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Abstract—Software obfuscation of programs, with the goal
of protecting against attackers having physical access to the
machine executing them, is a common practice motivated by the
necessity of keeping intellectual property (such as business critical
algorithms) and critical data (such as cryptographic keys) secret.
However, as of today, it is unclear how secure popular obfuscation
operators are relative to each other or to other protection
techniques. In this paper we propose a formal framework to
characterize attacker models and guarantees, inspired by similar
notions from cryptography. We then map prior work in the area
of deobfuscation to our formal model to the possible extent. We
also perform a case-study about using symbolic execution for
deobfuscation, concretely mapped onto our formal model.

I. INTRODUCTION

Although traditionally deemed as a bad security practice,
software obfuscation of programs is a practical necessity in
many contexts, and is widely used [7]. Typical goals of obfus-
cation include protection against attackers having physical ac-
cess to the machine executing a certain program, motivated by
the necessity of keeping intellectual property (such as business
critical algorithms) and critical data (such as cryptographic
keys) secret. Recent theoretical breakthroughs in cryptography
such as indistinguishability obfuscation [16] are promising
because they offer provably secure obfuscation, but are still
far from being practical [1]. Moreover, it is unclear if the
provably secure guarantees of indistinguishability obfuscation
correspond to the intuitive goals practitioners have in mind
when obfuscating their programs. Also, it is unclear how
secure commonly used obfuscation operators are. As a con-
sequence, practical software obfuscation is merely intuitively
secure, and there exist no guidelines that give an idea on what
amount of effort is needed to break them. In our view, this
situation resembles the early days of cryptography, and to
some extent even the current state of certain cryptographic
primitives. Although the introduction of reduction proofs for
cryptographic constructions has increased the confidence in
the security of certain algorithms, note that for many popular
cryptographic algorithms such as AES there exists no reduc-
tion proof to a hard problem. On the other hand, reduction
proofs shift the problem of the security of a primitive to the
hardness of a problem, which is not provable but conjectured
(such as the Diffie-Hellman decisional problem).

Despite the absence or presence of reduction proofs, prob-
ably the most useful outcome for practitioners is a table
such as the one described in the EcryptII project [23], which
has an estimate of key sizes for different algorithms that

provide protection for a certain period of time according to
the computational strength of attackers. Implicitly this sort of
table assumes the existence of a best attacker against a certain
cryptographic construction. For instance, the best attacker for
256-bit AES was considered to be brute-force, however, [3]
presents a better attacker that has 2131 time complexity.

Section II introduces a formal framework to characterize
attacker models and guarantees, inspired by similar notions
from cryptography. The core observation of the framework is
that, given an explicit notion of the best attacker against a
certain obfuscation operator, it is possible to derive empirical
guarantees on the effort needed to break it. Section III gives
examples of published results for concrete attacker models.
In Section IV we present a case-study on using open source
symbolic execution and obfuscation tools for one of the
attacker models, paving the way for further investigations in
this direction for other obfuscation operators. Our final goal
is to develop a table similar to the one from the EcryptII
project. However, we would indicate the time needed to break
an obfuscation transformation depending on the size of con-
figuration space of the transformation and the characteristics
of the program being transformed, instead of the time needed
to break a cryptographic cipher with a certain key size.

II. FORMAL MODEL

Let P be the universe of all executable programs. Let
[[·]]BB : P ! (I ! O) be the semantic characterization
of the black-box behavior of any program, where I and O
represent universal input, respectively output domains. Let T
be the universe of all obfuscation transformations applicable
to programs in P . An obfuscation transformation ⌧ 2 T is a
mapping ⌧ : P ! P such that [[p]]BB = [[⌧(p)]]BB .

Software obfuscation mainly aims to protect either the
original control-flow of a program (i.e. intellectual property of
the vendor) or data embedded in a program (e.g. secret keys,
hardcoded passwords). These goals can be mapped directly
to 2 different attackers: ACF and AD , corresponding to
recovery of control-flow, respectively data, which obfuscation
transformations aim to hide. We are aware that, given enough
resources, an attacker can recover the secret hidden by many
obfuscation transformations. The overarching goal of our work
is to show how good certain obfuscation transformations are
against different automated attackers.

Intuitively, a defender is chiefly interested in a quantifiable
expression over his/her program and all attackers, saying that
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attacking a particular obfuscation transformation is bounded
below by a certain work-factor. However, we believe this to
be a very lofty goal. On the other hand, an attacker is mainly
interested in developing an attack which outperforms any prior
known attacks, especially if these attacks are not efficient in
the attacker’s context. We believe that these 2 perspectives
complement each other. Therefore, we propose a model for
quantifying obfuscation resilience by stipulating a – possibly
hypothetical, unknown, non-computable – lower bound. This
reflects the perspective of the defender’s interests. In practice,
we are confined to providing single data points; their values
define upper bounds for the lower bounds. These are interest-
ing if a defender can conclude that even though she may not
know the lower bound, available data already suggests that the
obfuscation mechanism is too weak, assuming that ACF , AD

are the best attackers according to today’s knowledge.

A. Automated Control-Flow Recovery Attacks
Let the semantic characterization of control-flow recovery

be denoted by [[·]]CF : P ! CF , where CF represents the
universe of program control-flow graphs (CFGs). The goal
of an automated attacker ACF (having a fixed amount of
computational power s) is to minimize the result of a function
t that measures the time needed by ACF to recover a CFG
c, which is closer than a threshold value � to the CFG of the
original program [[p]]CF according to some metric dif CF . This
can be formally written as:

t[ACF (⌧(p), s) = c 2 CF | dif CF (c, [[p]]CF ) < �] � TCF (s, ⌧(p)),

where TCF (s, ⌧(p)) is the shortest time needed by an attacker
having power s, to recover the CFG in a program p, obfuscated
with transformation ⌧ 2 T . Examples of ACF will be given
in Section III.

B. Automated Data Recovery Attacks
Similarly to ACF , for AD we first define the semantic

characterization of data recovery from a program by [[·]]D :
P ! D, where D represents the universe of all data items
that can be extracted from any program’s binary or process
memory at various points in time. The goal of the automated
attacker AD (having a fixed amount of computational power s)
is to minimize the result of the same function t that measures
the time needed by AD to recover a data item d, which is
closer than a threshold � to the data ([[p]]D ) hidden in the
original program p. This can be formally written as:

t[AD(⌧(p), s) = d 2 D | dif D(d, [[p]]D) < �] � TD(s, ⌧(p)),

where TD(s, ⌧(p)) is the shortest time needed by an attacker
having power s, to recover the hidden data in a program p,
obfuscated with transformation ⌧ 2 T . Examples of AD will
be given in Section III.

III. MAPPING PRIOR WORKS ONTO OUR FORMAL MODEL

In this section we present several automated attacks pre-
sented in the literature and we map them to the two types
of attacks presented in Section II for particular obfuscation
transformations.

a) Virtualization obfuscation: (denoted T
v

) aims to hide
the control-flow of a program p 2 P through the means of
program translation into a random language and building an
interpreter for it. The following three steps concisely describe
the process of virtualization obfuscation: (1) Generation of a
random bytecode instruction set architecture (ISA) covering all
instructions of p; (2) Translation of p into a bytecode program
written in the previously generated ISA; (3) Generation of an
emulator which can interpret the generated bytecode program
on the native machine ISA (e.g. x86). This emulator contains
handlers for each instruction opcode of the random ISA.

After performing these steps, the obfuscated program, con-
sisting of the bytecode and the emulator, are distributed to the
end-users. Note that the bytecode ISA consists of instructions
each characterized by a random opcode and one or more
operands. One instruction in the bytecode ISA may correspond
to one or more instructions in the native ISA (e.g. x86). This
also means that multiple locations in the original binary may
correspond to the same instruction in the bytecode ISA, hence
the same opcode handler or the emulator.

An automated attack ACF on ⌧

v

(p), where ⌧
v

2 T
v

is a con-
crete virtualization implementation, consists in recovering the
original CFG of p by: (1) identifying the bytecode inside ⌧

v

(p),
(2) mapping each bytecode instruction to its corresponding
emulator handler and (3) disassembling the bytecode program
into a common language (e.g. assembly code). Obtaining the
CFG from assembly code is straight-forward.

A few automated attacks against T
v

have been published
in the literature [22], [17], [12], [18]. The work of Guillot
and Gazet [17] based on concolic execution and the work
of Kinder [18] based on abstract-interpretation are the only
ones that offer an open implementation of such an automated
attacker. Both make the assumption that the location of the
bytecode and internal variables are known. We applied these
implementations to several small C programs obfuscated with
the Tigress1 virtualization obfuscator. However, we could not
replicate the results of the authors. We believe that the main
cause behind our unsuccessful replication of the experiments
from [17], [18] was due to the aforementioned assumption
made in these works, which did not hold for the latest version
of the Tigress obfuscator. Therefore, we aim to implement our
own tool based on a symbolic execution engine like S2E [8]
leveraging the ideas presented by Sharif et al. [22], which
do not assume that the location of the bytecode and internal
variables are know. The approach of Sharif et al. [22] aims
to first find the location of bytecode via dynamic analysis and
then performs static analysis and symbolic execution of the
emulator handlers to recover the original CFG.

The aforementioned works on deobfuscating virtualization
do not present a performance evaluation, with the exception
of Kinder [18]. He shows that even for a 10-line C program
which computes the Fibonacci sequence, deobfuscation may
take up to 40 seconds and around 100 MBs of memory if one
wants to obtain a CFG close to the original one. Unfortunately,

1http://tigress.cs.arizona.edu/
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nothing is said regarding the relationship between the size of
the program and the time needed for deobfuscation. However,
we expect deobfuscation to be at least linear in the size of
the original program. Therefore, depending on the size of p,
⌧

v

(p) may be good to withstand such automated attackers for
a certain amount of time. Due to the lack of a performance
evaluation we cannot fully map the previous works to the
model presented in Section II, because of the missing time
bound for the automated attacker.

b) Opaque Predicates: (denoted T
o

) are boolean expres-
sions whose value is constant and known to the one who
inserts it, however they are difficult to statically evaluate by
an attacker [11]. Opaque predicates are used to insert bogus
branches into a program p 2 P , thus hiding its original
control-flow. Opaque predicates can be added at arbitrary
positions in the code, but also appended to existing conditional
statements such as ifs or loops. We denote a program
obfuscated with ↵ randomly generated opaque predicates as
⌧

↵

o

(p), where ⌧

o

2 T
o

.
The approach of Preda and Giacobazzi [14] based on

abstract interpretation tackles the problem of automatically
recovering the original control flow graph by eliminating
opaque predicates from obfuscated instances. Unfortunately,
there is no open implementation of this approach available.
Rolles offers a partial implementation of this approach, which
is based on the Pandemic program analysis framework which
has not been published [21].

Another opaque predicate deobfuscation approach has been
published by Gabriel [15]. He uses the Miasm framework2

to recover the CFG of a 10-line C function containing 3 if-
statements and no loops. This program is obfuscated using the
Obfuscator-LLVM3 tool. Gabriel uses pattern matching based
on disjunction operators in if-statement conditions: when an
if-statement condition contains an OR, the right-hand side
operator is assumed to be an opaque predicate and it is
eliminated. This assumption does not hold in general, but it
holds for the target program transformed by the Bogus Control
Flow transformation of Obfuscator-LLVM. Since the strong
assumptions made by Gabriel prevent general automated at-
tacks, we plan to implement our own tool using a satisfiability
modulo theory (SMT) solver such as STP [6] along the lines
of the sample OCaml code offered by Rolles [21].

c) White-Box Cryptography: (denoted T
w

) is a data hid-
ing obfuscation transformation, which hides the secret key of a
cryptographic cipher in software, without the need of a trusted
computing base. The first white-box cryptographic technique
for DES and AES were proposed by Chow et al. [10], [9].
Other techniques for AES were proposed by Bridger et al. [4]
and Xiao et al. [28]. We denote a program containing a hard-
coded secret key which has been obfuscated using white-box
cryptography as ⌧

w

(p), where ⌧
w

2 T
w

is a concrete white-box
cipher instance.

2https://github.com/cea-sec/miasm
3https://github.com/obfuscator-llvm/obfuscator

The goal of the attacker is to recover the secret key denoted
[[p]]D from the cipher; such attacks have been proposed [2],
[27], [19], [20]. The only assumption of these attacks is that
the precise location and structure of the lookup tables in the
binary is known. Although, this assumption can be broken
by combining white-box cryptography with other obfuscation
transformations, many works focus on attacking white-box
cryptography alone. Given the contents and structure of the
lookup tables of a white-box AES cipher instance from [9],
the attack described in [20] can recover the hidden 128-bit
key, with a work factor of 222. This is an upper bound on the
lower bound (denoted E ) for the work factor of automatic
secret key recovery attacks against this white-box AES cipher
i.e.

t[AD(⌧
w

(p), s) = d 2 D | dif D(d, [[p]]D) = 0] E 222/s,

where AD is described in De Mulder et al. [20], ⌧

w

(·)
is described in Chow et al. [9], dif D is bitwise equality
comparison and s is the power of the attacker’s CPU.

d) Encoding Literals: (denoted by T
el

) “breaks-down”
all constants into pieces that are put together by a sequence of
instructions. The implementations of this obfuscation trans-
formation vary widely, since one integer or string constant
assignment can be substituted by a arbitrary number of in-
structions, which when executed result in the same constant
that they replaced. Plus these instructions can also be further
substituted by other equivalent instruction sequences [26].

Some works on deobfuscating various instances ⌧

el

2
T
el

[17], [15] use heuristics from compiler optimizations to
eliminate superfluous instructions and reduce the sequence
of instructions to the shortest possible sequence. Generally,
this process is not time-consuming although it is super-linear
in the number of instructions of the obfuscated program.
Unfortunately, the authors of the previously mentioned works
do not perform a performance evaluation of their attack.
This is probably due to the high flexibility regarding the
different implementations of ⌧

el

and its strong dependence
on the program being obfuscated. Nevertheless, due to this
reason we cannot map these works onto the model from
Section II. However, we will see an example of attacking one
⌧

el

implementation in Section IV.

IV. CASE-STUDY: USING KLEE FOR AUTOMATED DATA
RETRIEVAL

In Section III we argued that many prior works fit into
the model described in Section II. However, the majority
of these works do not quantify the time needed to attack
obfuscated software instances. Therefore, in this section we
wish to provide an illustrative case study where we use the
Tigress Diversifying C Virtualizer4 as an obfuscation tool. It
is freely available and provides a large set of configurable
obfuscation transformations (⌧ 2 T ) such as: virtualization
obfuscation at function-level, opaque predicates, literal en-
coding and many others. We set the goal of the attacker

4http://tigress.cs.arizona.edu/
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to be data recovery and we choose the KLEE symbolic
execution engine [5] as a concrete instance of AD . We chose
a couple of license-checker programs which are generally
protected against tamper-proofing attacks, however, they are
also concerned with hiding data, i.e. the hard-coded license
checks, such that attacker cannot simply guess valid license
keys. The goal of AD is to find concrete values for license
keys, instead of buying such keys from the software vendor.

In this section we probe KLEE as a candidate for best
attacker on obfuscated license checkers, i.e. check if it finds
valid license keys and how long it takes to do so. We describe
our experimental setup including our hardware power (s) such
that our experiments can be replicated.

A. Symbolic Execution and KLEE in a Nut-shell
Before presenting the details of the case study, we give a

brief introduction about symbolic execution and the motivation
behind using KLEE as an automatic data recovery attacker.

The idea behind symbolic execution is to simulate execution
of a program under test using “symbolic” inputs that can
take all values allowed by a certain type (e.g. x 2 [0, 255])
instead of concrete inputs (e.g. x = 2). Whenever a conditional
branch bearing a predicate (⇡) which depends on the values
of a symbolic input is encountered by the simulation, the
internal state of the simulator and its execution are forked
into 2 paths, one following the true-branch (⇡) and the other
following the false-branch (¬⇡). The 2 execution paths are
pursued independently thereafter. For instance if ⇡ = x < 128
then the true-branch would continue with the so called path
condition x 2 [0, 127], while the else branch would continue
with path condition x 2 [128, 255].

Note that if a program has several symbolic inputs then
all of them are part of the path condition. After encountering
several branches the simulation generates a so-called execution
tree, where every inner-node represents a predicate that has
caused the execution to fork. Each leaf of this tree contains a
path condition that can be sent to a constraint solver e.g. SMT
solver, which returns a set of concrete values. These concrete
values returned by the solver constitute a test case which
when given to the program under test will exercise exactly the
corresponding path from the execution tree. Then, a test suite
is therefore automatically obtained by sending path conditions
of all the leaves from the execution tree to the constraint
solver. The test cases are less redundant than those generated
by fuzzing, because each test-case is guaranteed to exercises
a different path through the program.

This brings us to the reason why we believe that a symbolic
execution tool would be a perfect data extraction attacker
for programs which perform license checking. In a simplified
view, a license check can be seen as a predicate ⇡, which either
evaluates to true or false. Therefore, the output of the SMT
solver that satisfy the constraints leading to the true branch of
the license check represent a concrete license key value for
the attacker.

KLEE is a symbolic execution engine for LLVM bitcode. It
directly interprets LLVM instructions and maps them to con-

straints without making approximations about their semantics
(i.e. offering bit-level accuracy of process memory). In order to
handle calls to the C library, KLEE either replaces the concrete
call with a symbolic model of the C library if available.
However, it also performs concrete calls if a symbolic model
is not available. For KLEE this model is obtained via a
customized version of µclibc, a minimal implementation of
the C library for embedded systems. This library was modified
such that calls to file-IO functions can use buffers that hold
symbolic data instead of actual files.

The automatic data recovery attack for retrieving the secret
value from a program p using KLEE consists of the following
steps: (1) compile p to LLVM bitcode, (2) run the bitcode
with KLEE which results in a set of test-cases (one of which
contains the password), (3) replay each test-case on the target
program using the klee-replay tool and (4) pick the test-case
that causes p to produce the output we are interested in, e.g. the
output that is different from a “license incorrect” message.

B. Experiment Setup

The experiments described in this paper were performed
on the following setup. We used Tigress version 1.3 and a
recent version of KLEE checked-out from Github5. We built
KLEE with LLVM version 3.4.2 on a 64-bit Ubuntu 14.04.1
VM having a 2.8 GHz CPU frequency with 1 core, and 4
GB of memory. This hardware configuration also indicates the
power (s) of the attacker AD . We also built a recent version
of STP6 which KLEE uses as a constraint solver, as well as
a recent version of the KLEE specific µclibc library7, which
provides KLEE with a symbolic model of the POSIX runtime.
To reduce the size of the LLVM bitcode being executed by
KLEE we used the --optimize parameter.

C. A Simple License Checking Program

Listing 1. Simple license checking program.
1 int main(int argc, char

*

argv[]) {

2 if (strcmp(argv[1], "my_license_key") == 0)

3 printf("The license key is correct!\n");

4 else

5 printf("The license key is incorrect!\n");

6 return 0;

7 }

The first target program we choose is a simple license
checking program p1 which contains a hard-coded license
key illustrated in Listing 1. p1 checks whether its first input
argument is equal to the hard-coded key (line 2 in Listing 1)
and prints out a message representing the comparison outcome.
Therefore, the semantic characterization of data recovery from
program p1 is [[p1]]D =“my license key”. If we build the
binary executable of p1 and apply the strings tool to it, the
output is a list of 14 hard-coded strings found in the binary,
3 of which are the strings from lines 2, 3 and 5 in Listing 1.

5https://github.com/klee/klee/commit/e72b75e
6https://github.com/stp/stp/commit/e2cf0c6
7https://github.com/klee/klee-uclibc/commit/a8af87c
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Fig. 1. CFG of
string encoding
function in ⌧el(p1).

We obfuscated p1 using the Encode
Literals transformation (⌧

el

) from Tigress,
which replaces all integer and string lit-
erals with one function containing opaque
expressions. When this function is called
with a certain parameter value, it returns a
value corresponding to one of the literals
which were replaced. We cannot show the
C source code of ⌧

el

(p1) in this paper
because it has between 250 and 300 lines
of code depending on whether the struc-
tures used to compute opaque expressions
are arrays or lists. However, we offer the
source code online8. If we build the bi-
nary executable of ⌧

el

(p1) and apply the
strings tool to it, the output no longer
includes the strings from lines 2, 3 and 5
in Listing 1. However, note that the Tigress
user guide indicates that the string encoding
function is trivial by design and it should
be further virtualized. By looking both at
the C source code and at the disassembled binary code in
IDAPro9, we could confirm this claim. An high-level overview
of the CFG of the binary is illustrated in Fig. 1. It shows an
if-else-if-statement with 4 branches corresponding to:
the encoding of the strings from lines 2, 3 and 5 in Listing 1
through simple character concatenation and an else-branch
which returns the empty string.

To further raise the bar for the attacker, we applied the Func-
tion Virtualization transformation (⌧

v

) from Tigress on the
encoding function from ⌧

el

(p1) with the default parameters.
We write this as ⌧

v

(⌧
el

(p1)). The source code of this program
has over 1300 lines of C code and it is harder to deduce the
values of the encoded strings from it in comparison to ⌧

el

(p1).
To support this claim we show in Fig. 2 the overview of the
CFG of the string encoding function as extracted by IDAPro
from the binary corresponding to ⌧

v

(⌧
el

(p1)). Therefore, in
the following we only present the attack on ⌧

v

(⌧
el

(p1)), since
⌧

el

(p1) is trivial to deobfuscate.

D. Automated Data Recovery from the Obfuscated License
Checking Program

As a preliminary check for semantic equivalence of the
obfuscated program ⌧

v

(⌧
el

(p1)) with the original program,
we tested the obfuscated binary with different input values
and observed that its behavior is the same for both p1 and
⌧

v

(⌧
el

(p1)), i.e. [[p1]]BB = [[⌧
v

(⌧
el

(p1))]]BB . This was also
confirmed by the output of KLEE when executed on the LLVM
bitcode of p1 and of ⌧

v

(⌧
el

(p1)), which could not find an
input for which the two programs return different outputs. For
executing KLEE we enabled the symbolic POSIX runtime and
indicated that the target programs have a symbolic argument

8https://www.dropbox.com/s/90q5xlxymsw2bcs/spro.zip
9https://www.hex-rays.com/products/ida/

Fig. 2. CFG of string encoding function in ⌧v(⌧el(p1)).

of 32 bytes, which is an average length for a license key in
general, even though our key is only 14 bytes.

The only difference between the 2 programs is their ex-
ecution time, which is longer for the obfuscated program as
expected due its larger size. This also led to a longer symbolic
execution of the obfuscated program using KLEE. In the case
of p1, KLEE ran for about 0.9 seconds on average, while
for ⌧

v

(⌧
el

(p1)) KLEE ran for 1.5 seconds on average. Each
of these 2 KLEE runs generated a test-suite consisting of 2
test-cases covering disjunct paths through the code of the 2
programs. Using the klee-replay tool we replayed the 2
test cases generated by KLEE when applied to ⌧

v

(⌧
el

(p1)). We
observed that one of the test-cases caused ⌧

v

(⌧
el

(p1)) to print
the message on line 3 of Listing 1, while the other test-case
resulted in the output of message from line 5.

This means our automated attacker KLEE has managed to
extract a test-suit in 1.5 seconds, in which a test-case contains
the secret (“my license key”) from the obfuscated program
⌧

v

(⌧
el

(p1)). Replaying the test cases and selecting the one
that outputs “The license key is correct!”, took less than a
tenth of a second. Therefore, KLEE was able to extract d

from ⌧

v

(⌧
el

(p1)) such that it is identical to the hidden secret
key, i.e. dif D(d, [[p1]]D) = 0. Putting it all into our formal
model introduced in Section II, we write

t[AD(⌧
v

(⌧
el

(p1)), s) = d|dif D(d, [[p1]]D) = 0] E 1.5sec,

where AD is KLEE, s is described in Section IV-B and dif D is
string equality comparison. The transformations are the one’s
from Tigress and we have used their default parameters.

The beauty of virtualization obfuscation is that it can be
applied recursively as many times as desired. Each time it is
applied, it creates a larger source code file, and hence a slower
execution time. For instance, reapplying virtualization to the
already virtualized ⌧

v

(⌧
el

(p1)) results in the program denoted
by ⌧

2
v

(⌧
el

(p1)) having over 3300 lines of C code. However,
KLEE requires 8.8 seconds on average to generate the same
test-suite as before and find the secret key, i.e.

t[AD(⌧2
v

(⌧
el

(p1)), s) = d|dif D(d, [[p1]]D) = 0] E 8.8sec.

Virtualizing the program once more results in the program
denote by ⌧

3
v

(⌧
el

(p1)) having over 6600 lines of C code and
an average automatic secret recovery time of over 13 minutes:

t[AD(⌧3
v

(⌧
el

(p1)), s) = d|dif D(d, [[p1]]D) = 0] E 13min.



The trade-off between performance overhead and security of
virtualization obfuscation is visible from these experiments.

Another feature offered by Tigress in order to further obfus-
cate the emulator of the virtualization transformation is adding
a number of opaque predicates to each instruction handler.
Intuitively, adding opaque predicates would cause KLEE to
trigger more calls to the SMT solver, hence slowing it down.
However, we have found that the impact of adding opaque
predicates is minor with respect to the average automatic data
recovery attack time and major with respect to file size. We
denote adding ↵ opaque predicates to each instruction handler
of a virtualization transformation as ⌧

↵

o

(⌧
v

(·)). Note that
⌧

0
o

(⌧
v

(⌧
el

(p1))) = ⌧

v

(⌧
el

(p1)), which we presented earlier. We
generated programs for ↵ 2 {1, 5, 10, 20}, having 1355, 1605,
2076, respectively 7300 lines of C code. Running the previous
attack resulted in the following upper bounds:

t[AD(⌧1
o

(⌧
v

(⌧
el

(p1))), s) = d|dif D(d, [[p1]]D) = 0] E 1.5sec,

t[AD(⌧5
o

(⌧
v

(⌧
el

(p1))), s) = d|dif D(d, [[p1]]D) = 0] E 1.6sec,

t[AD(⌧10
o

(⌧
v

(⌧
el

(p1))), s) = d|dif D(d, [[p1]]D) = 0] E 1.7sec,

t[AD(⌧20
o

(⌧
v

(⌧
el

(p1))), s) = d|dif D(d, [[p1]]D) = 0] E 2.3sec.

E. A More Complex License Checking Program
One may argue that the reason for KLEE’s success in

the previous automatic data recovery attack is due to the
nature of license checking used on line 2 of the program
from Listing 1. Realistic license checking programs do not
simply compare their given input with a hard-coded input;
they apply one-way hash functions to the input and compare
the result with a hard coded value instead. To check if KLEE
is able to automatically recover the license key for a more
complex license checking program we modified the program
from Listing 1 by adding the DJB2 hash algorithm [29] to it
and replaced the comparison with the hard-coded string with
a comparison with the hash value of “my license key”. The
resulting program (p2) can be seen in Listing 2. The reason
for selecting DJB2 is its compact implementation in C, its
non-invertibility and efficiency.

Listing 2. License checking program using the DJB2 hash function.
1 int main(int argc, char

*

argv[]) {

2 unsigned long hash = 5381;

3 unsigned char

*

str = argv[1];

4

5 while (int c =

*

str++)

6 hash = ((hash << 5) + hash) + c;

7

8 if (((hash >> 32) == 0xbc150c6e) &&

9 ((hash & 0xffffffff) == 0x49a54935))

10 printf("The license key is correct!\n");

11 else

12 printf("The license key is incorrect!\n");

13 return 0;

14 }

KLEE was able to find inputs for p2 which lead to the output
of the message “The license key is correct!”. However, these
inputs were not equal to “my license key”, instead they are
different hash values such as I)_NpMy1Aa!G, which lead to

a collision with “my license key” for the DJB2 hash function.
KLEE found 21 such inputs that collide to the same hash
value as “my license key” for DJB2. Although this does not
mean that KLEE found all the collisions, it does lead to an
interesting application of such symbolic execution tools for
the purpose of testing collision resistance of cryptographically
secure hash functions. This observation also helps us define
the difference function dif D for this type of programs (which
check hashes of their inputs), as a collision detection function
that compares the hash of its inputs, instead of directly
comparing its inputs as done in the previous experiment.

Running p2 under KLEE with the same command line
parameters as for the previous experiment took around 15
minutes on average instead of less than 1 second as was the
case for p1. We also applied virtualization obfuscation to p2

and the resulting program ⌧

v

(p2) had 360 lines of C code.
We ran the same data recovery attack as described in the
previous sub-sections against ⌧

v

(p2) using KLEE. As expected
the attack took around 56 minutes on average, i.e.

t[AD(⌧
v

(p2), s) = d|dif D(d, [[p2]]D) = 0] E 56min.

Going further with an even more complex license checking
program, we implemented the white-box AES cipher described
by Chow et al. [9]. We picked a random key which was
embedded in the look-up tables of our implementation and
computed the AES encryption of the string “my license key”
using that same key and we obtained the ciphertext c. After-
wards we changed the string comparison on line 2 in Listing 1
to a comparison between the white-box AES encryption of
the input argument and c. The resulting program, denoted
⌧

w

(p1), had 4875 lines of code, 90% of which were hard
coded look-up tables. This led to a large LLVM bitcode file
of over 3 MB, which is 3 times the size of the largest bitcode
file corresponding to ⌧

3
v

(⌧
el

(p1)), which we have presented in
our previous experiments. After running ⌧

w

(p1) for 12 hours
without finding the key, we decided to stop it since it is far
from being the best attacker against ⌧

w

.
This experiment shows both that symbolic execution can be

used for performing data extraction attacks on more complex
programs such as hash functions, but also that it has issues
with scalability when the program under analysis grows.

V. RELATED WORK

Many related works which focus on developing techniques
for automatic control-flow and data recovery attacks have
already been mentioned in Section III. However, we are also
aware of related works which aim to formally characterize
attackers with respect to obfuscation transformations. Dalla
Preda [13] models attackers of obfuscation transformations
as abstract domains expressing certain properties of program
behaviors. Since obfuscation transformations are characterized
by the most concrete preserved property, the complete lattice
of abstract domains allows comparing obfuscation transforma-
tions with respect to their resistance against various attackers.
However, contrary to our model, an obfuscation transformation
is either effective against an attacker or not, regardless of the
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time needed by the attacker for deobfuscation. Our model
focuses in quantifying the effort needed for deobfuscation.

Ceccato et al. [7] present a set of experiments for quantify-
ing the potency of obfuscation transformations against human
understanding, using various code metrics. As mentioned in
this work, there is no strong correlation between the value of
code metrics and resilience of obfuscation against automated
de-obfuscation attacks [11]. However, Sutherland et al. [24]
and Udupa et al. [25] proposed alternative metrics to measure
the resilience of particular obfuscation transformations against
attacks. Our work is similar, in that we focus on resilience
against automatic attacks, not potency against manual attacks.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a formal framework to
evaluate the strength of software obfuscation aiming at pro-
tecting the CFG or secret data of a program. We show how
this strength evaluation can be applied to existent obfuscation
techniques, and discuss how it relates to the idea of best
attacker. We empirically instantiate our model for concrete
automatic data recovery attacks for the obfuscation operators
presented earlier in the paper, depending on random seeds of
different length (or other suitable security parameters), and
produce a first instance of the reference table for attackers
with different computational power.

One important observation from our experiments is that our
best attacker candidate, KLEE strives to achieve instruction
coverage and stops once it is at 100%. However, for data
recovery attacks such as the one presented in Section IV-D
we need 100% branch coverage to be certain that we have
extracted the license key. This leaves room for future work in
the area of tooling based on symbolic execution for automated
data extraction attacks, which we plan to pursue.

The case study we performed started from the assumption
that we have the LLVM bitcode of the application we want
to test. In reality attackers generally have access to the
binary, although it is not uncommon for attackers to also have
access to Java bytecode in the case of Android applications.
Nevertheless, as our next steps we plan to further explore
and extend tools based on abstract interpretation (e.g. Jakstab)
and symbolic execution (S2E) which are directly applicable to
binaries. We also intend to perform experiments using other
obfuscation tools such as Obfuscator-LLVM and commercial
obfuscation tools.
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