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Abstract—Different trust models have been developed for deal-
ing with possible dishonest behavior and attacks from malicious
peer Intrusion Detection Systems (IDSs) in a collaborative In-
trusion Detection Network (IDN). For evaluating and comparing
these models, this paper introduces a simulation framework
that incorporates different components namely expertise model,
deception model, attack model, and evaluation metrics. The
proposed framework offers flexibility for users to adjust the
simulation parameters according to their needs. We then compare
three existing trust models in this domain to demonstrate the
effectiveness of our framework when used in analyzing their
efficiency, robustness and scalability.

I. INTRODUCTION

Intrusion Detection Systems (IDS) identify intrusions by
comparing observable behavior against suspicious patterns.
They can be network-based or host-based. Network-based
intrusion detection systems (NIDS) detect malicious activity
by monitoring and analyzing network traffic, while host-
based intrusion detection systems (HIDS) detect intrusion by
monitoring and analyzing the internal activities as well as
network traffics of a computer system. Traditional IDSs work
in isolation and may be easily compromised by unknown
or new threats. An Intrusion Detection Network (IDN) is a
collaborative IDS network intended to overcome this weakness
by having each peer IDS benefit from the collective knowl-
edge and experience shared by other peers. IDS collaboration
enhances the overall accuracy of intrusion assessment as well
as the ability of detecting new intrusion types.

Most existing collaboration networks such as [9], [1],
and [8], rely on the assumption that participating IDSs coop-
erate honestly. However, in such collaborative environments,
a malicious (or malfunctioning) IDS can degrade the perfor-
mance of others by sending out false intrusion assessments.
This is especially true when the collaboration is among host-
based IDSs because hosts can be easily compromised. To
protect an IDN from malicious attacks, it is important to
evaluate the trustworthiness of participating IDSs.

Different trust models [2], [5], [6] have been developed for
dealing with possible dishonest behaviors and attacks from
malicious peer IDSs in a collaborative IDN. Many more trust
management models are expected to appear in this domain.
A unified testbed would then be beneficial for researchers to
analyze and compare these trust models with the purpose of
improving their performance.

In this paper, we present a simulation framework for eval-
uating and comparing trust models in the area of collabora-

tive intrusion detection. In this framework, we simulate and
abstract the properties of real-world scenarios in this target
area when designing different components, including expertise
modeling, deception and attack models, and evaluation met-
rics. The outcome is a research environment in which users
can flexibly adjust parameters for the evaluations of their own
trust models and to compare with other existing models using
unified evaluation metrics provided along with our framework.
We also demonstrate the effective use of our framework for
comparing three existing trust models.

II. SIMULATION FRAMEWORK DESIGN

Our unified testbed simulates a collaborative Intrusion
Detection Network that consists of a number of individual
Intrusion Detection Systems. Each IDS communicates with
other IDSs in the network through a communication layer. A
collaboration layer is built upon Intrusion Detection Systems
where an IDS coordinates with other IDSs to gain better
intrusion detection performance. A trust management layer
upon a collaboration system can further improve the efficiency
and robustness of the collaboration system.

In general, a trust management system is composed of three
parts: trust evaluation, acquaintance management, and feed-
back aggregation. We will elaborate these three components
in section III. In the rest of this section, we first give an
overview of the simulation framework design, and describe
each component of the framework subsequently.

A. Overview

Our goal is to build a simulation framework which provides
a unified testbed for evaluating and comparing all distributed
trust management systems for IDNs. To make our framework
general, extendable and easy to use, we adopt a modular
architecture. Modules are distinguished by their respective
functionalities.

The framework consists of the following components: a
core simulation engine, an input interface, an output interface,
evaluation metrics, and an IDS model which includes an
expertise model, a deception model, an attack model, and
a trust management model. Among these components in the
IDS model, the trust management model is user-specific and
will be implemented by users of this framework. The other
components are provided by the framework.

The input interface provides a convenient way for users to
set up simulation parameters and run customized experiments.
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Fig. 1. Framework Design

The parameters include, for example, the size of the IDN,
expertise distribution, and adversary strategies. The output
interface receives the simulation results data from the core en-
gine and prints out results in graphic mode. The functionalities
of other components are described in detail in the following
subsections.

B. Core Engine

The core engine is the central part of the simulation frame-
work. Its main functionalities include:

1) Bootstrapping the simulation process and displaying
the input interface for users to configure the IDN and
experiments;

2) Creating a virtual IDN with a group of IDS instances
based on the configurations received from users;

3) Coordinating all the components of the simulation
framework to accomplish simulation tasks;

4) Collecting simulation results and sending data to the
output interface for plotting.

C. Expertise Model

The purpose of this model is to simulate the environment
where IDSs may have different expertise levels in detecting
intrusions. Each IDS is assigned an expertise level l ∈ (0, 1),
where a larger l indicates that the IDS is more likely to
correctly identify intrusions. In this simulation model, IDSs
identify intrusions by ranking the risk levels of alerts r ∈
(0, 1). The rank of alerts can be, for example, no risk, low
risk, medium risk, and high risk. To connect the expertise level
of an IDS with the precision of alert ranking, we use a Beta
density function to model the possible decisions about alert
ranking provided by an IDS with a certain expertise level, as
follows:

f(p|α, β) =
1

B(α, β)
pα−1(1− p)β−1

B(α, β) =
∫ 1

0

tα−1(1− t)β−1dt (1)

where f(p|α, β) is the probability that a peer with expertise
level l ranks the risk of an alert with a value of p ∈ [0, 1].
B(α, β) is a Beta function, which is a normalization constant
for the Beta distribution. We choose the Beta density function

because it provides sufficient parameters for us to simulate
IDSs with different expertise levels. We define α and β as
follows:

α = 1 +
l(1− d)
d(1− l)

√
r

1− r

√
2
l
− 1

β = 1 +
l(1− d)
d(1− l)

√
1− r

r

√
2
l
− 1 (2)

For a fixed difficulty level d ∈ (0, 1), the above model
has the property of assigning higher probabilities of producing
correct rankings to peers with higher levels of expertise. for
alerts with higher difficulty levels (d > l), A peer with a fixed
expertise level l has lower probabilities of producing correct
rankings. l = 1 and d = 0 represent the extreme cases where
the peer can always accurately rank intrusions. This is reflected
in the Beta distribution by having α, β →∞. Figure 2 shows
the probability distribution of the produced risk levels of an
alert by peers with different expertise levels, where the true
risk level of the alert is fixed to 0.7 and its difficulty level
0.5. The peer with the expertise level of 0.95 has the highest
probability of assigning the true risk level to the alert.

D. Deception Models

The simulated IDN environment is populated with ad-
versaries, in order to measure the performance of the trust
model being tested by the framework. We introduce four
basic deception models: complementary, exaggerate positive,
exaggerate negative, and maximal harm. In the first three
deception models, an adversary may choose to send feedback
about the risk level of an intrusion that is respectively opposite
to, higher, or lower than the true risk level [10]. We also
propose a maximal harm model where a peer always chooses
to respond with the intention to cause the worst impact to
others.

When an adversary chooses to use a maximal harm de-
ception model, it chooses to report either 0 or 1 for a risk
level to achieve maximal deviation from the true risk. In our
simulation model, we use a simple threshold decision model
for the maximal harm deception model. When the known risk
level r is lower than a certain threshold thm, the adversary
always reports the highest risk, otherwise no risk is reported.
We plot typical deception curves of deception models in Figure
3. It is worth noting that an adversary node may also adopt a
mixture of the basic deception models. It may have an adaptive
deception strategy which learns from the environment and
accordingly adjusts its deception type and frequency [11]. For
example, it may send reports to cause the maximal harm for
high risk intrusions and send complementary reports for low
risk ones.

E. Attack Models

Adversaries in an IDN may launch attacks to compromise
trust models developed in this environment. To evaluate the
models’ resistance to attacks, the framework integrates a list
of common attacks and can be extended to incorporate more
attack models.
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Fig. 4. Satisfaction Mapping Model

1) Newcomer Attack: occurs when a malicious peer white-
washes its bad history by registering as a newcomer, and
therefore brings harm to the trust system [7]. Our framework
supports newcomer attacks by allowing peers to freely leave
and rejoin the network.

2) Betrayal Attack: occurs when a highly trusted peer
suddenly changes its behavior to provide untruthful feedback.
A trust management system can be degraded dramatically
because of this type of attack. In our framework, users can
simulate a betrayal attack by specifying a particular time for
a certain (expert) peer to become deceptive.

3) Inconsistency Attack: occurs when a malicious peer re-
peatedly changes its behavior from honest to dishonest, hoping
to degrade the efficiency of the trust system without being
detected [7]. In our framework, users can choose the frequency
and the time interval of honest and dishonest behaviors.

4) Group Attack: occurs when a group of malicious peers
launch an attack simultaneously, hoping to achieve a large
degression of the trust system. Our framework allows users to
specify any number of group attack peers.

F. Evaluation Metrics

This module provides performance metrics, including effi-
ciency, robustness, scalability, and incentives, to evaluate and
compare different trust management models. These metrics are
computed after simulations and presented to users through the
output interface.

1) Efficiency: This metric evaluates the accuracy of a given
trust model. It can be represented by the rate of successful
detection and the average satisfaction level of aggregated
feedback. When a peer encounters an alert it does not know
how to rank, it issues a ranking request to its acquaintances.
It then aggregates feedbacks to make a final decision. The
average satisfaction level of the aggregated feedback will then
be used to evaluate the efficiency of the trust model in use.
Feedback satisfaction is computed as follows:

S(r, a, d) =





1−
(

a−r
max(c1r,1−r)

)c2d

a > r

1−
(

c1(r−a)
max(c1r,1−r)

)c2d

a ≤ r

(3)

where c1 > 1 reflects that the reported risk levels a that
are lower than the exact answer r receive stronger penalty

than those that are higher. Parameter c2 ∈ (0, 1] controls
satisfaction sensitivity. Smaller c2 values yield faster satisfac-
tion decrease when a report deviates from the correct answer.
Figure 4 illustrates the mapping function for three intrusion
difficulty levels. The chosen parameters are r = 0.5, c1 = 1.5
and c2 = 0.8. Notice that the satisfaction level of incorrect
answers decreases faster for intrusions with lower difficulty
levels (i.e., easy to detect).

2) Robustness: This metric evaluates the robustness of a
trust model against attacks that target the trust system. It
is indicated by how fast an IDN adopting the trust model
can detect these attacks and recover from them. To represent
robustness, we observe trust values of attacking peers, the rate
of successful detection and the overall satisfaction level of
aggregated results within the period when the attacks occur.

A common metric to measure the robustness is the max-
imum impact of the attacks on the overall efficiency of the
network measured by the average satisfaction level of all
peers, as discussed in Section II-F1. We can also measure the
recovering gap for the average satisfaction level after being
attacked. Figure 6 compares the robustness among the example
trust models by tracking these two metrics shown as the depth
of the pit and the width of the recovering gap respectively.

3) Scalability: This is a critical metric that determines the
practical applicability of a trust management model. The most
relevant output is the amount of exchanged messages per unit
of time per peer denoted as R(n), where n is the total number
of peers in the network. Messages here include consultation
messages as well as overhead for the purpose of maintaining
the trust system. If R(n) increases rapidly with the network
size (e.g. O(n)), the scalability feature of the model needs to
be improved.

4) Incentives: Incentives are important since they influence
the long-term effectiveness of a collaborative IDN. A trust
management model with a good incentive design can encour-
age expert peers to contribute more to the network and penalize
free-riders [3]. We can measure the amount of help (sr) that
a peer can receive from other peers in the network and the
amount of help (sc) it contributes. In an incentive environment,
sr should be proportional to sc.

III. TRUST MODEL

We suggest that each trust model tested using our simulation
framework includes two major modules: trust evaluation and
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acquaintance management.

A. Trust Evaluation
Trust evaluation is designed to allow a peer IDS to model

the trustworthiness of others based on its direct interactions
with them in history. For example, the model of Duma et
al. [2] assigns a positive interaction with a satisfaction level
of 1 and −1 to a negative one. It then uses a linear average of
all interactions to calculate the trust value. The model of Fung
et al. [5] averages the satisfaction levels of past experience by
also incorporating a forgetting factor to emphasize recent expe-
rience. The Dirichlet-based trust model [6] adopts a Bayesian
model to calculate trust values as well as the confidence of
the trust estimation. All trust models are required to have a
trust evaluation component.

B. Acquaintance Management
This module is used to manage an acquaintance list for each

peer, and decides to which acquaintances and how frequently
the peer should send requests. The model proposed in [5]
fills each peer’s acquaintance list with all other peers in
the network. The models in [2] and [6] limit the length of
acquaintance lists, keeping only trusted peers and periodi-
cally replacing the most untrustworthy peers by new ones.
The Dirichlet-based model adopts a dynamic message rate
mechanism to allow a peer to send more requests to certain
other peers. The other two models have equal message rate
for each peer. If a trust model does not have acquaintance
management, we assume that each node takes all other nodes
as acquaintances.

IV. DEMONSTRATION OF OUR FRAMEWORK

In this section, we demonstrate the effectiveness of our
simulation framework when used to evaluate and compare the
efficiency, robustness and scalability of the three example trust
models mentioned in Section III, including the model of Duma
et al. [2], the model of Fung et al. [5] and the Dirichlet-based
model [6]. The simulation creates an environment populated
with IDSs with different expertise levels, specifically, low
(0.05), medium (0.5) or high (0.95). Simulation using the
expertise model is described in Section II-C.

The commonly shared simulation parameters for the follow-
ing experiments are listed in Table I. The experiment specific
parameters will be listed in each experiment description.

TABLE I
SIMULATION PARAMETERS

Parameter Value Description

D 100 Total number of simulation days
c1 1.5 Cost rate of low estimate to high estimate
c2 1 Satisfaction sensitivity factor

thm 0.4 Decision threshold for maximal harm deception

A. Efficiency of Trust Models

This experiment is carried out to demonstrate how to use
our framework to evaluate and compare the efficiency of trust
models. In this experiment, a peer u has 15 acquaintances,
which are evenly divided into three groups with low, medium,
and high expertise levels respectively. Among the expert peers,
some are malicious and repeatedly adopt the maximal harm
deception strategy for two days followed by six days of honest
behavior, to degrade the efficiency of the IDN. We also inject
intrusions with random risk levels and medium difficulty level
(0.5) to peer u in each day. The efficiency of a trust model
is measured as the overall satisfaction level of peer u for its
aggregated feedback, when the percentage of malicious peers
in the network varies from 0% to 80%.

Figure 5 plots the results. We can observe that the Dirichlet-
based model outperforms the other two. The dynamic message
rate used in the Dirichlet-based model causes the trust values
of malicious peers to drop faster and increase slower, and
hence minimizes the impact of dishonest behavior. Among
the three models, the model of Duma et al. has the lowest
efficiency because it does not emphasize recent events and
thus responds slowly to sudden changes in peer behavior.

B. Robustness of Trust Models

This experiment demonstrates that our simulation frame-
work can be effectively used for comparing and evaluating the
robustness of trust models against various insider attacks. For
this purpose, we simulate the betrayal attack. The robustness of
each trust model is evaluated by observing how fast the overall
satisfaction level of peers can be regained after the attack when
the trust model is in use. We set up a scenario where a peer u
has seven peers in its acquaintance list, of which six are honest
with expertise levels evenly divided between low, medium,
and high. The malicious one has high expertise and behaves



honestly in the first 49 days. After that, it launches a betrayal
attack by adopting a maximal harm deception strategy.

The results for the satisfaction levels of aggregated feedback
with respect to peer u before and after the betrayal attack are
shown in Figure 6. We notice that the satisfaction level of u
for the aggregated feedback drops down drastically on day 50
and recovers after that in all three models. All three models
are similar in the depth of the pit. However, the width of the
recovering gap is much shorter for the model of Fung et al. and
the Dirichlet-based model. Compared with the model of Fung
et al., the Dirichlet-based model has a slight improvement in
the recovering speed.

C. Scalability of Trust Models

The result of message rates under betrayal attack is shown
for the the trust model of Fung et al. and the Dirichlet-
based model in Figure 7, for the purpose of demonstrating the
effectiveness of our framework for comparing the scalability of
trust models. We notice that in the Dirichlet-based model, the
average message rates for highly trusted and highly untrusted
peers are the lowest. The average message rate for peers with
the medium expertise level is higher. Compared to the model
of Fung et al., the average message sending rate is much lower,
which demonstrates better scalability of the Dirichlet-based
model. Note that the spike from the betraying group on around
day 50 is caused by the drastic increment of the message
rate. The sudden change of a highly trusted peer’s behavior
will cause the trust confidence (certainty) level calculated in
the Dirichlet-based model to drop down quickly. The rate of
sending messages to this peer is then increased accordingly.

V. RELATED WORK

Although deploying a real IDN using existing Intrusion
Detection Systems like in [2] can be useful, this type of testbed
is expensive to deploy and difficult to unify. It may also lack
flexibility for configurations when different aspects of evalua-
tions should be considered. Our simulation framework instead
offers a set of parameters that are easy to adjust according to
user’ needs for different evaluation purposes. Moreover, the
performance other than efficiency of trust models including
robustness and scalability are incorporated into our framework.

The ART Testbed [4] is proposed to provide unified
simulation-based performance benchmarks for evaluating and
comparing trust and reputation models in multi-agent systems.
This testbed is specifically designed for the e-commerce do-
main and the only performance metric considered is profit. In
contrast, our framework incorporates domain specific knowl-
edge of collaborative intrusion detection (i.e. the extent of the
penalty parameter in Equation 3), and introduces performance
metrics of robustness and scalability, which are two important
concerns in network management.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a simulation framework for eval-
uating and comparing distributed trust models in the domain of
collaborative intrusion detection. The design of the framework

offers flexibility for researchers to adjust parameters that are
suitable for the evaluation of their own trust models and to
compare with other existing models from different perspec-
tives. We demonstrated the effective use of our framework.
Our work thus serves as an initial attempt towards a uniform
simulation testbed for trust models in collaborative intrusion
networks, with the purpose of allowing researchers in this
field to study other models and to improve their own. This
work is especially valuable, as IDNs of collaborative IDSs are
increasingly used to cope with possible threats.

The current design of our framework targets direct trust
models. An indirect trust component that allows peers to
ask advice about other peers’ trustworthiness may also be
incorporated into our framework to reflect reputation of a
peer. In this case, other possible attack types (i.e. the bad-
mouthing [7]) may also be implemented to allow full testing
of trust and reputation models against different attacks. After
the extension of our framework is realized, we will implement
our framework as an open source to benefit other researchers
in this field, and hopefully employing their feedback in order
to refine our framework, ultimately resulting in a unified
simulation testbed for intrusion detection networks.
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