test the basic BFS
algorithms without direction optimization [11] and delta-stepping SSSP [52]. Both algorithms show
strong random access patterns of vertices and sequential access patterns of adjacency edges. As

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

27:20 Jifan Shi, Biao Wang, and Yun Xu

—=— Stinger—®— GraphOne LiveGraph Teseo Sortledton—<— Spruce
5
44
—_
2
o
)
E 34
=
E
& -
S 27 \v_.
=
2
e
= 14
=
0+ L
T T T T T
1 4 8 14 28 42 56

Number of threads

Fig. 11. The multi-thread scalability of different methods on graph500-24.

shown in table 3, Spruce gets the best run time among all the methods, except for the second best of
SSSP on dota-league, which owes to the fast locating of vertices in the index and good data locality
of neighbors.

PageRank and Weakly Connected Components. The data access patterns of PR and WCC
are similar, where all the vertices are sequentially accessed. The run times of PR on Spruce are
about 1.01X ~ 2.97x of the baseline, which outperforms all other methods. For WCC, Spruce gives
the best results on all the datasets except the second best results on dota-league (3.17X baseline)
following Sortledton, which indicates that for index on small graphs, the superiority of O(lglg u)
time over O(lgu) time is not significantly manifested.

Local Clustering Coefficient. For Spruce, we implement the same LCC algorithm as Teseo
and Sortledton, which requires that the adjacency edges of vertices are sorted. Table 3 shows that
Sortledton and Spruce are significantly better than other methods on all datasets. Specifically,
Spruce’s run time ties the first place on dota-league, while Sortledton takes the first place on other
graph datasets. The execution times of other methods have obvious gaps behind those of Sortledton
and Spruce. Spruce is slower than Sortledton on 3 of 4 datasets, which is mainly caused by the
disorder of edges in bufferblocks, and sorting them in LCC affects the performance of our method.

6.4 Concurrent Performance

This subsection reports the concurrent performance of dynamic graph storage structures, including
the scalability and the performance of concurrent read-write workloads.

6.4.1 Multi-thread Scalability. To evaluate multi-thread scalability, we test the insertion perfor-
mance with 1 ~ 56 write threads on graph500-24. Figure 11 depicts the multi-thread performance
for all methods. Spruce, Stinger, and Teseo can scale up to 56 threads. Spruce scales better than
Teseo and Stinger at a peak throughput of 4.2 meps because its index uses a more lightweight
concurrency protocol, where no read-copy updates are needed when the graph is evolving. Sortleton
and LiveGraph only scale up to 42 and 28 threads due to the fierce competition from vertex-centric
locks. GraphOne merely scales to 8 threads, and its performance slows down significantly above 28
threads, which is due to the imbalanced workload between workers.

6.4.2 Concurrent Read and Write. In this part, we evaluate the performance of concurrent read-
write workloads. The setup of the experiment is the same as Teseo [43] as follows. For the writers,
they perform about 10 - |E| update operations, where |E| is the number of edges in the original
graph. The first 10% operations load the graph, and the other 90% operations are insertions and

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

Spruce: A Fast yet Space-saving Structure for Dynamic Graph Storage 27:21

Spruce

B LiveGraph E=3 Spruce B LiveGraph E=3 Spruce B LiveGraph

Run time (s)
Run time (s)
Run time (s)

Number of readers Number of readers Number of readers
(a) BFS run times with no writer. (b) BFS run times with 16 writers. (¢) BFS run times with 28 writer:
B LiveGraph == Spruce B LiveGraph == Spruce B LiveGraph EE=5 Spruce

Run time (s)
Run time (s)
Run time (s)

1 2 4 8 16 28

Number of readers Number of readers Number of readers
(d) PR run times with no writer. (e) PR run times with 16 writers. (f) PR run times with 28 writers.
B LiveGraph B Spruce B LiveGraph B Spruce
4.0 4.0

35 3.5+

3.0+ 3.04

= PN
nw o

Throuput (meps)
Throuput (meps)

°

0.5+

2 4 8 28

Number of readers Number of readers
(g) Update throughput with 16 writers. (h) Update throughput with 28 writers.

Fig. 12. Mixed read and write workload on graph500-24.

deletions that are balanced to keep the scale and data distribution of the graph stable. For the readers
(analytical threads), they execute graph analytical algorithms (BFS/PR) once the graph is loaded.
We choose the LiveGraph for comparison, which is a state-of-the-art graph system supporting
concurrent operations by snapshots. We report the run times and throughput of various graph
algorithms under different read-write workloads as follows.

Figure 12(a)~(c) reports the BFS latency with 0, 16, and 28 writers, respectively. Both Spruce
and LiveGraph show good support for parallel graph analytics on evolving graphs by reason that
their run times drop down significantly as the number of readers (analytical threads) increases.
Compared to the case that has no writers, the self-slowdown is 1.04Xx and 1.24X for Spruce and
LiveGraph on the heaviest write workload (28 writers), respectively. For PR, we get similar results
(Figure 12(d)~(f)).

Figure 12(g) and Figure 12(h) depict the update throughput of 16 and 28 writers. When the
number of writers is kept the same, the update throughput of both methods is not significantly
affected by the number of readers. When the number of writers increases from 16 to 28, LiveGraph
shows a minor increase in throughput (3.3% on average), while Spruce has a significant increase
(21.7% on average). We attribute such a difference to the different concurrency protocols used in the
two structures. The fine-grained MVCC protocol in LiveGraph for transactions puts heavy burdens

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

27:22 Jifan Shi, Biao Wang, and Yun Xu

on writers and restricts their throughput, while the lightweight locking strategy in Spruce makes it
easier for the writers to modify data.

7 RELATED WORK

Relevant work includes tree-based indexes, concurrency control methods, and graph databases.

Tree-based Indexes. Lots of graph storage structures speed up graph queries as well as updates
using tree-based indexes, B+ tree and its variants are used in many graph systems [3, 55]. They have
high fanout and large node size, which is optimized for disk-based storage, and the basic operations
(put, get, delete, etc.) on B+ tree can be performed in O(Ign) time [9, 12, 58, 70]. Radix tree (radix
trie) is a kind of space-optimized trie where data insertion, deletion, and query operations can be
done in nearly constant time. Much recent work has further optimized this data structure and used
them for key-value store [15, 40] as well as graph representation [22, 59]. Teseo [22] picks Adaptive
radix trie (ART) [41] as its primary index, which designs different sizes of nodes to dynamically
adjust the fanout of internal nodes and use path compression technique to reduce the space usage.
Binary search trees (BST) are used for some in-memory graph storage methods [22, 23, 73]. Aspen
[23] uses the BST to store vertices. It introduces the hash technique to balance BST and improve
space efficiency by aggregating nodes in chunks. Pac-trees [22] further use BST to store edges and
apply difference encoding for tree leaves.

Graph Databases. The design of existing graph databases can be divided into two categories.
Databases in the first category (native graph databases) use specially designed structures for graph
storage [1-3], while those in the second category (non-native graph databases) rely on relational
database management systems (RDBMS) or key-value storage systems to support storing graphs
[17, 21, 67]. Most of these databases adopt tree-based structures for index construction and pointer-
based structures for edge storage. Thus, they can benefit from using Spruce as the basic storage
structure to save space and achieve higher throughput.

8 CONCLUSION

In this paper we present Spruce, a tree-based graph storage structure that is characterized by low
height, compression capabilities, and concurrency-friendly attributes. Spruce uses a novel index
developed from the vEB tree to reduce levels as well as compress identifiers for vertex index, and
combines the concept of adjacency list with CSR to store edges. Besides, we design a mixed locking
strategy from ROWEX and optimistic locking to allow Spruce for concurrent updates and analytics
on evolving graphs. In future work, we plan to extend Spruce’s structure to allow storing dynamic
graphs both in-memory and out-of-memory, which is expected to introduce a variation of LSM-Tree
and batch-updated logs to optimize for disk I/O. Furthermore, we are interested in expanding Spruce
to distributed systems and using Remote Direct Memory Access (RDMA) technology to improve its
performance.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for their feedback and suggestions. The work was
supported by the Nature Science Foundation of China (61672480), the 111 Project 2.0 (BP0719016).

REFERENCES

[1] 2015. TITAN: Distributed Graph Database. https://titan.thinkaurelius.com.

[2] 2020. OrientDB Community. https://orientdb.org.

[3] 2022. Neo4j Graph Database Platform. https://neo4j.com/product/neo4j-graph-database.

[4] Manoj Agarwal, Krithivasan Ramamritham, and Manish Bhide. 2012. Real Time Discovery of Dense Clusters in
Highly Dynamic Graphs: Identifying Real World Events in Highly Dynamic Environments. Proceedings of the VLDB
Endowment 5 (06 2012). https://doi.org/10.14778/2336664.2336671

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

https://doi.org/10.14778/2336664.2336671

Spruce: A Fast yet Space-saving Structure for Dynamic Graph Storage 27:23

5]

[11]

[12]
[13]

[14]

[15]
[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

Kunal Agrawal, Julian Shun, Yan Gu, Ziyang Men, Zheqi Shen, Yihan Sun, and Zijin Wan. 2023. Parallel Longest
Increasing Subsequence and van Emde Boas Trees. Proceedings of the 35th ACM Symposium on Parallelism in Algorithms
and Architectures (2023), 327-340. https://doi.org/10.1145/3558481.3591069

A. Amir, A. Efrat, P. Indyk, and H. Samet. 2001. Efficient Regular Data Structures and Algorithms for Dilation, Location,
and Proximity Problems. Algorithmica 30, 2 (01 Jun 2001), 164-187. https://doi.org/10.1007/s00453-001-0013-y
Timothy G. Armstrong, Vamsi Ponnekanti, Dhruba Borthakur, and Mark Callaghan. 2013. LinkBench: A Database
Benchmark Based on the Facebook Social Graph. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data (New York, New York, USA) (SIGMOD ’13). Association for Computing Machinery, New York, NY,
USA, 1185-1196. https://doi.org/10.1145/2463676.2465296

Nikolas Askitis and Justin Zobel. 2005. Cache-Conscious Collision Resolution in String Hash Tables. In String Processing
and Information Retrieval, Mariano Consens and Gonzalo Navarro (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
91-102.

Manos Athanassoulis and Anastasia Ailamaki. 2014. BF-Tree: Approximate Tree Indexing. Proc. VLDB Endow. 7, 14
(oct 2014), 1881-1892. https://doi.org/10.14778/2733085.2733094

R. Bayer and E. McCreight. 1970. Organization and Maintenance of Large Ordered Indices. In Proceedings of the 1970
ACM SIGFIDET (Now SIGMOD) Workshop on Data Description, Access and Control (Houston, Texas) (SIGFIDET °70).
Association for Computing Machinery, New York, NY, USA, 107-141. https://doi.org/10.1145/1734663.1734671
Scott Beamer, Krste Asanovic, and David Patterson. 2012. Direction-optimizing Breadth-First Search. In SC ’12:
Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. 1-10.
https://doi.org/10.1109/SC.2012.50

M.A. Bender, E.D. Demaine, and M. Farach-Colton. 2000. Cache-oblivious B-trees. In Proceedings 41st Annual Symposium
on Foundations of Computer Science. 399-409. https://doi.org/10.1109/SFCS.2000.892128

Michael A. Bender and Haodong Hu. 2007. An Adaptive Packed-Memory Array. ACM Trans. Database Syst. 32, 4 (nov
2007), 26—es. https://doi.org/10.1145/1292609.1292616

Robert Binna, Eva Zangerle, Martin Pichl, Ginther Specht, and Viktor Leis. 2018. HOT: A Height Optimized Trie
Index for Main-Memory Database Systems. In Proceedings of the 2018 International Conference on Management of
Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY, USA, 521-534. https:
//doi.org/10.1145/3183713.3196896

Robert Binna, Eva Zangerle, Martin Pichl, Gunther Specht, and Viktor Leis. 2022. Height Optimized Tries. ACM Trans.
Database Syst. 47, 1, Article 3 (apr 2022), 46 pages. https://doi.org/10.1145/3506692

P. Boldi and S. Vigna. 2004. The Webgraph Framework I: Compression Techniques. In Proceedings of the 13th
International Conference on World Wide Web (New York, NY, USA) (WWW °04). Association for Computing Machinery,
New York, NY, USA, 595-602. https://doi.org/10.1145/988672.988752

Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo,
Sachin Kulkarni, Harry Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkataramani.
2013. TAO: Facebook’s Distributed Data Store for the Social Graph. In 2013 USENIX Annual Technical Conference
(USENIX ATC 13). USENIX Association, San Jose, CA, 49-60. https://www.usenix.org/conference/atc13/technical-
sessions/presentation/bronson

Zhuhua Cai, Dionysios Logothetis, and Georgos Siganos. 2012. Facilitating Real-Time Graph Mining. In Proceedings of
the Fourth International Workshop on Cloud Data Management (Maui, Hawaii, USA) (CloudDB °12). Association for
Computing Machinery, New York, NY, USA, 1-8. https://doi.org/10.1145/2390021.2390023

Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. [n.d.]. R-MAT: A Recursive Model for Graph Mining.
442-446. https://doi.org/10.1137/1.9781611972740.43 arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611972740.43
Douglas Comer. 1979. Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (jun 1979), 121-137. https://doi.org/10.1145/356770.
356776

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay Ghemawat,
Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,
Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (aug 2013), 22 pages. https://doi.org/10.1145/2491245

Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun. 2022. PaC-Trees: Supporting Parallel and Compressed
Purely-Functional Collections. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New
York, NY, USA, 108-121. https://doi.org/10.1145/3519939.3523733

Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. 2019. Low-Latency Graph Streaming Using Compressed
Purely-Functional Trees. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (Phoenix, AZ, USA) (PLDI 2019). Association for Computing Machinery, New York, NY, USA, 918-934.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

https://doi.org/10.1145/3558481.3591069
https://doi.org/10.1007/s00453-001-0013-y
https://doi.org/10.1145/2463676.2465296
https://doi.org/10.14778/2733085.2733094
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1109/SC.2012.50
https://doi.org/10.1109/SFCS.2000.892128
https://doi.org/10.1145/1292609.1292616
https://doi.org/10.1145/3183713.3196896
https://doi.org/10.1145/3183713.3196896
https://doi.org/10.1145/3506692
https://doi.org/10.1145/988672.988752
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://www.usenix.org/conference/atc13/technical-sessions/presentation/bronson
https://doi.org/10.1145/2390021.2390023
https://doi.org/10.1137/1.9781611972740.43
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611972740.43
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/2491245
https://doi.org/10.1145/3519939.3523733

27:24 Jifan Shi, Biao Wang, and Yun Xu

https://doi.org/10.1145/3314221.3314598

[24] David Ediger, Rob McColl, Jason Riedy, and David A Bader. 2012. STINGER: High Performance Data Structure for
Streaming Graphs. 2012 IEEE Conference on High Performance Extreme Computing 1 (2012), 1-5. https://doi.org/10.
1109/hpec.2012.6408680

[25] Barig Ekim, Bonnie Berger, and Rayan Chikhi. 2021. Minimizer-space de Bruijn graphs: Whole-genome assembly of
long reads in minutes on a personal computer. Cell Systems 12, 10 (2021), 958-968.e6. https://doi.org/10.1016/j.cels.
2021.08.009

[26] Guanyu Feng, Zixuan Ma, Daixuan Li, Shengqi Chen, Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2021. RisGraph:
A Real-Time Streaming System for Evolving Graphs to Support Sub-Millisecond Per-Update Analysis at Millions
Ops/s. In Proceedings of the 2021 International Conference on Management of Data (Virtual Event, China) (SIGMOD ’21).
Association for Computing Machinery, New York, NY, USA, 513-527. https://doi.org/10.1145/3448016.3457263

[27] Soukaina Firmli, Vasileios Trigonakis, Jean-Pierre Lozi, Iraklis Psaroudakis, Alexander Weld, Dalila Chiadmi, Sungpack
Hong, and Hassan Chafi. 2021. CSR++: A Fast, Scalable, Update-Friendly Graph Data Structure. In 24th International
Conference on Principles of Distributed Systems (OPODIS 2020) (Leibniz International Proceedings in Informatics (LIPIcs),
Vol. 184), Quentin Bramas, Rotem Oshman, and Paolo Romano (Eds.). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany, 17:1-17:16. https://doi.org/10.4230/LIPIcs.OPODIS.2020.17

[28] Edward Fredkin. 1960. Trie Memory. Commun. ACM 3, 9 (sep 1960), 490-499. https://doi.org/10.1145/367390.367400

[29] Per Fuchs, Domagoj Margan, and Jana Giceva. 2022. Sortledton: a universal, transactional graph data structure.
Proceedings of the VLDB Endowment 15, 6 (2022), 1173-1186. https://doi.org/10.14778/3514061.3514065

[30] Joseph A Gallian. 2022. A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics 1000 (2022).
https://doi.org/10.37236/11668

[31] Sanchit Garg, Trinabh Gupta, Niklas Carlsson, and Anirban Mahanti. 2009. Evolution of an Online Social Aggregation
Network: An Empirical Study. In Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement (Chicago,
Illinois, USA) (IMC °09). Association for Computing Machinery, New York, NY, USA, 315-321. https://doi.org/10.1145/
1644893.1644931

[32] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J. Franklin, and Ion Stoica. 2014. GraphX:
Graph Processing in a Distributed Dataflow Framework. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation (Broomfield, CO) (OSDI’14). USENIX Association, USA, 599-613.

[33] Yong Guo and Alexandru Iosup. 2012. The Game Trace Archive. In 2012 11th Annual Workshop on Network and Systems
Support for Games (NetGames). 1-6. https://doi.org/10.1109/NetGames.2012.6404027

[34] Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-Pérez, Thomas Manhardto, Hassan
Chafio, Mihai Capotd, Narayanan Sundaram, Michael Anderson, Ilie Gabriel Tanase, Yinglong Xia, Lifeng Nai, and
Peter Boncz. 2016. LDBC Graphalytics: A Benchmark for Large-Scale Graph Analysis on Parallel and Distributed
Platforms. Proc. VLDB Endow. 9, 13 (sep 2016), 1317-1328. https://doi.org/10.14778/3007263.3007270

[35] Andrew Lumsdaine Jeremy Siek, Lie-Quan Lee. 2022. The Boost Graph Library (BGL). https://www.boost.org/doc/libs/
1_80_0/libs/graph/doc/index.html.

[36] U.Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Faloutsos. 2012. Gbase: An Efficient Analysis
Platform for Large Graphs. The VLDB Journal 21, 5 (oct 2012), 637-650. https://doi.org/10.1007/s00778-012-0283-9

[37] Steven Kearnes, Kevin McCloskey, Marc Berndl, Vijay Pande, and Patrick Riley. 2016. Molecular graph convolutions:
moving beyond fingerprints. Journal of Computer-Aided Molecular Design 30, 8 (2016), 595-608. https://doi.org/10.
1007/510822-016-9938-8

[38] Pradeep Kumar and H. Howie Huang. 2020. GraphOne: A Data Store for Real-Time Analytics on Evolving Graphs.
ACM Trans. Storage 15, 4, Article 29 (jan 2020), 40 pages. https://doi.org/10.1145/3364180

[39] H.T.Kung and John T. Robinson. 1981. On Optimistic Methods for Concurrency Control. ACM Trans. Database Syst. 6,
2 (jun 1981), 213-226. https://doi.org/10.1145/319566.319567

[40] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree: ARTful indexing for main-memory
databases. In 2013 IEEE 29th International Conference on Data Engineering (ICDE). 38-49. https://doi.org/10.1109/ICDE.
2013.6544812

[41] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016. The ART of Practical Synchronization.
In Proceedings of the 12th International Workshop on Data Management on New Hardware (San Francisco, California)
(DaMoN °16). Association for Computing Machinery, New York, NY, USA, Article 3, 8 pages. https://doi.org/10.1145/
2933349.2933352

[42] Dean De Leo and Peter Boncz. 2021. GFE Driver. https://github.com/cwida/gfe_driver.

[43] Dean De Leo and Peter Boncz. 2021. Teseo and the analysis of structural dynamic graphs. Proceedings of the VLDB
Endowment 14, 6 (2021), 1053-1066. https://doi.org/10.14778/3447689.3447708

[44] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos, and Zoubin Ghahramani. 2010. Kronecker
Graphs: An Approach to Modeling Networks. 7 Mach. Learn. Res. 11 (mar 2010), 985-1042.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

https://doi.org/10.1145/3314221.3314598
https://doi.org/10.1109/hpec.2012.6408680
https://doi.org/10.1109/hpec.2012.6408680
https://doi.org/10.1016/j.cels.2021.08.009
https://doi.org/10.1016/j.cels.2021.08.009
https://doi.org/10.1145/3448016.3457263
https://doi.org/10.4230/LIPIcs.OPODIS.2020.17
https://doi.org/10.1145/367390.367400
https://doi.org/10.14778/3514061.3514065
https://doi.org/10.37236/11668
https://doi.org/10.1145/1644893.1644931
https://doi.org/10.1145/1644893.1644931
https://doi.org/10.1109/NetGames.2012.6404027
https://doi.org/10.14778/3007263.3007270
https://www.boost.org/doc/libs/1_80_0/libs/graph/doc/index.html
https://www.boost.org/doc/libs/1_80_0/libs/graph/doc/index.html
https://doi.org/10.1007/s00778-012-0283-9
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1007/s10822-016-9938-8
https://doi.org/10.1145/3364180
https://doi.org/10.1145/319566.319567
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1109/ICDE.2013.6544812
https://doi.org/10.1145/2933349.2933352
https://doi.org/10.1145/2933349.2933352
https://github.com/cwida/gfe_driver
https://doi.org/10.14778/3447689.3447708

Spruce: A Fast yet Space-saving Structure for Dynamic Graph Storage 27:25

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.
edu/data.

Panagiotis Liakos, Katia Papakonstantinopoulou, Theodore Stefou, and Alex Delis. 2022. On Compressing Temporal
Graphs. In 2022 IEEE 38th International Conference on Data Engineering (ICDE). 1301-1313. https://doi.org/10.1109/
ICDE53745.2022.00102

Weifeng Liu and Brian Vinter. 2015. CSR5: An Efficient Storage Format for Cross-Platform Sparse Matrix-Vector Multipli-
cation. In Proceedings of the 29th ACM on International Conference on Supercomputing (Newport Beach, California, USA)
(ICS ’15). Association for Computing Machinery, New York, NY, USA, 339-350. https://doi.org/10.1145/2751205.2751209
C.Lu, W. Lam, and Y. Zhang. 2012. Twitter user modeling and tweets recommendation based on wikipedia concept
graph. AAAI Workshop - Technical Report (01 2012), 33-38.

Peter Macko, Virendra J. Marathe, Daniel W. Margo, and Margo L. Seltzer. 2015. LLAMA: Efficient graph analytics
using Large Multiversioned Arrays. In 2015 IEEE 31st International Conference on Data Engineering. 363-374. https:
//doi.org/10.1109/ICDE.2015.7113298

Markus Mésker, Tim S}, Lars Nagel, Lingfang Zeng, and André Brinkmann. 2019. Hyperion: Building the Largest
In-Memory Search Tree. In Proceedings of the 2019 International Conference on Management of Data (Amsterdam,
Netherlands) (SIGMOD °19). Association for Computing Machinery, New York, NY, USA, 1207-1222. https://doi.org/
10.1145/3299869.3319870

Robert Campbell McColl, David Ediger, Jason Poovey, Dan Campbell, and David A. Bader. 2014. A Performance
Evaluation of Open Source Graph Databases. In Proceedings of the First Workshop on Parallel Programming for Analytics
Applications (Orlando, Florida, USA) (PPAA ’14). Association for Computing Machinery, New York, NY, USA, 11-18.
https://doi.org/10.1145/2567634.2567638

U. Meyer and P. Sanders. 2003. Delta-Stepping: A Parallelizable Shortest Path Algorithm. J. Algorithms 49, 1 (oct 2003),
114-152. https://doi.org/10.1016/S0196-6774(03)00076-2

Derek G. Murray, Frank McSherry, Michael Isard, Rebecca Isaacs, Paul Barham, and Martin Abadi. 2016. Incremental,
Iterative Data Processing with Timely Dataflow. Commun. ACM 59, 10 (sep 2016), 75-83. https://doi.org/10.1145/
2983551

Sai Tung On, Haibo Hu, Yu Li, and Jianliang Xu. 2009. Lazy-Update B+-Tree for Flash Devices. In 2009 Tenth International
Conference on Mobile Data Management: Systems, Services and Middleware. 323-328. https://doi.org/10.1109/MDM.
2009.48

Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluc. 2021. Terrace: A Hierarchical Graph Container for
Skewed Dynamic Graphs. In Proceedings of the 2021 International Conference on Management of Data (Virtual Event,
China) (SIGMOD °21). Association for Computing Machinery, New York, NY, USA, 1372-1385. https://doi.org/10.1145/
3448016.3457313

Kenneth Platz, Neeraj Mittal, and S. Venkatesan. 2019. Concurrent Unrolled Skiplist. In 2019 IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). 1579-1589. https://doi.org/10.1109/ICDCS.2019.00157

Jeff Preshing. 2018. junction. https://https://github.com/preshing/junction.

Jun Rao and Kenneth A. Ross. 1999. Cache Conscious Indexing for Decision-Support in Main Memory. In Proceedings
of the 25th International Conference on Very Large Data Bases (VLDB ’99). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 78-89.

Pedro Ribeiro and Fernando Silva. 2014. G-Tries: a data structure for storing and finding subgraphs. Data Mining and
Knowledge Discovery 28, 2 (2014), 337-377. https://doi.org/10.1007/s10618-013-0303-4

Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with Interactive Graph Analytics and
Visualization. In AAAIL https://networkrepository.com

Neha Sharma and Prithwis Kumar De. 2023. Application of Machine Learning to Predict Climate Change Consequences
Arising Due to Investments by Banks in Fossil Fuel Sectors. Springer Nature Singapore, Singapore, 49-90. https:
//doi.org/10.1007/978-981-19-5244-9_3

Xiaogang Shi, Bin Cui, Yingxia Shao, and Yunhai Tong. 2016. Tornado: A System For Real-Time Iterative Analysis Over
Evolving Data. In Proceedings of the 2016 International Conference on Management of Data (San Francisco, California,
USA) (SIGMOD ’16). Association for Computing Machinery, New York, NY, USA, 417-430. https://doi.org/10.1145/
2882903.2882950

Julian Shun and Guy E. Blelloch. 2013. Ligra: A Lightweight Graph Processing Framework for Shared Memory.
SIGPLAN Not. 48, 8 (feb 2013), 135-146. https://doi.org/10.1145/2517327.2442530

Julian Shun, Laxman Dhulipala, and Guy E. Blelloch. 2015. Smaller and Faster: Parallel Processing of Compressed
Graphs with Ligra+. In 2015 Data Compression Conference. 403-412. https://doi.org/10.1109/DCC.2015.8

Chris Siebenmann. 2012. Understanding Resident Set Size and the RSS problem on modern Unixes.
https://utcc.utoronto.ca/ cks/space/blog/unix/UnderstandingRSS.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1109/ICDE53745.2022.00102
https://doi.org/10.1109/ICDE53745.2022.00102
https://doi.org/10.1145/2751205.2751209
https://doi.org/10.1109/ICDE.2015.7113298
https://doi.org/10.1109/ICDE.2015.7113298
https://doi.org/10.1145/3299869.3319870
https://doi.org/10.1145/3299869.3319870
https://doi.org/10.1145/2567634.2567638
https://doi.org/10.1016/S0196-6774(03)00076-2
https://doi.org/10.1145/2983551
https://doi.org/10.1145/2983551
https://doi.org/10.1109/MDM.2009.48
https://doi.org/10.1109/MDM.2009.48
https://doi.org/10.1145/3448016.3457313
https://doi.org/10.1145/3448016.3457313
https://doi.org/10.1109/ICDCS.2019.00157
https://https://github.com/preshing/junction
https://doi.org/10.1007/s10618-013-0303-4
https://networkrepository.com
https://doi.org/10.1007/978-981-19-5244-9_3
https://doi.org/10.1007/978-981-19-5244-9_3
https://doi.org/10.1145/2882903.2882950
https://doi.org/10.1145/2882903.2882950
https://doi.org/10.1145/2517327.2442530
https://doi.org/10.1109/DCC.2015.8

27:26 Jifan Shi, Biao Wang, and Yun Xu

[66] Weiping Song, Zhiping Xiao, Yifan Wang, Laurent Charlin, Ming Zhang, and Jian Tang. 2019. Session-Based Social
Recommendation via Dynamic Graph Attention Networks. In Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining (Melbourne VIC, Australia) (WSDM ’19). Association for Computing Machinery, New
York, NY, USA, 555-563. https://doi.org/10.1145/3289600.3290989

[67] Wen Sun, Achille Fokoue, Kavitha Srinivas, Anastasios Kementsietsidis, Gang Hu, and Guotong Xie. 2015. SQLGraph:
An Efficient Relational-Based Property Graph Store. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data (Melbourne, Victoria, Australia) (SSIGMOD ’15). Association for Computing Machinery, New
York, NY, USA, 1887-1901. https://doi.org/10.1145/2723372.2723732

[68] Mahammad Valiyev Tum and Mahammad Valiyev. 2017. Graph Storage : How good is CSR really ?

[69] P. van Emde Boas. 1975. Preserving order in a forest in less than logarithmic time. In 16th Annual Symposium on
Foundations of Computer Science (sfcs 1975). 75-84. https://doi.org/10.1109/SFCS.1975.26

[70] Jeffrey Scott Vitter. 2001. External memory algorithms and data structures: dealing with massive data. ACM Computing
Surveys (CSUR) 33, 2 (2001), 209-271. https://doi.org/10.1145/384192.384193

[71] Biing-Feng Wang and Chien-Hsin Lin. 2011. Improved Algorithms for Finding Gene Teams and Constructing
Gene Team Trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8, 5 (2011), 1258-1272.
https://doi.org/10.1109/TCBB.2010.127

[72] Brian Wheatman and Randal Burns. 2021. Streaming Sparse Graphs using Efficient Dynamic Sets. 2021 IEEE International
Conference on Big Data (Big Data) 00 (2021), 284-294. https://doi.org/10.1109/bigdata52589.2021.9671836

[73] Brian Wheatman and Helen Xu. 2018. Packed Compressed Sparse Row: A Dynamic Graph Representation. 2018 IEEE
High Performance extreme Computing Conference (HPEC) 00 (2018), 1-7. https://doi.org/10.1109/hpec.2018.8547566

[74] Pengfei Zhang, Hang Dong, Yu Gao, Liangtian Zhao, Jie Hao, Jean-Yves Desaules, Qiujiang Guo, Jiachen Chen, Jinfeng
Deng, Bobo Liu, Wenhui Ren, Yunyan Yao, Xu Zhang, Shibo Xu, Ke Wang, Feitong Jin, Xuhao Zhu, Bing Zhang, Hekang
Li, Chao Song, Zhen Wang, Fangli Liu, Zlatko Papi¢, Lei Ying, H. Wang, and Ying-Cheng Lai. 2022. Many-body Hilbert
space scarring on a superconducting processor. Nature Physics (2022), 1-6. https://doi.org/10.1038/s41567-022-01784-9

[75] Xiaowei Zhu, Guanyu Feng, Marco Serafini, Xiaosong Ma, Jiping Yu, Lei Xie, Ashraf Aboulnaga, and Wenguang Chen.
2020. LiveGraph: a transactional graph storage system with purely sequential adjacency list scans. Proceedings of the
VLDB Endowment 13, 7 (2020), 1020-1034. https://doi.org/10.14778/3384345.3384351

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 27. Publication date: February 2024.

https://doi.org/10.1145/3289600.3290989
https://doi.org/10.1145/2723372.2723732
https://doi.org/10.1109/SFCS.1975.26
https://doi.org/10.1145/384192.384193
https://doi.org/10.1109/TCBB.2010.127
https://doi.org/10.1109/bigdata52589.2021.9671836
https://doi.org/10.1109/hpec.2018.8547566
https://doi.org/10.1038/s41567-022-01784-9
https://doi.org/10.14778/3384345.3384351

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Van Emde Boas tree
	2.2 Optimistic Locking and ROWEX

	3 Background and Motivations
	3.1 Classical Methods of Graph Representation
	3.2 Existing Solutions and Limitations
	3.3 Opportunities

	4 Data Structure Design
	4.1 Vertex Index
	4.2 Edge Storage
	4.3 Operations in Spruce
	4.4 Discussions

	5 Concurrency Support
	5.1 General Idea
	5.2 Concurrency Protocol
	5.3 Correctness of Improved ROWEX
	5.4 Version Management

	6 Evaluation
	6.1 Dynamic Operations
	6.2 Memory Consumption
	6.3 Graph Analytics
	6.4 Concurrent Performance

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

