

Trust Management for Hostbased Collaborative Intrusion Detection

Carol Fung, Olga Baysal, Jie Zhang, Issam Aib and Raouf Boutaba

David R. Cheriton School of Computer Science University of Waterloo

Outline

- Introduction
- Motivation
- Trust Model
- Robustness
- Attacks Prevention
- Conclusions

Introduction

- The worldwide impact of malicious intrusions is estimated to be over \$10 Billion annually
- Intrusions include viruses/worms, spyware, spam, DoS, unauthorized login.
- Traditional isolated IDSes are inefficient in detection unknown intrusions.

Benefits of IDS Collaboration

- Accurate alert ranking
- Effective intrusion detection and prevention
- Worm spreading warning

Related Work

- Current collaborative architectures have strong assumptions on the trustworthiness (all IDSes are trusted and faithfully report intrusion events) [1,2,3,4]
- Used trust models are naïve [5, 6]
- Many efficient trust management models in other areas such as e-market and P2P networks [7,8,9]

Contribution

1. Build a trust management model for IDS collaboration

2. Propose a framework for efficient collaboration of IDSes

Carol Fung

Framework

Three components:

CA Joining the network Trust establishment Consultation Verification Public key Register + Private key Alice Accept +\acquaintance list Paul Julia 🚽 Bob Bob ...equest to Join **Carol** Ken Carol Fung

Framework

What is the risk of

this alert?

Three components:

- Join the network
- Trust establishment
 - Test phase

Framework

Three components:

Trust Establishment

Trust level is built on history

- Satisfactory level of past feedbacks
- Helpfulness

Feedback	Expected Answer	Satisfaction Level
High	High	3
Medium	High	1
Low	High	0

11

Paul's History

Feedback3: 3
Feedback2: 3
Feedback2: 2

Integration of Don't Knows

Reply "don't know" is allowed

• Trust value will approach to the level of stranger

Carol Fung

Feedback Aggregation

Depends on:

- Peers' trust values
 - Trust weight
- Peer's location
 - Proximity weight

Feedback Aggregation

- Weighted average
- Threshold

Name	Trust	Proximity	Ranking
Alice	1	1 (Waterloo)	High(3)
Carol	0.9	1 (Waterloo)	High(3)
Julia	0.9	0.9 (Toronto)	High(3)
	-		
Paul	0.7	0.7 (US)	Medium(2)

High Risk!

 $finalRanking = \frac{3 \cdot 1 \cdot 1 + 3 \cdot 0.9 \cdot 1 + 3 \cdot 0.9 \cdot 0.9 + 2 \cdot 0.7 \cdot 0.7}{1 \cdot 1 + 0.9 \cdot 1 + 0.9 \cdot 0.9 + 0.7 \cdot 0.7}$ = 2.85

Threat Model

- Sybil Attack
- New Comer Attack
- Identity Cloning Attack
- Betrayal Attack
- Collusion Attack

What's Next?

- Simulation design and implementation
- Design more sophisticated trust management model
 - Alert categorization
 - Expertise in intrusion detection

Conclusion

- Proposed a trust-based IDS collaboration model
 - More accurate intrusion detection
 - Robust to several attacks
- Novel ideas
 - Use of test messages in trust establishment
 - Integration of "don't knows" into trust value
 - Introduction of proximity
 - Aggregation threshold