
Correlation-Based Load Balancing for
Network Intrusion Detection and Prevention Systems

Anh Le
David R. Cheriton School of

Computer Science
University of Waterloo

Waterloo, ON, N2L 3G1,
Canada

a4le@uwaterloo.ca

Raouf Boutaba
David R. Cheriton School of

Computer Science
University of Waterloo

Waterloo, ON, N2L 3G1,
Canada

rboutaba@uwaterloo.ca

Ehab Al-Shaer
School of Computer Science,

Telecommunications and
Information Systems

DePaul University
Chicago, IL 60604, USA
ehab@cs.depaul.edu

ABSTRACT
In large-scale enterprise networks, multiple network intru-
sion detection and prevention systems are used to provide
high quality protections. In this context, keeping load evenly
distributed among the systems is crucial. This is because
even load distributions provide protection to the networks
and improve the networks’ quality of service.

A challenging problem, however, is to maintain the load
balancing of the systems while minimizing the loss of correla-
tion information due to distributing traffic. Since anomaly-
based detection and prevention of some intrusions, such as
distributed denial of service (DDoS) attacks and port scans,
require a single system to analyze correlated flows of the
attacks, this loss of correlation information might severely
affect the accuracy of the detections and preventions.

In this paper, we address this challenging problem by
first formalizing the load balancing problem as an optimiza-
tion problem, considering both the systems’ load variance
and the correlation information loss. We then present our
Benefit-based Load Balancing (BLB) algorithm as a solution
to the optimization problem.

We have implemented a prototype load-balancer which
uses the BLB algorithm. We evaluated the load-balancer
against various port scans and DDoS attacks. The evalu-
ation results show that our load-balancer significantly im-
proves the detection accuracy of these attacks while keeping
the systems’ load close within a desired bound.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]:
General[Security and Protection]

General Terms
Security, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SecureComm 2008, September 22-25, 2008, Istanbul, Turkey
Copyright 2008 ACM 978-1-60558-241-2 ...$5.00.

Keywords
Intrusion detection, intrusion prevention, load balancing

1. INTRODUCTION
Nowadays as people rely heavily on computer systems to

conduct businesses and operate mission critical devices, ef-
fects of viruses and worms are much more disastrous. One
way to combat the spread of viruses and worms is by us-
ing intrusion detection and prevention systems. Intrusion
detection systems detect unauthorized uses and malicious
activities on resources like computer hosts and networks.
Likewise, intrusion prevention systems extend this by pro-
viding real-time protection of the resources, thus they are
capable of preventing the intrusions in real-time.

In this paper, we are interested in network intrusion de-
tection and prevention systems (NIDPSs), which can both
detect and prevent intrusions. An NIDPS is usually placed
at an edge of a network, between its internal network and
external network. The NIDPS monitors all packets which
are coming in from the external network and going out of
the internal network to detect and prevent intrusions.

Since network traffic speed and volume are increasing with
an exponential rate [22], and NIDPSs are becoming more
complex, a critical problem with using a single NIDPS in a
network is that it could be easily overloaded. When over-
loaded, the NIDPS becomes a bottleneck of the network.
The consequence is that packets going in and out of the net-
work suffer long delays; eventually, the NIDPS has to drop
some packets. Dropping packets compromises the security
offered by the NIDPS because some intrusions cannot be
detected if their related packets are dropped. For example,
flow-based analyses, which are used by most of the NIDPSs,
require that packets belonging to the same flow to be exam-
ined by the same NIDPS.

Using clusters of NIDPSs offers the most affordable and
scalable solution to the above problem [22, 25]. When a clus-
ter of NIDPSs is used in a network, keeping the load evenly
distributed among the NIDPSs is crucial. This is because an
even load distribution provides protection to the network –
the network will be less likely to have an overloaded system.
Moreover, this even load distribution allows for better traffic
engineering which improves the network’s quality of service.

A challenging problem with using clusters of NIDPSs,
however, is to maintain the load balancing of the systems
while minimizing the loss of correlation information due to
distributing traffic. Because anomaly-based detection and

Figure 1: Placement of the NIDPS Load-Balancer

prevention of some intrusions, such as distributed denial of
service (DDoS) attacks and port scans, require a single sys-
tem to analyze correlated flows of the attacks, this loss of
correlation information might severely affect the accuracy of
the detection and prevention.

In this paper, we propose a novel approach to distribute
traffic to the NIDPSs. We first formalize the load balancing
problem as an optimization problem, considering both the
systems’ load variance and the correlation information loss.
We then present our Benefit-based Load Balancing (BLB)
algorithm as a solution to the optimization problem. This
algorithm uses a novel on-line clustering technique to dis-
tribute flows in real-time to achieve the following:

• Correlated flows are grouped together at a single NI-
DPS to reduce the correlation information loss.

• NIDPSs’ load are kept close within a specified bound.

The correlation information considered in our study is the
one which can be extracted from the five tuples: source IP
address (src ip), destination IP address (dst ip), source port
(src port), destination port (dst port), and protocol (proto).
Because extracting and analyzing packets’ payload are ex-
pensive in terms of processing time, they are not supported
by our load-balancer which wishes to distribute the traffic in
real-time. As a result, correlation information derived from
the packets’ payload are out of the scope of this study.

We have implemented a prototype load-balancer which
uses the BLB algorithm. We also evaluated the load-balancer
against various port scans and DDoS attacks. The evalua-
tion results show that our load-balancer significantly im-
proves the detection accuracy of those attacks while keeping
the load of the systems close within a desired bound. Figure
1 shows how our load-balancer fits into a network topology.

1.1 Contribution
Our main contribution in this paper is the design of a

load-balancer which delivers the following features:

• Anomaly-based Detection and Prevention Support. Our
load-balancer is capable of grouping correlated flows
in real-time. This greatly supports the anomaly-based
detections and preventions of attacks like port scans
and DDoS attacks. Additionally, our load-balancer
preserves flows, i.e. packets belonging to the same flow
are examined by the same NIDPS. Thus it fully sup-
ports flow-based analyses.

• Fine-grained Load Balancing. Our load-balancer mon-
itors load of the NIDPSs and distributes the traffic in
a way such that the systems’ load are kept close within
a specified bound. This provides both protection and
better traffic engineering to the network.

• Configurable Security. With our load-balancer, one
might favor the security, i.e. the low correlation in-
formation loss, over the performance, i.e. the load
balancing, when it is desirable to do so. For exam-
ple, when the load of the whole system is low, one
might want to use only one NIDPS to analyze all the
traffic instead of distributing the traffic across multi-
ple systems. Our load-balancer provides several means
to favor security: (1) relaxing the variance constraint,
(2) duplicating traffic to send to multiple NIDPSs, and
(3) operating with threshold-based constraint instead
of load-balancing-based constraint.

The rest of this paper is organized as follows: Section 2 de-
scribes the problem statement and our approach overview.
In Section 3 we formalize the flow assignment problem as
an optimization problem and provide an approximation for
it. Section 4 explains the on-line clustering technique and
describes the BLB algorithm. Section 5 discusses the cor-
relations between flows. In Section 6 and 7 we describe the
implementation and evaluation results respectively. Section
8 presents related work. Finally, we conclude in Section 9.

2. PROBLEM STATEMENT AND
APPROACH OVERVIEW

2.1 Problem Statement
Given a cluster of NIDPSs, we want to develop a load-

balancer which provides a desired level of load balancing,
i.e. keeps the load of the NIDPSs close within a specified
bound, and minimizes the correlation information loss due
to distributing flows, which in turn improves the detection
and prevention accuracy of the NIDPSs.

2.2 Approach Overview
The intuition of our approach is as follows: Since each

NIDPS only receives a portion of the network traffic, we
want to make sure that this portion contains sufficient in-
formation for the NIDPS to detect and prevent intrusions.
In particular, we want to send attack-correlated flows to the
same NIDPS, so that no attack would be missed.

First, we introduce clusters to structure the flows. A clus-
ter contains flows which are closely correlated to each other.
Clusters are constructed and deleted on-the-fly depending
on both the variety and the rate of the traffic’s flows. When
a new flow comes, it can join some existing clusters or form a
new cluster of its own. We discuss about the on-line cluster
management in detail in Section 4. Also, an NIDPS could
contain several clusters of flows. This means that an NIDPS
could be monitoring multiple groups of correlated flows at
the same time to detect and prevent possible intrusions.

Next, the notion of benefits is introduced as a means to
measure the correlations between a new flow and groups of
previously assigned flows, or clusters. The correlations be-
tween flows are derived from their five tuples: src ip, dst ip,
etc. We discuss about the correlations in more detail in Sec-
tion 5. Benefits play a very important role in our approach

since we base on them to assign new flows. For example, if
there are two existing clusters and a new flow comes, we will
assign this new flow to the cluster which gives a better ben-
efit. In other words, the new flow is assigned to the cluster
which is more correlated to it.

Following, the load balancing is achieved by closely moni-
toring the load of all the NIDPSs and assigning flows to them
correspondingly. A load balancing level is described using a
variance. Specifically, a small value of variance indicates a
high level of load balancing and vice versa.

At last, we summarize our approach as follows: Flows
in NIDPSs are organized as clusters, and a desired level of
load balancing is specified as a variance constraint. When a
new flow comes, we find candidate NIDPSs which satisfy the
variance constraint. Then, among clusters of these NIDPSs,
we assign the new flow to the ones which give the best ben-
efits. By assigning flows this way, we achieve the highest
amount of correlation information possible while keeping the
NIDPSs’ load close within a bound.

3. PROBLEM FORMALIZATION
In this section, we first describe how the problem of as-

signing new flows is formalized as an optimization problem.
We then show that the problem is NP-hard, thus it can-
not be solved in polynomial time. We subsequently present
an approximation for the optimization problem. Finally, we
discuss how our formalization could be fine-tuned to favor
security over performance when it is needed.

3.1 Flow Assignment Optimization Problem
Here we formalize the problem of assigning new flows as

an optimization problem. At time t, let n be the number
of NIDPSs and m be the number of clusters. The mapping
between the NIDPSs and the clusters is one-to-many. For

each NIDPS i (i ∈ [1, n]), let
−→
Gi be a vector of size m whose

jth element (j ∈ [1,m]) is either 1 if NIDPS i owns cluster
j or 0 otherwise.

Now let f be the new flow. Assigning f to a cluster j gives
a benefit Bj . Essentially, this benefit reflects how much f

and the flows in cluster j are correlated. Let
−→
B be a vector

of size m whose jth element is the benefit Bj .
Next, let Li denote the current load of NIDPS i in the

system. An NIDPS’s load is expressed as the amount of
traffic it can handle per second (Mbps). We estimate the
load by taking periodic samples of the traffic going to each
NIDPS and apply the standard Single Exponential Moving
Average (SEMA) [18] to the samples to alleviate the negative
effect of the traffic’s spikes. This linear aggregation method
was shown to perform very well in the context of NIDPS
load balancing [2].

We note that representing an NIDPS’s load is a nontriv-
ial task since there are numerous hardware and software
resources an NIDPS might have, for example, CPU, disk,
memory, etc. Therefore, one might rightfully challenge our
load representation; however, the representation we use is
the most common approach in the context of network intru-
sion detection and prevention [22, 2, 28].

Following, let µ be the average load of all the NIDPSs
and V be the upper bound for the variance after the as-
signment. Subsequently, let Lf be the predicted load of the
new flow. Here, SEMA is utilized on sampling flows to make
predictions for incoming TCP and UCP flows separately.

Maximize:

(1)
−→
X ·
−→
B

Constraints:

(2)
−→
X ·
−→
I ≤ F

(3)
−→
X ·
−→
Gi ≤ 1, ∀i ∈ [1, n]

(4) 1
n

∑n
i=1

[
(Li + Lf (

−→
X ·
−→
Gi)

−(µ+ Lf

−→
X ·
−→
I

n
)
]2

≤ V

Where:
−→
X : Solution vector of size m
−→
B : Benefit vector of size m
−→
Gi : Cluster-ownership vector of size m of NIDPS i
−→
I : Vector of 1’s of size m
F : Maximum number of NIDPSs to assign f
Li : Load of NIDPS i
µ : Average load of all NIDPSs
Lf : Predicted load of f
V : Upper bound for the new variance

Figure 2: Flow Assignment Optimization Problem

Afterward, let F be the maximum number of NIDPSs
which f could be assigned to concurrently. Assigning f to
multiple NIDPSs could give more benefit because f might
be correlated to multiple clusters maintained by different
NIDPSs. For example, assume that there are two clusters of
two different NIDPSs monitoring flows with dst ip 10.0.0.1
and flows with dst port 80 respectively. If f has both dst ip
10.0.0.1 and dst port 80 then it is desirable to assign this
flow to both of the NIDPSs.

Finally, let
−→
X be the solution vector of size m. The jth

element of
−→
X is either 1 if f is going to be assigned to clus-

ter j or 0 otherwise. In order to determine which clusters
to assign f to, we have to solve the Flow Assignment Opti-
mization Problem (FAOP) specified in Figure 2.

Our optimization problem is a Non-linear Binary Integer
Programming problem. Expression (1) states that we want
to maximize the total benefit. Constraint (2) requires that
f could be concurrently assigned to at most F NIDPSs.
Constraint (3) requires that f could be assigned to at most
one cluster of each NIDPS. Finally, constraint (4) requires
that the variance of the NIDPSs’ load after the assignment
must be less than or equal to the desired variance V . A small
value of V means a high level of load balancing is expected
while a high value of V indicates otherwise.

For instance, if V is set at 9 (%2), and load are assumed
to be normally distributed among the NIDPSs, then 99.73%
of the NIDPSs will have their load within 3

√
V = 9 (%) of

the average load µ, or within 18 (%) of each other.

3.2 Heuristic Flow Assignment Algorithm
The FAOP is very hard to solve since its decision version

(D-FAOP) is an NP-complete problem. The D-FAOP asks

if there is a solution vector
−→
X which gives a benefit better

than a predefined benefit. The sketch of the proof of NP-
completeness of the D-FAOP is provided below:

Proof. Given any solution, the solution can be verified
in polynomial time. All one has to do is to calculate the
sum of the benefits and the new variance. Both of these

Algorithm 1 HeuristicFlowAssignment(f)

1: solution set = ∅
2: nidps set = all NIDPSs

3: for i from 1 to F do
4: cluster set = all clusters of nidps set
5: find cluster in cluster set
- which satisfies variance constraint
- and has the biggest benefit

6: if no cluster found then
7: quit for loop
8: end if
9: solution set = solution set ∪ cluster

10: nidps = NIDPS which has cluster
11: update load of nidps
12: nidps set = nidps set \ nidps
13: end for

14: return solution set

take O(m) time, where m is the number of the clusters.
Thus the D-FAOP is in NP.

Now if we relax constraint (4) of the FAOP by replacing
it with this simpler constraint:

n∑
i=1

Li(
−→
X ·
−→
Gi) ≤ V ,

then our problem is identical to the well-known 0-1 Knap-
sack Problem. In this case, the NIDPSs are selected instead
of items. For each NIDPS, there exists a cluster giving the
best benefit, and this benefit represents the item’s value.
The NIDPSs’ load represent the items’ weights, and V rep-
resents the maximum weight of the knapsack. Since the
decision version of the 0-1 Knapsack Problem is known to
be NP-hard, the D-FAOP is also NP-hard.

Finally, the D-FAOP is in NP and is also NP-hard, thus
it is NP-complete.

Due to the real-time requirement of the flow assignment,
we propose a greedy-based approximation algorithm, Heuris-
tic Flow Assignment (HFA) algorithm, to solve the FAOP in
linear time. The HFA algorithm is detailed in Algorithm 1.
This algorithm searches for a cluster giving the maximum
benefit and satisfying the constraints at a time. This can
be done in O(m) time, and it tries to do this up to F times
(Line 3–13). We also note that when F equals 1, the result
of the HFA algorithm is the optimal solution to the FAOP.

3.3 Configurable Security
When it is desirable to favor the security, i.e. the low

correlation information loss, over the performance, i.e. load
balancing, our formalization provides three possible config-
urations:

1. Relaxing variance constraint : Setting V high loosens
the load balancing requirement, thus a higher benefit
might be achieved. To the extreme, V could be set
high enough so that the load balancing is completely
ignored. In this case, the traffic is distributed based
on solely the benefit, resulting in the use of only one
NIDPS. This might be a desirable setting when the
traffic’s load is low.

2. Duplicating flows : A high value of F reduces the loss
of correlation information because flows are duplicated
up to F times to be sent to the NIDPSs. However,
the duplication of flows consumes system resources like
bandwidth and CPU load; therefore, it must be used
selectively.

3. Threshold-based load distribution : The load balancing
requirement could be replaced by a threshold-based re-
quirement, which requires the NIDPSs’ load to be kept
below a certain threshold Tload. This requirement is
easier to satisfy and gives more room to obtain higher
benefits. Threshold-based load distribution could be
readily achieved by replacing constraint (4) with a sim-
pler constraint:

(4∗) Li + Lf (
−→
X ·
−→
Gi) < Tload , ∀i ∈ [1, n] .

In summary, F and V could be set high, along with us-
ing the threshold-based load distribution, to reduce the loss
of correlation information and ultimately increase the de-
tection and prevention accuracy. However, because these
configurations compromise the performance, they should be
used selectively depending on the current traffic’s load, sys-
tem resources, and performance requirements.

4. ON-LINE CLUSTERING TECHNIQUE
Managing clusters is a central activity of our load-balancer.

Because of the real-time requirement, it is not possible to use
the traditional clustering techniques like K-Means [9] or K-
Medoids [9] for the management. Thus we have customized
an on-line clustering technique introduced by Aggarwal et
al. [1] to create a suitable one for our load-balancer. Specif-
ically, we have integrated into the existing technique several
new concepts: cluster weight, decay of weight, and benefit.

4.1 Cluster Weight and Decay of Weight
Each cluster has a weight whose value is between 0 and 1

inclusive. The weight of a cluster reflects both the number
of flows the cluster has and the distances of the flows to the
cluster centroid – a flow representing the cluster. At any
time t, the weight of cluster j is calculated as follow:

Wj,t = λ(tj−t)Wj,tj ,

where λ > 1 is the decaying factor, and tj is the last time
when a new flow or a new packet gets assigned to this cluster.

Adding a new flow f to an existing cluster j changes tj and
the cluster’s weight. Let sj be the number of flows cluster
j already has. Let D(f, cj) be the logical distance between
f and the centroid cj , where the logical distance between
two flows is a value reflecting how much correlated the two
flows are (the logical distance notion is discussed in detail
in Section 5). If f is added to cluster j at time t then the
cluster’s weight is:

Wj,t = λ(tj−t)Wj,tj + (1− λ(tj−t)Wj,tj)
1−D(f, cj)

sj + 1
.

The smaller the distance between f and cj is, i.e. smaller
D(f, cj), the larger weight it adds to the cluster, i.e. larger
1 − D(f, cj). In addition, when f is further away from cj ,

Algorithm 2 Benefit-based Load Balancing Algorithm

1: while new flow f do
2: C = HeuristicFlowAssignment(f)
3: if C = ∅ or Benefit(C) < Tbenefit then
4: create a cluster (centroid f , weight 1)
5: assign it to the lowest load NIDPS
6: else
7: assign f to the clusters in C
8: update those clusters
9: end if

10: end while

i.e. 1 − D(f, cj) ∼ 0, the weight it adds to the cluster is
negligible. This formula also guarantees that the weight of
any cluster is never bigger than 1.

4.2 Benefit-based Load Balancing Algorithm
The Benefit-based Load Balancing algorithm, which is

used to distribute traffic intelligently to the NIDPSs, is at
the heart of this paper. This algorithm tights together all
the details presented in this paper. We summarize the BLB
algorithm in Algorithm 2 and describe it below.

At time t, when there is a new flow f , benefits of adding
f to existing clusters are needed to solve the FAOP (Line
2). Benefit of adding f to cluster j is calculated as follow:

Bj = (1−D(f, cj))Wj,t .

This formula expresses that the closer f is to cj , the higher
benefit the assignment gives because of the larger 1−D(f, cj),
and the heavier the cluster j is, the higher benefit the as-
signment gives because of the larger Wj,t. Consequently, the
assignment giving the highest benefit would give the high-
est possible amount of correlation, taking into consideration
both of the logical distances and the weights.

If the FAOP has no solution, or this solution gives a bene-
fit below a predefined threshold Tbenefit, then a new cluster,
whose centroid is f and weight equals 1, is created. This
cluster is added to the NIDPS with the lowest load (Line
3–5). In the other case, f is added to the corresponding
clusters and these clusters are updated appropriately (Line
6–8).

The clusters’ weights are closely monitored by a separate
thread. This thread periodically delete old clusters which
have weights less than a threshold Tweight. The deletion of
old clusters, together with the creation of new ones, occurs in
real-time to assure that the existing clusters are representing
the most current traffic.

5. FLOWS CORRELATIONS
The correlations between flows are very essential to our

benefit calculation. In this section, we explain how the cor-
relations are measured by a logical distance. We first present
a general formula for the logical distance. Afterward, we
thoroughly describe the components of the formula.

5.1 Logical Distance Formula
Given two flows f1 and f2, the logical distance between

the two flows, which indicates how closely correlated they
are, is formally defined as follows:

Figure 3: Matching Order of Correlations given by
IP Addresses, Port Numbers, and Protocols

D(f1, f2) =
∑
∀i∈F

αiδi(f1, f2) ,

where F is either ip, port, or protocol; and α’s are the
weights of the fields.

Weights of the fields vary depending on the attack sce-
narios. For example, in a DDoS attack scenario where an
attacker uses many hosts to attack many services of a single
victim, αip should be bigger because it is desirable to group
together flows having the same destination IP address. On
the other hand, in a port sweep attack scenario where an
attacker uses many hosts to scan a specific port of many
victims, αport should be bigger. Generally, αprotocol is al-
ways the smallest one because it is very common to have
flows with the same protocol, like TCP or UDP.

5.2 Logical Distance Components

5.2.1 Logical Distance by IP Addresses – δip()

We match the correlation given by addresses of two flows
with the following correlations: identical, subnet, and con-
figuration correlations. δip() returns a value between 0 and 1
corresponding to the matching. The correlations are defined
as follows:

• Identical Correlation : If source IP addresses or des-
tination IP addresses of two flows are identical then
their correlation matches the identical correlation.

This correlation is the most important correlation
between two flows. For example, in a DDoS attack sce-
nario, numerous source IP addresses might be used for
the attack [15]. However, computers corresponding to
those source IP addresses attack the same target. Be-
cause flows of the attack all have the same destination
IP address, they have the identical correlation.

• Subnet Correlation : If destination IP addresses of two
flows belong to the same subnet or vlan, then their
correlation matches the subnet correlation.

In practice, attackers often try to find vulnerabili-
ties in different computers in a target network, thus
attack-correlated flows are sent to the same network.
Identifying this type of correlation helps to group these
flows together to detect and prevent the intrusions.

• Configuration Correlation : If source IP addresses or
destination IP addresses of two flows belong to a pre-
defined set of addresses then their correlation matches
the configuration correlation.

Sometimes, it is of interest to group flows going to
the unused address space together to detect suspicious
activities. This correlation allows the grouping of these
flows in particular, and the grouping of flows of any
interested set of addresses in general.

Figure 3 shows the order in which the matching is done.
Going from top to bottom, the significances of the correla-
tions decrease, so the values returned by δip() increase.

5.2.2 Logical Distance by Port Numbers – δport()

Because destination port numbers represent target ser-
vices, they play a more important role than source port num-
bers. As a result, we concentrate on investigating the corre-
lations between destination port numbers instead of source
port numbers. Similar to the IP address case, in order to
determine a value between 0 and 1 which δport() returns, we
match the correlation between two destination port numbers
with one of the following correlations:

• Identical Correlation : If destination port numbers of
two flows are identical then their correlation matches
the identical correlation.

This correlation supports the detection and preven-
tion of intrusions targeting a particular service pro-
vided by a number of computers. For example, flows
belonging to an attack aiming at multiple web servers
all have 80 as their destination port number.

• Functional Correlation : If destination port numbers
of two flows are functionally correlated then their cor-
relation matches the functional correlation.

For example, flows belonging to an FTP connection
have both destination port numbers 20 and 21. Thus
it is desirable to group these flows together.

• Configuration Correlation : If destination port num-
bers of two flows belong to a predefined set of port
numbers then their correlation matches the configura-
tion correlation.

In practice, the administrators might want to group
together flows belonging to different services, for in-
stance, telnet and web, to detect certain attacks. This
correlation enables them to do so.

5.2.3 Logical Distance by Protocol – δprotocol()

Either 0 or 1 is returned by δprotocol(), depending on the
following correlation:

• Identical Correlation : If protocols of two flows are the
same then they have the identical correlation.

6. IMPLEMENTATION
We implemented a prototype load-balancer. Moreover, in

order to evaluate the load-balancer, we implemented a DDoS
detector. We describe our implementations in detail below.

6.1 Load-balancer
The prototype load-balancer was developed using libpcap

library [11] – a library for capturing and sending network
packets directly from and to network interfaces in real-time.
The BLB algorithm was implemented as the default load

balancing algorithm. The identical correlations given by ad-
dresses, port numbers, and protocol were initially supported.

Besides the BLB algorithm, for comparison purposes, we
also integrated a hash-based algorithm into our load-balancer.
Various hash-based algorithms were used by others [25, 22,
28] to distribute traffic, and they all shared a common prop-
erty: applying a simple hash function on a subset of the
five tuples. So we implemented the hash-based algorithm
using a simple additive hash: (src ip + dst ip + src port +
dst port) mod n, where n is the number of NIDPSs.

For the simulations, our load-balancer was run on a sys-
tem with Intel Dual Core 2.0 GHz CPU, 2 GB RAM, 2×1
Gbps NICs. Furthermore, the load-balancer operates as fol-
lows: first it gets a new packet from a specified source, which
could be a network interface or a trace file; it then exe-
cutes either the BLB or hash-based algorithm to identify
which NIDPS(s) to send this packet to; finally, it sends the
packet to the corresponding network interface(s) or writes
the packet to the corresponding trace file(s).

6.2 DDoS Detector
For evaluation purposes, a DDoS detector was developed

using the Cumulative Sum algorithm – a simple and ro-
bust algorithm to detect DDoS proposed by T. Peng et al.
[20]. Fundamentally, this algorithm detects the change of
the mean value of the percentage of the new source IP ad-
dresses overtime. A sequence {Yn} is used to characterize
the change. If at any time, a value of {Yn} is bigger than a
predefined threshold Ty, then an attack is detected.

7. EVALUATION
In this section, we present our evaluation results. We

have evaluated both the performance and the security of
our load-balancer using simulations with real traffic traces.
We describe them below in the corresponding order.

7.1 Performance
In order to evaluate how well our load-balancer distributes

the traffic, we needed high volume traffic traces. Conse-
quently, we chose two weeks GPS-synchronized IP header
traces, which were captured in December 2003 at the Uni-
versity of Auckland by the National Laboratory for Applied
Network Research (NLANR) [17].

We note that because of privacy issues, the traces were
sanitized by NLANR. The IP addresses were mapped into
the network space 10.X.X.X in a non-reversible way. How-
ever, the mapping was one-to-one, which meant IP addresses
identical in the traces were identical in the real world. Thus
we could still identify the identical correlation given by IP
addresses. Identical correlations given by port numbers and
protocols were unaffected by this sanitization.

The trace used in both of the below simulations was an
hour trace captured from 12:00 to 13:00 on Tuesday, Decem-
ber 2nd, 2003. This hour was one of the busiest hours of the
network. During this hour, there were 200 new flows per
second on average [23].

7.1.1 Effect of the Number of Clusters on the
System Overhead

Here we examine the effect of the number of clusters on
the system overhead. The number of clusters maintained in
the load-balancer is dependent on the threshold Tweight and
the decay rate λ. In this simulation, λ was fixed at 1.1, and

Figure 4: Effect of the Number of Clusters on the System Overhead (left), and Effect of the Algorithms on
the Variance (right)

Tweight was varied to get the desired number of maintained
clusters. There were 10 NIDPSs, V was 25, F was 1, and
the load-balancer used the BLB algorithm.

For each flow, when its first packet arrives at the load-
balancer, the load-balancer has to perform a calculation to
determine which cluster(s) to assign the flow. This is the pri-
mary system overhead associated with the flow. We measure
this overhead by the delay introduced to the first packet of
the flow, which is mostly the time to run the BLB algorithm.

Figure 4 (left) plots the delays of the first packets of 100
consecutive sampling flows when the system maintained 500,
750, and 1000 clusters. The average delays (not shown in the
figure) were 0.58, 0.80, and 1.31 milliseconds respectively.
This result indicates that the higher the number of clusters
is, the higher the delays are. This is because it takes more
time to calculate the benefits when there are more clusters.
Nevertheless, the delay per flow introduced by our system
is in the order of millisecond, which is further divided by
the number of packets per flow to get the average delay per
packet. Hence, even when the system has to maintain 1000
clusters, the average overhead per packet is tolerable.

7.1.2 Effect of the Algorithms on the Variance
We carried out this experiment to examine how different

algorithms affect the NIDPSs’ load variance. In this exper-
iment, the load-balancer maintained 750 clusters and used
both the BLB and the hash-based algorithms. The variance
upper bound V was set at 16, and F was set at 1. We note
that because the trace contained only packet headers, we
used uniformly random generated data as packet payloads.
Nevertheless, we still preserved the overall traffic rate.

Figure 4 (right) plots the variances associated with the
two algorithms at every 2 seconds during a sampling of 60
seconds. We observed that the variances of the hash-based
algorithm were noticeably higher than those of the BLB al-
gorithm. This indicated that the load of the NIDPSs when
the hash-based algorithm was used were substantially unbal-
anced. Also, our BLB algorithm very often had the variances
less than V . The exceptions were points of time at which
there was no solution to the FAOP. These points could be
due to the traffic’s spikes.

In summary, the result of this simulation showed that our

BLB algorithm had a solid performance in terms of keeping
the variances low in comparison to the hash-based algorithm.
Most importantly, the BLB algorithm was very often able
to keep the variance below the specified upper bound V .

7.2 Security
Three simulations were conducted to evaluate how the

BLB algorithm supports the detections of DDoS attacks and
port scans comparing to the hash-based algorithm. In the
simulations, the internal (protected) network was a Class B
network, and 10% of the address space was occupied. For the
BLB algorithm, the load-balancer maintained 500 clusters,
V was set at 25, and F was set at 1. Finally, the load-
balancer was used to distribute traffic to 10 NIDPSs.

7.2.1 DDoS Attack
We simulated a large scale UDP flood attack, which in-

volved 9000 distinct attacking hosts and a victim. Each
UDP packet was of fixed size 1 KB, and its source port and
destination port were randomly selected. The simulation
lasted 60 seconds, during which there were both background
traffic and the attack traffic. The background traffic was of
15 Mbps with 100 flows per second on average, and 80% of
the flows was from or to 20% of the machines in the internal
network. The attack started at second 20 and lasted for 30
seconds. During the attack, the victim saw about 300 new
source IP addresses of the attack traffic per second.

In figure 5, the left graph plots the highest fractions of
new source IP addresses observable by one of the NIDPSs
in the following 3 settings: (1) a single NIDPS with no load-
balancer, (2) 10 NIDPSs with a BLB load-balancer, and
(3) 10 NIDPSs with a hash-based load-balancer. The corre-
sponding values of Yn are shown in the right graph.

It could be observed that during the attack, when the BLB
algorithm was used, the fractions of new source IP addresses
observable by one of the NIDPSs were significantly higher
than those when the hash-based algorithm was used. This
was because a much higher number of attack flows went
to the same NIDPS when the BLB was used. The higher
fractions over time resulted in the higher values of Yn. Thus
there would be scenarios when the hash-based algorithm fails
to detect the attack but the BLB algorithm succeeds.

Figure 5: Effect of the Algorithms on the Fraction of New Source IP Addresses per Second (left), and on the
Value of Yn (right)

For example, if the threshold Ty was set at 3 then the
hash-based algorithm would fail to detect the DDoS attack.
This is because Yn was always below Ty. However, the BLB
algorithm detected the attack at second 38, which was 4 sec-
onds later than when a single NIDPS with no load-balancer
was used. We note that when a single NIDPS was used, we
assumed that it could handle all the traffic without drop-
ping packets. In this case, the attack was detected earlier
because all flows of the attack went to this NIDPS.

In conclusion, this evaluation showed that the BLB algo-
rithm distributed the traffic in a way which increased the
detection accuracy of the DDoS attack significantly.

7.2.2 Port Scans
For this part, we used Snort [21] as our scan detector.

From version 2.6, the Snort preprocessor sfPortscan takes
care of detecting port scans. By analyzing the anomaly of
the traffic, sfPortscan can detect the following scans [3]:

• Portscan. A small number of scanning hosts, scanning
one victim, for a lot of ports.

• Portsweep. A small number of scanning hosts, scan-
ning many victims, for a small number of ports.

• Also, decoy portscan and distributed portscan.

Because complex scans such as decoy or distributed port-
scans currently have low detection accuracy (high false pos-
itive rate) [3], we focus on evaluating how our load-balancer
supports the detection of portscans and portsweeps.

For both of the following simulations, the background traf-
fic was the same as the one in the previous DDoS simulation.
Similarly, when a single NIDPS with no load-balancer was
used, we assumed that no packets were dropped. Also, the
sensitivity level of sfPortscan was set at medium, and TCP
SYN scans were used. Using this scan type, SYN packets
were sent from scanning hosts to victims, trying to estab-
lish TCP connections. If SYN/ACK packets were received,
then the corresponding ports were open. Lastly, the scans
were designed so that a single NIDPS with no load-balancer
always successfully detected them.

First we used nmap [16] to carry out a portscan. We used
one host to scan ports 1–1000 of one victim. When a single

NIDPS was used, it detected this portscan. When there
were 10 NIDPSs and the hash-based algorithm was used, no
attack was detected; however, when the BLB algorithm was
used, the attack was detected.

When the hash-based algorithm was used, the highest
number of SYN packets observable by one NIDPS was about
100. This was not enough for sfPortscan to trigger a port-
scan alert. However, when the BLB algorithm was used,
there existed an NIDPS which observed up to 700 SYN
packets, thus triggering a portscan alert. These numbers
are plotted in figure 6 (left).

Secondly, we used nmap to carry out a portsweep. We
used one host to scan port 80 of 100 victims. When a sin-
gle NIDPS with no load-balancer was used, it detected this
portsweep. When there were 10 NIDPSs and the hash-based
algorithm was used, no attack was detected. In this case, we
noticed that each NIDPS observed about 10 SYN packets,
targeting port 80 of 10 different victims. This number was
not high enough for sfPortscan to trigger a portsweep alert.
On the other hand, when the BLB algorithm was used, there
existed an NIDPS which observed as much as 80 SYN pack-
ets, thus triggering a portsweep alert. These numbers are
plotted in figure 6 (right).

One might argue that the sfPortscan’s mechanism to de-
tect port scans is naive and simple, and that better mech-
anism should be used in our evaluation. Nonetheless, this
simplicity represents what are popularly used today in terms
of detecting port scans in specific, and in terms of anomaly-
based detection in general. To the best of our knowledge, the
mechanism used by two other popular operational NIDPSs:
Bro [25, 19] and Cisco IPS [4], are similarly simple in terms
of detecting port scans. As future work, we plan to eval-
uate our load-balancer with advanced port scan detection
techniques, such as the one proposed by Jung et al. [8].

In summary, both the portscan and the portsweep went
undetected when the hash-based algorithm was used to dis-
tribute the traffic. In contrast, when the BLB algorithm
was used, the cluster of NIDPSs successfully detected both
of them. Consequently, this showed that our load-balancer
with the BLB algorithm could help to substantially improve
the detection accuracy of portscans and portsweeps.

Figure 6: The highest number of SYN packets observable by one of the NIDPSs during the portscan attack
(left) and the portsweep attack (right)

8. RELATED WORK

Hash-based Distribution with Communication
In a recent literature by Vallentin et al. [25], the authors
presented a cluster of network intrusion detection systems
(NIDSs) as a solution for realizing high-performance and
stateful network intrusion detection on commodity hard-
ware. This cluster uses an additive hash on the five tuples
to distribute the flows. Also, an inter-NIDS communication
scheme is introduced as a means to recover the correlation
information loss to improve the cluster’s detection accuracy.

While the above approach requires NIDSs with low level
communication capabilities, such as Bro [19], an NIDS de-
veloped at UC Berkeley, our approach is independent of the
NIDSs. As a result, it is applicable to clusters of any NIDSs.
Moreover, to improve the detection accuracy, we leverage the
correlations between flows when distributing them instead of
introducing the communication a later time.

Hash-based Distribution with Multiple Hash Functions
In another literature, Schaelicke et al. [22] presented a load-
balancer with a single hash table and multiple hash func-
tions. During under-load conditions, one hash function is
used on flows to hash them into buckets, which are previ-
ously assigned to the NIDSs. When an NIDS is overloaded,
the overload condition is handled by reassigning the buckets
of the overloaded NIDS to different NIDSes or by applying
additional hash functions to assign the incoming flows to
buckets of the other NIDSs.

Overall, this approach tries to remove the overload condi-
tions when they occur but does not prevent them. Also, it
does not consider the loss of correlation information due to
distributing traffic. On the contrary, our approach prevents
the overload conditions by load balancing the NIDSs; more-
over, we take into account the loss of correlation information
when distributing the traffic.

Slicing and Reassembling Mechanism
Kruegel et al. [10] proposed a slicing and reassembling mech-
anism to distribute the traffic. Packets’ frames are scattered
and then reassembled at groups of NIDSs that might need
them to detect some attacks. An NIDS determines if it needs
a packet based on the attack scenarios that it handles.

One major problem with the above approach is the un-

manageable duplication of traffic due to correlated attack
scenarios – attack scenarios that need some mutual traffic.
Also, this approach does not provide load balancing and does
not examine the correlations between flows.

In summary, none of the related work gives a satisfactory
solution to balance the load of the NIDPSs. More impor-
tantly, none of them examines the correlations between flows
in their distributions of traffic. Correlated flows are not op-
timally assigned to increase the accuracy of the intrusion
detection and prevention. Our approach gives solutions to
both of the above problems.

9. CONCLUSION
The problem of load balancing in the context of network

intrusion detection and prevention is challenging. To ad-
dress this problem, we first formalize the traffic distribution
problem as an optimization problem. We then present a
novel Benefit-based Load Balancing algorithm as a solution
to it. This algorithm thoroughly considers both the load
variation of the NIDPSs and the loss of correlation infor-
mation due to distributing flows. As far as we know, none
of the previous work has considered this loss of correlation
information in their approaches. Our algorithm performs
real-time optimization, thus it accommodates intrusion de-
tection as well as intrusion prevention systems.

We have implemented a prototype load-balancer which
uses the BLB algorithm. Our load-balancer distributes traf-
fic flows in real-time and achieves the following properties:
(1) correlated flows are grouped together at a single system
to reduce the correlation information loss, and (2) load of the
NIDPSs are kept close within a desired bound. While the
former property greatly increases the accuracy of anomaly-
based intrusion detections and preventions, the later prop-
erty provides protection to the networks and allows for bet-
ter traffic engineering.

Finally, through extensive simulations with real traffic
traces and major attacks, we showed that our load-balancer
with the BLB distribution algorithm could achieve high per-
formance and provide enhanced security. In particular, it
has low overhead and can keep the load variances below the
desired levels of load balancing. Moreover, it significantly
improves the accuracy of anomaly-based detections of DDoS
attacks and port scans.

10. REFERENCES
[1] C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A

framework for clustering evolving data streams. In
Proc. of the 29th VLDB, volume 29, pages 81–92,
2003.

[2] M. Andreolini, S. Casolari, M. Colajanni, and
M. Marchetti. Dynamic load balancing for network
intrusion detection systems based on distributed
architectures. In NCA ’07: Proceedings of the Sixth
IEEE Symposium on Network Computing and
Applications, pages 153–160, July 2007.

[3] B. Caswell, J. Beale, and A. Baker. Snort IDS and
IPS Toolkit. Syngress, Mar. 2007.

[4] Cisco NIPS, http://tinyurl.com/2nbxbx.

[5] E. Cooke, F. Jahanian, and D. Mcpherson. The
zombie roundup: Understanding, detecting, and
disrupting botnets. In Workshop on Steps to Reducing
Unwanted Traffic on the Internet (SRUTI), pages
39–44, June 2005.

[6] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer.
Operational experiences with high-volume network
intrusion detection. In CCS ’04: Proceedings of the
11th ACM conference on Computer and
communications security, pages 2–11, New York, NY,
USA, 2004. ACM.

[7] J. M. Gonzalez, V. Paxson, and N. Weaver. Shunting:
a hardware/software architecture for flexible,
high-performance network intrusion prevention. In
CCS ’07: Proceedings of the 14th ACM conference on
Computer and communications security, pages
139–149, New York, NY, USA, 2007. ACM.

[8] J. Jung, V. Paxson, A. W. Berger, and
H. Balakrishnan. Fast portscan detection using
sequential hypothesis testing. In SP ’04: Proceedings
of the 2004 IEEE Symposium on Security and
Privacy, pages 211–225, May 2004.

[9] L. Kaufman and P. Rousseeuw. Finding Groups in
Data. An Introduction to Cluster Analysis. Wiley,
Mar. 1990.

[10] C. Kruegel, F. Valeur, G. Vigna, and R. Kemmerer.
Stateful intrusion detection for high-speed networks.
In Proc. of the IEEE SSP’02, pages 285–293, 2002.

[11] Libpcap, http://www.tcpdump.org/.

[12] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall,
D. McClung, D. Weber, S. Webster, D. Wyschogrod,
R. Cunningham, and M. Zissman. Evaluating
intrusion detection systems: the 1998 darpa off-line
intrusion detection evaluation. In DISCEX ’00:
Proceedings of DARPA Information Survivability
Conference and Exposition, 2000, pages 12–26, 2000.

[13] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba,
and K. Das. Analysis and results of the 1999 darpa
off-line intrusion detection evaluation. In Recent
Advances in Intrusion Detection, pages 162–182, 2000.

[14] J. McHugh. Testing intrusion detection systems: a
critique of the 1998 and 1999 darpa intrusion
detection system evaluations as performed by lincoln
laboratory. ACM Transactions on Information and
System Security, 3(4):262–294, 2000.

[15] J. Mirkovic and P. Reiher. A taxonomy of DDoS
attack and DDoS defense mechanisms. ACM
SIGCOMM Computer Communication Review,
34(2):39–53, Apr. 2004.

[16] Network Mapper, http://insecure.org/nmap/.

[17] Network traces,
http://pma.nlanr.net/Special/auck8.html.

[18] NIST/SEMATECH e-Handbook of Statistical
Methods, http://tinyurl.com/645fex.

[19] V. Paxson. Bro: a system for detecting network
intruders in real-time. Computer Networks
(Amsterdam, Netherlands: 1999),
31(23–24):2435–2463, 1999.

[20] T. Peng, C. Leckie, , and R. Kotagiri. Proactively
detecting distributed denial of service attacks using
source ip address monitoring. In Proc. of the Third
International IFIP-TC6 Networking Conference, pages
771–782, 2004.

[21] M. Roesch. Snort - lightweight intrusion detection for
networks. In LISA ’99: Proceedings of the 13th
USENIX conference on System administration, pages
229–238, Berkeley, CA, USA, 1999. USENIX
Association.

[22] L. Schaelicke, K. Wheeler, and C. Freeland.
SPANIDS: A scalable network intrusion detection
loadbalancer. In Proc. of the 2nd conference on
Computing Frontiers, pages 315–322, 2005.

[23] Statistics of the trace captured from 12:00 to 13:00,
12/02/2003, http://tinyurl.com/59yj46.

[24] Tcpreplay, http://tcpreplay.synfin.net/trac/.

[25] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson,
and B. Tierney. The NIDS cluster: Scalable, stateful
network intrusion detection on commodity hardware.
In Proc. of the Symp. on RAID’07, Queensland,
Australia, Sept. 2007.

[26] N. Weaver, V. Paxson, S. Staniford, and
R. Cunningham. A taxonomy of computer worms. In
WORM ’03: Proceedings of the 2003 ACM workshop
on Rapid malcode, pages 11–18, New York, NY, USA,
2003. ACM.

[27] P. Wheeler and E. Fulp. Taxonomy of parallel
techniques for intrusion detection. In Proc. of ACM
45th Southeast Regional Conference, pages 278–282,
2007.

[28] K. Xinidis, I. Charitakis, S. Antonatos, K. G.
Anagnostakis, and E. P. Markatos. An active splitter
architecture for intrusion detection and prevention.
IEEE Transactions on Dependable and Secure
Computing, 3(1):31–44, Mar. 2006.

