
Introduction
The Service Placement Problem

Experiments
Conclusion

Adaptive Service Placement in Dynamic Service

Hosting Environments

Qi Zhang Jin Xiao Eren Gürses
Martin Karsten Raouf Boutaba

University of Waterloo

May 5, 2010

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

Introduction
The Service Placement Problem

Experiments
Conclusion

Introduction
Example Scenario
Related Work
Our Contribution

Introduction

Large-scale service hosting environments have gained
popularity in recent years

Content Delivery Networks (CDNs)
P2P networks
Service overlays
Grid and Cloud computing

Features and characteristics
Decoupling the ownership and the use of resources

Infrastructure Provider vs. Service Provider

Scaling up and down by adjusting the number of servers
A cost is Usually associated with running a server

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

We are seeing more and more service hosting platforms deployed on

Internet these days. Some examples are Content delivery networks

(CDNs), P2P networks, service overlays, Grid computing and more

recently Cloud computing. All of the above systems share the following

similarities: First, the traditional role of service provider has been divided

into two: the infrastructure providers who own the resources and service

providers who use the resource to run applications. Second, a service

provider can dynamically adjust the service capacity by increasing and

decreasing the number of servers (a.k.a. service instances) used to serve

the demand. Third, there is usually a cost associated with running a

server for given period of time.

Introduction
The Service Placement Problem

Experiments
Conclusion

Introduction
Example Scenario
Related Work
Our Contribution

Example: PlanetLab

Placing service instances are strategic locations can reduce
operating cost and improve performance

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

We use PlanetLab as an example. PlanetLab currently consists of 1000+
nodes located at 500+ global-wide locations. Each node has a finite
capacity that limits the number of applications it can host.

Given a large number of candidate locations, a service provider must

decide where servers should be placed. A common practice is to place

them close to demand so as to minimize the response time. This is

illustrated in figure above. Assume the red dots indicate the location of

the demands, we want to place the servers as close to the demand as

possible, while keeping the number of servers low.

raoufboutaba2
Cross-Out

raoufboutaba2
Replacement Text
at

Introduction
The Service Placement Problem

Experiments
Conclusion

Introduction
Example Scenario
Related Work
Our Contribution

Example Scenario

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

Now, suppose the demand in US-east region has increased. This may

affect the response time in this region since there aren’t enough servers

to handle the increase in demand.

Introduction
The Service Placement Problem

Experiments
Conclusion

Introduction
Example Scenario
Related Work
Our Contribution

Example Scenario

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

Now suppose we launch a new server in the same region. Still we need to

decide how we want to divide the demand among the servers.

Introduction
The Service Placement Problem

Experiments
Conclusion

Introduction
Example Scenario
Related Work
Our Contribution

Example Scenario

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

Final configuration.

Introduction
The Service Placement Problem

Experiments
Conclusion

Introduction
Example Scenario
Related Work
Our Contribution

Service Placement Problem

Mainly deal with latency sensitive services such as content
delivery and real-time applications

Optimizing the placement of services to achieve Service Level
Objectives (SLOs) like bounded response time, while
minimizing the cost of using resources

Need to adapt placement configurations to system/network
dynamicity

Service demand can fluctuate
Network/software failure can occur

A distributed solution is preferred

Reduce the overhead of collecting global information and
computing global solution

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

The service provider’s objective is to minimize total cost while meeting

SLOs. However, as the operating environment evolve, placement

configurations can become stale. We want to dynamically adjust the

placement configuration according to changes in the environment. To

reduce the communication and computation overhead, a distributed

algorithm is preferred.

Introduction
The Service Placement Problem

Experiments
Conclusion

Introduction
Example Scenario
Related Work
Our Contribution

Related Work

The service placement problem has been studied previously

Usually formulated as either a facility location problem (FLP)
or a k-median problem
NP-hard to solve

Many heuristics are available

Greedy heuristics
Fan-out heuristics
linear programming based heuristics

These heuristics are centralized and only works for static
graphs

Recently several distributed heuristics have been proposed

Capacity constraint is not considered
No performance guarantee

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

The service placement problem has been studied extensively in the past.

So why are we still studying it? The main reason is that most of the

existing approaches have limitations. SPP is often formulated as a

variant of facility location problem or k-median problem, both problems

are NP-hard. There are a lot of heuristics designed for this problem, but

there are 3 main drawbacks: (1) Most of heuristics (e.g. greedy heuristic)

is centralized. (2) Most of heuristics cannot handle dynamicity. (3)

Recently there have been a few papers reporting distributed algorithms.

However, they either ignore capacity constraint, or does not provide any

performance guarantee.

raoufboutaba2
Cross-Out

raoufboutaba2
Replacement Text
work

Introduction
The Service Placement Problem

Experiments
Conclusion

Introduction
Example Scenario
Related Work
Our Contribution

Our Contribution

We present a distributed approximation algorithm for this
problem

Built on the (9 + ǫ) approximation algorithm for capacitated
facility location problem (CFLP)
Incrementally improve the solution quality through replication
and migration

Suitable for large scale and dynamic environments

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

Our contribution

Introduction
The Service Placement Problem

Experiments
Conclusion

System Architecture
Problem Formulation
A Local Search Algorithm for SPP
Algorithm Analysis

System Architecture

Each server maintains a list
of neighborhood servers and
candidate locations

Request routers assign each
request to the best available
server in a greedy fashion

Request routers may need to
estimate the future demand
from each location

We can also use the
estimated values in our
computation

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

Here is the general system architecture for which our algorithm is

designed. Assumptions: the request routers assign demand to service

instances in a greedy fashion (by computing the response time as

function of distance and server load). Each server maintains a list of

neighborhood servers and candidate locations. Notice that there are

many possible realizations of the system. For example, CDNs typically

use DNS servers as request routers. In P2P systems, peers can act as

request routers. To handle rapid increase in demand, sometimes it is

necessary to estimate the future demand and plan ahead accordingly

(part of our future work). This is also supported by our framework.

Introduction
The Service Placement Problem

Experiments
Conclusion

System Architecture
Problem Formulation
A Local Search Algorithm for SPP
Algorithm Analysis

Problem Formulation

Give a bipartite graph G = (D,F ,E), where

D is the set of demands
F is the set of candidate server locations
E is a set of edges connecting D and F

Our goal is to select a subset of servers S ⊆ F and assign D
to S , minimizing total operating cost, which is sum of

Resource usage cost Cf (S)
SLO penalty cost Cs(S)

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

Formulation of the problem

raoufboutaba2
Cross-Out

raoufboutaba2
Replacement Text
Given

raoufboutaba2
Cross-Out

raoufboutaba2
Replacement Text
the sum

Introduction
The Service Placement Problem

Experiments
Conclusion

System Architecture
Problem Formulation
A Local Search Algorithm for SPP
Algorithm Analysis

Placement Objective

The response time of a request i served by a server si can be
computed as:

r(i , si) = d(i , si) +
µsi

1−Usi
/capsi

The penalty cost can be computed as:

cp(i , si) = a(r(i ,si)
dmax

)2

The goal of the service placement problem is to minimize

c(S) =
∑

i∈D

cp(i , si) +
∑

s∈S

ps

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

The response time of a request consists of network latency and queuing
delay
a is a monetary penalty cost

We use a quadratic function because it reflects the general form of the

penalty payout for SLA violation.

Introduction
The Service Placement Problem

Experiments
Conclusion

System Architecture
Problem Formulation
A Local Search Algorithm for SPP
Algorithm Analysis

Local Search Algorithm for CFLP

Algorithm 1 (9 + ǫ) Approximtion Algorithm for CFLP

1: while ∃ an add(s), open(s,T), close(s,T) that
reduces the cost by at least ǫ do

2: perform the operation
3: end while

Add(s): open s and assign some clients to s

Open(s,T): open s and close a set of servers T , and assign
clients of T to s

Close(s,T): close s and open a set of servers T , and assign
clients of s to T

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

This algorithm starts from any feasible initial solution, and incrementally
improves the solution with one of three types of operations: Add(s),
Open(s, T) and Close(s, T).
Open s means installing a server at location s, Close s means uninstalling
a service at location s. Notice that in our algorithm, a server can be be
opened multiple times (subsequent openings do not perform installation),
but closed only once.

This algorithm fits our objective very well, since it is both simple and

adaptive to changes. However, this algorithm cannot be directly

implemented in a distribute way, because finding an open(s, T) and a

close(s, T) requires solving NP-hard optimization problems. The authors

of the paper solved both problems using dynamic programming. However

dynamic programming is both expensive to compute and requires global

knowledge. Our contribution is to show that we can replace the dynamic

programming procedures by simples approximation algorithms, such that

the resulting algorithm is distributed and still providing an approximation

guarantee.

Introduction
The Service Placement Problem

Experiments
Conclusion

System Architecture
Problem Formulation
A Local Search Algorithm for SPP
Algorithm Analysis

Implementing add(s)

Open s and assign some clients to s

It can be shown that the distance between s and si is at most

d(i , si) +

√

cp(i ,si)
a

· dmax

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

This slide explains how add(s) is implemented. si only need to talk to

servers within radius d(i , si) +
√

cp(i ,si)
a

· dmax .

(An interesting fact is that request router is actually performing add(s)

as request arrives. In this case, the demand to be assigned is a single

request, and s is the server that the demand is assigned to.)

Introduction
The Service Placement Problem

Experiments
Conclusion

System Architecture
Problem Formulation
A Local Search Algorithm for SPP
Algorithm Analysis

Implementing open(s, T)

Open s and close a set of servers T , and assign clients of T

to s

Reduces to a 0-1 knapsack problem: Select a set of servers T

to maximize total cost reduction

CR(open(s,T)) =
∑

t∈T

(pt − |Ct |cp(t, s)) − ps

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

This slide explains how open(s, T) is performed

Introduction
The Service Placement Problem

Experiments
Conclusion

System Architecture
Problem Formulation
A Local Search Algorithm for SPP
Algorithm Analysis

Implementing open(s, T)

Replace dynamic programming procedure by a simple greedy
algorithm:

The cost efficiency of a server t is defined as

costEffopen(t) = pt

|Ct |
− cp(s, t)

Simply add servers in increasing order of their cost efficiencies
until s is full.

each server t only need to contact neighborhood servers with

distance less than
√

pt

a·|Ct|
· dmax . A neighborhood server s can

then compute an admissible open(s,T) once it discovers the
entire T .

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

We replace the dynamic programming procedure by a simple greedy

algorithm with approximation ratio 1
2 .

raoufboutaba2
Cross-Out

Introduction
The Service Placement Problem

Experiments
Conclusion

System Architecture
Problem Formulation
A Local Search Algorithm for SPP
Algorithm Analysis

Implementing close(s, T)

close s and open a set of servers T and assign demand ut of s

to T to maximize

CR(close(s,T)) = ps −
∑

t∈T

(pt + utcp(s, t))

Can be rewritten as a single node capacitated facility location
(SNCFL) problem:

costSNCFL = min
T⊆F\S

∑

t∈T

(pt + utcp(s, t))

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

SNCFL is also NP-hard, and can be solve optimally in pseudo-polynomial
time using dynamic programming.

ut denote the number of requests that will be assigned to t.

Introduction
The Service Placement Problem

Experiments
Conclusion

System Architecture
Problem Formulation
A Local Search Algorithm for SPP
Algorithm Analysis

Implementing close(s, T)

Again, we replace the dynamic programming procedure by a
simple greedy algorithm

The cost efficiency of a server t is defined as

costEffclose(t) = pt

capt
+ cp(s, t)

Sort the servers in increasing order of their cost efficiencies
Greedily add servers into the set T until there are enough
servers to handle all the demands of s. Then we have a
candidate solution
For each candidate solution, we can remove the last server and
then continue adding servers after the last server to get the
next candidate solution
The best among all candidate solutions is our final solution

s only needs to contact servers within radius
√

ps

a
· dmax .

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

This greedy algorithm has an approximation ratio 2.

Introduction
The Service Placement Problem

Experiments
Conclusion

System Architecture
Problem Formulation
A Local Search Algorithm for SPP
Algorithm Analysis

Analyzing the approximation ratio

Need to show that the new algorithm still achieves an
approximation guarantee

It can be proved that the greedy algorithms achieve a weaker
performance guarantee

Compared to the original algorithm, our algorithm can miss
some open and close moves

Follow a similar analysis, we can show that our algorithm
achieves an constant approximation factor

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

More details can be found in the paper.

raoufboutaba2
Cross-Out

raoufboutaba2
Replacement Text
Following

Introduction
The Service Placement Problem

Experiments
Conclusion

Experiment Setup
Results

Experiments

We conducted several experiments to evaluate the
performance of our algorithm

Static topologies generated using GTITM topology generator
Rocketfuel topology with demand fluctuation

For benchmarking purpose, we also implemented a well-known
greedy placement algorithm

has been shown to perform well in practice

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

The greedy algorithm is centralized, and only works on static graphs

Introduction
The Service Placement Problem

Experiments
Conclusion

Experiment Setup
Results

Experiments

 0

 5000

 10000

 15000

 20000

 200 400 600 800 1000 1200

S
ol

ut
io

n
co

st

graph size

Distributed
Greedy

Lower Bound

Performance on static
topologies

 0

 2000

 4000

 6000

 8000

 10000

 12000

 5 10 15 20 25 30 35 40 45

S
ol

ut
io

n
co

st

Iterations

Distributed
Greedy

Performance on Rocketfuel
topology

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

Parameters: dmax = 400ms, µs = 20ms, a = 1, ps = 4.
The lower bound is computed by exhaustive search. We also ignored
capacity constraint to speedup the search.
We first evaluated our algorithm using topologies generated from GTITM.
The topologies are static (i.e. no demand fluctuation). it can be observed
that our algorithm performs as well as the centralized greedy algorithm in
most of the cases, and sometimes better the greedy algorithm

We then evaluated out algorithm using Rocketfuel topology. The

demands are configured to fluctuate in a (roughly) periodic pattern. We

also implemented the greedy algorithm that has access to global

knowledge and can solve the problem instantaneously. The figure on the

right depicts the outcome of a typical run. Our algorithm performs

almost as good as the greedy algorithm

Introduction
The Service Placement Problem

Experiments
Conclusion

Experiment Setup
Results

Experiments

 0

 500

 1000

 1500

 2000

 2500

 3000

 5 10 15 20 25 30 35 40 45
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

T
ot

al
 d

em
an

d

N
o.

 o
f i

ns
ta

nc
es

Iterations

total demand
No. of instances

Runtime service capacity

 150

 200

 250

 300

 350

 400

 5 10 15 20 25 30 35 40 45

m
s

Iterations

Distributed
Greedy

Average connection cost

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

More diagrams for the same test run. We observe that our algorithm can

indeed add and remove instances according to demand fluctuation. The

connection cost (SLO penalty) is also comparable to the solution

produced by the greedy algorithm.

Introduction
The Service Placement Problem

Experiments
Conclusion

Conclusion

As service hosting environments gain their popularity,
optimally resource allocation becomes a key problem

We presented a distributed algorithm for this problem

Computing improvement moves using local knowledge
Practical for implementation

Future work

Implement our algorithm in PlanetLab or real P2P networks
Study techniques for demand prediction
Analyze the impact of dynamic reconfiguration
Extend our work to more generalized settings

Qi Zhang, Jin Xiao, Eren Gürses , Martin Karsten, Raouf BoutabaAdaptive Service Placement in Dynamic Service Hosting Environments

Our algorithm is also applicable to other domains such as gateway

placement in wireless networks

raoufboutaba2
Cross-Out

raoufboutaba2
Replacement Text
optimal

	Introduction
	Introduction
	Example Scenario
	Related Work
	Our Contribution

	The Service Placement Problem
	System Architecture
	Problem Formulation
	A Local Search Algorithm for SPP
	Algorithm Analysis

	Experiments
	Experiment Setup
	Results

	Conclusion

