
Explanation techniques for CP

Prof. Tias Guns, KU Leuven, Belgium

In collaboration with Ignace Bleukx, Emilio Gamba, Bart Bogaerts, Jo Devriendt, Dimos Tsouros

This presentation is an executable Jupyter notebook

Link to slides and more examples: https://github.com/CPMpy/XCP-explain

https://github.com/CPMpy/XCP-explain
https://github.com/CPMpy/XCP-explain

Constraint Solving
Solving combinatorial optimization problems in

AI

• Vehicle Routing

• Scheduling

• Manufacturing

• Other combinatorial problems ...

Model + Solve

Model + Solve

• What if no solution is found?

• What if the user does not like the solution?

• What if the user expected a di�erent solution?

• ...

Explainable Constraint Programming (XCP)
In general, "Why X?" (with X a solution or UNSAT)

Explainable Constraint Programming (XCP)
In general, "Why X?" (with X a solution or UNSAT)

• Deductive explanation:

▪ What causes X?

• Counterfactual explanation:

▪ What if I want Y instead of X?

Explainable Constraint Programming (XCP)
In general, "Why X?" (with X a solution or UNSAT)

• Deductive explanation:

▪ What causes X?

• Counterfactual explanation:

▪ What if I want Y instead of X?

Note explanations also used in the context of lazy-clause generation: one propagator

explains its inference to a SAT solver. We focus on user-oriented explanations involving

multiple constraints.

Example XCP interaction
Toy example, graph coloring:

color each node such that no two adjacent nodes have the same color

(real example: assign each booking request (node) to a room (color) such that no

temporally overlapping requests use the same room)

In [2]: G = nx.fast_gnp_random_graph(5, 0.8, seed=0)
draw(G)

Example XCP interaction
Lets color this graph...

Example XCP interaction
Lets color this graph...

In [3]: m, nodes = graph_coloring(G, max_colors=None)
if m.solve():

print(m.status())
print(f"Found optimal coloring with {m.objective_value()} colors")
draw(G, node_color=[cmap[n.value()] for n in nodes])

else:
print("No solution found.")

ExitStatus.OPTIMAL (0.007055108 seconds)
Found optimal coloring with 4 colors

Example XCP interaction

yes... but why do we need 4?

In [4]: print(f"Found optimal coloring with {m.objective_value()} colors")
draw(G, node_color=[cmap[n.value()] for n in nodes])

Found optimal coloring with 4 colors

Example XCP interaction
Why do we need 4 colors?
Deductive explanation: pinpoint to constraints causing this fact

Example XCP interaction
Why do we need 4 colors?
Deductive explanation: pinpoint to constraints causing this fact

In [5]: m, nodes = graph_coloring(G, max_colors=3) # less than 4?
if m.solve() is False:

conflict = cpmpy.tools.explain.mus(m.constraints) # Minimal Unsatisfiable Subset
print("UNSAT is caused by the following constraints:")
graph_highlight(G, conflict)

UNSAT is caused by the following constraints:

Example XCP interaction
Why do we need 4 colors?
Counterfactual explanation: pinpoint to constraint changes that would allow, e.g. 3 colors

Example XCP interaction
Why do we need 4 colors?
Counterfactual explanation: pinpoint to constraint changes that would allow, e.g. 3 colors

In [6]: m, nodes = graph_coloring(G, max_colors=3) # less than 4?
if m.solve() is False:

corr = cpmpy.tools.explain.mcs(m.constraints) # Minimal Correction Subset
print("UNSAT can be resolved by removing the following constraints:"
graph_highlight(G, corr)

UNSAT can be resolved by removing the following constraints:

Example XCP interaction
Why do we need 4 colors?
Counterfactual explanation: pinpoint to constraint changes that would allow, e.g. 3 colors

Can now compute the counterfactual solution:

Example XCP interaction
Why do we need 4 colors?
Counterfactual explanation: pinpoint to constraint changes that would allow, e.g. 3 colors

Can now compute the counterfactual solution:

In [7]: # compute and visualise counter-factual solution
m2 = cp.Model([c for c in m.constraints if c not in corr])
m2.solve()
graph_highlight(G, corr, node_color=[cmap[n.value()] for n in nodes])

Explanation techniques in
the wild

CPMpy:
We will use the CPMpy modeling library in Python for this presentation

http://cpmpy.readthedocs.io

http://cpmpy.readthedocs.io/
http://cpmpy.readthedocs.io/

Running example in this talk: Nurse Scheduling
• The assignment of shifts and holidays to nurses.

• Each nurse has their own restrictions and preferences, as does the hospital.

In [9]: #instance = "http://www.schedulingbenchmarks.org/nrp/data/Instance1.txt"
instance = "Benchmarks/Instance1.txt"
data = get_data(instance)

factory = NurseSchedulingFactory(data)
model, nurse_view = factory.get_full_model() # CPMpy model with all constraints

model.solve()
visualize(nurse_view.value(), factory) # live decorated dataframe

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan F D D D D F F D D F F D D

Katherine D D D D D F F D D F F F D

Robert D D D F F D D F F D D D F

Jonathan D D F F F D D D D D F F F

William F D D D D F F D D F F D D

Richard D D D F F F F D D D F F D

Kristen F F D D D F F D D F F D D

Kevin D D F F D D F F D D D D F

Cover D 5/5 7/7 6/6 4/4 5/5 3/5 2/5 6/6 7/7 4/4 2/2 5/5 5/6

Out[9]:

Outline of the talk
Part 1: Deductive explanations (What causes X?)

• UNSAT: minimal unsatisfiable subsets ��

▪ e�cient MUSes

▪ preferred MUSes

• SAT: explaining logical consequences

• OPT: explaining that no better solution exists

Part 2: Counterfactual explanation (What if Y
instead of X?)

• UNSAT: minimum correction subsets

• UNSAT: corrective actions

• SAT: checking a foil

• OPT: correcting the objective function

Deductive Explanations for UNSAT problems

In [11]: # decision model, add all nurse preferences as hard constraints
factory = NurseSchedulingFactory(data)
model, nurse_view = factory.get_decision_model()
model.solve()

Out[11]: False

Deductive Explanations for UNSAT problems

In [11]: # decision model, add all nurse preferences as hard constraints
factory = NurseSchedulingFactory(data)
model, nurse_view = factory.get_decision_model()
model.solve()

Out[11]: False

... no solution found

Deductive Explanations for UNSAT problems

In [11]: # decision model, add all nurse preferences as hard constraints
factory = NurseSchedulingFactory(data)
model, nurse_view = factory.get_decision_model()
model.solve()

Out[11]: False

... no solution found

In [12]: constraints = toplevel_list(model.constraints, merge_and=False) # normalization for later
print(f"Model has {len(constraints)} constraints:")
for cons in constraints: print("-", cons)

Model has 168 constraints:
- Megan cannot work more than 14 shifts of type 1
- Katherine cannot work more than 14 shifts of type 1
- Robert cannot work more than 14 shifts of type 1
- Jonathan cannot work more than 14 shifts of type 1
- William cannot work more than 14 shifts of type 1
- Richard cannot work more than 14 shifts of type 1
- Kristen cannot work more than 14 shifts of type 1
- Kevin cannot work more than 14 shifts of type 1
- Megan cannot work more than 4320min
- Katherine cannot work more than 4320min
- Robert cannot work more than 4320min
- Jonathan cannot work more than 4320min
- William cannot work more than 4320min
- Richard cannot work more than 4320min
- Kristen cannot work more than 4320min
- Kevin cannot work more than 4320min
- Megan cannot work more than 3360min
- Katherine cannot work more than 3360min
- Robert cannot work more than 3360min
- Jonathan cannot work more than 3360min
- William cannot work more than 3360min
- Richard cannot work more than 3360min
- Kristen cannot work more than 3360min
- Kevin cannot work more than 3360min
- Megan can work at most 5 days before having a day off
- Megan can work at most 5 days before having a day off
- Megan can work at most 5 days before having a day off
- Megan can work at most 5 days before having a day off
- Megan can work at most 5 days before having a day off
- Megan can work at most 5 days before having a day off

- Megan can work at most 5 days before having a day off
- Megan can work at most 5 days before having a day off
- Megan can work at most 5 days before having a day off
- Katherine can work at most 5 days before having a day off
- Katherine can work at most 5 days before having a day off
- Katherine can work at most 5 days before having a day off
- Katherine can work at most 5 days before having a day off
- Katherine can work at most 5 days before having a day off
- Katherine can work at most 5 days before having a day off
- Katherine can work at most 5 days before having a day off
- Katherine can work at most 5 days before having a day off
- Katherine can work at most 5 days before having a day off
- Robert can work at most 5 days before having a day off
- Robert can work at most 5 days before having a day off
- Robert can work at most 5 days before having a day off
- Robert can work at most 5 days before having a day off
- Robert can work at most 5 days before having a day off
- Robert can work at most 5 days before having a day off
- Robert can work at most 5 days before having a day off
- Robert can work at most 5 days before having a day off
- Robert can work at most 5 days before having a day off
- Jonathan can work at most 5 days before having a day off
- Jonathan can work at most 5 days before having a day off
- Jonathan can work at most 5 days before having a day off
- Jonathan can work at most 5 days before having a day off
- Jonathan can work at most 5 days before having a day off
- Jonathan can work at most 5 days before having a day off
- Jonathan can work at most 5 days before having a day off
- Jonathan can work at most 5 days before having a day off
- Jonathan can work at most 5 days before having a day off
- William can work at most 5 days before having a day off

- William can work at most 5 days before having a day off
- William can work at most 5 days before having a day off
- William can work at most 5 days before having a day off
- William can work at most 5 days before having a day off
- William can work at most 5 days before having a day off
- William can work at most 5 days before having a day off
- William can work at most 5 days before having a day off
- William can work at most 5 days before having a day off
- Richard can work at most 5 days before having a day off
- Richard can work at most 5 days before having a day off
- Richard can work at most 5 days before having a day off
- Richard can work at most 5 days before having a day off
- Richard can work at most 5 days before having a day off
- Richard can work at most 5 days before having a day off
- Richard can work at most 5 days before having a day off
- Richard can work at most 5 days before having a day off
- Richard can work at most 5 days before having a day off
- Kristen can work at most 5 days before having a day off
- Kristen can work at most 5 days before having a day off
- Kristen can work at most 5 days before having a day off
- Kristen can work at most 5 days before having a day off
- Kristen can work at most 5 days before having a day off
- Kristen can work at most 5 days before having a day off
- Kristen can work at most 5 days before having a day off
- Kristen can work at most 5 days before having a day off
- Kristen can work at most 5 days before having a day off
- Kevin can work at most 5 days before having a day off
- Kevin can work at most 5 days before having a day off
- Kevin can work at most 5 days before having a day off
- Kevin can work at most 5 days before having a day off
- Kevin can work at most 5 days before having a day off

- Kevin can work at most 5 days before having a day off
- Kevin can work at most 5 days before having a day off
- Kevin can work at most 5 days before having a day off
- Kevin can work at most 5 days before having a day off
- Megan should work at least 2 days before having a day off
- Katherine should work at least 2 days before having a day off
- Robert should work at least 2 days before having a day off
- Jonathan should work at least 2 days before having a day off
- William should work at least 2 days before having a day off
- Richard should work at least 2 days before having a day off
- Kristen should work at least 2 days before having a day off
- Kevin should work at least 2 days before having a day off
- Megan should work at most 1 weekends
- Katherine should work at most 1 weekends
- Robert should work at most 1 weekends
- Jonathan should work at most 1 weekends
- William should work at most 1 weekends
- Richard should work at most 1 weekends
- Kristen should work at most 1 weekends
- Kevin should work at most 1 weekends
- Megan has a day off on Mon 1
- Katherine has a day off on Sat 1
- Robert has a day off on Tue 2
- Jonathan has a day off on Wed 1
- William has a day off on Wed 2
- Richard has a day off on Sat 1
- Kristen has a day off on Tue 1
- Kevin has a day off on Mon 2
- Megan should have at least 2 consecutive days off
- Katherine should have at least 2 consecutive days off
- Robert should have at least 2 consecutive days off

- Jonathan should have at least 2 consecutive days off
- William should have at least 2 consecutive days off
- Richard should have at least 2 consecutive days off
- Kristen should have at least 2 consecutive days off
- Kevin should have at least 2 consecutive days off
- Megan requests to work shift D on Wed 1
- Megan requests to work shift D on Thu 1
- Katherine requests to work shift D on Mon 1
- Katherine requests to work shift D on Tue 1
- Katherine requests to work shift D on Wed 1
- Katherine requests to work shift D on Thu 1
- Katherine requests to work shift D on Fri 1
- Robert requests to work shift D on Mon 1
- Robert requests to work shift D on Tue 1
- Robert requests to work shift D on Wed 1
- Robert requests to work shift D on Thu 1
- Robert requests to work shift D on Fri 1
- Jonathan requests to work shift D on Tue 2
- Jonathan requests to work shift D on Wed 2
- Richard requests to work shift D on Mon 1
- Richard requests to work shift D on Tue 1
- Kevin requests to work shift D on Wed 2
- Kevin requests to work shift D on Thu 2
- Kevin requests to work shift D on Fri 2
- Kevin requests to work shift D on Sat 2
- Kevin requests to work shift D on Sun 2
- Robert requests to not work shift D on Sat 2
- Robert requests to not work shift D on Sun 2
- Richard requests to not work shift D on Tue 2
- Kevin requests to not work shift D on Wed 1
- Kevin requests to not work shift D on Thu 1
- Shift D on Mon 1 must be covered by 5 nurses out of 8

Deductive Explanations for UNSAT problems
The set of all constraints is unsatisfiable.

Deductive Explanations for UNSAT problems
The set of all constraints is unsatisfiable.

But do all constraints contribute to this?

Deductive Explanations for UNSAT problems

Minimal Unsatis�able Subset (MUS)

Pinpoint to constraints causing a conflict

... trim model to a minimal set of constraints

... minimize cognitive burden for user

How to compute a MUS?

Deletion-based MUS algorithm

[Joao Marques-Silva. Minimal Unsatisfiability: Models, Algorithms and Applications.

ISMVL 2010. pp. 9-14]

How to compute a MUS?

Deletion-based MUS algorithm

[Joao Marques-Silva. Minimal Unsatisfiability: Models, Algorithms and Applications.

ISMVL 2010. pp. 9-14]

In [13]: def mus_naive(constraints):
m = cp.Model(constraints)
assert m.solve() is False, "Model should be UNSAT"

core = constraints
i = 0
while i < len(core):

subcore = core[:i] + core[i+1:] # try all but constraint 'i'
if cp.Model(subcore).solve() is True:

i += 1 # removing 'i' makes it SAT, need to keep for UNSAT
else:

core = subcore # can safely delete 'i'
return core

How to compute a MUS, e�ciently?

In [14]: t0 = time.time()
core = mus_naive(constraints)
print(f"Naive MUS took {time.time()-t0} seconds")

Naive MUS took 45.81037354469299 seconds

How to compute a MUS, e�ciently?

In [14]: t0 = time.time()
core = mus_naive(constraints)
print(f"Naive MUS took {time.time()-t0} seconds")

Naive MUS took 45.81037354469299 seconds

In [15]: t0 = time.time()
core = cpmpy.tools.explain.mus(constraints, solver="exact")
print(f"Assumption-based MUS took {time.time()-t0} seconds")

Assumption-based MUS took 2.8065266609191895 seconds

How to compute a MUS, e�ciently?

How to compute a MUS, e�ciently?

In [16]: def mus_assum(constraints, solver="ortools"):
add indicator variable per expression
constraints = toplevel_list(constraints, merge_and=False)
assump = cp.boolvar(shape=len(constraints), name="assump") # Boolean indicators
m = cp.Model(assump.implies(constraints)) # [assump[i] -> constraints[i] for all i]

s = cp.SolverLookup.get(solver, model)
assert s.solve(assumptions=assump) is False, "Model should be UNSAT"

core = s.get_core() # start from solver's UNSAT core of assumption variables
i = 0
while i < len(core):

subcore = core[:i] + core[i+1:] # try all but constraint 'i'
if s.solve(assumptions=subcore) is True:

i += 1 # removing 'i' makes it SAT, need to keep for UNSAT
else:

core = subcore
return [c for c,var in zip(constraints,assump) if var in core]

How to compute a MUS, e�ciently?

Deepdive: incremental CDCL solving with
assumption variables 1/4

Deepdive: incremental CDCL solving with
assumption variables 2/4

Deepdive: incremental CDCL solving with
assumption variables 3/4

Deepdive: incremental CDCL solving with
assumption variables 4/4

How to compute a MUS, e�ciently? (recap after deepdive)

How to compute a MUS, e�ciently?

Assumption-based incremental solving only for Boolean SAT problems?

How to compute a MUS, e�ciently?

Assumption-based incremental solving only for Boolean SAT problems?

No!

• CP solvers: Lazy Clause Generation (e.g. OrTools)

• Pseudo-Boolean solvers: Conflict-Driven Cutting Plane Learning (e.g. Exact)

• SMT solvers: SAT Module Theories with CDCL (e.g. Z3)

• MaxSAT solvers: Core-guided solvers

Deductive Explanations for UNSAT problems
A MUS is a deductive explanation of UNSAT:

these constraints minimally entail failure

Deductive Explanations for UNSAT problems
A MUS is a deductive explanation of UNSAT:

these constraints minimally entail failure

In [17]: subset = cpmpy.tools.explain.mus(constraints)
print("Length of MUS:", len(subset))
for cons in subset: print("-", cons)

Length of MUS: 11
- Shift D on Sat 1 must be covered by 5 nurses out of 8
- Robert can work at most 5 days before having a day off
- Kevin should work at most 1 weekends
- Katherine has a day off on Sat 1
- Richard has a day off on Sat 1
- Robert requests to work shift D on Mon 1
- Robert requests to work shift D on Tue 1
- Robert requests to work shift D on Wed 1
- Robert requests to work shift D on Thu 1
- Robert requests to work shift D on Fri 1
- Kevin requests to work shift D on Sun 2

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine

Robert

Jonathan

William

Richard

Kristen

Kevin

Cover D 0/5 0/7 0/6 0/4 0/5 0/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

In [18]: visualize_constraints(subset, nurse_view, factory)

Out[18]:

Many MUS'es may exist...

Li�ton, M.H., & Malik, A. (2013). Enumerating infeasibility: Finding multiple MUSes

quickly. In Proceedings of the 10th International Conference on Integration of AI and OR

Techniques in Constraint Programming (CPAIOR 2013) (pp. 160–175)

In [19]: # MARCO MUS/MSS enumeration
from explanations.marco_mcs_mus import do_marco
solver = "ortools" # default solver
if "exact" in cp.SolverLookup.solvernames(): solver = "exact" # fast for increment solvi

t0 = time.time()
cnt = 0
for (kind, sset) in do_marco(model, solver=solver):

if kind == "MUS":
print("M", end="")
cnt += 1

else: print(".", end="") # MSS

if time.time() - t0 > 15: break # for this presentation: break after 15s
print(f"\nFound {cnt} MUSes in", time.time() - t0)

MMMMMMMMMMMMM.MMMMMMM.MMMM.MMMMMMMMMM.MMMMMMMMMMM..MMMMMMMM.MMMM
MMMMMMMMMMMMM.MMMMMMMMMM.MMMM..MMMMMMMMMMMM..M.M.M..MMM..MM.
M.....MMMMMMMM.MMMM..MMMMMMMM..MMMMMMM..MMMMM....MMMMMMM.MMMMMMM
MM..MMMMMMMMM.MM.M.MMM.MMM..MMMMMMMMM..M..MMMMMMMMM.M...M.MMMM..
MMMMMM
Found 202 MUSes in 15.035604476928711

Many MUS'es may exist...

This problem has just 168 constraints, yet

100.000+ MUSes exist...

Which one to show?

Can we influence which MUS is found?

In�uencing which MUS is found?
QuickXPlain algorithm (Junker, 2004). Widely used, in model-based diagnosis,

recommender systems, verification, and more.

Divide-and-conquer given a lexicographic preference order over the constraints:

In�uencing which MUS is found?
QuickXPlain algorithm (Junker, 2004). Widely used, in model-based diagnosis,

recommender systems, verification, and more.

Divide-and-conquer given a lexicographic preference order over the constraints:

In [20]: # the order of 'soft' matters! lexicographic preference for the first ones
def quickxplain(soft, hard=[], solver="ortools"):

model, soft, assump = make_assump_model(soft, hard)
s = cp.SolverLookup.get(solver, model)
assert s.solve(assumptions=assump) is False, "The model should be UNSAT!"

the recursive call
def do_recursion(tocheck, other, delta):

if len(delta) != 0 and s.solve(assumptions=tocheck) is False:
conflict is in hard constraints, no need to recurse
return []

if len(other) == 1:
conflict is not in 'tocheck' constraints, but only 1 'other' constraint
return list(other) # base case of recursion

split = len(other) // 2 # determine split point
more_preferred, less_preferred = other[:split], other[split:] # split constraint

treat more preferred part as hard and find extra constants from less preferred
delta2 = do_recursion(tocheck + more_preferred, less_preferred,
find which preferred constraints exactly

delta1 = do_recursion(tocheck + delta2, more_preferred, delta2)
return delta1 + delta2

core = do_recursion([], list(assump), [])
return [c for c,var in zip(soft,assump) if var in core]

In�uencing which MUS is found?
QuickXPlain: Divide-and-conquer given a lexicographic preference order over the

constraints:

In�uencing which MUS is found?
QuickXPlain algorithm (Junker, 2004). Widely used, in model-based diagnosis,

recommender systems, verification, and more.

Divide-and-conquer given a lexicographic order over the constraints

In [21]: t0 = time.time()
subset = cpmpy.tools.explain.quickxplain(sorted(model.constraints, key=lambda
print("ordering '-len': Length of MUS:", len(subset))
print(f"(in {time.time()-t0} seconds)")

t0 = time.time()
subset = cpmpy.tools.explain.quickxplain(sorted(model.constraints, key=lambda
print("ordering 'len': Length of MUS:", len(subset))
print(f"(in {time.time()-t0} seconds)")

ordering '-len': Length of MUS: 18
(in 2.670808792114258 seconds)
ordering 'len': Length of MUS: 3
(in 2.420356273651123 seconds)

In�uencing which MUS is found?
QuickXPlain algorithm (Junker, 2004). Widely used, in model-based diagnosis,

recommender systems, verification, and more.

Divide-and-conquer given a lexicographic order over the constraints

In [21]: t0 = time.time()
subset = cpmpy.tools.explain.quickxplain(sorted(model.constraints, key=lambda
print("ordering '-len': Length of MUS:", len(subset))
print(f"(in {time.time()-t0} seconds)")

t0 = time.time()
subset = cpmpy.tools.explain.quickxplain(sorted(model.constraints, key=lambda
print("ordering 'len': Length of MUS:", len(subset))
print(f"(in {time.time()-t0} seconds)")

ordering '-len': Length of MUS: 18
(in 2.670808792114258 seconds)
ordering 'len': Length of MUS: 3
(in 2.420356273651123 seconds)

In [22]: t0 = time.time()
subset = cpmpy.tools.explain.quickxplain(sorted(model.constraints, key=lambda
print("ordering 'len': Length of MUS:", len(subset))
print(f"(in {time.time()-t0} seconds)")

ordering 'len': Length of MUS: 3
(in 2.810506582260132 seconds)

Optimising which MUS is found?
Give every constraint a weight: OUS: Optimal Unsatisfiable Subsets (Gamba, Bogaerts,

Guns, 2021).

Some key properties:

�. If a subset is SAT, can grow it to a Maximal Satisfiable Subset (MSS)

�. The complement of a MSS is a Minimum Correction Subset (MCS)

�. Theorem: A MUS is a hitting set of the MCSes

Optimising which MUS is found?
OUS: Optimal Unsatisfiable Subsets (Gamba, Bogaerts, Guns, 2021). Every constraints has

a weight.

�. Initialize sets-to-hit (e.g. insert set of all constraints)

�. Find optimal hitting set

�. Check if SAT: grow and take complement = MCS , add to sets-to-hit

�. Repeat until UNSAT: optimal unsatisfiable subset found

H

S

K H

S

E�ciently optimising which MUS is found?
OUS: Optimal Unsatisfiable Subsets (Gamba, Bogaerts, Guns, 2021). Every constraints has

a weight.

Optimising which MUS is found?
OUS: Optimal Unsatisfiable Subsets (Gamba, Bogaerts, Guns, 2021). Every constraints has

a weight.

In [24]: from explanations.subset import omus # not (yet) part of CPMpy

smallest_subset = omus(model.constraints, weights=1, solver="exact", hs_solver

print("Length of OUS:", len(smallest_subset))
for cons in smallest_subset:

print("-", cons)

Length of OUS: 3
- Robert has a day off on Tue 2
- Richard requests to not work shift D on Tue 2
- Shift D on Tue 2 must be covered by 7 nurses out of 8

In [25]: visualize_constraints(smallest_subset, nurse_view, factory)

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine

Robert

Jonathan

William

Richard

Kristen

Kevin

Cover D 0/5 0/7 0/6 0/4 0/5 0/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

Out[25]:

Outline of the talk
Part 1: Deductive explanations (What causes X?)

• UNSAT: minimal unsatisfiable subsets

▪ e�cient MUSes

▪ preferred MUSes

• SAT: explaining logical consequences ��

• OPT: explaining that no better solution exists

Part 2: Counterfactual explanation (What if Y
instead of X?)

• UNSAT: minimum correction subsets

• UNSAT: corrective actions

• SAT: checking a foil

• OPT: correcting the objective function

Deductive Explanations for SAT problems

Deductive Explanations for SAT problems

Explaining logical consequences

Logical consequence: a variable assignment entailed by the constraints and the current

partial assignment

Maximal consequence: precision- maximal partial assignment

• Maximal consequence = intersection of all possible solutions

• If solution is unique, maximal consequence = unique solution

Deductive Explanations for SAT problems

Bogaerts, Bart, Emilio Gamba, and Tias Guns. "A framework

for step-wise explaining how to solve constraint satisfaction

problems." Artificial Intelligence 300 (2021): 103550.

Deductive Explanations for SAT problems

Bogaerts, Bart, Emilio Gamba, and Tias Guns. "A framework

for step-wise explaining how to solve constraint satisfaction

problems." Artificial Intelligence 300 (2021): 103550.

Deductive Explanations for SAT problems
We want each explanation step to be as simple as possible.

(we actually use OUS because we want the smallest not just a minimal one, and then we

can put smaller weights on facts and larger weights on constraints)

E�ciently step-wise explanation of the maximal
consequence?
Compute the OUS over all assignments in the maximal consequence at once, e�ciently:

OCUS Optimal Constrained Unsatisfiable Subsets (Gamba, Bogaerts, Guns, 2021).

• meta-constraint : use exactly 1 element of the maximal consequence

(not discussed in more detail)

p

Outline of the talk
Part 1: Deductive explanations (What causes X?)

• UNSAT: minimal unsatisfiable subsets

▪ e�cient MUSes

▪ preferred MUSes

• SAT: explaining logical consequences

• OPT: explaining that no better solution exists ��

Part 2: Counterfactual explanation (What if Y
instead of X?)

• UNSAT: minimum correction subsets

• UNSAT: corrective actions

• SAT: checking a foil

• OPT: correcting the objective function

Deductive Explanations for OPT problems
Can we explain why an optimal solution is optimal, e.g. why there does not exist a better

solution?

A proof of optimality proves that no better solution exists, but:

• An increasing number of solvers support proof logging (SAT, but also CP: Glasgow

Constraint Solver)

• These proofs are built for computer verification (up to gigabytes of log), not to

communicate to users

• These proofs can use learned clauses, auxiliary variables and anything available to

the solver

Deductive Explanations for OPT problems
Can we explain why an optimal solution is optimal, e.g. why there does not exist a better

solution?

Let be the constraints, the objective function and the optimal objective value.

• because of the constraints

• Hence is unsatisfiable...

• Hence is a deductive explanation for optimality!

Deductive Explanations for OPT problems
Can we explain why an optimal solution is optimal, e.g. why there does not exist a better

solution?

Let C be the constraints, f(x) the objective function and o the optimal objective value.

• o = minx∈Cf(x) because of the constraints C

• Hence C ∧ (f(x) < o) is unsatisfiable...

• Hence MUS(C ∧ (f(x) < o)) is a deductive explanation for optimality!

But its typically very big (up to all constraints)...

can we provide a step-wise explanation of the unsatisfiability?

Deductive Explanations for OPT problems
Can we explain why an optimal solution is optimal, e.g. a step-wise explanation of why

there does not exist a better solution?

Yes!

Challenges

• How to find interpretable sequences?

▪ I.e., with few and small steps?

• How to deal with redundancy in the sequence?

▪ I.e., how to decide what information is relevant to derive?

• How to make the algorithm incremental?

▪ I.e., how to find good sequences fast?

Ignace Bleukx, Jo Devriendt, Emilio Gamba, Bart Bogaerts, Tias

Guns. Simplifying Step-wise Explanation Sequences. 29th

International Conference on Principles and Practice of

Constraint Programming (CP23), 2023.

Deductive Explanations for OPT problems
Example in this tutorial: step-wise explanation of a large MUS

(can also construct from scratch to step-wise explain optimality, see paper)

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine

Robert

Jonathan

William

Richard

Kristen

Kevin

Cover D 0/5 0/7 0/6 0/4 0/5 0/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

In [27]: # any MUS
subset = cpmpy.tools.explain.mus(model.constraints)
visualize_constraints(subset, nurse_view, factory)

Out[27]:

In [28]: from explanations.stepwise import find_sequence

seq = find_sequence(subset)

Found sequence of length 11
Filtered sequence to length 11

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine F

Robert

Jonathan

William

Richard

Kristen

Kevin

Cover D 0/5 0/7 0/6 0/4 0/5 0/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

In [29]: nurse_view.clear()
visualize_step(seq[0], nurse_view, factory)

Propagating constraint: Katherine has a day off on Sat 1

Out[29]:

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine F

Robert

Jonathan

William

Richard F

Kristen

Kevin

Cover D 0/5 0/7 0/6 0/4 0/5 0/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

In [30]: visualize_step(seq[1], nurse_view, factory)

Propagating constraint: Richard has a day off on Sat 1

Out[30]:

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine F

Robert D

Jonathan

William

Richard F

Kristen

Kevin

Cover D 1/5 0/7 0/6 0/4 0/5 0/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

In [31]: visualize_step(seq[2], nurse_view, factory)

Propagating constraint: Robert requests to work shift D on Mon 1

Out[31]:

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine F

Robert D D

Jonathan

William

Richard F

Kristen

Kevin

Cover D 1/5 1/7 0/6 0/4 0/5 0/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

In [32]: visualize_step(seq[3], nurse_view, factory)

Propagating constraint: Robert requests to work shift D on Tue 1

Out[32]:

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine F

Robert D D D

Jonathan

William

Richard F

Kristen

Kevin

Cover D 1/5 1/7 1/6 0/4 0/5 0/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

In [33]: visualize_step(seq[4], nurse_view, factory)

Propagating constraint: Robert requests to work shift D on Wed 1

Out[33]:

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine F

Robert D D D D

Jonathan

William

Richard F

Kristen

Kevin

Cover D 1/5 1/7 1/6 1/4 0/5 0/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

In [34]: visualize_step(seq[5], nurse_view, factory)

Propagating constraint: Robert requests to work shift D on Thu 1

Out[34]:

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine F

Robert D D D D D

Jonathan

William

Richard F

Kristen

Kevin

Cover D 1/5 1/7 1/6 1/4 1/5 0/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

In [35]: visualize_step(seq[6], nurse_view, factory)

Propagating constraint: Robert requests to work shift D on Fri 1

Out[35]:

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine F

Robert D D D D D F

Jonathan

William

Richard F

Kristen

Kevin

Cover D 1/5 1/7 1/6 1/4 1/5 0/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

In [36]: visualize_step(seq[7], nurse_view, factory)

Propagating constraint: Robert can work at most 5 days before ha
ving a day off

Out[36]:

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine F

Robert D D D D D F

Jonathan

William

Richard F

Kristen

Kevin D

Cover D 1/5 1/7 1/6 1/4 1/5 1/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

In [37]: visualize_step(seq[8], nurse_view, factory)

Propagating constraint: Shift D on Sat 1 must be covered by 5 nu
rses out of 8

Out[37]:

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine F

Robert D D D D D F

Jonathan

William

Richard F

Kristen

Kevin D

Cover D 1/5 1/7 1/6 1/4 1/5 1/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

In [38]: visualize_step(seq[9], nurse_view, factory)

Propagating constraint: Kevin should work at most 1 weekends

Out[38]:

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan

Katherine F

Robert D D D D D F

Jonathan

William

Richard F

Kristen

Kevin D

Cover D 1/5 1/7 1/6 1/4 1/5 1/5 0/5 0/6 0/7 0/4 0/2 0/5 0/6

In [39]: visualize_step(seq[10], nurse_view, factory)

Propagating constraint: Kevin requests to work shift D on Sun 2

Out[39]:

Outline of the talk
Part 1: Deductive explanations (What causes X?)
��

• UNSAT: minimal unsatisfiable subsets

▪ e�cient MUSes

▪ preferred MUSes

• SAT: explaining logical consequences

• OPT: explaining that no better solution exists

Part 2: Counterfactual explanation (What if Y
instead of X?) ��

• UNSAT: minimum correction subsets

• UNSAT: corrective actions

• SAT: checking a foil

• OPT: correcting the objective function

Explainable Constraint Programming (XCP)
Recap, "Why X?" (with X a solution or UNSAT)

• Deductive explanation:

▪ What causes X?

▪ answer: a minimal inference set

Explainable Constraint Programming (XCP)
Recap, "Why X?" (with X a solution or UNSAT)

• Deductive explanation:

▪ What causes X?

▪ answer: a minimal inference set

• Counterfactual explanation:

▪ What if I want Y instead of X?

▪ answer: a constraint relaxation + new solution

Explanations for UNSAT problems:
MUS: one conflict MSS: a relaxation

Counterfactual Explanations for UNSAT problems
Computing a Maximal Satisfiable Subset?

We can do better... computing a Maximum satisfiable subset is the textbook

MaxSAT/MaxCSP problem!

Can add Boolean indicator variable to every constraint (like in assumption-based solving),

and maximize the sum of indicators...

Counterfactual Explanations for UNSAT problems
Computing a Maximal Satisfiable Subset?

We can do better... computing a Maximum satisfiable subset is the textbook

MaxSAT/MaxCSP problem!

Can add Boolean indicator variable to every constraint (like in assumption-based solving),

and maximize the sum of indicators...

In [40]: # add indicator variable per expression
constraints = toplevel_list(model.constraints, merge_and=False)

ind = cp.boolvar(shape=len(constraints), name="ind") # Boolean indicators
ind_model = cp.Model(ind.implies(constraints))
ind_model.maximize(sum(ind))

ind_model.solve()
print(ind_model.status(), "\n")

print("MSS: size =", sum(ind.value()),"constraints")
print("MCS:")
for a,c in zip(ind, constraints):

if not a.value(): print("-",c)

ExitStatus.OPTIMAL (0.044801015 seconds)

MSS: size = 164 constraints
MCS:
- Robert has a day off on Tue 2
- Richard requests to not work shift D on Tue 2
- Shift D on Sat 1 must be covered by 5 nurses out of 8
- Shift D on Sun 1 must be covered by 5 nurses out of 8

Outline of the talk
Part 1: Deductive explanations (What causes X?)

• UNSAT: minimal unsatisfiable subsets

▪ e�cient MUSes

▪ preferred MUSes

• SAT: explaining logical consequences

• OPT: explaining that no better solution exists

Part 2: Counterfactual explanation (What if Y
instead of X?)

• UNSAT: minimum correction subsets

• UNSAT: corrective actions ��

• SAT: checking a foil

• OPT: correcting the objective function

Counterfactual Explanations for UNSAT problems
An MSS is a relaxation of the original problem.

• but deleting constraints is a very intrusive action!

• e.g. no requirement at all on number of nurses on Sat 1 and Sun 1?

In [41]: visualize(nurse_view.value(), factory, highlight_cover=True)

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan F D D D D F F D D D F F D

Katherine D D D D D F F D D F F D D

Robert D D D D D F F D D F F F F

Jonathan D D F F D D F F D D D D F

William F D D F F F F D D F F D D

Richard D D D F F F F D D F F D D

Kristen F F D D D F F D D D F F D

Kevin D D F F F F F F F D D D D

Cover D 5/5 7/7 6/6 4/4 5/5 1/5 0/5 6/6 7/7 4/4 2/2 5/5 6/6

Out[41]:

Counterfactual Explanations for UNSAT problems
Defining a relaxation space: corrective actions on the constraints

• Boolean constraints can only be turned on/o�

• Numeric comparison constraints can be violated to some extend

▪ Introduce slack for each numerical comparison

▪ Slack indicates how much a constraint may be violated

= fine grained penalty of solution!

• Minimize sum of slack and indicator values

Still a standard optimisation problem, just finer-grained correction modelling

Senthooran I, Klapperstueck M, Belov G, Czauderna T, Leo K,

Wallace M, Wybrow M, Garcia de la Banda M. Human-centred

feasibility restoration in practice. Constraints. 2023 Jul 20:1-41.

Counterfactual Explanations for UNSAT problems
Detailed example: allowing 'over' and 'under' assigning a shift, with the Count global

constraint.

In [42]: # slack variables can only be positive here (separate over and under relaxation)
slack_under = cp.intvar(0, len(data.staff), shape=data.horizon, name="slack_under"
slack_over = cp.intvar(0, len(data.staff), shape=data.horizon, name="slack_over"

for _, cover in factory.data.cover.iterrows():
read the data
day = cover["# Day"]
shift = factory.shift_name_to_idx[cover["ShiftID"]]

nb_nurses = cp.Count(nurse_view[:, day], shift)
deviation of `nb_nurses` from `requirement`
expr = (nb_nurses == cover["Requirement"] - slack_under[day] + slack_over

Counterfactual Explanations for UNSAT problems
Defining a relaxation space: corrective actions on the constraints.

In [43]: slack_model, slack_nurse_view, slack_under, slack_over = factory.get_slack_model
slack_model.minimize(10*cp.max(slack_under) + cp.sum(slack_under) + 0.1*
slack_model.solve()
print(slack_model.status())

ExitStatus.OPTIMAL (0.031282838 seconds)

Counterfactual Explanations for UNSAT problems
Defining a relaxation space: corrective actions on the constraints.

In [43]: slack_model, slack_nurse_view, slack_under, slack_over = factory.get_slack_model
slack_model.minimize(10*cp.max(slack_under) + cp.sum(slack_under) + 0.1*
slack_model.solve()
print(slack_model.status())

ExitStatus.OPTIMAL (0.031282838 seconds)

In [44]: style = visualize(slack_nurse_view.value(), factory, highlight_cover=True
style.data.loc["Slack under"] = list(slack_under.value()) + [" "]
style.data.loc["Slack over"] = list(slack_over.value()) + [" "]
display(style)

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

name

Megan F D D D D F F D D D F F D

Katherine D D D D D F F D D F F D D

Robert D D D D D F F F F D D D F

Jonathan D D F F F D D D D D F F F

William D D D F F D D D D F F F F

Richard D D D D D F F F F F F D D

Kristen F F D D D F F D D F F D D

Kevin D D F F F F F F F D D D D

Cover D 6/5 7/7 6/6 5/4 5/5 2/5 2/5 5/6 5/7 4/4 2/2 5/5 5/6 4/4

Slack

under
0 0 0 0 0 3 3 1 2 0 0 0 1

Slack

over
1 0 0 1 0 0 0 0 0 0 0 0 0

Outline of the talk
Part 1: Deductive explanations (What causes X?)

• UNSAT: minimal unsatisfiable subsets

▪ e�cient MUSes

▪ preferred MUSes

• SAT: explaining logical consequences

• OPT: explaining that no better solution exists

Part 2: Counterfactual explanation (What if Y
instead of X?)

• UNSAT: minimum correction subsets

• UNSAT: corrective actions

• SAT: checking a foil ��

• OPT: correcting the objective function

Counterfactual Explanations for SAT problems
The problem is SATisfiable, and the solver returned a solution.

The user asks: "What if Y instead of X?"

Y is a foil: a partial assignment or constraint that is counter-factual, di�erent from the

returned solution.

Counterfactual Explanations for SAT problems
The problem is SATisfiable, and the solver returned a solution.

The user asks: "What if Y instead of X?"

Y is a foil: a partial assignment or constraint that is counter-factual, di�erent from the

returned solution.

Need to check C + Y , with C the set of constraints and Y the foil

• If C + Y is also SAT: show this solution

• If C + Y is UNSAT: can show a deductive or counterfactual explanation of why the

foil leads to UNSAT

Counterfactual Explanations for SAT problems
Example where the user asks: "What if Y instead of X?"

In [45]: assert nurse_view[4,5].value() # William currently scheduled to work on the first Saturd
v = slack_model.objective_value()

what if William would not work on the first Saturday?
mmodel = slack_model.copy()
mmodel += (nurse_view[4,5] == 0)

assert mmodel.solve()
print("Total penalty: ", mmodel.objective_value(), "versus", v, "before."
style = visualize(slack_nurse_view.value(), factory, highlight_cover=True
style.data.loc["Slack under"] = list(slack_under.value()) + [" "]
style.data.loc["Slack over"] = list(slack_over.value()) + [" "]
display(style)

Total penalty: 41.2 versus 40.2 before.

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

name

Megan F D D D D D F F D D F F F

Katherine D D D D D F F D D F F F D

Robert D D D D D F F F F D D D F

Jonathan D D F F F D D D D D F F F

William F D D D D F F D D F F D D

Richard D D D F F F D D F F D D F

Kristen F F D D D F F D D F F D D

Kevin D D F F F F F F F D D D D

Cover D 5/5 7/7 6/6 5/4 5/5 2/5 2/5 5/6 5/7 4/4 3/2 5/5 4/6

Slack

under
0 0 0 0 0 3 3 1 2 0 0 0 2

Slack

over
0 0 0 1 0 0 0 0 0 0 1 0 0

Outline of the talk
Part 1: Deductive explanations (What causes X?)

• UNSAT: minimal unsatisfiable subsets

▪ e�cient MUSes

▪ preferred MUSes

• SAT: explaining logical consequences

• OPT: explaining that no better solution exists

Part 2: Counterfactual explanation (What if Y
instead of X?)

• UNSAT: minimum correction subsets

• UNSAT: corrective actions

• SAT: checking a foil

• OPT: correcting the objective function ��

Counterfactual Explanations for OPT problems
• Corrective actions over the constraints? is UNSAT, get counterfactual explnations

from that.

Counterfactual Explanations for OPT problems
• Corrective actions over the constraints? C ∧ (f(x) < o) is UNSAT, get

counterfactual explnations from that.

• Corrective actions over the objective function coe�cients:

The user asks: "What coe�cients need to change so that Y becomes an optimal solution

instead of X?"

Y is a foil from the optimisation perspective: it leads to a non-optimal solution.

[Korikov, Anton, and J. Christopher Beck. "Counterfactual

explanations via inverse constraint programming." In 27th

International Conference on Principles and Practice of

Constraint Programming (CP 2021).]

Counterfactual Explanations for OPT problems
Find currently optimal solution :X

In [46]: model, nurse_view = factory.get_full_model()

assert model.solve()
print("Total penalty: ", model.objective_value())
visualize(nurse_view.value(), factory)

Total penalty: 607

 Week 1 Week 2

 Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat

name

Megan F D D D D F F D D F F D D

Katherine D D D D D F F F D D F F D

Robert D D D F F D D D F F D D F

Jonathan D D F F F D D D D D F F F

William F D D D D F F D D F F D D

Richard D D D D D F F D D F F D D

Kristen F F D D D F F D D D F F D

Kevin D D F F F F F F D D D D D

Cover D 5/5 7/7 6/6 5/4 5/5 2/5 2/5 6/6 7/7 4/4 2/2 5/5 6/6

Out[46]:

Counterfactual Explanations for OPT problems
Robert is unhappy!

In [47]: nurse = "Robert"

for (w,pref) in zip(*model.objective_.args):
if nurse in str(pref):

print(f"{pref.value()} \t w:{w} \t{pref} \t")

False w:1 Robert's requests to work shift D on Mon 1 is de
nied
False w:1 Robert's requests to work shift D on Tue 1 is de
nied
False w:1 Robert's requests to work shift D on Wed 1 is de
nied
True w:1 Robert's requests to work shift D on Thu 1 is de
nied
True w:1 Robert's requests to work shift D on Fri 1 is de
nied
False w:1 Robert's requests to not work shift D on Sat 2 i
s denied
False w:1 Robert's requests to not work shift D on Sun 2 i
s denied

Counterfactual Explanations for OPT problems
Robert is unhappy!

In [47]: nurse = "Robert"

for (w,pref) in zip(*model.objective_.args):
if nurse in str(pref):

print(f"{pref.value()} \t w:{w} \t{pref} \t")

False w:1 Robert's requests to work shift D on Mon 1 is de
nied
False w:1 Robert's requests to work shift D on Tue 1 is de
nied
False w:1 Robert's requests to work shift D on Wed 1 is de
nied
True w:1 Robert's requests to work shift D on Thu 1 is de
nied
True w:1 Robert's requests to work shift D on Fri 1 is de
nied
False w:1 Robert's requests to not work shift D on Sat 2 i
s denied
False w:1 Robert's requests to not work shift D on Sun 2 i
s denied

In [48]: desc = "Robert's requests to work shift D on Fri 1 is denied"
weight,d_on_fri1 = next((w,pref) for w,pref in zip(*model.objective_.args
print(f"{d_on_fri1.value()} \t w:{w} \t{d_on_fri1}")

True w:1 Robert's requests to work shift D on Fri 1 is de
nied

Counterfactual Explanations for OPT problems
Robert's request to work on Fri 1 is very important! His daughter has a surgery that day.

How should he minimally change his preferences to work that day?

In [49]: foil = {d_on_fri1 : False} # don't want to have his request for Fri 1 denied!
print("Foil:", foil, "\n")

other_prefs = [(w,pref) for w,pref in zip(*model.objective_.args) if nurse
print(f"{nurse}'s other preferences:")
for w,pref in other_prefs:

print("- Weight",w,":",pref)

Foil: {not([roster[2,4] == 1]): False}

Robert's other preferences:
- Weight 1 : Robert's requests to work shift D on Mon 1 is denie
d
- Weight 1 : Robert's requests to work shift D on Tue 1 is denie
d
- Weight 1 : Robert's requests to work shift D on Wed 1 is denie
d
- Weight 1 : Robert's requests to work shift D on Thu 1 is denie
d
- Weight 1 : Robert's requests to not work shift D on Sat 2 is d
enied
- Weight 1 : Robert's requests to not work shift D on Sun 2 is d
enied

Counterfactual Explanations for OPT problems

Algorithmically, it is a beautiful inverse optimisation problem with a multi-solver

main/subproblem algorithm

[Korikov, Anton, and J. Christopher Beck. "Counterfactual

explanations via inverse constraint programming." In 27th

International Conference on Principles and Practice of

Constraint Programming (CP 2021).]

Counterfactual Explanations for OPT problems

Algorithmically, it is a beautiful inverse optimisation problem with a multi-solver

main/subproblem algorithm

[Korikov, Anton, and J. Christopher Beck. "Counterfactual

explanations via inverse constraint programming." In 27th

International Conference on Principles and Practice of

Constraint Programming (CP 2021).]

In [50]: from explanations.counterfactual import inverse_optimize

v = model.objective_value()
new_obj = inverse_optimize(model=model, minimize=True,

user_sol = foil,
allowed_to_change = set(p[1] for p in other_prefs

print(f"Done! Found solution with total penalty {new_obj.value()}, was {

Let's look at the preferences he should enter, to avoid Fri 1!
print(f"{nurse} should change the following preferences:")
for w,pref in zip(*new_obj.args):

if nurse in str(pref) and str(pref) != desc and w != 1: # previous weights were 1
print("- set to weight:", w, "--", pref)

Done! Found solution with total penalty 607, was 607

Robert should change the following preferences:
- set to weight: 0 -- Robert's requests to not work shift D on S
at 2 is denied

Hands-on Explainable Constraint Programming
(XCP)

Part 1: Deductive explanations
(What causes X?) ��

• UNSAT: minimal unsatisfiable subsets

▪ e�cient MUSes

▪ preferred MUSes

• SAT: explaining logical consequences

• OPT: explaining that no better solution exists

Part 2: Counterfactual
explanation (What if Y instead of X?) ��

• UNSAT: minimum correction subsets

• UNSAT: corrective actions

• SAT: checking a foil

• OPT: correcting the objective function

Explainable Constraint Programming (XCP)
Recurring challenges:

• Definition of explanation: question and answer format

• Computational e�ciency, incremental solvers

• Explanation selection: which explanation to show; learn preferences?

• User Interaction? (visualisation, conversational, stateful, ...)

• Explanation evaluation: computational, formal, user survey, user study, ...

Connections to wider XAI
• Explanations in planning, e.g. MUGS [Eiflet et al], Model Reconciliation [Chakraborti

et al], ...

• Explanations for KR/justifications [Swartout et al], ASP [Fandinno et al], in OWL

[Kalyanpur et al], ...

• Formal explanations of ML models (e.g. impl. hitting-set based, [Ignatiev et al])

Conclusion (�nal slide)

• Deductive and Constrastive Explanation of UNSAT/SAT/Opt

• Deductive explanations relate back to finding a MUS/OUS

• XCP requires programmable (multi-solver) tooling (here: CPMpy)

• Many open challenges and new problems!

• Less developed: counterfactual and interactive methods

• We need incremental CP-solvers!

Want to learn more?
Tutorial as notebook available at

(PS. Hiring a post-doc, tell your colleagues to contact me...)

https://github.com/CPMpy

/XCP-explain

https://github.com/CPMpy/XCP-explain
https://github.com/CPMpy/XCP-explain
https://github.com/CPMpy/XCP-explain
https://github.com/CPMpy/XCP-explain

References mentioned (many more exist!!!)

MUS

• Li�ton, M. H., & Sakallah, K. A. (2008). Algorithms for computing minimal unsatisfiable subsets of constraints. Journal of Automated

Reasoning, 40, 1-33.

• Ignatiev, A., Previti, A., Li�ton, M., & Marques-Silva, J. (2015, August). Smallest MUS extraction with minimal hitting set dualization. In

International Conference on Principles and Practice of Constraint Programming (pp. 173-182). Cham: Springer International Publishing.

• Joao Marques-Silva. Minimal Unsatisfiability: Models, Algorithms and Applications. ISMVL 2010. pp. 9-14

Feasibility restoration

• Senthooran, I., Klapperstueck, M., Belov, G., Czauderna, T., Leo, K., Wallace, M., ... & De La Banda, M. G. (2021). Human-centred feasibility
restoration. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik.

Explaining optimization problems

• Korikov, A., & Beck, J. C. (2021). Counterfactual explanations via inverse constraint programming. In 27th International Conference on Principles
and Practice of Constraint Programming (CP 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

Explanation in planning, ASP, KR

• Eifler, Rebecca, Michael Cashmore, Jörg Ho�mann, Daniele Magazzeni, and Marcel Steinmetz. "A new approach to plan-space explanation:
Analyzing plan-property dependencies in oversubscription planning." In Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
no. 06, pp. 9818-9826. 2020.

• Chakraborti, Tathagata, Sarath Sreedharan, Yu Zhang, and Subbarao Kambhampati. "Plan explanations as model reconciliation: moving beyond
explanation as soliloquy." In Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp. 156-163. 2017.

• Fandinno, Jorge, and Claudia Schulz. "Answering the “why” in answer set programming–A survey of explanation approaches." Theory and
Practice of Logic Programming 19, no. 2 (2019): 114-203.

• Swartout, William, Cecile Paris, and Johanna Moore. "Explanations in knowledge systems: Design for explainable expert systems." IEEE Expert
6, no. 3 (1991): 58-64.

• Kalyanpur, Aditya, Bijan Parsia, Evren Sirin, and Bernardo Cuenca-Grau. "Repairing unsatisfiable concepts in OWL ontologies." In The Semantic
Web: Research and Applications: 3rd European Semantic Web Conference, ESWC 2006 Budva, Montenegro, June 11-14, 2006 Proceedings 3,
pp. 170-184. Springer Berlin Heidelberg, 2006.

Formal explantions in ML

• Ignatiev, Alexey, Nina Narodytska, and Joao Marques-Silva. "Abduction-based explanations for machine learning models." In Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 1511-1519. 2019.

