
Adaptive Early Packet Filtering for Defending
Firewalls against DoS Attacks

Adel El-Atawy , Ehab Al-Shaer
School of Computing

DePaul University
Chicago, Illinois, USA

Email: {aelatawy,ehab}@cs.depaul.edu

Tung Tran, Raouf Boutaba
School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

Email: {t3tran@,rboutaba@bbcr.}uwaterloo.ca

Abstract—A major threat to data networks is based on the
fact that some traffic can be expensive to classify and filter
as it will undergo a longer than average list of filtering rules
before being rejected by the default deny rule. An attacker with
some information about the access-control list (ACL) deployed
at a firewall or an intrusion detection and prevention system
(IDS/IPS) can craft packets that will have maximum cost. Most
optimizations made to current filtering techniques target the
accepted traffic.

In this paper, we present a techniques that is light weight,
traffic-adaptive and can be deployed on top of any filtering
mechanism to pre-filter unwanted expensive traffic. The tech-
nique utilizes Internet traffic characteristics coupled with special
carefully tuned representation of the policy to generate early
defense policies. We use Boolean expressions built as BDDs to
represent relaxed versions of the policy that are faster to evaluate.
Moreover, it is guaranteed that the technique will not add an
overhead that will not be compensated by the gain in filtering
time in the underlying filtering method. Evaluation has shown
considerable savings to the overall filtering process, thus saving
the firewall processing power and increase overall throughput.
Also, the overhead changes according to the traffic behavior, and
can be tuned to guarantee its worst case time cost.

I. INTRODUCTION

The overall performance and reliability of network-based
operations depend on the reliability and stability of its
perimeter network security devices. Firewalls and intrusion
detection/prevention systems (IDS/IPS) are the cornerstone of
a network’s security infrastructure. If an attacker becomes
capable of attacking these devices then the whole network
can be dramatically affected. By overwhelming firewalls with
packets that are chosen to be very hard to process, the attacker
can reduce the overall throughput drastically and the payoff to
the attacker’s bandwidth is multiplied by the ratio of the worst
to the average packet matching cost. Recent advancements in
probing/scanning techniques showed that it is possible for an
intelligent scanner to find out a great deal about what the
firewall policy looks like by a reasonable number of scanning
packets [12], [24].

Routers and firewalls classify packets according to prefix
tables and access control lists where each packet is matched
against the policy to decide the appropriate action. The same
task takes place in Intrusion Detection Systems (IDS) where
the header and, often, the payload of the packet are matched
against a set of patterns and conditions that trigger alerts

regarding malicious activities. A filtering technique that is
capable of performing regardless of the number of criteria
fields will prove useful in a wide variety of devices.

In this paper, we will describe an early filtering/decision
technique that reduces the packet matching cost by a dy-
namically changed pre-filtering phase that resides before the
original firewall matching technique. Special consideration
was given to having minimal on-line operations and reasonable
overhead periodic maintenance. While in this paper we focus
on firewalls, the technique is applicable to any device that
performs packet matching based on a predefined deterministic
policy. The actual implementation was written and deployed
as a plug-in for the standard IPTables firewall. The technique
is triggered prior to the start of the regular matching, and if a
packet needs further processing it is passed to the next layer,
otherwise it is directly dropped or accepted to the system.

Firewall rules are often written as exceptions to the default
deny rule for incoming traffic. This explains the research em-
phasis on optimizing the acceptance decision path in firewall
filtering. However, some rejected packets might traverse long
decision paths of rule matching before they are finally rejected
by the default-deny rule. This causes significant matching
overhead that in most cases increases with the number of rules
in the firewall policy. Many of such packets can be rejected
with minimal cost if the appropriate conditions were checked
first. For example, checking the most-significant bit of the
destination IP can eliminate all incoming traffic if it contains
the wrong IP class (e.g., all class A domains has a 0 in the
MSB).

The proposed technique uses a modified representation of
the policy to attain its goal. The policy is compiled into
a single Boolean expression that represents its acceptance
space. In this representation, each bit in the packet header is
considered an input binary variable into the Boolean expres-
sion, and only packets that evaluate this expression to true
are passed through the firewall successfully. This expression,
however, is quite complex and evaluating it for every packet
can be a considerable overhead. Thus, we aim to simplify this
expression by placing an upper bound on the depth by which
we can traverse the expression tree to evaluate the packet. In
other words, our policy is an approximation that is aware of
its limitations.

2

In the following sections, we present some of the related
work (Section II), then the technique will be explained in
detail and analyzed in Section III. After that, in Section VI,
the technique’s performance is evaluated and discussion about
its applicability is shown. Finally, we end with final remarks,
conclusion and future work in Section VII.

II. RELATED WORK AND BACKGROUND

A. Optimizing Packet Classification

The problem of packet classification and filtering has been
studied extensively, and various promising results has been
around for years. Recently, the idea of having a technique that
is traffic aware has started to get some attention in the literature
(some of these techniques are referenced below [6], [9], [15],
[16], [20]). It is important to note that most of the previous
work target the acceptance path, where legitimate packets are
to be accepted as fast as possible.

Policy Simplification: An important direction is minimiz-
ing the policy (access-control list) itself, by finding another
smaller set of rules with the same semantics. In [2], the
problem was mapped to minimizing the number of opaque
rectangular patches that are needed to come up with a pic-
ture with a desired pattern. The problem is NP-hard and
the authors provided a poly-time approximation algorithm
(ρ = O(min(n1/3, OPT 1/2))). Same problem was addressed
in [27] where adjacent rules satisfying a set of simple criteria
can be converted into a fewer number of rules. However,
these two approaches add extra dependencies between rules,
hindering the optimization of the filtering operation.

General Optimization Techniques: Many approaches have
been studied for the general packet classification problem.
Mainly, one or more of the following approaches are used:
hardware-based optimization [4], [22], [23], specialized data
structures and geometric algorithms [10], [25], and several
heuristics [6], [13], [14], [26].

Hardware-based solutions using Content Addressable Mem-
ories(CAM) exploit the parallelism in the hardware but face
scalability problems due to cost, power and size limitations
of CAMs. Also, the nature of their deployment and filter-to-
HW mapping makes such techniques limited to specific filter
types (routing vs. IDS filters). In [22], rules are structured as a
trie, with classification time linear in size of filter bits. In [4],
Aggregated Bit Vector (ABV) are used to reduce the problem
to dimension lookup instead of bit lookup thus enhancing
the complexity. They use d independent lookups on each
dimension, followed by a combining phase. In [23], Prefix
Inclusion Coding (PIC) is used to compress the representation
of the policy when mapped to TCAM entries. This solves to
some extent the scalability issue in number of rules, but not
in the number of filtering fields. Other researchers addressed
the question of whether TCAMs are the only solution for fast
classification or not [3], [7].

Srinivasan et al. [25] used a table of field value cross-
products and pre-compute the earliest rule matching each
cross-product. Obviously, the size of these tables grow dra-
matically with the number of rules. Geometric structures were

also used with promising results, as these technique proposed
by Feldmann et al. [10]. They used Fat Inverted Segment
(FIS) Trees, partitioning dimensions recursively based on rule
endpoints. This method scales well with the number of filtering
rules, but not with the number of dimensions (i.e., a problem
for extended firewalls or IDSs).

Decision-tree based classification algorithms based on ge-
ometric cutting was used by Gupta and McKeown [13] and
Woo [26] where both schemes build a decision tree optimized
based on greedy choices. Woo [26]’s approach uses multiple
decision trees, thus increasing search time while reducing
storage while Gupta and McKeown’s Recursive Flow Clas-
sification (RFC) helps pipeline the matching on the expense
of scalability. Similarly, the Hierarchical Cuttings (HiCuts)
scheme described in [14] uses range checks instead of bit tests
at each node of the decision tree. In [6], decision trees were
also used with common-branch adjustment to reduce space
requirements. However, the data elements in the decision trees
are whole rules, and the choices used to build the tree are
greedy choices.

Although all previous work contribute significantly to the
advancement of packet classification research, their main ob-
jective was to improve the worst-case matching performance
with less emphasis on average case gains. Hence, they are
not traffic aware and in many cases they exhibit high space
complexity.

Traffic-aware and driven Techniques: Utilizing traffic char-
acteristics to the optimization process was addressed by many
researchers in the field (e.g., the work by Gupta [15], Fulp [11],
Hamed [16] and El-Atawy [9]). By introducing statistical data
structures in optimizing packet filtering, these papers became
among the most interesting foundation publications in this
domain. In the first paper, depth-constrained alphabetic trees
are used to reduce lookup time of destination IP addresses of
packets against entries in the routing table. As the focus of
this paper is routing lookups, the scheme is limited on search
trees of a single field with arbitrary statistics. In [16] the work
was extended to multiple fields in firewall policies with the
capability of parallel processing. The authors in [9] proposed
a technique that is based on a specialized policy encoding (i.e.,
policy segments) in order to build Huffman trees that adapt to
the traffic statistics. The technique can also be parallelized
and its worst case could be bounded. An approach to find an
optimal ordering of rules while maintaining policy semantics
was addressed in [17]. The maintained form of the rules makes
it a plausible preprocessing phase to any other technique.
In [7], a hybrid approach between software and hardware
was proposed, it also incorporates the traffic statistics to
dynamically build new rules in the form of a cache. These
new rules have better hit ratio than using original rules from
the rule set.

B. Early Rejection via FV-SC

Another tightly related traffic aware technique is the Field
Value Set Cover (FV-SC) technique we presented in [16]. We
introduced the basic idea of early rejection with a preliminary

3

design of the technique using field value set covering. The
technique targets the traffic that will eventually hit the default
rule. The technique used custom statistics-induced rules that
should match such traffic with minimal overhead to other
flows. The analysis was limited to filtering engines that use
linear matching for the original policy rules, while in this paper
we elaborate using different matching cost patterns. Moreover,
in the current paper, we exploit our experience in representing
rules and policies (i.e., access-control entries and lists) as
Boolean expressions. Another limitations of the previous work
is that it focused on rejection paths only, while in this paper
the technique can find shortcuts for both accepted and denied
traffic.

The intuition behind it was that some field values used
in the policy are more popular than others. Therefore, it is
possible to find a small set of them that every accepting rule
has to contain at least one element (i.e., hence the name “set
cover”). Obviously, if a packet does not match any of the
these values, then it can be safely dropped. For example, if
all accept rules use as destination a certain subnet or allow a
certain destination port number, then packets that do not have
neither can be safely rejected without any further matching.
The nature of the problem makes finding the optimal set
cover not required and more than one solution will be needed
to cover the policy with varying set-covers. Using one set-
cover solution, a Rejection Rule (RR) is formed, such that
each element will me translated to a Rejection term (RT) that
together compose RR.

RR =
∧

Sj
k∈A

(Pkt(fj) 6= vk) (1)

where Pkt(fj) is the value of field fj in the
packet to be inspected. A typical rule can look like:
RR = (DPort 6= 80) ∧ (DPort 6= 20) ∧ (DAddr 6=
15.16.17.18) ∧ (Proto 6= UDP)

III. RELAXED POLICY MATCHING

Our technique “Early Filtering” (EF) is based on approxi-
mating the policy with another while having an error that can
be deterministically rectified. Provided a packet, the technique
evaluates it against the policy, and reaches one of three options:
Either the packet should be accepted, rejected or more filtering
is needed by the original policy. The original policy is still
being deployed using the filtering method implemented in the
firewall, but it is not executed unless the early filtering module
fails to reach a conclusion.

A. Policy Representation and Modeling

To attain our goal of representing the policy and efficiently
approximating it, we will use the Boolean expression represen-
tation of the policy, as used in [8], [9]. For example, assume
having a simple packet header that consists of only source and
destination fields each is just 3-bits long. Table I shows two
examples of such rules converted to Boolean expression con-
version. After converting each rule, the expression representing

TABLE I
EXAMPLE OF RULE-TO-BOOLEAN EXPRESSION CONVERSION

Rule src dst expression
R1 11* 0** x0x1x3

R2 1** 01* x0x3x4

the accept space of the whole policy (Φ) will be compiled as
follows;

Φ =
n∨

i=1

[φ(i)
i−1∧

j=1

¬φ(j)]

where φ(i) is the Boolean expression version of rule i, and n is
the total number of rules in the policy. This policy expression
incorporates the first-rule priority matching rule (i.e., rule i
matches a packet if the packet does not match any higher rule).
Evaluating this function by simple substitution of variables by
their values from the packet header will result in the correct
classification result (e.g., “allow” or “drop” in the case of
firewall policies).

The implementation and maintenance of this expression
can get quite complex. Therefore, we the Binary Decision
Diagrams data structure (BDD) for its representation. BDDs
can facilitate the matching by representing the expression in
the form of a tree, where each variable is needed to be checked
only once. Thus, the overall matching cost is bounded by the
number of bits needed to represent the fields used to build
the matching criteria. In the case of standard firewalls, this
sums up to 104 variables (32*2 for IP addresses, 16*2 for the
ports and 8 for the protocol). Any packet filtering technique,
in order to be of some value, has to beat the cost of 104 bit-
comparisons per packet (i.e., compare-and-branch cost at each
node). Our technique is based on using only shallow leaves to
approximate the policy, while leaving longer decision paths
for the second stage where ordinary/legacy packet filtering
techniques can take over.

According to the traffic statistics, we can obtain the range
of depths to go into the policy expression tree (i.e., BDD-
represented expression) while maintaining a positive gain in
performance. If the traffic that hits the shallow leaves (i.e.,
close to the root) in the BDD tree is high enough, the gain will
be valuable. As this percentage gets lower the technique will
be less effective to the point that it just introduces overhead
with no gain, and in such case the algorithm will automatically
shutdown the early filtering path.

B. Preprocessing Phase

The technique uses an off-line step where the user-provided
text policy is converted into a single compound Boolean
expression. For example, assuming the simple 3 bit addressing
scheme used above, if we are given the policy in Table II
with all rules “allow”; the overall expression would be Φ =
x1x2 + x1x2x4x4 + x1x2x3x4 + x1x2x3x4x5 + x1x2x3.

Conceptually, we build BDD trees representing several ap-
proximation levels concurrently: Φ0, Φ1, . . . Φn. Each tree (or
equivalently expression) Φi approximates the original policy
using the first i variables. Without replicating the storage,

4

src dst X1

x4

x3x3

X2X2

TF

T

x4T

X5

T F

F

F

R1 11* ***
R2 011 0**
R3 010 1**
R4 001 ***
R5 010 00*

TABLE II
A SAMPLE POLICY OF A SIMPLISTIC SYSTEM AND ITS GENERATED

BOOLEAN TREE

just limiting traversal depth while evaluation will attain the
same goal with a single tree. Furthermore, each node will be
associated with an integer that represents the first tree level at
which a decision can be reached (i.e., number of hops until the
first leaf). For example, if the traversal is limited to the first
10 levels, the matching process will terminate if it reached a
node with marked value of 18.

C. Packet Classification and Maintenance

Upon packet arrival, the fields used in classification are
extracted from the packet header and sorted according to their
order in the expression tree, so they can be used one-by-one in
navigating the tree. This step can be implemented in hardware,
as a permutation of incoming bits in parallel to their required
order. Hard-wiring is even possible to attain very low latency.
Tree navigation is itself a very simple set of instructions; check
the variable at the current node, load a certain integer if true
(i.e., left child node entry in the BDD table) and another if
false. This is repeated until a node is reached having a final
value instead of a variable ID or reaching the maximum depth
allowed in the tree.

In order to use the optimal tree depth for the current
traffic statistics, random sampling takes place to check if
the traffic will perform better using another depth limit that
is deeper or shallower. The goal is to investigate this with
minimal overhead as possible. In Algorithm 1, this checking is
performed smoothly within normal filtering operations. Upon
packet arrival, a depth is chosen randomly such that the
current depth has the highest probability being selected, and
the probability decays linearly in both directions: up and down.
A constant ρ specifies the probability by which we leave the
optimal depth limit to try other values.

1) Dynamic approximation level selection: In this section,
we will show how we can make our system dynamic to traffic
properties and based on the policy structure, and previous
performance measures. Using both the policy information and
traffic statistics we can determine the upper bound on the
number of levels to be used in the Early Filtering phase. It
is clear that the more levels, the more likelihood to decide
traffic as each level tend to cover more policy space if it
contained leaf nodes. So, the space covered with increasing
levels is a non-decreasing function. As a start, let us assume
for simplicity that all levels have the same probability of
deciding a packet, and the underlying policy has a constant

Algorithm 1 Early Filtering operation
Calculating the depth (current Depth = D):

trial D =

D prob. = 1− 2 ∗ ρ

D + i prob. = 2ρ(Dmax−D−i)

(Dmax−D)2

D − i prob. = 2ρ(D−i)

D2

d = 0
node = root
while (d < trial D) ∧ (node 6= leaf) do

if node.detailDepth > trial D then
break

end if
if (B[node.var) = true) then

node ← node.left
else

node ← node.right
end if

end while
Update statistics:
INC Tj , j = 1 . . . d {Total packets tested with D levels}
if node = leaf then {Decision was reached at level d}

INC 4δd

end if

cost matching. Now, take δl as the portion of traffic that
will be decided using l levels, and δinf as the maximum
percentage of the traffic that can be early filtered. In our
current implementation this is exactly 100% of the traffic as
all filtering criteria are used in our expression tree. However,
if some fields are not implemented, then this figure can be less
than unity. Then for the early filtering levels to decrease the
average number of comparisons, we use the same derivation
from [16] to reach that the number of levels l should be
governed by;

n

2
(1− δinf) + nδinf >

l

2
δl + (l +

n

2
)(1− δinf)

+ (l + n)(δinf − δl)

This leads to (when δinf = 1):

l <
2nδl

2− δl
(2)

The inequality represents the necessary condition of having
the average number of comparisons per packet without using
early filtering, more than average cost of filtering by the early
filtering tree, combined with the regular underlying matching
technique. This implies that even for a perfect case where all
traffic was decided by l levels, we can still have a limit on the
number of levels to use. More complete analysis is provided
in Section V.

IV. IMPLEMENTATION ISSUES

Here, we discuss some of the issues that will affect the
performance/functionality of the technique. However, these
points were postponed for the sake of clarity.

A. Implementation and deployment

The technique was implemented as a plug-in for IPTables
that allows user-space processes to handle packets for pre-
processing. We used the BuDDy package [1] for the im-

5

plementation of the BDD operations that handles the policy
expression tree. When the user process starts, it retrieves the
policy from IPTable, compile it into a single expression, and
stores this for packet-per-packet processing. For each arriving
packet our module will be consulted first before given to the
full policy, where it gets the chance to early make the decision
for the packet.

The packet matching takes place by traversing the policy
expression from the root for each packet. At each node, the
operation is very lightweight as it consists of a single bit
comparison and branch. This can be implemented with a very
short sequence of machine instructions. Given a node in the
expression tree, two lookups are needed to retrieve byte and
bit position that match a variable in the expression (XLAT
instruction), a bit test against packet header information (BT
instruction), and a few assignment and conditional jump
instruction (MOV and Jx). These instructions sum up in
the core of the traversal to 45 clocks [18]. Therefore, for full
matching, assuming maximum allowable depth of the tree, the
early filtering module will be able to handle 45K packets per
second using just 5% of a 3GHz Intel CPU (assuming 80 levels
into the tree is the maximum needed). More details about the
implementation can be found in the authors’ project page.

Deployment in general will be least invasive to the original
firewall (or other similar devices as IDSs, and routers), as
they are implemented as an insertion into the processing flow
without affecting any other modules. Early filtering processing
takes place right before the normal filtering operations, and
their statistics measures are saved separately. Therefore, the
only items need to be changed from a user perspective is
enabling the feature, and reading the gain due to using it via
a single hit percentage parameter. From a developer’s point of
view, the technique will be implemented, and extra storage for
the monitoring module will be allocated for keeping track of
the technique applicability to current traffic patterns. However,
this statistics is common to be collected by default in packet
matching modules.

B. Changing the depth of the expression tree

To obtain the optimal depth of the relaxed expression
depth tree to follow the changing traffic statistics, we have to
compare the current depth, with adjacent levels. This can be
performed by sampling packets that will undergo the complete
processing cycle using the larger tree, and comparing the
cost with the currently used tree. However, checking only
one depth higher and lower might cause the technique to
get stuck in local minima. Therefore, in the algorithm, we
give the depth a probability distribution by which it can try
different depths from 0 (disabling the early filtering) to Dmax

(using all the layers in the tree). The pdf used is a triangular
distribution with the peak at the currently used depth D, and
tapers out linearly to both extremes. In the next section, we
will lay down technique and rule efficiency criteria that will
be used for updating the search structure. To use formulas in
the next section, each packet will contribute to the counters
of one of the depths, and periodically Eqn. 5 can be used

to decide whether we should use this depth or not. The tree
depth that minimizes the expression for the average number
of comparisons (as in Eqn. 3), is to be used in the next time
window.

C. Node annotations for traversal skipping

If a tree is truncated at a certain level, all nodes at this
level will have their subtrees removed and a decision cannot
be made at this path. If two such nodes are siblings, then their
parent will be also indecisive. This can propagate higher in
the tree. For example, if a tree is a full tree, and all the leaves
have alternative values. Then any approximation for this tree
will be indecisive for all paths. An early hint will be beneficial
at some nodes to identify such parts of the tree where actual
traversing will not lead to a final decision for the packet.

In the preprocessing phase, we save with each node the
minimum depth at which it will start to become beneficial
to traverse through (detailDepth in Algorithm 1). At actual
matching time, if the current used depth is less than a certain
node’s detail depth, then the early filtering will terminate at
this node with a request for normal classification. This will
add an extra comparison per node for the sake of providing
shortcuts that can offset the added cost. This decision is to
be made by the vendor of the device depending on the device
configuration, and expected policy size to use in such a device.

Variable reordering for optimal BDD processing: The order
by which we check for variable values in the BDD can
be of extreme importance to the performance of the whole
technique. However, finding the optimal ordering can be a
taunting task, formally it has been proven to be an NP-
Complete problem [5]. It is a main point in our pending future
tasks in this research work. However, from previous analysis
of field value distribution and the way IP addresses and subnet
masks are specified [16], [21], one can reach an educated guess
on how a “good” variable ordering should look like. The BDD
tree is smallest in size when effective variables are kept on
top of the tree. In other words, decisions on bits that have
a lower discriminating power will force an overlap to occur
between the two subtrees. Here, we present some of the points
considered when assigning the currently used variable order:

• MSB vs LSB: Specifying ranges of values for any
field will lower the effect of the lower-significant bits
in discriminating between packets. Therefore, variables
mapped to MSBs should always precede LSBs for any
field.

• Source vs Destination: Destination fields tend to be more
specified in firewall rules (and essentially routers) than
source fields (e.g., in some configurations, source ports
might never be specified).

• Contiguous variables: There is no need to make variables
representing the same field be contiguous. Separating
them might be better for the overall structure. For ex-
ample, the destination address might be best represented
if its bits (MSB down to LSB) be mapped to variables:
6-9,11-24,30,32,41-52.

6

Field dIP proto sIP dPort dIP
Field bits (0,15) (0,7) (0,7) (0,7) (16,23)
Variables 0,15 16,23 24,31 32,39 40,47
dPort dIP sPort sIP sPort sIP
(8,15) (24,31) (0,7) (8,15) (8,15) (16,31)
48,55 56,63 64,71 72,89 80,95 96,103

TABLE III
VARIABLE ALLOCATION TO FILTER FIELDS. F(x,y) DENOTES VARIABLES

FROM X TO Y INCLUSIVE OF FIELD F, COUTING FROM MSB AS ZERO.

Splitting a data block into separate non-contiguous blocks
of variables for BDD building has been used before with ex-
cellent results in different fields. For example, in [19] variable
ordering was performed in an adhoc manner by interleaving
variables from multiple operands for the purpose of sequential
circuit verification.

V. ANALAYSIS AND EFFICIENCY CRITERIA

In this section, we will show how to quantify the efficiency
of the technique proposed. The analysis considers adding more
traversal levels in the Boolean expression tree equivalent to
adding more rules in the first technique with a linear matching
cost pattern. This is due to way we traverse the tree, where
maximum depth is the worst case cost for traversing the tree
of the EF. Therefore, we will be using the notion of a EF rule
interchangeably with levels to denote a matching step in our
techniques (i.e., rejection rules (as in FV-SC) or expression
tree layers).

In order to determine the effect/worthiness of adding a
specific level at run time, more analysis is needed. After using
D levels in the expression tree, we have αD, δD, and γD be
the traffic portion decided by the policy , decided for by the
D EF levels, and the default rule respectively. Now, we can
state the average number of comparisons/matching per packet
after using D levels as follows:

AD = c.D(δD + αD + γD) + n(
α + βD

2
+ γD) (3)

where c is the relative evaluation cost of single BDD
traversal to that of a normal filtering rule which is usually
in favor of EF (i.e., single bit comparison versus complete
rule matching). As the matching algorithm 1 shows, traversing
a tree based on bit comparison can be greatly optimized.
In the Implementation, an example of a typical execution
timing figures are provided. We also have ∂δ/∂D > 0,
∂α/∂D, ∂γ/∂D < 0, and αD + γD + δD = 1. Let 4δD

be the portion of the total traffic that is decided by the Dth

level. Then we can simply show that

βD−1 + γD−1 = αD + γD +4δD (4)

To justify including the Dth level: AD − AD−1 < 0
must hold. Thus, using (3) and (4) we derive the following
condition:

4δD

c
>

αD

2 + γD

n
=

c (1− δD + γD)
2n

(5)

Algorithm 2 Dynamic Level Selection
for i = 1 . . . n do
4δi = 4δi/Tj {Normalize}

end for
D = minii ∗ 4δi + c.Mi/Ti {Depth with min avg cost}
if D < overhead cost then

Disable Technique
end if

Either form can be used to facilitate evaluation at run time
according to the type of statistics kept at the firewall. It is
worth mentioning that the last derivation assumed that the
average number of levels and the original rules that a packet
will go through before finding a match is simply D/2 or
n/2, respectively. However, this is not generally the case; the
average might be quite different from half of the rule count.
In this case, the conditions placed on evaluating levels will
differ by this new ratio as well (i.e., the constant in the eqn 5
will be adjusted accordingly). Formally,

4δD >
c (1− δD + γD)

aDn

where aD is a constant that depends on the actual number of
average rules matched. It increases with increasing the average
number of levels or number of rules matched on average in
the EF or the regular matching respectively.

After each window of time, the added rule can be evaluated
based on (5) to decide whether the Dth level is to be included
or removed, as described in Algorithm 2.

Similar analysis is needed for other techniques with better
performance than sequential matching. What affects our anal-
ysis is the time complexity of these techniques and the relative
computational time of a single comparison in these techniques
to ours (i.e., the cost of a single RR evaluation). The latter was
already incorporated into the factor c. The complexity formula
of the underlying filtering technique will change the form of
the condition formulae slightly.
• Logarithmic Time These category cover most of the

technique shown in Section II. These include techniques
based on balanced search trees like alphabet trees used
in [15], [16] and Huffman trees in [9]. Also geometric-
based search structures follow the logarithmic complexity
class.
Eqn. 2 becomes D < 2δD log(n)

2−deltaD
and Eqn. 5 is changed

to ∆δD > c(1−δD−1/2)
2 log n−cD Which shows that as the number

of levels already used increase, it is getting harder to add
more. The same goes for relative computational cost.

• Constant Time Many of the hardware imple-
mented/optimized techniques belong to this category.
Also, techniques with search structures that does not
depend on the policy size, like hash-based techniques.
Some techniques that place decision only at the leaves
of tries and trees that does not grow with policy size
have constant running time, as in [22].
For such algorithms Eqn 2 is D < 2δD

c(2−δD) and Eqn. 5 is

7

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

N
um

be
r

of
 M

in
te

rm
s

Tree Depth

Policy 1
Policy 2

(a) Smaller policies

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10 20 30 40 50 60

N
um

be
r

of
 M

in
te

rm
s

Tree Depth

Policy 3
Policy 4
Policy 6

(b) larger policies

Fig. 1. The frequency distribution of minterms in the negated policy
expression

changed to ∆δD > 2c(1−δD−1/2)
2+cD . This shows that there

is still a feasible range of ∆δD in which the benefit of
early filtering levels will be sensed even with constant
cost filtering techniques. However, this largely depend on
the exact implementation of the filtering technique, and
the traffic behavior.

VI. PERFORMANCE EVALUATION

One of the main concerns for the applicability of the
technique is how common is having short min-terms (i.e.,
short paths to a leaf in the expression tree). The first two
charts (Fig. 1-a and b) show two groups of policies with
their minterm frequency distribution (separated into two charts
just for clarity). As we can see as the policy size increases,
the number of minterms with larger size (i.e., higher number
of involved variables) increases. This is intuitive for the fact
that larger policies are written mainly to handle more cases,
and some of them are inevitably special cases and are very
restricted. It is important to emphasize that if these experi-
ments were performed on the negated version of the policy, the
frequency distribution of minterms lengths would have been
different. A minor optimization step can be performed at the
startup phase, which is to select the version (i.e., positive or
negated) that has less complexity. It is worth noting that the
BDD representation of the policy will be identical except at
the terminal leaves that will be swapped. Therefore, although
it will not affect the space requirements, it is a cheap operation
and can be performed even for a minor gain.

 0

 5e+15

 1e+16

 1.5e+16

 2e+16

 2.5e+16

 3e+16

 3.5e+16

 4e+16

 0 5 10 15 20

A
re

a
of

 m
in

te
rm

s

Tree Depth (first 20 levels)

Policy 1
Policy 2
Policy 3
Policy 4
Policy 6

(a) Minterms area distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20
C

D
F

 o
f m

in
te

rm
s

ar
ea

s
Tree Depth (first 20 levels)

Policy 1
Policy 2
Policy 3
Policy 4
Policy 6

(b) CDF of the Minterms area as a percentage of the total
policy area

Fig. 2. The distribution of area of minterms in the negated policy expression

In Fig. 2, we can see how these different tree levels
contribute to the overall deny space of the policy (i.e., the
space where rejected packets belong). Most of the space is
covered by the first few levels of the expression tree. With
the assumption of uniformity of rejected traffic, we can get a
sense of the amount of savings possible using this approach.
In the first policy, we can reject more than 90% of the traffic
using just 4 bit comparisons. The second and third policies
can be protected by early filtering tree of depth 5 that will
remove at least 50% of the unwanted incoming traffic. For
larger policies (i.e., thousands of rules), we will need a higher
number of levels but still the savings are guaranteed using the
proposed technique due to the fact that it selects that best tree
depth to use adaptively and following the traffic dynamics.

Figure 3 shows the average number of rules matched
for packets that passed the early filtering module. A 1000
rule IPTables policy was deployed at the filtering host for
Figures 3, 4 and 5. There is a slight tendency of increased cost,
as these packets are already hard to filter for the given policy.
However, Figure 4, shows the average cost in IPTables matches
over all packets arrived at the machine. A significant reduction
in matching cost is obvious when EF started to engage with
depth higher than 5 levels. When levels is 30 or more, IPTables
does not seem to receive any significant number of packet to
match reducing the average cost to almost zero. On the other
side the average cost per packet for packets in the EF module
is shown in 5, where it reaches the maximum when it is 0 or

8

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 10 20 30 40 50 60

A
ve

ra
ge

 r
ul

es
 m

at
ch

ed
 p

er
 p

ac
ke

t

Time

EF Levels=0
EF Levels=5

EF Levels=10
EF Levels=15
EF Levels=30

Fig. 3. Average number of matches per packet
forwarded to IPTables.

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60

A
vg

. r
ul

es
 m

at
ch

ed
 o

ve
r

al
l p

ac
ke

ts

Time

EF Levels=0
EF Levels=5

EF Levels=10
EF Levels=15
EF Levels=30

EF Levels=100

Fig. 4. Average number of matches over all
packets received.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60

A
ve

ra
ge

 le
ve

ls
 in

 E
F

 p
er

 p
ac

ke
t

Time

EF Levels=0
EF Levels=5

EF Levels=10
EF Levels=15
EF Levels=30

EF Levels=100

Fig. 5. Average number of levels needed for EF.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

B
it

C
om

pa
ris

on
s

N
ee

de
d

/ P
ac

ke
t

Packets of Rule i

Packet Cost

Fig. 6. Depth needed to reach a decision for packets targeted to each rule of
a 1000 IPTables policy. Shows the independence between rule location and
needed depth in tree to reach a decision for its packets.

5. For higher levels, some of the packets did not require the
whole number of allowable levels thus reducing the average
from 10,15, 30,100 to approximately 8, 9, 11 and 11 levels
respectively.

Figure 6 shows a very important advantage of our technique:
Orthogonality of rule order in original policy and cost of
matching its traffic in our technique. For this experiment, we
generated an artificial trace that will hit all rules in turn. By
measuring the needed cost (without a bound on traversal), we
obtained the shown graph. The obvious randomness shows
that the benefit for traffic targeted to the last few rules of the
original policy will benefit dramatically from adding our early
filtering module. Moreover, the randomness in the cost is even
more beneficial when denial of service attacks are considered.
An attacker will not be able to identify the type of flows will be
more expensive for the firewall to match. Even if the complete
information about the policy is available to the adversary, she
will not be able to identify those expensive flows unless all
other details are also available; mainly the variable ordering
used to build the BDD. This last aspect increases the difficulty
for the attacker to figure the correct order put of the possible
n! where n is the number of variables in the definition (i.e.,
126 variables for representing TCP, UDP, ICMP with their
options/flags). The same conclusion can be clearly seen
in Figure 7. Using an 1500 rule policy, and counting the
number of rules whose packets will be matched via a certain

0%

1%

2%

3%

4%

5%

6%

 0 20 40 60 80 100
R

ul
es

Depth required

Fig. 7. Distribution of rules whose traffic requiring a certain depth to be
completely filtered by EF. A 1500 rule policy is used.

 15

 20

 25

 30

 35

 40

 45

 50

 0 50 100 150 200 250 300

M
ax

 B
it

C
om

pa
ris

on
s

N
ee

de
d

/ P
ac

ke
t

Time

Policy 1
Policy 2
Policy 3
Policy 4
Policy 5

Fig. 8. Depth needed to reach a decision for packet traces injected to 5
different IPTables policies (sizes: 100,500,1000,1500,5000)

depth shows a typical normal distribution. This emphasizes
the fact the our technique effectively hides the information of
rule order from an attacker, and makes it impossible for the
adversary (even with complete policy information) to obtain a
better than random guess about what rules to target in order
to achieve maximum damage to the firewall performance.

In Figure 8, we show the cost over time of matching
multiple traces against firewall policies of different sizes. The
policies shown span a size from 10 rules up to 5000 rules. As
we can see there is no significant tendency towards increasing
the average cost of matching over all packets in the trace
by increasing the policy size. This removes the burden from

9

the filtering engine and shows that our technique is highly
scalable. As the policy size increase it will get easier for the
EF technique to prove useful.

VII. CONCLUSION

In this paper we address the possibility of Early Filtering
traffic in firewalls and similar network security devices. We
introduced a novel technique: Relaxed Policy Expression.
The technique is shown to provide an efficient filter for
unwanted packets or easy to accept/reject packets based on the
policy definition and the statistics of the incoming traffic. The
implementation shows promising performance and practically
plausible space requirements, besides it is possible to be
deployed on and be optimized for different platforms. It was
evaluated with typical policies and in real implementation
of IPTables. The technique gave impressive results in shown
experiments, but the fact that it depends on the specific
implementation of the Boolean expression module makes it
open for even further improvements as this module can be
optimized via hardware special support. Using the currently
all-software implementation of the BDD package, the mod-
ule was implemented and attached to the IPTables filtering
sequence. Using policies with a range of sizes from tens of
rules to 5000 rules, the system was evaluated and it has shown
that a gain in performance. In almost all policies investigated,
more than 40% of the denied traffic was early rejected via less
than 30 bit comparisons. In summary, the technique is: 1) light
weight, 2) its gain is guaranteed to be worth the overhead, 3)
it hides the policy rule order from any attacker even if he is
capable of monitoring packet-by-packet processing time, and
4) simple and easy to implement.

Further research is needed to place theoretical bounds on
the gain of such techniques. Also, hardware acceleration can
give a tremendous boost to the applicability of early filtering
methods. Other early filtering algorithms can be developed
with better dynamic properties as well as more capability
in cooperating with existing packet filtering techniques. For
example, providing hints to the following packet classification
layer as what to expect and what kind of traffic has been
filtered out or allowed to pass through the early filtering
module. This can also allow the underlying filtering algorithm
to check the packet against a smaller subset of the policy.
In our specific implementation, this translates to marking
packet not matched by our module so that they will matched
against specific shorter chains rather than the whole policy.
In summary, the topic is far from being exhausted with
respect to developing new techniques and knowing the possible
performance gains.

REFERENCES

[1] Buddy: Bdd c++ package. ”http://sourceforge.net/projects/buddy”, 2006.
[2] David A. Applegate, Gruia Calinescu, David S. Johnson, Howard

Karloff, Katrina Ligett, and Jia Wang. Compressing rectilinear pictures
and minimizing access control lists. In SODA ’07: Proceedings of the

eighteenth annual ACM-SIAM symposium on Discrete algorithms, pages
1066–1075, 2007.

[3] F. Baboescu, S. Singh, and G. Varghese. Packet classification for core
routers: Is there an alternative to cams. In IEEE INFOCOM’03, 2003.

[4] F. Baboescu and G. Varghese. Scalable packet classification. In ACM
SIGCOMM’01, 2001.

[5] Beate Bollig and Ingo Wegener. Improving the variable ordering of
obdds is np-complete. IEEE Trans. Comput., 45(9):993–1002, 1996.

[6] E. Cohen and C. Lund. Packet classification in large isps: design
and evaluation of decision tree classifiers. In SIGMETRICS ’05:
Proceedings of the 2005 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, pages 73–84, New
York, NY, USA, 2005. ACM Press.

[7] Qunfeng Dong, Suman Banerjee, Jia Wang, and Dheeraj Agrawal. Wire
speed packet classification without tcams: a few more registers (and a bit
of logic) are enough. SIGMETRICS Perform. Eval. Rev., 35(1):253–264,
2007.

[8] A. El-Atawy, K. Ibrahim, H. Hamed, and E. Al-Shaer. Policy segmen-
tation for intelligent firewall testing. In NPSec, November 2005.

[9] A. El-Atawy, T. Samak, E. Al-Shaer, and H. Li. On using online traffic
statistical matching for optimizing packet filtering performance. In IEEE
INFOCOM’07, May 2007.

[10] A. Feldmann and S. Muthukrishnan. Tradeoffs for packet classification.
In IEEE INFOCOM’00, March 2000.

[11] Errin W. Fulp. Optimization of network firewalls policies using directed
acyclical graphs. In Proceedings of the IEEE Internet Management
Conference, 2005.

[12] David Goldsmith and Michael Schiffman. Firewalking: A traceroute-like
analysis of ip packet responses to determine gateway access control lists,
http://www.packetfactory.net/firewalk/firewalk-final.html. White paper,
Cambridge Technology Partners, October 1998.

[13] P. Gupta and N. McKeown. Algorithms for packet classification. IEEE
Network, 15(2):24–32, 2001.

[14] P. Gupta and N. McKeown. Packet classification using hierarchical
intelligent cuttings. In Interconnects VII, August 1999.

[15] P. Gupta, B. Prabhakar, and S. Boyd. Near optimal routing lookups with
bounded worst case performance. In IEEE INFOCOM’00, 2000.

[16] H. Hamed, A. El-Atawy, and E. Al-Shaer. Adaptive statistical optimiza-
tion techniques for firewall packet filtering. In IEEE INFOCOM’06,
April 2006.

[17] Hazem Hamed and Ehab Al-Shaer. Dynamic rule-ordering optimization
for high-speed firewall filtering. In ASIACCS ’06: Proceedings of the
2006 ACM Symposium on Information, computer and communications
security, pages 332–342, New York, NY, USA, 2006. ACM.

[18] INTEL. Intel 64 and ia-32 architecture software developer’s manual.
”http://www.intel.com/design/processor/manuals/253666.pdf”, 2007.

[19] J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, and D.L. Dill.
Symbolic model checking for sequential circuit verification. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 13(4):401–424, 1994.

[20] L. Kencl and C. Schwarzer. Traffic-adaptive packet filtering of denial of
service attacks. In WOWMOM’06: The 2006 International Symposium
on on World of Wireless, Mobile and Multimedia Networks, pages 485–
489, Washington, DC, USA, 2006. IEEE Computer Society.

[21] Karthik Lakshminarayanan, Anand Rangarajan, and Srinivasan Venkat-
achary. Algorithms for advanced packet classification with ternary cams.
In SIGCOMM ’05: Proceedings of the 2005 conference on Applications,
technologies, architectures, and protocols for computer communications,
pages 193–204, New York, NY, USA, 2005. ACM.

[22] A. J. McAulay and P. Francis. Fast routing table lookup using CAMs.
In IEEE INFOCOM’93, March 1993.

[23] Derek Pao, Yiu Keung Lia, and Peng Zhoua. Efficient packet classifi-
cation using tcams. Computer Networks, 50(18):3523–3535, Dec 2006.

[24] T. Samak, A. El-Atawy, E. Al-Shaer, and H. Li. In IEEE ICNP’07,
October 2007.

[25] V. Srinivasan, Subhash Suri, and George Varghese. Packet classification
using tuple space search. In Computer ACM SIGCOMM Communication
Review, pages 135–146, October 1999.

[26] Thomas Y. C. Woo. A modular approach to packet classification:
Algorithms and results. In IEEE INFOCOM’00, pages 1213–1222,
March 2000.

[27] M. Yoon, S. Chen, and Z. Zhang. Reducing the size of rule set in a
firewall. In ICC’07: Proceedings of the IEEE International Conference
on Communications, pages 1274–1279, June 2007.

