
Network Management: State of the Art

Raouf Boutaba and Jin Xiao
Department of Computer Science
University of Waterloo, CANADA
Email: {rboutaba, j2xiao}@bbcr.uwaterloo.ca

Abstract: This paper examines the state-of-the-art enabling technologies for network
management, including policy-based network management, distributed object
computing, Web-based network management, Java-based network
management, code mobility, intelligent agents, active networks, and economic
theories. For each of them, we discuss the underlying concept, analyze the
benefits and drawbacks, and discuss the applicability to network management.
In doing so, we illustrate the common trend in network management design:
moving towards distributed intelligence.

1 INTRODUCTION

Nearly a decade ago, the classic agent-manager centralized paradigm
was the pervasive network management architecture, exemplified in
the OSI reference model, the Simple Network Management Protocol
(SNMP) management framework, and the Telecommunications
Management Network (TMN) management framework [15]. With the
increasing size, management complexity, and service requirement of
today’s networks, such management paradigm is no longer adequate,
and should be replaced with distributed management paradigms. This
trend is clearly discussed in [29]. With the myriads of enabling
technologies surfaced in the last few years, all of which offering
various degrees of network management distribution and benefits, it is
unclear what, when, and where are these technologies most
applicable? And what would the future of network management be?
By examining these state-of-the-art enabling technologies, this paper
attempts to shed some light on their benefits, drawbacks, and postulate
on their future prospects in network management. Despite their
diversity, the paper will illustrate a recurring trend in their design
concept: pushing towards distributed intelligence. In a nutshell,
management agents are no longer treated as “dumb terminals”, but as
sophisticated computing devices, and are exploited as such.



Distributed intelligence denotes the management capability and
autonomy a management agent exhibits.
This paper is comprised of three parts. First, we will briefly outline the
network management concepts, its objectives, and the unique
challenges future network management brings. Then we will examine
the key enabling technologies for network management. Lastly, we
will compare these technologies in terms of distributed intelligence
and network resource consumption.

2 NETWORK MANAGEMENT: OBJECTIVES AND
CHALLENGES

Hegering [13] defines network management as all measures ensuring
the effective and efficient operations of a system within its resources
in accordance with corporate goals. To achieve this, network
management is tasked with controlling network resources,
coordinating network services, monitoring network states, and
reporting network status and anomalies. In our view, the objectives of
network management are:

• Managing network resources and services: including the
control, monitor, update, and report of network states, device
configurations, and network services.

• Simplify network management complexity: it is the task of
network management systems to extrapolate network management
information into human manageable form. Conversely, network
management systems should also have the ability to interpret high-
level management objectives.

• Reliable services: to provide network with high quality of service,
minimize network downtime. Network management systems
should detect and fix network faults and errors. And network
management must safeguard against all security threats.

• Cost conscious: Network management should keep track of
network resources and network users. All network resource and
service usage should be tracked and reported.

OSI has a well-defined network management reference model [14]
pertinent to the designs of current network management architectures.



The OSI model breaks network management functions into the
following five functional areas:

• Fault Management: the detection, recovery, and documentation
of network anomalies and failures.

• Configuration Management: record and maintain network
configuration, update configuration parameters to ensure normal
network operations.

• Accounting Management: user management and administration,
billing on usage of network resources and services.

• Performance Management: provide reliable and high quality
network performance. This includes quality of service provisioning
and regulating crucial performance parameters such as network
throughput, resource utilization, delay, congestion level, and
packet loss.

• Security Management: provide protection against all security
threats to network resources, its services, and data. In addition,
ensure user privacy and control user access rights.

In the recent years, network infrastructure is shifting towards service-centric
networks. Besides the above network management objectives and OSI
functional areas, network management must also fulfill additional
management requirements, similar to today’s business service models: fast
time to market, service differentiation, service customizability, more
features, and flexibility.
We envision the future of network infrastructure will drastically
change the way network management is done and presents new
challenges to network management. First of all, as the size of networks
continue to grow at current rate, more and more network devices need
to be managed efficiently, demanding better scalability on network
management designs. As a result of such size increase, human
directives can only be given at a very high level of abstraction and
generalization. The underlying network management system must take
care of the interpretation of these high-level directives to realizable
network configurations and oversee their enforcement. Secondly, as
network infrastructures from various sectors converge, heterogeneous
network technologies must co-exist and inter-work. Network
management systems must provide such seamless integration via
common service interfaces, and hide underlying technological
heterogeneity from network users. Thirdly, the competitive nature of
current network services demands economical operation of networks.



Network management must also be more self-regulating and self-
governing, in order to be economically beneficial. At the same time,
network management solutions must be kept simple and elegant, as the
development of Internet has demonstrated: only simple and elegant
solutions would prevail in large-scale heterogeneous networks. Lastly,
as network devices become more and more powerful, there is
increasing pressure to utilize their processing capabilities. This leads to
increasing need for distributed network management at device level.

3 EARLY WORKS TOWARDS DISTRIBUTED
NETWORK MANAGEMENT

In the traditional manger-agent network management architecture,
such as SNMP, the agent is kept as simple as possible, only tasked
with device status report and update, while the burden of management
and data processing resides with the manager. Researchers realized the
inadequacy of such design around early 90’s, as the rapid increase in
size of managed network, compounded by increasing demand on
network performance and reliability, prompted a complete re-thinking
of network management paradigm.
SNMPv2 is the first major installment towards distributed network
management. The initial set of Request For Comments (RFCs) (1441-1452)
was published in 1992. SNMPv2 introduced the concept of intermediary
manager. An intermediary manager can be viewed as a “middle manager”.
The manager communicates directly with the intermediary managers and
exchange command information, while the intermediary managers handle
data exchange with agents. In this fashion, the intermediary managers shift
some of the data processing from the manager side and is capable of
performing simple tasks, such as periodic status pulling from agents, without
manager’s direct intervention.
In 1995, Internet Engineering Task Force (IETF) took a further step
towards management distribution with the proposal on Remote
MONitoring (RMON) [38]. RMON used the concept of monitors or
probes, which are network traffic monitoring devices. Probe
implementation can be done as device embedded applications or as
separate devices. The task of a probe is to monitor the network traffic
at its local region and report anomalies, in the form of alarms, to its
manager. By defining alarm types and alarm thresholds, the manager is
able to offload some data gathering and decision-making (mainly



event filtering) to the probes. Furthermore, the probes can also perform
some data pre-processing before forwarding them to the manager.
In general, the earlier works towards distributed network management
can be considered as weak distribution. The management tasks still
reside heavily on the manager side, and some rudimentary
management duties are delegated to intermediary entities, in the form
of event filtering, notification, and data pre-processing.

4 ENABLING TECHNOLOGIES

We have identified a set of enabling technologies that are commonly
recognized to be potential candidates for distributed network management.
We will discuss each of them in turn, examine their potential benefits to
network management, discuss their drawbacks, and postulate on their
prospects. These enabling technologies will be presented in order, with
respect to the degree of management capability it bestows on management
agents. We believe that distributing intelligence to management agents is an
inevitable trend in network management and one that is critical to the success
of future network management designs. We will first examine policy based
network management. It will be followed by distributed computing, Web-
based systems, and Java, which all uses static remote objects to facilitate task
offloading from agent to managers. From there, we present the concept of
code mobility, in which agents are more management capable, as agents are
made mobile and exhibit the ability of independent management processing.
A step further in that direction is intelligent agents, where processing units
cooperate with each other on peer-to-peer basis, assuming the role of
managers and agents interchangeably. Lastly, we will examine the
application of active network and economic theories to network
management. The former pushes management tasks completely to network
devices, and the later forgoes the need for network management
infrastructure.

4.1 Policy-based Network Management

Policy-based network management started in early 1990s [30][23].
Although the idea of policies appears even earlier, they were used
primarily as representation of information in a specific area of network
management: security management [11]. The idea of policy comes
quite naturally to any large management structures. In reality, all
medium to large size companies today have policies and regulations
that their employees must follow. These policies are typically derived



based on company’s objectives and goals. In policy-based network
management, policies are defined as rules that govern the states and
behaviors of the network system. The management system is tasked
with: the transformation of human-friendly management goals to
syntactical and verifiable rules governing the function and status of the
network, the translation of such rules to mechanical and device-
dependent configurations, and the distribution and enforcement of
these configurations by management entities. The reference model of
policy-based network management is largely a manager-agent model,
consists of Policy Decision Points (PDPs) and Policy Enforcement
Points (PEPs) [18][19]. The first two tasks are handled by the PDPs,
while the last task is handled by the PEPs.
IETF’s Resource Allocation Protocol (RAP) plays a key role in policy-
based network management with its Common Open Policy Services
(COPS) [20] and its extension COPS-PR [9]. Some recent works are
done on the translation of business directives to network level policies
[8] and on policy conflicts resolution [27]. More significantly, the
meta-policies concept was proposed in [3]. Its introduction pushes
most mundane policy decision tasks from the PDPs to the PEPs. This
represents a novel attempt at empowering agents with more
management capabilities, moving policy-based network management
towards a more distributed intelligence design.
The most significant benefit of policy-based network management is
that it promotes the automation of establishing management level
objectives over wide-range of network devices. Network administrator
would interact with the network by providing high-level abstract
policies. Such policies are device independent and human-friendly.
The automated translation process will hide the complexity of
constructing low-level device-dependent configurations derived from
the high-level policies, and therefore facilitate the bridging of business
objectives to network configurations. Comparing to human-directed
policy translation, such automation would provide more consistent and
integrated representation of business objectives. As the state of a
network changes, policies would be automatically updated to ensure
operational consistency without any human interventions. As today’s
network increases rapidly in size, such automation is an essential
requirement. In contrast to other management technologies, such as
Java-based management and mobile agent, policy-based network
management allows much more rapid modification of the management
requirements after deployment. Policy-based network management can



adapt rapidly to changing management requirements via run-time
reconfigurations, rather than re-engineer new object modules for
deployment. The introduction of new polices does not invalidate the
correct operation of a network, provided the newly introduced polices
does not conflict with existing policies. In comparison, a newly
engineered object module must be tested thoroughly in order to obtain
the same assurance.
For large networks with frequent changes in operational directives,
policy-based network management offers an attractive solution, as it
can dynamically translate and update high-level business objectives
into realizable network configurations. However, one of the key issues
in a policy-based network management lies in its functional rigidity.
After the development and deployment of a policy-based network
management system, the service primitives are defined. By altering
management policies and modifying constraints, we have a certain
degree of flexibility in cooping with changing management directives.
However, we cannot modify or add new management services to the
system, unlike mobile code or software agents.

4.2 Distributed Object Computing

Distributed Object Computing (DOC) uses Object-Oriented (OO)
methodology to construct distributed applications. Its adaptation to
network management is aimed at providing support for distributed
network management architecture, integration with existing
heterogeneous network management solutions, and provide
development tools for distributed network management components.
Distributed object computing provides distribution of services and
applications in a seamless and location transparent way, by separating
object distribution complexity from network management functionality
concerns. Another advantage of this separation of concerns is the
ability to provide multiple management communication protocols
accessed via a generalized Abstract Programming Interface (API),
fostering interoperability of heterogeneous network management
protocols, such as SNMP for IP networks and Common Management
Information Protocol (CMIP) for telecommunication networks. In
addition, DOC provides distributed development platform for rapid
implementation of robust, unified, and reusable services and
applications. Contemporary DOC in network management is oriented
around the Object Request Broker (ORB) concept. ORB facilitates



communication between local and remote objects in an effortless way
that free the application from low-level infrastructure and
communication concerns. The two major adaptation of DOC to
network management are: Common Object Request Broker
Architecture (CORBA) [32] and Distributed COM (DCOM) [34].
The major application of DOC to network management is mostly in
two areas. Firstly, DOC is used to design distributed network
management systems, evident in standardization works done by
Telecommunication Information Network Architecture Consortium
(TINA-C) [33], Joint Inter Domain Management (JIDM) [16], and
research projects, such as MESIS [2]. All of these proposed
frameworks provide transparent remote services invocation using
DOC support. In this fashion, management processing and services
need no longer be located at centralized locations in the network, but
rather distributed across remote locations. This feature allows
management tasks to be delegated, by region or by functional areas, to
intermediate entities, making managers no longer the center of all
management decision making. Secondly, DOC is used to augment
existing network management infrastructures with distributed
capability.
Distributed object computing in general, CORBA in particular, is a well-
received technology for developing integrated network management
architectures with object distribution. The success of CORBA as an enabling
network management technology can be attributed to the fact that CORBA
has well-established supporting environment for efficient run-time object
distribution and a set of support services. In this fashion, DOC is useful as
integration tools for heterogeneous network management domains, and
extending deployed network management architectures. However, DOC still
uses static object distribution. It does not have the flexibility code mobility
offers. Furthermore, DOC requires dedicated and heavy run-time support,
which may not always be feasible on every device in the network. This later
issue restricts its area of deployment.

4.3 Web-based Network Management

Judging by the tremendous success of World Wide Web on the Internet, it is
expected that web technology would influence network management to some
degree. Today, myriad of web-based network management solutions are
proposed and been built, backed up by large corporations, such Sun, Cisco,
Microsoft, etc. With respect to network management, the critical problems
Web-based network management tries to address are: platform heterogeneity,
lack of management console accessibility, and high cost of management



platform deployment and maintenance. Traditional network management
solutions are highly platform-dependent. Network administrators must
operate on proprietary management consoles to perform daily operations, and
the user interfaces for each management platform may vary significantly.
Web technology effectively addresses this problem by providing ubiquitous
management consoles in the form of standard web browsers. Proprietary
network management platforms are expensive and difficult to maintain. Web
technology solves this issue by promoting HyperText Markup Language
(HTML) and Java applet in information presentation, providing a seamless
Graphic User Interface (GUI) accessible everywhere. Lastly, an interesting
observation in the IP sector is that network management data is always
treated as “second class citizens” compare to user data. While it’s true that
the transport of management data should never get in the way of transporting
user data, the importance of management data is on the rise, especially with
the increasing demand on real-time Quality of Service (QoS) services. Using
a connection-oriented transport protocol, such as Transport Control Protocol
(TCP) for HyperText Transport Protocol (HTTP), implicitly elevates
management data to the same level as user data, as viewed by network
routers. Web technology serves as a good short-term solution to “patch” the
existing issues in network management, as new management paradigms
mature, which would take quite sometime to develop and standardize.
We define web infusion as the degree to which web technology is
incorporated into a network management platform, ranging from
platform extension, to component modification, to full web-based
management platforms. In our view, there are three degrees of web
infusion existing today: web gateways, web-embedded servers, and
web-based management platforms. The web gateways are independent
components situated in between web browser type management
consoles and management agents, which are implemented as various
platform-dependent entities, such as SNMP agents. The web gateway
is responsible for the translation of HTTP request to SNMP/CMIP
request, and the formulation of web documents based on data gathered
from managed devices. The web gateway is extremely easy to deploy,
since it does not require any modification on existing management
architectures. However, its development can be complex, since it is, by
nature, a multi-protocol architectural gateway. In large networks, the
presence of web gateways may become performance bottlenecks, as all
requests to managed devices have to go through these gateways. The
web-embedded servers apply web technology to all managed devices,
such as presented in [21] [28]. Each managed device is a miniature
web server, capable of accepting HTTP request, processing device
data, constructing HTML/XML presentation of device data, and



transmitting constructed documents. Because of the self-contained
nature of web-embedded servers, there is no requirement for additional
management support. A network administrator can simply interact
with a web-embedded device via standard web browser. However,
web-embedded servers are not deployable on devices with limited
resources and processing power, as it leaves relatively large network
footprints. In addition, there are no efficient and economical methods
of transforming existing network devices into web-embedded servers.
In contrast, Web-based management platforms use web technology as
the core technology in the design of new network management
platforms, with its own management protocol, data model, and
architecture. Web-Base Enterprise Management (WBEM) [37] is a
well-known example of web-based management platform. The first
two types of web infusion are by far the most adopted solutions in the
network management domain today. In both cases, preliminary
processing of device data, formulation of status report, and GUI
presentation are handled by separate entities other than network
managers.
Recently, there has been much debate over the right technology for
integrated network management. Since both web technology and
CORBA are widely used for this purpose, the question posed comes as
no surprise. At first sight, web does seem to be a better choice, as
many web advocates believe. Web technology removes the need for
proprietary management consoles; it provides uniform management
information access via web browsers; data modeling in HTML form is
easier than defining Interface Definition Languages (IDLs); with the
exception of embedded web servers, web-based management does not
need dedicated runtime environment and leaves very small network
device footprint; web technology has matured security measures that
can be exploited; HTTP based data transport is inherently reliable.
However, as we examine the inner works of web technology more
closely, the strength of CORBA becomes apparent. Web-based
management usually involves much runtime interpretation, in terms of
HTML/XML documents, CGI/SSI scripts, and Java applets. These
runtime interpretations are a cause of performance concerns, especially
for real-time control. HTML/XML are constructed for human
readability, hence the formats of these documents tend to be overly
wordy for representing key-value pairs, which are the most common
type of information in network devices. CORBA’s IDL would be more
compact for these types of data representation. And this compactness



translates directly to network bandwidth savings. By using web
technology, the developers are limited to using TCP transport for
management data, which may or may not be the best choice. CORBA
does not place this restriction on the developers. Lastly, CORBA
inherently supports distributed management paradigm, by providing
support for distributed object development and object distribution
transparency. Web technology does not make implementing
distributed paradigm in network management any easier. The burden
of implementing distribution is largely left to higher-level management
architecture. Overall, the choice of technology should be determined
based on particular circumstances. In general, web-based technology is
better used for providing web access to managed devices, especially if
the user of the management application does not have much domain-
specific knowledge, e.g. Customer-directed network resource
configuration. CORBA is best used for fully distributed network
management platforms that values operational efficiency over
accessibility. Of course, the two technologies can also be combined in
the same management platforms, whereby the web technology could
offer access to CORBA-based management applications and services.

4.4 Java-based Network Management

Java, being a portable and object-oriented programming language, is the
instrumentation for a wide variety of network management paradigms,
ranging from distributed computing, to web-based management, to intelligent
agents. Because of this wide applicability, many Java-based development
environments have been proposed and designed, supporting network
management applications. What makes Java a good technology for network
management in general? Firstly, deploying Java-based software solutions are
relatively cheap compare to other management software solutions, such as
CORBA-based applications. Java virtual machine (JVM) is the only runtime
support needed by a Java-based software, and it is also easily deployable and
requires very little maintenance. Secondly, as more and more JVM-enabled
network devices become available, so does the availability of java support.
Furthermore, Java can interoperate with web browsers, which are good
candidates for cheap and accessible management consoles. Thirdly, dynamic
code downloading allows dynamic distribution of java objects. This not only
opens the opportunity for runtime service extensions, but also opens the
opportunity for management delegations. Fourth, Java is platform-
independent, portable on any existing management platforms that support
JVM. Lastly, Java software is easy to develop, as there exists many
development supporting environment and tools. Also, Java is a good



programming language for realizing new network management concepts,
such as code mobility.
Perhaps the biggest and most mentioned issue with Java is its
performance. Java is inherently not an efficient programming
language. Besides the obvious performance loss resulting from Java’s
interpreted nature, Java class loading can be quite slow, especially if
dynamic class downloading is required. Java object serialization and
remote method invocation are commonly exploited for network
management. Both of them have performance problems. Object
serialization is quite space consuming, which may not be a big
problem on large stations, but would be an issue for small devices.
Java Remote Method Invocation (RMI) is not network resource
conscious in its operation and tends to waste fair amount of network
resources on each method invocation.

4.5 Code Mobility for Network Management

In 1991, Yemini et al. first introduced the concept of Management by
Delegation (MbD), and they further refined this concept in 1995 [12].
In their works, Yemini et al. suggested to push management tasks to
the agent side. This can be achieved by dynamically transporting
programs from managers to agents and perform the delegated
management tasks locally. Three immediate advantages of the MbD
approach are apparent. Firstly, manager is no longer a centralized
processing entity in the network. Much of its processing can be
offloaded to agents via delegated programs. Secondly, considerable
amount of network resources are saved. For instance, data gathering
can be performed locally. Lastly, It is possible to augment the
functionality of agents by providing them with delegated programs at
runtime. In this fashion, some decision making and network
monitoring duties can be performed locally, allowing faster response
to management requests and better fault tolerance (in case of manager
crash).
Code mobility can be considered as the capability of an application to
distribute and relocate its components at run-time. Obviously, there
must exist some form of language and run-time support for
applications utilizing code mobility. There is much confusion in the
literature concerning the terminologies used for code mobility, and the
introduction of intelligent agents further blurs the concept. We do not
consider intelligent agent as part of the code mobility concept in this



paper. Hence, intelligent agents are considered more complex and self-
governed than code mobility, and will be discussed in a separate
section. In terms of code mobility, there exist two types: weak
mobility and strong mobility. In weak mobility, entire programs or
code fragments are transported between distributed components,
without retaining execution states and data after transportation. We
call applications exhibiting weak mobility as mobile code. Recent
works such as [25] explores its use for network management. In strong
mobility, the entire program, along with its execution states and data,
are transported between remote components. The program will
suspend its execution before departure and resumes execution after
arrival. We call applications exhibiting strong mobility as mobile
agent. Most research works, such as [35][22][26] are focused on this
concept. The terms mobile code and mobile agent are often used
interchangeably, and sometimes mean different things across
literatures.
With code mobility, management tasks no longer have to be performed
by the managers. They simply generate management objectives and
outline task procedures, the execution of tasks are delegated to the
agents. Baldi and Picco [1] defined three code-mobility paradigms
based on interaction between services and resources: Code On
Demand (COD), Remote Evaluation (REV), and Mobile Agent (MA).
In the case of code on demand, the manager has gathered the resources
but lacks the code needed for processing. The code is dynamically
downloaded from a code server for execution. In the case of remote
evaluation, the manager holds the code and the agent holds the
resources. The manager dynamically uploads code to the agent side.
The uploaded code executes on the resources, and returns back the
result to the manager. In the case of mobile agent, the manager holds
the services in the form of processing components and the agent holds
the resources. The manager relocates the entire processing component,
which includes code, execution state, and possibly data, to the agent. If
the required data is distributed across a number of different agents, the
mobile agent has the ability to relocate from agent to agent,
performing data processing and keeping track of generated
intermediary data. The MA paradigm is characteristic of strong
mobility, while COD and REV paradigms are characteristic of weak
mobility.
As mobile code is transported across network, it must be loaded at the
destination for execution. The time it takes to suspend execution of a



component, pack its code and data, transport across network, restore
the component, and execute, could be quite long. Hence, code mobility
is not a good candidate for networks with simple but frequent service
requests. Furthermore, to prevent mobile agents from adversely
affecting network resources, security measure are often in place which
either restrict the operations a mobile agent can perform on local
resources, or provide some type of access gateway. Neither solution is
satisfactory as access restrictions constrain the operational capacity of
mobile agents; while access gateways add unnecessary processing
overhead.

4.6 Intelligent Agents

Intelligent agents exhibit the following characteristics: autonomy,
social ability, reactivity, pro-activeness, mobility, learning, and beliefs.
An intelligent agent is an independent entity capable of performing
complex actions and resolving management problems on its own.
Unlike code mobility, an intelligent agent does not need to be given
task instructions to function, rather just the high-level objectives. The
use of intelligent agents completely negates the need for dedicated
manager entities, as intelligent agents can perform the network
management tasks in a distributed and coordinated fashion, via inter-
agent communications. Many researchers believe intelligent agents are
the future of network management, since there are quite some
significant advantages in using intelligent agents for network
management. Firstly, intelligent agents would provide a fully scalable
solution to most areas of network management. Hierarchies of
intelligent agents could each assume a small task in its local
environment and coordinate their efforts globally to achieve some
common goal, such as keeping overall network utilization at close to
maximum. Secondly, data processing and decision-making are
completely distributed, which alleviates management bottlenecks as
seen in centralized network management solutions. In addition, the
resulting network management system is more robust and fault
tolerant, as the malfunction of small number of agents have no
significant impact on the overall management function. Thirdly, the
entire network management system is autonomous, network
administrators would only need to provide service-level directives to
the system. Lastly, the intelligent agents are self-configuring, self-
managing, and self-motivating. It is ultimately possible to construct a



network management system that’s completely self-governed and self-
maintained. Such a system would largely ease the burden of network
management routines that a network administrator has to currently
struggle with.
Wooldridge and Jennings [39] defined three architectural types for
intelligent agents: deliberative agents, reactive agents, and hybrid
agents. Deliberative agents are based on a physical-symbol system.
Such a system describes a physically realizable set of symbols that can
be combined to form complex structures. A deliberative agent is able
to run processes operating on these symbols to generate overall
intelligent actions. Recent works such as [24] make use of deliberative
agent. Reactive agents are very much the opposite of deliberative
agents. They do not require complex representation of knowledge, nor
do they require perfect representation of information. Reactive agents
generate behaviors solely based on environmental observations, since
they do not include any kind of symbolic world models. In practice,
reactive agents are more responsive than deliberative agents due to the
lack of any complex symbolic reasoning mechanism. Reactive agents
could be successfully applied to traffic monitoring, fault diagnosis,
congestion control, and admission control, because these management
functions do not have or require perfect representation of a world
model. Furthermore, they require rapid responses and actions, which
the reactive agents are capable of. Hybrid agents are compositions of
both deliberative agents and reactive agents. A hybrid agent would
contain a symbolic world model, developing plans, and making
decisions in the way a deliberative agent functions. However, it is also
capable of reacting to events occurring in the environment without
engaging in complex reasoning. The reactive component of a hybrid
model overwrites its deliberative component in order to achieve quick
response. The hybrid agent seems to be a suitable candidate for fault
diagnosis [10]. However, hybrid agents are substantial in size, much
larger than either deliberative agents or reactive agents. This may pose
a problem when high levels of mobility are expected in a network
management system.
The application of intelligent agents to network management is still at
its infancy, and much difficult issues still remain unsolved. As
applications utilizing intelligent agents arise in network management,
the problem of managing these intelligent agents also becomes
increasingly important. These self-governing agents cannot simply be
allowed to roam around the network freely and access vital resources.



Currently, it is still very difficult to design and develop intelligent
agent platforms. This is mostly because very little real-life practices
with intelligent agents exist today. We have yet to determine what
constitutes a good intelligent agent platform, in practical terms. As
more intelligence and capabilities are empowered to the intelligent
agents, their size becomes an increasing concern for network transport.
Furthermore, agent-to-agent communications typically uses
Knowledge Query Manipulation Language (KQML). KQML wastes
substantial amount of network resources, as its messages are very
bulky. Lastly, protection against malicious intelligent agents is hardly
addressed in the current literature. Who takes care of agent
authentication? Can agents protect themselves against security attacks?
Can agents keep their knowledge secret? How much access rights
should agents have over network resources? None of these questions
are addressed effectively, and until they do, large deployment of
intelligent agents for network management is very unlikely.

4.7 Active Networks

According to Tennenhouse et al. [36], an active network is a new approach to
network architecture in which the network nodes, such as routers and
switches, perform customized computation on messages flowing through
them. In active networks, routers and switches run customized services that
are uploaded dynamically from remote code servers or from active packets.
The characteristic of activeness is three folds. In device view, a device’s
services and operatives can be dynamically updated and extended actively at
run-time. In network provider view, the entire network resources can be
provisioned and customized actively on per customer basis. In network user
view, the allocated resources can be configured actively based on user
application needs.
Active networks, combined with code mobility, present an effective
enabling technology for distributing management tasks to device level.
Not only does management tasks can be offloaded to individual
network devices, but also the supplier of management task need no
longer be manager entities. Such a solution provides full
customizability, device-wise, service provider-wise, and user-wise; it
provides the means for distributed process across all network devices;
it is interoperable across platforms via device-independent active code;
it fosters user innovation and user-based service customization; it
accelerates new service and network technology deployment,
bypassing standardization process and vendor consensus; it allows for



fine grained resource allocation based on individual service
characteristics. In the literature, there are two general approaches for
realizing active networks: programmable switch approach and capsule
approach. Programmable switch approach uses out-of-band channel
for code distribution. The transportation of active code is completely
separated from regular data traffic. This approach is easier to manage
and secure, as the active code is distributed via private and secure
channels. It is suited for network administrators configuring network
components. On the other hand, the capsule approach packages active
code into regular data packets. The active code is sent to active node
via regular data channel. This approach allows open customization of
user-specified services, however, is more prone to security threats. [4]
analyzed the benefits of active networks to enterprise network
management.
Quite some recent works are done on exploring active networks for
network management, such as the Virtual Active Network (VAN)
proposal [7] and the agent-based active network architecture [17].
However, security remains a major roadblock for practical application
of active network. Not only the integrity of network resources and user
data has to be kept, but also the content of user data must remain
confidential. The later implies a strong trust on the active nodes a
packet must visit en-route to destination, as it is necessary for user data
to be examined and processed in some form. As noted by Murphy et
al. [31], there are many objects of security concern in active networks,
including: end users, active nodes, Execution Environments (EEs), and
active codes. The trust models for these objects are also quite complex.
Besides security, resource provisioning and fault tolerance are the
other two major issues that need to be addressed in active networks.
Firstly, as resources are used for customized processing of data
packets in the network. Some means of governing the priority of
resource access and the limit of resource consumption has to be
established. This issue creates new requirements for network
management that must be addressed. Another related issue is network
bandwidth consumption. After all, user-specific services must be
transported across the network and uploaded. If capsule approach is
used, the transportation of these services comes in direct contention
with the transportation of user data. Simply charging user for service
deployment may not be desirable since it discourages the user from
customizing the active nodes in the network. Secondly, fault tolerance
of the network will suffer if user-specific services aren’t controlled



properly. As user gains the ability to manage network resources and
perform customized processing, more and more user
services/applications are injected into the network. The quality of these
services/applications cannot be as well ascertained as the
manufacturer-supplied services. The obvious solution is to providing
each user service with a separate and isolated execution environment.
However, such a solution is very costly in terms of resource
consumption and network performance.

4.8 Economic Theory

Network management using economic theory proposes to model the
network services as an open market model. The resulting network is
self-regulating and self-adjusting, without the presence of any formal
network management infrastructure. Network administrators would
indirectly control the network dynamics by inducing incentives and
define aggregate economic policies. Such an approach may seem to be
very bold, but it draws its theory from the well-established economic
sciences. The premises for applying economic theories are: the
existence of open and heterogeneous networks; multi-vendor
orientation; and competitive services. Very few works have been done
on this subject matter, and most of them are focused on using
economic theory as agent coordination model [5][6]. As discussed
previously, the management of intelligent agents is still neglected in
current literatures. Using economic theory for managing multi-agent
systems could be a viable alternative, due to its simplicity and self-
sustaining nature.
However, the application of economic theories to network
management is only at early experimental stage. Many critical issues
brought out with these experiments cast doubts on the applicability of
economic theory to network management. Using market model for
managing networks is a novel idea. However, some important design
issues must be carefully considered. Firstly, the driving force for a
market model is the authenticity of its currency. Hence currency
values and its transaction processes used in market model must be
secure. Furthermore, such secure transactions must be performed very
efficiently, as it would be a very frequent operation. Secondly,
economic policy for the market model must be designed in such a way
that it encourages fair competition, and strongly relates resource
contention and its associated price. Lastly, the market model would be



operating on a wide scale, requiring standardization of its elements and
operations. Such standardization may be a very slow process and
would require full consensus from all participating vendors.

5 CONCLUSION

All of the enabling technologies discussed in this paper attempts to
provide distributed intelligence to management agents. Policy-based
network management allows managers to partially delegate
management tasks to agents in the form of concrete policies. Web-
network management offloads the processing, presentation, and
display of device information to web gateways or embedded web
servers. Distributed object computing, such as CORBA, and Java-
based network management provides the means for management task
distribution in the network, via deploying static distributed objects.
Code mobility and active networks delegate management tasks to
management agents through dynamic mobile code downloading.
Intelligent agents push distributed intelligence even further by defining
autonomous agents that are capable of making complex management
decisions. The role of such intelligent agents is no longer confined to
either the manager or the agent, as the intelligent agents can adopt
these roles dynamically, based on their assigned tasks or their own
motivations. Lastly, economic theories completely negate the need for
a network management infrastructure, by modeling the network as a
self-regulating open market.
To fully leverage the benefits of the presented enabling technologies,
network management designers must balance all the benefits and drawbacks,
as discussed in this paper. We believe that distributed intelligence is one of
the most important trends in the management of current and future large-
scale complex networks. Despite the diversity of these enabling technologies,
their use in network management research aims at distributing intelligence in
the network.

6 REFERENCES

[1]Baldi M., Picco G., Evaluating the Tradeoffs of Mobile Code Design Paradigms in
Network Management Applications, 1998

[2]Bellavista P., Corradi A., Stefanelli C., An Integrated Management Environment for
Network Resources and Services. IEEE Journal on Selected Areas in Communcations, Vol.
18, No. 5, May 2000



[3]Boutaba R., Polyrakis A., COPS-PR with Meta-Policy Support, IETF Internet Draft, May
2001.

[4]Boutaba R., Polyrakis A., Projecting Advanced Enterprise Network and Service
Management to Active Networks, IEEE Network, Jan./Feb. 2002

[5]Bredin J., Kotz D., Rus D., Economic Markets as a Means of Open Mobile-Agent Systems,
In the workshop “Mobile Agents in the Context of Competition and Cooperation” at
Autonomous Agents, May 1999

[6]Bredin J., Maheswaran R. T., Imer C., Basar T., Kotz D., Rus D., A Game-Theoretic
Formulation of Multi-Agent Resource Allocation, 2000

[7]Brunner M., Active Networks and its Management, NEC-NDLE-IR-2001-5, Feb. 2001
[8]Casassa M., Baldwin A., Goh C., POWER Prototype: Towards Integrated Policy-Based

Management, IEEE/IFIP Network Operations and Management Symposium, 2000.
[9]Chan K., Durham D., Gai S., Herzog S., McCloghrie K., Reichmeyer F., Seligson J., Smith

A., Yavatkar R., COPS Usage for Policy Provisioning, IETF Internet Draft, draft-ietf-rap-
pr-05.txt, Oct. 2000. [RFC 3084]

[10] Cheikhrouhou M. M., Conti P., Labetoulle J., Intelligent Agents in Network
Management: A State-of-the-art, 1998

[11] Dobson J.E., McDermid J.A., A Framework for Expressing Models of Security Policy,
IEEE Symposium on Security & Privacy, May 1989, Oakland, CA, 1989.

[12] Goldszmidt G., Yemini Y., Distributed Management by Delegation, Proceedings of the
15th International Conference on Distributed Computing Systems, June 1995

[13] Hegering H., Abeck S., Neumair B., Integrated Management of Network Systems, pg.6,
Morgan Kaufmann Publishers, Inc. 1999

[14] Hegering H., Abeck S., Neumair B., Integrated Management of Network Systems, pg.82-
94, Morgan Kaufmann Publishers, Inc. 1999

[15] Hegering H., Abeck S., Neumair B., Integrated Management of Network Systems,
pg.121-152, Morgan Kaufmann Publishers, Inc. 1999

[16] Hegering H., Abeck S., Neumair B., Integrated Management of Network Systems,
pg.279-287, Morgan Kaufmann Publishers, Inc. 1999

[17] Hu C., Chen W. E., A Mobile Agent-Based Active Network Architecture, ICPADS 2000
[18] IETF Internet Draft: Policy Framework, draft-ietf-policy-framework-00.txt, work in

progress, Sept. 1999.
[19] IETF Internet Draft: Policy Terminology, draft-ietf-policy-terminology-00.txt, work in

progress, July 2000.
[20] IETF RFC 2748: The COPS (Common Open Policy Service) Protocol, IETF RFC 2748,

Jan. 2000.
[21] Ju H., Choi M., Hong J., EWS-Based Management Application Interface and Integration

Mechanisms for Web-Based Element Management, Journal of Network and Systems
Management, Vol.9, No.1, 2001

[22] Knight G., Hazemi R., Mobile Agent-Based Management in the INSERT Project, Journal
on Network and Systems Management, Vol.7, 1999

[23] Koch T., Kramer B., Rohde G., On a Rule Based Management Architecture, The 2nd

International Workshop on Services in Distributed and Networked Environments, IEEE
Computer Society, Whistler, Canada, 1995.

[24] Koch F. L., Westphall C. B., Decentralized Network Management Using Distributed
Artificial Intelligence, Journal of Network and Systems Management, Vol.9, No.4, Dec.
2001

[25] Lange, D., Java Aglets Application Programming Interface (J-AAPI), IBM white paper,
Feb. 1997 (www.trl.ibm.com/aglets/JAAPI-whitepaper.htm)

[26] Liotta A., Pavlou G., Knight G., A Self-Adaptable Agent System for Efficient
Information Gathering, 2001



[27] Lupu E., Sloman M., Conflicts in Policy-Based Distributed Systems Management, IEEE
Transactions on Software Engineering, Vol. 25, No. 6, Nov. 1999.

[28] Martin-Flatin J., Push vs. Pull in Web-Based Network Management, Technical Report
SSC/1998/002, Swiss Federal Institute of Technology Lausanne, 1998

[29] Martin-Flatin J. P., Znaty S., Hubaux J. P., A Survey of Distributed Enterprise Network
and Systems Management Pradigms, Journal of Network and Systems Management, Vol.7,
No.1, 1999

[30] Moffett J., Sloman M., Policy Hierarchies for Distributed Systems Management, IEEE
Journal on Selected Areas in Communication, Vol. 11, No. 9, Dec. 1993.

[31] Murphy S., Lewis E., Puga R., Watson R., Yee R., Strong Security for Active Networks,
IEEE OPENARCH 2001

[32] OMG, The Common Object Request Broker: Architecture and Specification, v2.3, Jun.
1999

[33] Prozeller P., TINA and the Software Infrastructure of the Telecom Network of the Future,
Journal on Network and System Management, Vol.5, Dec. 1997

[34] Rogerson D., Inside COM, Redmond, WA, Microsoft, 1997
[35] Straber M., Baumann J., Fohl F., Mole – A Java Based Mobile Agent System, 10th

European Conference on Object-Oriented Programming ECOOP’96. Jul. 1996
[36] Tennenhouse D. L., Smith J. M., Sincoskie W. D., Wetherall D. J., Minden G. J., A

Survey of Active Network Research, IEEE Communications Magazine, Vol. 35, No. 1,
Jan. 1997

[37] Thompson J., Web-based Enterprise Management Architecture, IEEE Communications
Magazine, Mar. 1998

[38] Waldbusser S., Remote Network Monitoring Management Information Base. RFC 1757,
Feb. 1995

[39] Wooldridge M., Jennings N. R., Intelligent Agents: Theory and Practice, The Knowledge
Engineering Review. Vol. 10, No.2, 1995


