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MotivationMotivationMotivationMotivation

• Cyber intrusions are more sophisticated 
and harder to detect
– Malware, botnet, DDoS

• Intrusion Detection System (IDS) 
– Compare computer activity/traffic with known 
intrusion patterns

– Host-based and network-based

– Can not cover all types of intrusions

– Easily compromised by unknown or new
threats

• An Collaborative Intrusion Detection 
Network (CIDN) allows IDSes to share 
knowledge and experience with others
– Cover more intrusion types

– Achieve higher detection accuracy
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Figure 1. CIDN Topology
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Figure 2. CIDN Architecture
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Problem StatementProblem StatementProblem StatementProblem Statement

• Input:

– A number of n collaborators

– The detection history of each collaborator

– Prior probability of intrusions

– Current feedback from each collaborator

– The cost of false positive, false negative

• Output:

– Final decision (yes/no)

• Goal:

– Minimize expected cost of false decisions
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NotationsNotationsNotationsNotations
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FP, TP ModelingFP, TP ModelingFP, TP ModelingFP, TP Modeling

where,

We use Beta distribution to model posterior probability
of FP and TP 
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Recursive ExpressionRecursive ExpressionRecursive ExpressionRecursive Expression

No need to keep all the history of all collaborators
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AggregationAggregationAggregationAggregation
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AggregationAggregationAggregationAggregation
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AggregationAggregationAggregationAggregation
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AggregationAggregationAggregationAggregation

Let P = 

The density function of P is denoted by
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DecisionDecisionDecisionDecision

We model the cost of false decisions

where

Raise an intrusion alarm

No alarm
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DecisionDecisionDecisionDecision

where



20

Gaussian ApproximationGaussian ApproximationGaussian ApproximationGaussian Approximation

We need to calculate E[P] to make a decision

P
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Gaussian ApproximationGaussian ApproximationGaussian ApproximationGaussian Approximation

We need to calculate E[P] to make a decision

P

When the number of  samples is large enough, 

Beta distribution can be approximated by 

Gaussian distribution



22

Cost of DecisionCost of DecisionCost of DecisionCost of Decision
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Optimal Decision AlgorithmOptimal Decision AlgorithmOptimal Decision AlgorithmOptimal Decision Algorithm
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Simulation ResultSimulation ResultSimulation ResultSimulation Result

Figure 3. Comparison of cost using different aggregation techniques
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Simulation ResultSimulation ResultSimulation ResultSimulation Result

Figure 4. Comparison of FP, FN, and cost
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Simulation ResultSimulation ResultSimulation ResultSimulation Result

Figure 5. Average Cost vs. Number of Acquaintances Consulted
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Conclusions and Future WorkConclusions and Future WorkConclusions and Future WorkConclusions and Future Work

• Framework of a distributed 

collaborative intrusion detection 

network

• A Bayesian aggregation and decision 

model to minimize expected cost 

• Dynamic online aggregation and 

decision 

• As our future work, we intent to 

implement and deploy our CIDN on 

real life open source IDSes
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QuestionsQuestionsQuestionsQuestions


