
Alert Prioritization in Intrusion Detection Systems

Khalid Alsubhi�, Ehab Al-Shaer�‡, and Raouf Boutaba�

(�)Davird R. Cheriton School of Computer Science, University of Waterloo, Canada

(‡)School of Computer Science, DePaul University, Chicago, USA

email: kaalsubh@cs.uwaterloo.ca; ehab@cs.depaul.edu; rboutaba@uwaterloo.ca

Abstract—Intrusion Detection Systems (IDSs) are designed to
monitor user and/or network activity and generate alerts when-
ever abnormal activities are detected. The number of these alerts
can be very large; making the task of security analysts difficult to
manage. Furthermore, IDS alert management techniques, such as
clustering and correlation, suffer from involving unrelated alerts
in their processes and consequently provide imprecise results.

In this paper, we propose a fuzzy-logic based technique
for scoring and prioritizing alerts generated by an IDS(1). In
addition, we present an alert rescoring technique that leads to
a further reduction of the number of alerts. The approach is
validated using the 2000 DARPA intrusion detection scenario
specific datasets and comparative results between the Snort IDS
alert scoring and our scoring and prioritization scheme are
presented.

Index Terms—Alert management, alert prioritization

I. INTRODUCTION

Network attacks are growing more serious, forcing system

defenders to deploy appropriate security devices such as

firewalls, Information Protection Systems (IPSs), and Intrusion

Detection Systems (IDSs). An IDS is aimed to inspect user

and/or network activity looking for suspicious behavior that

they report to security analysts in the form of alerts. There

are two common types of IDSs depending on the method

employed for traffic inspection: signature-based and anomaly-

based. A Signature-based IDS generates an alert when the

traffic contains a pattern that matches signatures of malicious

or suspicious activities. An anomaly-based IDS examines

ongoing activity and detects attacks based on the degree of

variation from normal past behavior [4]. However, both of

these mechanisms suffer from the problem of generating a

large number of alerts. These alerts need to be evaluated by

security analysts before any further investigation in order to

take appropriate actions against the attacks.

IDSs usually generate a large number of alerts whenever

abnormal activities are detected. Inspecting and investigating

all reported alerts manually is a difficult, error-prone, and

time-consuming task. In addition, ignoring alerts may result

into successful attacks being missed. To tackle this problem,

low-level and high-level alert evaluation operations have been

introduced. Low-level alert operations deal with each alert

individually to enrich its attributes or assign a score to it

based on the potential risk. High-level alert management

techniques, such as aggregation, clustering, correlation, and

1This research has been supported under the Natural Science & Engineering
Research Council of Canada (NSERC) grant STP-322235-05.

fusion, were proposed to deal with sets of alerts and provide

an abstraction of them. However, the high-level techniques

suffer from including alerts that are not significant, which

leads to inappropriate results. Therefore, low-level evaluation

techniques are needed to automatically (or semi-automatically)

examine large numbers of alerts and prioritize them, leaving

only important alerts for further inspection. Accordingly, the

reduced set of alerts leads to more precise high-level alert

analysis. From this work, the security administrator will be

provided with an effective technique to evaluate and manage

alerts, thereby saving his or her time and effort.

This paper describes a method for automatically evaluating

IDS alerts based on metrics related to the applicability of

the attack, the importance of victim, the relationship between

the alert under evaluation and previous alerts, and the social

activities between the attackers and the victims. These metrics

are input of a Fuzzy logic system in order to investigate the

seriousness of the generated alerts and assign a score to each

of them. This evaluation process will prioritize alerts when

presented to the security administrator for further investigation.

Additionally, we propose a rescoring technique to dynamically

rescore alerts based on the relationship between attacks or the

degree of maliciousness of an attacker. Finally, we validate

our proposal by two experiments. In the first experiment,

we score alerts generated by the Snort IDS [28] using 2000

DARPA intrusion detection scenario specific datasets [15]. In

the second experiment, we use the same dataset to validate

our rescoring technique.

The paper is organized as follows. Section II discusses

related works. Section III describes our proposed alert pri-

oritization system. Section IV presents the identified alert

prioritization metrics. Section V explains fuzzy logic inference

and its use in this work. Section VI explains the technique for

alert rescoring. Simulation results are presented and discussed

in Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORK

Attacks are presented to a security administrator through

alerts generated by the sensing devices, such as IDSs. It

is common that an IDS generates a large number of alerts

whenever the defined policies (rules) have been matched.

With a large number of alerts, security administrators are

overwhelmed and it becomes difficult to manually distinguish

between the real attacks and the false ones. Two general

978-1-4244-2066-7/08/$25.00 ©2008 IEEE 33

solutions exist to deal with this problem. The first solu-

tion focuses on the monitoring device itself by enhancing

its detection mechanism, eliminating its unnecessary rules,

optimizing its signatures, and choosing the right location [22].

Although this solution promises to reduce the number of alerts,

it requires prior knowledge by the security administrator of

the detection mechanism. The second solution focuses on the

sensor’s outputs. Several IDS alert management techniques fall

into this category and include aggregation [5], clustering [14],

correlation [18], [26], and fusion [8]. Generally, reducing the

number of alerts, prioritizing the most critical attacks, and

discarding the false alerts are the main objectives of IDS

alert management approaches. Furthermore, these techniques

assist the security administrators in understanding the situation

revealed by the IDS.

The techniques to construct attack scenarios fall into three

classes. The first class includes correlating alerts based on the

similarity between alerts attributes, such as IP addresses, ports

etc. (e.g., probabilistic alert correlation [26]). The second class

is based on specifying known attack sequences [2]. The third

class is based on the dependencies between alerts by matching

prerequisites (of an attack) with consequences (output and

state after the attack succeeds) of attacks [18]. In this work, we

used the first class by defining a relationship metric between

alerts.

In [6], Jinqiao Yu et al. evaluate alerts based on two

aspects. Firstly, alerts that do not correspond to any attack

in the vulnerability knowledge base are prioritized for further

investigation and secondly, the applicability of the attack

against the protected network is examined. Similarly, Qin and

Lee [21] compute the alert priority score based on the severity

of the corresponding attack and the relevance of the alert

to the protected networks and hosts. Porras et al. propose

an alert ranking technique, known as the M-Correlator [19].

This approach ranks alerts based on the likelihood of the

attack to succeed, the importance of the targeted asset, and

the amount of interest in the type of attack. Although these

techniques are promising in the evaluation of alerts generated

by signature-based IDSs, they cannot evaluate alerts raised by

anomaly-based IDSs, since they heavily rely on the vulnera-

bility knowledge base. Our work extends on these works by

offering a technique which works with both signature-based

and anomaly-based IDSs and makes use of additional criteria,

such as the sensor sensitivity, relationship between alerts,

service stability, and social activity between source and target

for more accurate evaluation of the alerts. Furthermore, our

approach differs from previous ones by providing a rescoring

function of early non-critical attacks that prepare for later

critical ones. This way, the early steps of the attack will be

prioritized for further analysis, such as correlation.

Several works have focused on devising a standard format

for representing and exchanging IDS alerts. Examples include

CIDF, [24], IDXP [9], and IDMEF [3]. The Intrusion Detec-

tion Message Exchange Format (IDMEF) [3] is a standard data

format that reports alerts about events considered suspicious.

IDMEF seems to be a promising solution as it provides flexi-

Fig. 1. IDEMF Extended Format

bility for future extensions. As shown in figure 1, IDMEF uses

an XML format to represent the detected event information.

In our work, we made use IDMEF and this provided us with

the ability to expand alert reports to include both the overall

alert score and the alert rescoring values (figure1).

III. GENERAL ARCHITECTURE OVERVIEW

As shown in the doted areas of figure 2, our alert manage-

ment architecture involves three main components: (a) data

collection, (b) alert scoring metrics and inference, and (c) alert

analysis.

Data collection includes the alert database, environment

parameters, security administrator parameters and the vulnera-

bility knowledge base. Alert attributes consist of several fields

that provide information about the attack. This information

varies from one IDS product to another. However, we assume

that the alert structure is compatible with the IDMEF format.

The security administrator can specify the environment param-

eters to involve in the evaluation process. These can include

for instance information about running services, applications,

operating systems (+versions), and existing (current) vulner-

abilities. Furthermore, the security administrator can specify

the importance of each host in the network including the IDSs.

Public vulnerability knowledge bases, such as the National

Vulnerability Database (NVD) [17] and Bugtraq [12], contain

detailed information about known attacks. The availability of

such data bases can help in the alert evaluation process. The

data collection component makes the above resources available

to the alert scoring metrics and inference component.

Alert Scoring Metrics and Inference component is a

key element of our architecture. Based on the information

received from the data collection component, several metrics

are computed and used as indicators to accurately evaluate

the alerts. In this perspective, the computed metric values are

passed to the Fuzzy logic inference engine to calculate the

overall alert score.

34

Fig. 2. General Evaluation Process

Alert analysis provides an additional evaluation of the IDS

alert. This component hosts the functions of alert rescoring,

measurement of distance to known attacks, time of occurrence,

and response plans.

As can be deduced from figure 2 the alert evaluation process

is carried out as follows. When a new alert is received, the

associated scoring metrics are computed based on the available

security parameters, environmental parameters and vulnerabil-

ity knowledge base. Fuzzy logic inference is then employed

in order to assign a score to the alert based on the metrics

values. After that, the alert is stored in the alert database

with its score. The alert is also passed to the alert analysis

component for further investigation.The analysis measures the

distance of the current attack from its possible goals, rescores

the alerts that are suspicious to be a preparation step for later

attacks, detects activities that violate the scheduled time of

permissibility of certain activities, and provides a response

plan. Finally, alerts which received high scores are presented

to the security administrator for further investigation.

IV. ALERT PRIORITIZATION METRICS AND REASONING

APPROACH

The alert scoring metrics of figure 2 are used to evaluate the

criticality of alerts Although some of these metrics have been

individually used in previous works (i.g., [6], [16], [20], [21]),

they have not been used altogether as proposed in this paper.

Additionally, we define new metrics that help in accurately

evaluating IDS alerts. Our scoring technique does not require

all the metrics to be available during the evaluation. Intuitively,

the presence of a large number of indicators will definitely

increase the accuracy of the alert score. However, most of

the metrics are easy to obtain, especially those that deal with

protected environments and the vulnerability knowledge base.

In the following, the alert scoring metrics presented in figure

2 are detailed.

A. Applicability metric

Applicability is a process that checks whether an attack

that raises an alert is applicable in the current environment.

This requires knowledge from the vulnerability knowledge

base, the set of running services, applications, and operating

systems. Alert attributes help in identifying the potential

attack(s). Then, the vulnerability knowledge base is checked

to determine whether the attack is applicable in the current

environment. In general, figuring out the applicability of the

attack on a given network is reduced to a search problem.

B. Importance of Victim metric

This metric is used to specify critical machines, services,

applications, accounts, and directories in the environment. The

goal of this metric is to increase the score of alerts related

to suspicious activities that target critical system components,

such as a main server. Equation 1 computes a weighted

projection is used to calculate the value of the importance

metric. A high weight is chosen if the target is critical and

vice versa.

Importance(M) =
∏

x∈{serv,app,acct,dir} running on M

w(x) (1)

35

TABLE I
SENSOR STATUS PARAMETERS

Variable States
Critical

Placement Moderate
Regular
Configure

Configuration Not Configure
Accuracy (BDR) Probability (0-1)

Updated
Up to Date Not updated

Importance describes the condition of the victim machine

that is running in the protected environment. The value of the

Importance is calculated on a scale from 0 to 1. 0 indicates

that the victim machine reported in the alert does not include

any important host, service, application, account, or directory.

Scores closer to 1 indicate that the attack is targeting an

important system component.

C. Sensor Status metric

What part of the environment does the IDS monitoring

device cover? Is it well configured? Is it up-to-date? What

is its accuracy? Answering these questions for each sensor in

the environment gives an evaluation of its status. Table I shows

all possible values that can be entered by the security expert

who manages the sensor. The accuracy value of the sensor

can be calculated offline using the Bayesian Detection Rate

(BDR) formula [1]. The Bayesian detection rate computes the

true positive probability P (A/I) that alert A was raised given

the attack I has been detected. The BDR formula uses the past

experience of the sensor activity as follows:

P (A|I) =
P (I)P (A|I)

P (I)P (A|I) + P (¬I)P (A|¬I)
. (2)

Where:

- I: Attack has occurred.

- ¬I: No Attack has occurred.

- A: Alert has been raised.

- ¬A: No Alert has been raised.

The status of the sensor is computed based on a simple

projection function. For instance, if the location of the sensor

is Critical, its accuracy is high, it is well Configured, and it is

up to date, then the status of the sensor it high. Accordingly,

alerts generated by that sensor are given more confidence and

are subject to higher scrutiny.

D. Attack Severity metric

The severity score metric measures the risk level posed

by a particular vulnerability. There are several sources which

provide severity scores for known attacks, such as MITRE

Common Vulnerabilities and Exposures (CVE) [27], Secunia

[23], and industrial products (e.g., Microsoft). We provide

a measurement of the severity score which makes use of

the the multiple scores provided by the above organizations.

The severity score value may vary from one organization to

another. For instance, the FileZilla unspecified format string

vulnerability has been reported in NIST as a very severe

vulnerability scored 10 out of 10, while the Secunia reported

this vulnerability to be moderately critical.

SS(a) =
∑n

i=1 w(SSi) × SSi(a)∑n
i=1 w(SSi)

(3)

SS(a) represents the expected severity of the attack that trig-

gered alert a. Severity scores that are available from security

analysis databases come in numerical or categorical formats.

There is a need to first normalize the severity score to a

numerical value. Then, the weighted average of the available

severity scores is computed based on equation 3.

E. Service vulnerability metric

We adopt the method proposed by Abedin et al [7] to

analyze only the service that the attacker is targeting. This

method is used to calculate a unified score representing the

strength or weakness of the targeted service. The result is then

used in the overall alert scoring.

Since the targeted service is listed in the alert’s content,

it is possible to check the set of current vulnerabilities of

that service. A second source of information is to mine the

vulnerability knowledge bases to check how vulnerable this

service has been in the past. This is related to those vul-

nerabilities that have been removed through software patches.

In addition, since newly released services tend to have more

vulnerabilities than services that have been in use since long,

using the service release time contributes too to the overall

service vulnerability analysis. In summary, it is possible to

measure the Vulnerability Score VS(s) of a service s which

appeared in the alert a based on the current vulnerability score

V Sc(s), the past vulnerability score V Sp(s), and the release

time RT (s) of the service.

In order to determine the set of services, applications,

and operating systems that the network is running, and con-

sequently find out the current and historical vulnerabilities

associated with them, available network scanning software,

such as Nmap [10], or Nessus [11] can be used. For both

existing and historical vulnerabilities, we are interested in the

severity score SS. The service release time RT (s) serves an

indicator of the stability of the service. As shown in figure 3,

experience has shown that services in the early days of their

release have more vulnerabilities than those released longer in

the field.

1) Existing vulnerability score metric: A raised alert a
explicitly mentions the targeted service s (including the ap-

plication, OS, or service) that the attacker is trying to violate.

In may cases, the targeted service can also be determined from

the port number that is stated in the alert. For a specific or

group of targeted services Si(s), we can explore the existing

vulnerabilities Vi(s) and calculate the value of the V Se based

on the severity score SS of these vulnerabilities. However,

there is a difference between vulnerabilities having a published

solution that has not yet been applied, and vulnerabilities that

36

Fig. 3. Evolution of Service Vulnerabilities Over Time

Generated from data provide in [13]

still wait for a solution. The V Se score is more biased towards

the highest severity score SS(v) of the existing vulnerabilities.

The following equation calculates the V Se by the weighted

arithmetic mean as follows:

V Se(s) =

∑
v∈Ve(s)

w(v) × SS(v)

∑
v∈Ve(s)

w(v)
(4)

2) Historical vulnerability score metric: For the historical

vulnerability score V Sh(s) of service s, vulnerability knowl-

edge bases, such as CVE, are consulted to measure the stability

of the service in the past. The criticality, represented by the

severity score SS, of the past vulnerabilities can be high,

medium, or low. High risk vulnerabilities receive a high score

while low risk vulnerabilities receive a low score. In addition,

the severity of a vulnerability decreases as it gains in age,

reflecting the fact that vulnerabilities known since long tend

to be no more efficient. As a result, old vulnerabilities receive

low scores. Equation 5 shows how V Sh(s) is computed.

V Sh(s) =

∑
v∈Vh(s)

w(v) × SS(v) × ε−age(v)

∑
v∈Vh(s)

w(v)
(5)

Finally, the overall vulnerability score V S(s) of a service s is

computed as the weighted average of V Se, V Sh, and RT :

V S(s) = η1 × V Se(s) + η2 × V Sh(s) + η3 × RT (s) (6)

F. Relationship between Alerts

Usually attackers use multiple steps in order to achieve their

final goal. The early steps are a preparation for the later ones.

Calculating the final score of an alert needs hence to involve

the relationship it has with previous ones. The score of the

currently evaluated alert will increase if it is found that it has a

relationship with other stored alerts. Algorithm 1 illustrates the

procedure we use to evaluate the relationship between alerts.

We restrict the search to those alerts that occurred in a close

period -say a couple of hours- from the current alert. This

restriction discards very old alerts and focuses on recent ones

since attackers typically try to achieve their goal as soon as

possible before they can be identified.

Algorithm 1 Alerts Relationship Algorithm

Require: Alert ca, AlertLog �
Ensure: Relationship Degree

1: A= {a | a ∈ � ∧ Timestamp(a) within time threshold},

n = |A|.
2: for i = 0 to n do
3: foreach alert a ∈ A

4: Calculate the Relationship Score between Current Alert

and a
5: if Relationship Score > Highest Relationship Score

then
6: Highest Relationship Score= Relationship Score

7: end if
8: end for
9: Return Relationship Score

The algorithm starts by measuring the similarity between

the source and target IP addresses and port numbers of the

alert being evaluated and all previous alerts. The following

simple matching coefficient is used for IP address matching

and takes into consideration the subnet the IP addresses belong

to:

IPss(a1, a2) =
∑

similar bits(a1, a2)∑
all bits(a1, a2)

If the source addresses of the current alert and the previous

alert share the same subnet then the IP similarity score IPss

will be high. Similarly, the port number similarity takes a

Boolean scored (1 for a matching). In addition, the type of

attack is taken into account when calculating the relationship

score. For the similarity between attack types, we benefit from

the statistical analysis proposed by Valdes et al [26].

G. Social activity metric

A social network is a social structure made of nodes that

are tied by one or more specific types of relations. In this

metric, we are trying to construct and analyze the social

network for the source and target that are stated in the alerts’

attribute. The node of the social network will be the source

address, target address, attack ID, and the sites the user has

visited. The relationship between the nodes differs according

to the object of the node. For instance, the social relationship

between an attacker and a victim raises an ”alerted” situation,

whereas if it were a worm and host, we would have an

”infected” situation. The goal in this metric is to find a

triangular relationship that involves a hidden participant. This

hidden participant could be a previous activity of the recent

attacker.

V. FUZZY LOGIC INFERENCE

A Fuzzy logic system reasons about the data by using a

collection of fuzzy membership functions and rules. It makes

clear conclusions possible to derive from imprecise infor-

mation. In this regard, it resembles human decision making

because of its ability to work with approximate data and

find precise results. Fuzzy logic differs from classical logic

37

TABLE II
FUZZY LOGIC INFERENCE RULES

Criteria Rule1 Rule2 Rule3 Rule4 Rule5 Rule6 Rule7 Rule8 Rule9 Rule10 Rule11 Rule12
Applicability High High Avg Avg - High Avg - High Avg High Avg
Importance High High High High Avg High Avg Low Low Avg High Mid

Sensor Status High High Avg Low Avg Avg Avg Low High Avg High High
Severity High High High Avg Low Avg - Low Avg - Avg -

Weaknesses High Avg High - Avg Low - Low - Low - Low
Relationship High High Avg Avg Avg - Low - Low Low - Mid

Social Activity High Avg High Avg - Low - Low - Low Low -

Alert Score High High High Avg Low High Avg Low Avg High Low Mid

Fig. 4. Portion of Fuzzy Logic Inference System

in that it does not require a deep understanding of the system,

exact equations, or precise numeric values. It incorporates

an alternative way of thinking, which allows for complex

modeling of systems using a high-level of abstraction of gained

knowledge and experience. Fuzzy logic allows the expression

of qualitative knowledge, including phrases such as “too hot”

and “not bad”, which are mapped to exact numeric ranges.

For the above reasons, we used a Fuzzy logic system to

reason about IDS alerts. Results coming from the metrics

presented in the previous section are used as input to Fuzzy

logic Inference engine in order to investigate the seriousness

of the generated alerts. The Fuzzy logic system requires a

definition of the membership functions of all input metrics. In

addition, fuzzy rules need to be defined in order to formulate

the conditional statements that make the fuzzy inference.

There are five parts of the fuzzy inference process: (1)

fuzzification of the input variables, (2) application of the

fuzzy operator (AND or OR) to the antecedent, (3) implication

from the antecedent to the consequent, (4) aggregation of the

consequents across the rules, and (5) defuzzification.

Membership Functions (MF) are curves that define how each

point in the input space is mapped to a membership value (or

degree of membership) between 0 and 1. We use Gaussian

distribution as the type of the membership functions.

Rules are defined by domain expert as shown in Table 4. Rules

in a fuzzy expert system are usually of a form similar to:

if Applicability is High and Severity is Avg then set

Alert Score to High

where Applicability and Severity are input variables, Score
is an output variable, High is a membership function (fuzzy

subset) defined on applicability, Avg is a membership func-

tion defined on severity, and High is a membership function

defined on the alert score.

In our approach, we use Fuzzy logic to score the alerts

generated by the different IDSs. As shown in figure 4, the

Fuzzy logic Inference system first takes the input values

from the metrics (e.g., applicability, severity, importance,

and relationship metrics) and then fuzzifies them using the

membership functions. Then, the rules will be evaluated to

generate the output set for each active rule. All the outputs will

be aggregated and a single fuzzy set will be provided. Then

this fuzzy set will be defuzzified in order to give a numeric

value that represents the seriousness of the alert.

VI. ALERT RESCORING

The goal of the alert rescoring technique is to score alerts

that have already been scored based on their relationship with

the current alert. One of the reasons for rescoring alerts is

to notify security administrators of the early steps of the

attack, which may have received low scores. Another reason

is to emphasize preliminary activities of an attacker who is

launching a critical attack. Scoring alerts only once limits

the identification of the non-critical early-steps of an attack,

especially if a filtering technique is used to discard low-

score alerts. Also, high-level alert management techniques

such as correlation or clustering can benefit from rescoring

and provide more accurate results.

Alert management techniques such as aggregation, group-

ing, scoring, filtering, clustering, correlation, and fusion were

proposed to deal with and abstract large numbers of alerts.

First, alerts are aggregated from multiple IDSs then similar

alerts are grouped together into hyper-alerts. Scoring function

evaluate the hyper-alerts and assign a score to each one accord-

ing to its importance. Low-score alerts are discarded and do

not get involved in any further analysis. Correlation functions

may then be applied to present the attack scenarios. Scoring

38

TABLE III
PRIORITIZED ALERT OF DARPA 2000 LLDOS 1.0 DATASET

Phase Alert Name
Without grouping With grouping

Alert # Prioritized Alert Alert Score # Alert # Prioritized Alert Alert Score

Phase 1
ICMP Echo Request 786 0 �2 29 0 ≈2
ICMP Echo Reply 30 0 �1.5 12 0 �1.5

Phase 2
RPC portmap sadmind request UDP 250 79 �8 46 28 ≈8
RPC sadmind UDP PING 9 6 �5 4 3 �5

Phase 3
RPC sadmind with root attempt UDP 46 28 �9 40 29 �9
RPC sadmind UDP NETMGT PROC SERVICE 46 6 �9 3 3 �9

Phase 5 BAD-TRAFFIC loopback traffic 141 141 �9 1 1 �9

False Alert

NETBIOS NT NULL session 2 0 �1 1 0 �1
ATTACK-RESPONSES Invalid URL 4 0 �1 1 0 �1
SNMP request udp 12 0 �6 9 0 �6
SNMP public access udp 6 0 �5 6 0 �5
ATTACK-RESPONSES 403 Forbidden 10 0 �1 3 0 �1
MS-SQL version overflow attempt 1 0 �1 1 0 �1
ICMP redirect host 2159 0 �1 26 0 �1

Total 3502 260 (92.57% Reduction) 182 64 (64.83% Reduction)

alerts once will discard early non-critical attacks that prepare

for later critical attacks. Consequently, the early steps of the

attacker are not involved in any further analysis such as attack

scenario construction. For instance, if attackers first scan the

victim machine by launching an IPSweep attack. This probe

will be scored low according to its seriousness and impact.

Later, the attackers launch a SadmindBufferOverflow
attack based on the vulnerability findings of the scanned

machine. This attack will be assigned a high score since it is a

critical attack. The security administrator can not see the early

steps of the attack if a filtering operation is applied. On one

hand, involving only critical alerts in the high-level operations,

such as correlation, prevents the non-critical early steps of the

attack from being considered. On the other hand, involving

all alerts in the high-level operation leads to an overwhelming

number of correlated alerts that is difficult to manage. Hence

it is important to highlight only the critical alerts and those

related to them.

We perform a rescoring of alerts based on the prepare-

for relationship and the trustfulness of attacks. The prepare-

for checks if there is any relationship between the currently

evaluated alert and the alerts in the alerts log. The trustfulness

examines the previous activities of the current source of the

attack if the launched attack is critical. Accordingly, we adjust

the value of trustfulness for this source in our source evaluation

metric.

VII. EXPERIMENTAL RESULTS

In order to to validate the effectiveness of our proposed

approach, we used the DARPA 2000 specific intrusion de-

tection scenario dataset (LLDOS 1.0 dataset) [15]. We also

used Snort to scan and reply to the LLDOS 1.0 dataset file.

Alerts generated by Snort were stored in a MySQL database.

To examine each alert, we wrote a Java program that accesses

the database through MySQL Connector/J. Finally, we used

Matlab Fuzzy logic toolbox [25] to score each alert.

The DARPA LLDOS 1.0 dataset contains the traffic col-

lected from the DMZ and the inside part of the evaluation

network. The series of attacks in the dataset are carried out

over multiple sessions. These sessions start with scanning the

Fig. 5. Alert Prioritization Scores

network in order to launch a DDOS attack against an off-site

server. The sessions can be grouped into the following five

phases:

1. Scan the network (IPsweep)

2. Look for the sadmind daemon of live IP’s

3. Exploit the sadmind vulnerability

4. Install an mstream trojan

5. Launch the DDoS attack

With its maximum detection capability Snort was used to

scan and detect intrusions within the binary tcpdump file of

both of the inside and DMZ traffics. Snort reported 3502

alerts (321 inside, 3181 DMZ). Since we are focusing on

alert scoring and prioritization instead of clustering, we only

grouped similar alerts that were very close in time in order to

remove redundant alerts. This resulted in a new total of 141

alerts.

We applied our scoring technique to the alerts generated

by Snort. For each alert, we compute the value of all the

metrics we defined earlier, except for the sensor status, service

vulnerability, and social activity metrics because the used

dataset does not provide knowledge about the status of the

targeted services and applications of the evaluation network.

However, the other metrics were good enough to prioritize the

most critical alerts. The attacker in the first phase tries to scan

39

the network by employing the ICMP echo-request, looking

for ”up” hosts. Snort generates 816 alerts as a response to

attacker’s ICMP requests and the hosts ICMP replies. Our

technique evaluated these antecedents and scored them as

low (1.2-2.3) as shown in Table III. In the second phase,

we received 259 alerts from the traffic of both the DMZ
and inside parts, which represents the attacker’s attempts

to probe the discovered live hosts from the previous phase

to determine which hosts are running the sadmind remote

administration tool. We scored these alerts differently based on

the context in which they occurred. For instance, the “RPC
portmap sadmind request UDP ” alert that was triggered

by the activity targeting the inside firewall interface is scored

low. However, this alert is scored high when the target host

is running a sadmind service. The remote-to-root exploit has

been tried several times in the third phase and Snort raised 92

alerts of which we prioritized 34. Since we focus on evaluating

alerts generated by Network-IDSs, we did not involve the audit

data from the hosts in the network and, therefore, phase 4 was

not included. The DDOS attacks in phase five triggered 141

alerts which we prioritized as critical events.

Table III summarizes the results of our alert scoring (with

and without the grouping function) technique on the DARPA

2000 dataset. Our IDS alert prioritization was effective in

identifying the false positive alerts which Snort failed to detect.

For example, Snort generates a ”MS-SQL version overflow
attempt” alert with the highest priority, but we scored this

alert low based on our criteria since the target address is

running a Mac operating system and this attack is impossible

to succeed in this context. Figure 5 shows that after we score

the alert, a security administrator can be provided with the

most important alerts unlike the result of Snort which assign

a level-two priority (out of 3) to most of the alerts. We also

applied our rescoring technique to the alerts that are scored

previously. Since the LLDOS 1.0 dataset consists of only one

complete attack scenario; the first phase, which contains non-

critical attacks (regular scanning), is targeted for rescoring.

Our technique rescored the first phase of this scenario since

it was a preparation step for the DDoS attack. As a result, all

the critical alerts as well as the preparation steps have been

prioritized and presented to security analyst.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a method that evaluates IDS

alerts based on a number of criteria. We used a Fuzzy logic

Inference mechanism in order to score alerts. The score repre-

sents the seriousness of the alerts. Furthermore, we developed

a rescoring technique that enabled us to rescore alerts to show

the early steps of the attackers. We applied our approach to

the alerts generated by scanning DARPA 2000 LLDOS 1.0

dataset and we successfully prioritized the most critical alerts

along with their preparation steps.

There are a number of directions for future work. First,

we plan to apply the proposed approach to heterogeneous

IDS. Second, we intend to investigate anomaly-based IDS

alerts. Using additional alert relationship criteria such as the

use of prerequisite consequence and/or predefined scenarios

techniques. Also, providing an analytical study of the alert

prioritization, rescoring mechanism, and the fuzzy logic rules

and inference engine is an appropriate extension to this re-

search.

ACKNOWLEDGMENT

The authors are thankful to the ministry of higher education

in Saudi Arabia (www.mohe.gov.sa/english) for providing a

scholarship to the first author of this paper. The authors are

also thankful to Dr. Issam Aib for his valuable comments that

helped improving this paper.

REFERENCES

[1] S. AXELSSON, The Base-Rate Fallacy and the Difficulty of Intrusion
Detection, ACM Transactions on Information and System Security 3
(2000), no. 3, 186–205.

[2] F. Cuppens and R. Ortalo, LAMBDA: A language to model a database
for detection of attacks, Proc. of Recent Advances in Intrusion Detection
(RAID 2000) (2000), 197–216.

[3] D. Curry and H. Debar, Intrusion detection message exchange for-
mat(idmef), IETF, 2007.

[4] H. Debar, M. Dacier, and A. Wespi, Towards a taxonomy of intrusion-
detection systems, COMPUT. NETWORKS 31 (1999), no. 8, 805–822.

[5] Herv Debar and Andreas Wespi, Aggregation and correlation of
intrusion-detection alerts, Recent Advances in Intrusion Detection,
2001.

[6] Jinqiao Yu et al, Trinetr: An intrusion detection alert management
system, WETICE ’04 (Washington, DC, USA), 2004.

[7] Muhammad Abedin et al, Vulnerability analysis for evaluating quality
of protection of security policies, QoP ’06: Proceedings of the 2nd ACM
workshop on Quality of protection, 2006.

[8] Zhichun Li et al, Towards scalable and robust distributed intrusion alert
fusion with good load balancing, LSAD ’06’, 2006.

[9] B. Feinstein and G. Matthews, The intrusion detection exchange protocol
(idxp), IETF RFC, 2007.

[10] http://insecure.org/nmap/.
[11] http://www.nessus.org/nessus/.
[12] http://www.securityfocus.com/archive/1, Bugtraq.
[13] http://www.securityfocus.com/vulnerabilities.
[14] K. Julisch, Clustering intrusion detection alarms to support root cause

analysis, 2003.
[15] MIT Lincoln Lab, 2000 darpa intrusion detection scenario specific

datasets, MIT, 2000.
[16] Wang Li, Li Zhi-tang, Lei Jie, and Li Yao, A novel algorithm sf for

mining attack scenarios model, icebe 0 (2006), 55–61.
[17] P. Meil, T. Grance, et al., NVD national vulnerability database.
[18] P. Ning, Y. Cui, and D. Reeves, Constructing attack scenarios through

correlation of intrusion alerts, 2002.
[19] P.A. Porras, M.W. Fong, and A. Valdes, A Mission-Impact-Based

Approach to INFOSEC Alarm Correlation, Proceedings of the 5th
International Symposium on Recent Advances in Intrusion Detection
(RAID 2002) (2002), 95–114.

[20] Phillip A. Porras, Martin W. Fong, and Alfonso Valdes, A mission-
impact-based approach to infosec alarm correlation, RAID, 2002,
pp. 95–114.

[21] Xinzhou Qin and Wenke Lee, Statistical causality analysis of infosec
alert data, RAID, 2003, pp. 73–93.

[22] M.J. Ranum, False Positives: A Users Guide to Making Sense of IDS
Alarms, ICSA Labs IDSC, white paper, 2003.

[23] Secunia-Vulnerability and virus information, http://secunia.com.
[24] S. Staniford-Chen, B. Tung, and D. Schnackenberg, The common intru-

sion detection framework (cidf), Information Survivability Workshop,
Orlando FL, 1998.

[25] Fuzzy Logic Toolbox, http://www.mathworks.com/products/fuzzylogic.
[26] A. Valdes and K. Skinner, Probabilistic Alert Correlation, RAID 2001,

Springer, 2001.
[27] MITRE Common Vulnerabilities and Exposures (CVE),

http://cve.mitre.org/.
[28] www.snort.org.

40

