
© 2020 Modelica Association | www.modelica.org

FMI Industrial User Meeting:

eFMI Status and Outlook

International Modelica Conference 2021, Sept. 23

Christoff Bürger
Dassault Systèmes

Christoff.Buerger@3ds.com

mailto:Christoff.Buerger@3ds.com

© 2021 Modelica Association | www.modelica.org | CC BY-SA 4.0 2

New standard enabling the application of (physics) models in embedded software by providing a

container architecture for the step-wise refinement of a first high-level algorithmic solution to an

embedded implementation on a dedicated target environment.

eFMI Standard: Mission

• Developed in the EMPHYSIS

research project

(https://emphysis.github.io/)

• Now Modelica Association

Project (MAP eFMI)

(https://efmi-standard.org/)

https://emphysis.github.io/
https://efmi-standard.org/

© 2021 Modelica Association | www.modelica.org | CC BY-SA 4.0 3

New standard enabling the application of (physics) models in embedded software by providing a

container architecture for the step-wise refinement of a first high-level algorithmic solution to an

embedded implementation on a dedicated target environment.

EMPHYSIS results:

• 13 tools covering entire eFMI workflow

• Modelica library for cross-checking eFMU tooling

• 22 applications, each with several variants

• 6 industry-driven demonstrators

• ITEA Award of Excellence winner

MAP eFMI status:

• 12 member organizations covering research, tool vendors and users.

• Test cases library published (https://github.com/modelica/efmi-testcases).

• Alpha draft of specification published (https://efmi-standard.org/).

eFMI Standard: Status

Detailed paper of standard and results:
• ”eFMI: An open standard for physical models in

embedded software”

• Monday, Sep. 20, Session 1A, 16:50-17:10

https://github.com/modelica/efmi-testcases
https://efmi-standard.org/

© 2021 Modelica Association | www.modelica.org | CC BY-SA 4.0 4

New standard enabling the application of (physics) models in embedded software by providing a

container architecture for the step-wise refinement of a first high-level algorithmic solution to an

embedded implementation on a dedicated target environment.

⇒ Standardized workspace for step-wise development of embedded solutions from models

⇒ Covering most important development concerns (implementation, testing, integration)

eFMUs support:

• Behavior / reference results for testing (Behavioral Model containers)

• Target-independent bounded algorithmic solution (Algorithm Code container) based on GALEC

• C implementations, tailored and optimized for the requirements of specific target environments (Production Code

containers)

• Binary distributions and their „build-recipes“, ready for embedded system integration (Binary Code containers)

eFMI Standard: Container architecture & model representations

© 2021 Modelica Association | www.modelica.org | CC BY-SA 4.0 5

Model

eFMU Manifest Bosch

MDG1 ECU

Astrée

Dymola

SimulationX

eFMU Manifest

Algorithm

Code

Behavioral

Model*

SCODE-CONGRA

CATIA ESP

Production

Code*

Amesim

eFMI Standard: Tool chain & workflow

TargetLink

Binary

Code*

Algorithm

Code

Behavioral

Model*

Testing & code analyses

System integration

AUTOSAR

Builder

*several possible

*several possible

© 2021 Modelica Association | www.modelica.org | CC BY-SA 4.0 6

Model

eFMU Manifest Bosch

MDG1 ECU

Astrée

Dymola

SimulationX

eFMU Manifest

Algorithm

Code

Behavioral

Model*

SCODE-CONGRA

CATIA ESP

Production

Code*

Amesim

eFMI Standard: Tool chain & workflow

TargetLink

Binary

Code*

Algorithm

Code

Behavioral

Model*

Testing & code analyses

System integration

AUTOSAR

Builder

*several possible

*several possible

Starting point of

further code

generation: GALEC

program generated

by modeling tool.

© 2021 Modelica Association | www.modelica.org | CC BY-SA 4.0 7

GALEC (Guarded Algorithmic Language for Embedded Control): Intermediate representation

well-suited as code generation target for modelling tools & source for embedded-code generation

• imperative / causal language of high abstraction level (e.g., multi-dimensional real arithmetic, built-in

mathematical functions like sinus, cosine, interpolation 1D & 2D, solve linear equation systems etc.)

• Safe – embedded & real-time suited – semantics

• upper bound

• statically known sizes and safe indexing

• well-defined & never competing side effects

• Safe floating-point numerics

• guaranteed NaN propagation

• saturation of ranged variables

• Ordinary control-flow integrated, strict error handling concept

• guaranteed error signal propagation enables delayed error handling

⇒ Guards further eFMI tooling

eFMI Standard: Algorithm Code container & GALEC language

© 2021 Modelica Association | www.modelica.org | CC BY-SA 4.0 8

Bosch

MDG1 ECUSCODE-CONGRA

CATIA ESP

TargetLink

AUTOSAR

Builder

Model

eFMU Manifest

Astrée

Dymola

SimulationX

eFMU Manifest

Algorithm

Code

Behavioral

Model*

Production

Code*

Amesim

eFMI Standard: Iterative eFMU development &
distribution as FMUs

Binary

Code*

Algorithm

Code

Behavioral

Model*

Testing & code analyses

System integration

*several possible

adapter for

FMI interface

FMU Manifest

Pick one

solution

when ready

and wrap in

FMU.

FMU

© 2021 Modelica Association | www.modelica.org | CC BY-SA 4.0 9

MAP eFMI: Members

https://efmi-standard.org/

Deputy project leader:

Hubertus Tummescheit

Project leader:

Christoff Bürger

https://efmi-standard.org/

© 2021 Modelica Association | www.modelica.org | CC BY-SA 4.0 10

Apply defensive, bottom-up, prototype-based processes:

• Release of next eFMI version only when a cross-checked tool-chain, with tests covering all features,

exists…

• …whereas all eFMU artefacts are generated and consumed and…

• …bad / misbehaving / to-be-rejected / evil inputs are also tested.

• Such defensive approach fits our domain (safety).

• The innovation/research is in the tools, not the interfaces or standard (only GALEC might be an

exception).

• The novelty comes from actually bridging the gap from (physics) models to embedded software

(making this really happen).

MAP eFMI: Standardization processes

© 2021 Modelica Association | www.modelica.org | CC BY-SA 4.0 11

eFMI Standard version 1.0.0 release end of this year!

Alpha draft of specification already published (https://efmi-standard.org/)

https://efmi-standard.org/

© 2021 Modelica Association | www.modelica.org | CC BY-SA 4.0 12

Major new version every 2 years:

• 1st year definition of new features

• what, why, limitations, test scenarios, prototype implementations and…

• …feasibility study that a specification can achieve completeness of rules that can be reasonably implemented –

”somebody tries to put it into rules and plays the evil guy trying to break these”

• 2nd year cleanup of proposed features (no new features and ”if in doubt, feature cut”):

• actual specification in Standard

• cleanup and prepare release of MAP eFMI toolings/libraries

• tool vendors cleanup their prototype implementations used in cross-checks to be ready for release

• Avoid minor standard versions

• Such are only bug-fixes; we want to make sure stuff works before release → less need for bug-fixing

• Think of versioning of formal language standards like C, C++, Scheme etc.

MAP eFMI: Release cycle

© 2021 Modelica Association | www.modelica.org | CC BY-SA 4.0 14

We are open for new members!

