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Abstract—The peer-to-peer paradigm has great potential of
contributing to the next generation web-hosting infrastructure.
Profound advancements in P2P technologies in the last decade
have proven their capability to provide the same functionality
as traditional client–server systems at a much larger scale and
much lower cost. Existing centralized website hosting technology
has a number of inherent deficiencies, including: scalability
issues; single point of failure; administrative overhead; and
hosting expenses. P2P Web hosting can effectively address these
problems and open a new era for the next generation web
technology. Unlike the current web however, peer availability
and content placement are highly dynamic in P2P networks.
This dynamism raises a number of research challenges related
to naming, indexing, searching and hosting in P2P environments.
In this paper we identify the practical requirements for devising
a persistent naming scheme for P2P web-hosting on top of
highly dynamic non-persistent P2P networks and present a novel
naming architecture for satisfying these requirements.

I. INTRODUCTION

Peer-to-Peer (P2P) computing represents the concept of
sharing resources available at the edges of the Internet [1].
The P2P paradigm dictates a fully distributed, cooperative
network, where nodes collectively form a system without
any supervision. Its advantages include robustness to failures,
resource sharing, self organization, load balancing, data per-
sistence, publisher anonymity, etc. Since the initial success
of Napster [2], P2P technology has enjoyed ever growing
popularity for online file sharing, amongst a large community
of Internet users. Profound advancements in P2P technologies
in the last decade have proven their capability to provide the
same functionality as traditional client–server systems at a
much larger scale and much lower cost. From the perspective
of World Wide Web, P2P technology has good potential of
becoming the next generation web hosting infrastructure as
well. This paper is a first step towards the realization of a P2P
network for server less web hosting. The contribution of this
paper is a novel naming scheme crucial for realizing server
less web hosting over structured P2P networks.

Contemporary web hosting technology is built around
client–server architecture, which has a number of inherent
deficiencies including scalability issues, a single point of
failure, administration overhead and hosting expenses. If the
websites were distributed over a P2P network then there would
be virtually no limitation on the number of users who can
access a popular website. Even with high-end servers and
geographically distributed content distribution systems, flash
crowds is still an inherent problem in the Internet. With a P2P
based web hosting architecture there will be no single point

of failure, as many peers will be hosting a website. Content
caching will be built intrinsically into the system. A network
composed of contemporary machines will be able to host web
pages without the need for expensive high-end web servers.
There will be no need for dedicated website administrators and
experts for web server maintenance. Finally, such a system will
provide an uncensored platform that will promote freedom of
speech. That can have significant social and political impact
on the society. However, P2P technology can not be directly
applied for server less web publishing for two main reasons.
Firstly, the participating peers in a P2P system join and leave
the network very frequently, whereas a web server remains
up for years continuously. Secondly, a shared content in P2P
systems usually keeps moving from one peer to another, while
web pages do not usually change location within the Internet.
Due to this dynamism in the peers and the shared contents,
a number of naming related research challenges need to be
addressed before successful realization of server less web
hosting over P2P networks. Some of these challenges are
as follows: location and time independent naming of web
pages, dynamic namespace management, persistent hyperlink
references, and distributed name registration and resolution.
Here we have proposed a persistent naming scheme that
addresses all these issues.

The authors in [3], [4] presented a DHT based routing and
indexing technique called Plexus for structured P2P networks
which provides efficient mechanisms for partial keyword based
content advertisement and discovery. Plexus also provides a
robust routing protocol built on top of the concept of error
correcting codes. In this paper we leverage the properties of
Plexus to build our P2P web hosting stack. We primarily
focus on the architecture of the naming system required
for P2P web hosting. Our aim is to devise a location and
time independent naming scheme, persistent linking of web
documents, and distributed name registration and resolution
in dynamic P2P environment. These properties are crucial for
achieving a complete architecture for server less web hosting
over structured P2P networks.

The rest of the paper is organized as follows: the research
challenges faced in designing our naming system are presented
in Section II. Section III describes some preliminaries essential
for a better understanding this paper. A brief description of our
P2P web hosing architecture is presented in Section V and our
proposed naming scheme is presented in Section VI. Experi-
mental results and evaluations are reported in Section VII and
finally we conclude in Section VIII.



II. CHALLENGES

This section highlights the research challenges for devising
a naming scheme for serverless P2P web hosting.

Web documents are identified using Unified Resource Loca-
tors (URLs), which form the hyper-link structure of the World
Wide Web. However, URLs are not suitable for naming in the
P2P context, due to the dynamism in peer population. Recall
that the domain name part of a URL essentially specifies the
server that hosts the document in the Internet. But, in P2P
environment there is no guarantee of a stable location for a
document. A Domain Naming System (DNS) resolver maps
URLs to server IP addresses, which allows site relocation
and replication without affecting the URL. Site relocation
is relatively less frequent than P2P content dynamism, and
DNS updates are more static compared to P2P index updates.
Hence, URL based naming and hierarchical DNS lookup are
not suitable for P2P Web hosting.

A suitable naming system for P2P web hosting should
support names that are independent of spatial and temporal
scope so that any peer holding a valid copy (replica) can serve
as a source. In the Internet DNS resolves the domain name
part of a URL to a web server IP address. While this strategy
worked successfully for the Internet, it is not feasible for the
P2P environment for obvious reasons. In a P2P environment
peer uptime is dynamic and unpredictable, so if we want to
provide 24/7 uptime for a website then the website must be
replicated to multiple peers. We can not bind names to peers,
instead names must be bound to contents. A single name
should be able to identify the same content hosted on any
peer in the network.

Names in a P2P web hosting environment should be flexible
and human–friendly. While a hierarchical naming structure
facilitates efficient routing and namespace management mech-
anisms, it makes the names hard to remember. If we look
at P2P file sharing networks like BitTorrent and eMule, the
users are accustomed to a flat namespace with no predefined
structure. Though DNS provides strictly structured names for
the Internet, we choose to provide flexible, human–friendly,
flat and unstructured namespace for P2P web hosting for
seamless user experience in the P2P community.

Providing support for persistent bookmarking in P2P web
hosting environment is not trivial. Whenever a user visits a
website he may want to bookmark it for later visits. Imple-
menting bookmarking in the P2P environment is not so easy
as there is no one peer hosting the website 24/7. Websites keep
moving between peers and the name resolution system has to
cope with such dynamism.

Finally the name registration and resolution systems must
be distributed, fault-tolerant, and scalable. This implies that
the responsibilities of name assignment and storage of name
mappings are distributed among the peers, which mandates the
use of sophisticated techniques for responsibility assignment,
load balancing, data synchronization, management of stale
data, and handling registration expiries.

III. PRELIMINARIES

In this section we introduce some terminologies and con-
cepts that are necessary for better understanding of the material
presented in this paper.

A. Linear Covering Codes

A linear covering code (n, k, d)f , over Fn
2 , is a subspace

C ⊂ Fn
2 . Each element in C is a codeword. |C| = 2k and d is the

minimum Hamming distance between any two codewords. The
covering radius f is the smallest integer such that every vector
P ∈ Fn

2 is covered by at least one Bf (ci). Here, Bf (ci) =
{P ∈ Fn

2 |d(P, ci) ≤ f} is the Hamming sphere of radius f
centered at codeword ci.

B. Reed-Muller Codes

Reed-Muller (RM) codes are a family of linear error correct-
ing codes. The r-th order RM code is denoted by RM(r,m),
which is a vector subspace of length n = 2m over Fn

2 , for
some positive integers r and m. Minimum distance d, between
any pair of codewords is 2m−r and the number of codewords
is 2k, where k =

∑r
i=0

(
m
i

)
is the dimension of the code.

In this paper, we use RM(2, 7) codes, where the length of
a codeword is 128 bits, minimum hamming distance between
any two codewords is 32, and the number of total codewords
is 229 (more than 5× 108).

C. List Decoding

Let C be a error correcting code (n, k, d) and x be a
pattern(binary) of length n, then a list decoding algorithm
provide a set of codewords X = X1, X2, . . . , Xm where
Xi ∈ C and Hamming distance from x to each Xi is at
most e (error-bound). List decoding algorithms are widely
used in data communication where a set of valid codewords of
used correcting code are generated from a received erroneous
message.

D. Plexus Content Advertisement and Discovery

In Plexus [4] keywords are mapped to bloom filters [5] (or
bit-vectors) and a novel Hamming distance based technique
derived from the theory of Linear Covering Codes is used
for routing. The keyword to bloom filter mapping process
retains the notion of similarity between keywords, while
Hamming distance based routing delivers deterministic results
and efficient bandwidth usage.

Advertisement, P Query, Q
Pattern

Codeword

Hamming sphere

(a) Hamming distance based indexing
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(b) Bound on d(P,Q)

Fig. 1. Core concepts in Plexus

In Plexus, advertisements and queries are routed to two
different sets of peers in such a way that the queried set



of peers and the advertised set of peers have at least one
peer in common, whenever a query pattern is a subset of
the advertised pattern. As explained in 1(a), a linear covering
code (C) partitions the entire pattern space Fn

2 into Hamming
spheres, represented by the hexagons in the figure. A codeword
(ci ∈ C) is selected as the unique representative for all the
patterns within its Hamming sphere. The challenge is then to
map a query pattern Q to a set of codewords (Q(Q) ⊂ C) and
to map an advertised pattern P to another set of codewords
(A (P ) ⊂ C), such that Q(Q) and A (P ) have at least one
codeword in common whenever the 1-bits of Q constitute a
subset of the 1-bits in P . Mathematically,

Q ⊆ P =⇒ Q(Q) ∩A (P ) 6= ∅ (1)

Given a code C, a trivial way of computing advSet and qSet
is to use list decoding; i.e. A (P ) = Bs(P ) ∩ C = {Y |Y ∈
C ∧ d(Y, P ) ≤ s)} and Q(Q) = Bt(Q) ∩ C = {Y |Y ∈ C ∧
d(Y,Q) ≤ t)}, for positive integers s and t. The goal is to
compute the minimum d(P,Q) without violating Equation (1).
If the covering radius of C is f then the Hamming sphere of
radius f around any arbitrary point should contain at least
one codeword. Hence, according to Figure 1(b): d(P,Q) ≤
s + t − 2f . In other words, if advertisement is done to all
the codewords in Bs(P ) ∩ C and search is done on all the
codewords in Bt(Q)∩C then any subset Q of P within distance
d(P,Q) ≤ s+ t− 2f can be discovered.

E. Generating UUIDs

Universally Unique Identifier (UUID) [6] is an identifier
standard used to enable distributed systems to uniquely iden-
tify resources without significant central coordination. One can
generate a UUID for identifying an object with reasonable
confidence that the same identifier will not be used by someone
else to identify another object. A UUID is a 128-bit character
sequence. Number of theoretically possible UUIDs is about
3×1038. Typically a UUID consists of 32 hexadecimal digits,
displayed in 5 groups separated by hyphens, in the form 8-4-4-
4-12 for a total of 36 characters (32 digits and 4 hyphens). For
example: 580f8760-e09b-42d4-a716-876543450000. Here the
word unique means practically unique rather than guaranteed
unique. Since the identifiers have a finite size it is possible for
two different objects to share the same UUID. Random UUID
generated by the java.util.UUID class have 122 random
bits. The remaining 6 bits are used for version and variant
number. With random UUIDs, the chance of two UUIDs
having the same value can be calculated by using the Birthday
paradox. Which yields the following probability:

p(n) ≈ −e−n2

2x , where x = 2122 (2)

Using Plexus with RM(2, 7) codes gives us a maximum
network size of 229. Then according to equation 2 the proba-
bility of a single UUID clash in this network is 3× 10−20.

F. Replication Groups

As pointed out in Section II providing 24/7 uptime for
a website in a P2P environment is not a trivial task. To
ensure content persistence we need to provide a persistent

storage over non-persistent P2P network. In [7], a mathe-
matical model for measuring time-based and presence-based
availability has been presented. In [8], peers are grouped based
on the probability of being online and erasure codes are used
to improve content availability. In [9], a replication strategy
for improving availability in structured P2P network has been
proposed. That scheme is based on the mean-time-to-failure
of a replica. In [10], [11] gossip based protocol has been used
to replicate content based on tentative lifetime of the peers. A
replication mechanism based on the diurnal availability pattern
of the peers participating from different time zones across
the Globe is presented in [12] which work across temporal
and spatial dimensions. Peers from different time zones form
a group for hosting web sites in turn, round the clock. We
use this replication grouping mechanism for providing content
persistence and primarily focus on the details of the naming
system in this paper.

IV. RELATED WORK

The challenge of achieving persistent names for shared
content in a P2P network has not been addressed so far.
File sharing P2P systems (e.g., Gnutella, Kaaza, Morpheus
etc.) use keyword lists for content identification and randomly
selected temporary identifiers for peer names. Web browsing
over P2P networks is offered by FreeNet [13], FlashBack [14]
and Web2Peer [15], under the assumptions that only static
webpages are hosted and page replicas are independent. Web-
page availability is increased through replication over the P2P
network. In all of these systems, the P2P network is used for
locating and caching the webpages and Internet Web servers
still serve as the source of webpages cached in the P2P system.

BitTorrent [16] uses SHA-1 hash values for assigning ids
to file chunks, while peers are identified by IP:Port values.
Though it is quite successful in distributing large media files, it
is not suitable for hosting regular websites. Web sites typically
contain images that are quite small. BitTorrent is designed for
handling large files, which require minutes or hours rather
than seconds. BitTorrent uses a significant amount of time to
try out and compare different connections which introduces
large amount of latencies. This latency may be negligible for
large media files, but it may surplus the actual time required
to download small images embedded in web pages.

Persistent naming is also being investigated for supporting
movement of electronic documents in the Internet . Whenever
a document’s URL is changed, all pages referencing that
document need to be updated. Which is a cumbersome and
error prone process. To solve this problem the Digital Object
Identifier (DOI) system [17] provides persistent and unique
DOI links for electronic documents. But the architecture
of DOI is centralized and requires human intervention for
maintaining the DOI links upto date. A number of research
projects, including DONA [18], NetInf [19] are proposed as
next generation architectures for the Internet. They propose to
use self-certifying names to identify and authenticate objects in
the Internet. Typically hash of public keys are used as content



names. Though these schemes provide security against name
thefts, names are no longer human-friendly.

DONA proposes a clean slate redesign of the Internet
protocol stack and proposes to replace DNS names with flat,
and self-certifying names having the form P : L, where P
is the cryptographic hash of the Principal’s (content owner)
public key and L is a label chosen by the principal. For
name resolution, DONA uses the route-by-name paradigm.
Resolution infrastructure consists of Resolution Handlers (RH)
similar to the hierarchical architecture of DNS following the
same parent-child paradigm and each domain must have one
logical RH. NetInf [19] follows the same naming scheme as
DONA but the current open source implementation of NetInf
called OpenNetInf, resolve NetInf identifiers into locators (e.g.
URLs) using a P2P-based Name Resolution Service with
three accessible nodes. The naming schemes proposed by
DONA and NetInf can not be adapted for pWeb for the
following reasons: (i) due to dynamism of content location
in a P2P networks, establishing a DONA like hierarchically
organized RH infrastructure will be very expensive in-terms of
computation and network usage, (ii) the P2P-based Name Res-
olution Service provided by NetInf is essentially a centralized
cluster of three nodes which is separate from the rest of the
network providing the content, so there is a large architectural
difference between NetInf and pWeb. NetInf names actually
resolves to URLs in the Internet, which does not solve the
problem of location independent content naming in pWeb.

In existing P2P systems (structured and unstructured) [20]
peers are considered to be memoryless, i.e., peers are not
assumed to retain knowledge about the overlay network from
their previous sessions. Hence, the requirement for assigning
persistent names to peers and content is not important. But for
P2P web hosting we have to ensure persistent names for peers
and websites. A number of research works, including [21]–
[24], focus on implementing DNS lookup using P2P systems.
All of these works use DHT-based techniques for P2P lookup
and support exact name matching. P2P web hosting requires
partial name resolution along with a way to map a name to
the address of a live peer in the replication group.

V. SYSTEM ARCHITECTURE

Our P2P web hosting stack in built on top of Plexus routing
and indexing framework. Though in [4] Plexus used Golay
Codes for routing, here we use the Plexus variant using Reed-
Muller Codes introduced in [25]. Using Reed-Muller codes,
Plexus can scale to millions of peers without using subnets
or super-peers. This way the overlay network can have a
flat and symmetric structure. On top of this overlay network,
replication groups are formed based on uptime history of peers
as discussed in Section III-F. The functional dependencies be-
tween the architectural components have a direct impact on the
naming scheme and vice versa. For a better understanding of
the requirements of the naming system three crucial processes
namely: Advertisement, Peer Join and Group Maintenance,
and Query are presented below:

Website 
Name

Keywords Group 
ID

S r, s, t G

Target peers = 
List‐Decode(BF(r,s,t)+BF(S))

Peer: X, Group: GPeer: X, Group: G 
register Site: S, 
Keywords: {r, s, t}

X a b

A

B D

E

Plexus

X

Y

b

c

B1
B2

B3
D

Peer: Y, Group: G 
Replicates site : S

Y

d

Z

Fig. 2. Advertisement of a Site

1) Advertisement Process: To facilitate efficient search of
web sites we use a distributed Hamming distance based
indexing mechanism on top of Plexus routing. As depicted
in Fig. 2, the advertisement process consists of the following
four steps:

• Step a: Each peer in the system will belong to a repli-
cation group. Suppose peer X belongs to group G and
wants to advertise site S. The search keywords (or other
meta information) related to site S are r, s and t. Peer X
sends this information to a peer A in the Plexus indexing
framework.

• Step b: In this step, peer A creates two advertisement
patterns (basically Bloom Filters). One from the meta
information (i.e., r, s and t) and the other from the website
name. Then peer A list decodes the patterns and computes
the set of codewords within a pre-specified Hamming
distance from the advertised patterns. Then it uses the
Plexus routing mechanism to multi-cast the site index to
the peers (B1, B2, B3) responsible for the codewords. The
indices stored in the indexing peers (i.e., Bi’s) are in the
form of <Website Name, Keywords, Group ID> triplets.

• Step c and d: Newly hosted sites or updates to existing
sites are propagated to all the members (i.e., peers Y and
peer Z) of the hosting peer’s (i.e., X’s) replication group
(i.e., group G). This replication takes place whenever a
group member rejoins the network. More detail on the
peer join and replication process is given next.

2) Peer Join and Group Maintenance Process: In order to
maintain diurnal availability, peers collaborate in small groups
in such a way that at any given time instance at least one peer
from a group is online with very high probability. Content
in each peer is fully replicated and synchronized. To ensure
replica consistency, whenever a peer joins or returns to the
system it finds active group members, updates its online status
and replication contents in the following manner:

• Step α: As depicted in Fig. 3, peer Z, a member of
group G, becomes online after being offline for a while.
Once online peer Z requests a peer, say C, in the Plexus
indexing framework to find the members of its own
group G. In case of a new peer, its replication group
is determined based on its uptime history.
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Fig. 3. Accommodating new/returning peers

• Step β: Peer C, constructs a pattern (Bloom Filter) from
the group ID G, decodes the pattern to find the closest
codeword, and routes the query to the responsible peer
(here D) using Plexus routing. Upon receiving the query,
peer D updates the current status of peer Z to online,
records its IP:port and returns the IP:port list of all of the
online members of group G.

• Step γ: After learning about the current online members
of group G, peer Z synchronizes website replicas with
other members.

3) Query Process: There can be two types of queries:
a) keyword search and b) name search. The second type is
more straight forward and a subset of the first type. Hence
we explain here the first type only, i.e. query by keywords.
As depicted in Fig. 4, the keyword search process can be
performed in the following four steps:

• Step 1: In the example scenario peer W is searching for
the sites that have keyword r. It first sends the query to
a random peer, say E.

• Step 2: Upon receiving the query, peer E constructs a
query pattern (a Bloom filter) from the query keywords
and uses list decoding to find the codewords within a
pre-specified Hamming distance. Then it uses the Plexus
routing to forward the query to the peers that are likely
to have the meta-information on sites with the queried
keywords. In the example, peer B3 responds with the
site name, keywords and the group ID (G) of the group
hosting the site.

• Step 3: Once peer E receives the group ID G, it queries
the Plexus network (similar to the rejoin process) to find
the list of currently online members of group G. In this
instance the IP:Port of peer Z will be discovered and
returned to the original querying peer W.

• Step 4: Now peer W can directly browse the site from
peer Z.

These processes are at the core of our P2P web hosting
framework. The structure of names for web contents, peers,
and replication groups are presented in the next section along
with mechanisms for name registration and resolution.
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Fig. 4. Keyword-based content searching
VI. PROPOSED NAMING SCHEME

In all subsequent sections we refer to our P2P web host-
ing framework as pWeb. Naming in the pWeb architecture
requires a flexible scheme that is human friendly, persistent
and independent of spatial and temporal scope. The pWeb
naming system is composed of two components: pWeb naming
authority and pWeb name resolution system. Both of these
components are distributed, highly scalable, and fault-tolerant.
We propose a multi-faced naming called pRLs, which stand
for pWeb Resource Locator. Figure 5 shows the structure of
a pRL. The NSID part of the pRL is used to distinguish
between the supported naming schemes in pWeb. It gives us
the flexibility to incorporate future changes in the naming
scheme. The WebID is the name of the website which can
be assigned by the user or system. It can be a human-friendly
or a secure (Hash of public key) name assigned by the user or
system generated UUID . A user can assign any valid sequence
of characters or an ontological name structured according to
predefined categories or hash of his public key as the WebID.
Pages within a website are referred by the ObjectID part of
pRL which will be explained shortly. Metadata is associated
with each website in pWeb, which facilitates attribute–value
and keyword based search. The metadata also stores security
related information such as public keys and digital signatures
required for secure name publishing.

Before going into further details we would like to describe
Zooko’s Triangle [26], which identifies the possible tradeoffs
between three properties of a naming scheme for a distributed
system. It states that names can simultaneously have any two
of the following properties:
• Secure: A name surely addresses only a given content
• Memorable: A human can remember a name
• Decentralized: A name can be chosen distributedly
For example, self-certifying names presented in DONA [18]

and NetInf [27] are secure and decentralized but not mem-
orable. Nick-Names used by Skype are memorable and de-
centralized but not secure. DNS names are memorable and
secure but centralized. In pWeb, names must be distributed,
so we have to choose between secure and memorable names.
As already mentioned in Section II, we prefer human-friendly
(memorable) names for web contents for providing better user
experience. However if a website publisher wants to provide
secure names, then he can create a self-certifying name by
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attaching the hash of his public key with the website name.
Cryptographically constructed self-certified name can be used
to securely verify if the associated content is the original one
or not. A publisher having public key P and secret key S, can
securely publish a website with the name Hash(P):L, where
L is a locally unique label within the publisher’s domain. The
digital signature (content hash signed by S) is stored in the
metadata so that no one can forge a name without knowing
the secret key S. This way we have memorable-distributed
and secure-distributed naming schemes and it is up to the
publisher to choose the one suitable for his/her website. From
the perspective of name assignment and name resolution both
naming schemes are handled in a similar manner, as will be
explained in the next section. Now, we introduce the entities
that need to be named in pWeb along with their naming
requirements.

A. Entities and Requirements

To achieve persistent object naming on non-persistent and
transient P2P networks we need to name four entities in the
pWeb system. These entities are: Websites, Web Contents,
Peers, and Replication Groups. We describe each of these
entities and their naming requirements below.

1) Website Naming: pRLs are used to refer to websites
in pWeb just like URLs are used in the Internet. As pRLs
are assigned to websites instead of peers, name persistence
is supported across peer sessions and any peer with a valid
copy (replica) of a website can serve as a source. To separate
a website from its hosting peer, we use separate namespaces
for websites, peers, and replication groups. We allow multiple
websites to have the same name for user assigned unsecure
names. In case of user assigned secure names and system
assigned UUID website names are unique across the whole
overlay network and this uniqueness is guaranteed by the
pWeb naming system as described in Section VI-B. Whenever
a website is replicated to a particular group the group leader
generates an UUID for the website which is unique within the
group and stores it in the metadata along with the replication
group’s UUID. The system uses these UUIDs for disambiguat-
ing between multiple websites having the same name. The
users of the system can disambiguate between websites by
using the associated attribute–value pairs and keywords.

2) Web Content Naming: For naming webpages or other
files within a website we use relative naming and this informa-
tion is stored in the ObjectID field of pRL. It is the responsibil-
ity of the website publisher to make ObjectIDs unique within
his domain. Metadata is also associated with each webpage or
file for providing attribute–value and keyword based search.
Some example pRLs are shown below.

• ptp://wc.v1:bobshome

• ptp://wc.v1:bobshome/about

• ptp://wc.v2:sci:net:p2p:bobshome

• ptp://wc.v2:sci:net:p2p:bobshome/about

• ptp://wc.v3:f47ac10b-58cc-4372

-a567-0e02b2c3d479/bobshome

• ptp://wc.v4:2fd4e1c6.7a2d28fc.

ed849ee1.bb76e739.1b93eb12/bobshome

Here ptp stands for pWeb Transport Protocol and wc
means that this name refers to a web content. The v1, v2,
v3, and v4 in the pRL are the NSIDs, which identify the
version of the naming scheme in use. Here v1 represents
names without any ontological structure and v2 refers to
names with ontological structure. con.v1:bobshome and
con.v2:sci:net:p2p:bobshome represent the WebID
and about.html is the ObjectID part of the pRL. v3
and v4 represent system generated UUID and user assigned
secure names respectively. UUIDs are generated as described
in Section III-E. The SHA-1 hashing algorithm is used by the
secure naming scheme for generating WebID from publisher’s
public key. Human-friendly and distributed names are provided
by version v1 and v2 naming schemes. Version v3 and v4
provide secure and distributed names.

3) Peer Naming: Each peer in the pWeb overlay net-
work is assigned an unique system generated identifier called
peerUUID. When a peer P wants to join the pWeb over-
lay network, it generates a random UUID (as described in
Section III-E) and sends a join request to any random peer
R. Now peer R forwards this message to the pWeb naming
authority for name registration. Peer P is then notified by
the pWeb naming authority whether name registration was
successful or not. For returning peers, a challenge/response
mechanism [28] is used for reclaiming previously registered
peerUUIDs. The details about how pWeb naming authority
performs these operations will be presented in Section VI-B.

4) Replication Group Naming: Each replication group
is assigned an unique system generated identifier called
groupUUID. We do not require the group identifiers to be
human-friendly, since these identifiers are used internally by
the name resolution mechanism for locating the currently
active (i.e., alive) replica of a website. So like peers, replication
groups are also assigned UUIDs. groupUUIDs are registered
by the first peer forming the group and the registration process
follows the same steps as peer name registration.

All four entities discussed above register their names
through the pWeb naming authority. Name resolution is done
by the pWeb name resolution system. Given any pRL, it first
resolves that pRL to a replication group’s groupUUID and in
the next step the groupUUID is resolved to the IP:Port pair
of an active peer (group leader) who is currently responsible
for representing that group. These mechanisms are described
in greater details in the following sections.

B. pWeb Naming Authority

The core functionality of the pWeb naming authority is to
register names and preserve name uniqueness. It uses Plexus
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routing for forwarding name registration messages. It is fully
distributed and the namespace is partitioned among the peers.
Each peer is responsible for maintaining only a portion of the
namespace. It utilizes the Plexus’s linear covering code based
partitioning technique for partitioning the namespace among
the peers. Name registrations are handled much like Plexus
content advertisement described in Section III-D.

Let us assume that a peer A wants to publish a website with
pRL S. First A creates a bloom filter BF from S by applying
multiple hash functions as explained in Section ??. Then
by using the list decoding function of the underlying error
correcting code, A generates a set of codewords LD(BF )
that fall within the hamming ball centered at the codeword
representing BF . After that A uses Plexus routing to send
name registration messages to the peers that are responsible
for these codewords. Let the set containing these peers be
represented as PLD(BF ). At this point the peers in PLD(BF )

check whether pRL S is unique or not. However if the website
name follows user assigned unsecure naming scheme (v1 or
v2) then this checking is skipped. The peers can determine
whether to perform uniqueness check from the NSID field
of the pRL. If any of the peers in PLD(BF ) finds pRL S
to be not unique then it sends a “pRL Registration Failed”
message to A and A retries with a new pRL S′. When pRL
S is found to be unique, the peers in PLD(BF ) notify peer A
that its pRL registration was successful. Peer A now publishes
its website and pRL to the pWeb network. The website is
replicated at multiple peers in its replications group G and
the associated mapping from pRL S to replication group’s
groupUUID is stored in all peers in PLD(BF ). The group
leader L of replication group G becomes the primary contact
point for this website. These steps are shown in Figure 6.

As peer population in a P2P network is highly dynamic,
it may happen that all peers indexing the mapping data for
pRL S go offline. In such a situation no one will be able
to browse S (though it may be alive in its replication group),
until the original peer comes back online and re-registers it. To
solve this problem we adopt a simple and effective data refresh
strategy. As already mentioned, any published content gets
replicated within a particular replication group and the group
forming process ensures that at least one peer will be alive
at any time. We leverage this for refreshing a pRL mapping.
One thing that needs to pointed out here is that, a peer may or
may not participate in replicating its own content. Currently
the peer with the smallest IP:Port address is chosen as the
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group leader. Every peer in a replication group keeps track of
all other alive peers in the same group which makes the group
leader selection process trivial.

This situation is depicted in Figure 7. When peer A
publishes its website, the content is replicated in replication
group G and its pRL to groupUUID mapping is stored in
P1, P2, and P3 (Figure 7 (a)). Here pRL-BF denotes the
bloom filter that is generated from the pRL of A’s website.
The group leader of group G is peer P4. After some time peer
A goes offline. Now it is the responsibility of peer P4 to keep
peer A’s pRL mapping data refreshed. So P4 keeps refreshing
A’s pRL mapping after a predetermined time interval. In
Figure 7 (b) both peer A and P3 have gone offline and the
responsibility of P3’s namespace is now assigned to another
peer say P5. Now P5 is also responsible for storing A’s
name mappings. Group leader P4 refreshes A’s pRL mapping
which gets stored in peer P5. This mechanism fails in the rare
situation when all members of a replication group go offline.
In this case the pRL will become available only when the
original peer A comes back online and refreshes its pRLs.

Peer UUIDs are published just like pRLs where the bloom
filter is created from the peerUUID. The mapping from
peerUUID to the peer’s IP:Port pair is stored in a tuple like
〈peerUUID, IP:Port〉 in the indexing peers. The responsibility
for periodically refreshing this mapping data is assigned to
the corresponding peer. Replication group groupUUIDs are
published in the same way but here the IP:Port pair refers to
the current group leader. The responsibility for periodically
refreshing mapping data is also assigned to the group leader.
The groupUUID must always resolves to the IP:Port pair of an
active peer. So when ever the group leader changes (due to peer
failure/churn), the new group leader updates the corresponding
groupUUID mapping data with its own IP:Port pair.

C. pWeb Name Resolution System

Its main purpose is to resolve a pRL to a currently alive
peer’s IP:Port pair. For this purpose it uses the same mech-
anism as pWeb naming authority. Figure 8 shows the steps
required for resolving a website pRL. Suppose peer A wants
to resolve a pRL S. In step 1, peer A creates a bloom filter
from S. This responsibility can also be handed over to another
peer as Shown in Figure 4. In Step 2 peer A encodes the
bloom filter to get a valid codeword C. Next in step 3 peer
A list decodes C to get a list of codewords LD within a
hamming ball of predetermined radius centered at C. In step 4,
the peers responsible for the codewords in LD are contacted
for the groupUUID of Group G hosting the website. After
getting the groupUUID, another lookup is performed by peer
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A in the same manner to find the IP:Port pair of the current
group leader of replication group G. After that peer A can
browse the website from the returned IP:Port pair. We have
implemented A browser plug-in that enables a browser (e.g.
Firefox, Chrome) to browse contents from pWeb. This plug-in
enables the browser to handle pRLs just like URLs. Whenever
a user clicks on a pRL, the plug-in resolves it by invoking the
pWeb name resolution system bypassing the DNS and then
the desired contents are fetched from the hosting peer(s).

VII. EXPERIMENTAL EVALUATION

In this section we evaluate the performance of our proposed
naming system on three different aspects: scalability, fault-
tolerance, and effects of refresh rate.

A. Simulation Setup

We have developed a multi-threaded simulator in Java for
performing our experiments. In our experiments, we start
with a few peers and gradually grow the network to our
desired size. Peer arrival and departure events are timed by a
Poisson process, making them uncorrelated and bursty. Poisson
means for peer arrivals and departures vary between 20 to
100 milliseconds which corresponds to 2 to 7 peers arriving
or departing per second in a network of 20,000 peers. Peer
uptime follows a power-law distribution where most of the
peers have a very short uptime but the rest of them have larger
uptimes. Similar peer churn and uptime models have been used
in [29], [30]. For scalability related experiments, once a target
network size is reached peer arrival and departure Poisson
means are adjusted so that the network size keeps varying
between a predetermined maximum and minimum limit over
time. During this period, name registrations and resolutions
are performed and performance related statistics are collected.
For experiments related to fault-tolerance, we start with a
network of 20,000 peers and gradually decrease its size to
5,000 by setting peer departure rate much higher than the
peer arrival rate. Network statistics are collected throughout
this period. Peer arrival and departure events are handled by
separate threads for making these events independent of other
operations. A third thread is used to capture system snapshots
for collecting statistical data.

B. Scalability

For measuring scalability of our system we have measured
three metrics: the average number of name mappings stored
per peer, average hop counts per name registration and average
hop counts per name resolution. For all these experiments,
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we start with a network of few (∼500) peers and then grow
the network to 20,000 peers. After that, the number of peers
keeps varying between 17,500 to 22,500. Names are published
incrementally and statistical data is collected. We start with
5,000 names and gradually increase the number to 50,000.
Among the published names, 40% are human friendly names
(generated using a syllable based name generator), 30% are
peer or group UUIDs, and the remaining 30% are SHA-1 hash
based secure names. All reported measurements are averaged
over 100 independent runs.

In Figure 9, the solid line represents the average number
of name mappings stored per peer against the total number
of published names. The vertical lines indicate the standard
deviation from the average. Clearly the storage load scales
linearly with the number of published names. A linear trend
line fits quite well (R2 = 0.9902) with the data. The upper
dashed line represents the maximum number of name mapping
tuples stored in a peer over all runs. The maximum count
varies from the average due to the skewness in the hash
functions used for generating bloom filters. But the amount
of skewness is quite low. For 50,000 names the difference
between the average and maximum count is only around
25. So by using error correcting code based name mapping
distribution we have achieved a namespace partitioning that
is quite close to uniform. With an average network size of
20,000 peers and 50,000 published names there should have
been only 2.5 names per peer. But in our simulation each
peer has 50 names. This reason behind this can explained as
follows: each peer in Plexus has one replica as explained in
Section III-D and our list decoding algorithm outputs 10∼12
codewords on average. So each name mapping gets stored in
20 peers which causes the name mapping count to be around
50 in our simulations. While this scheme increases the storage
load, it provides robustness against peer churns. Performance
of our system during high rate of peer churn is studied in the
next section.

Figure 10(a) and 10(b) show the average hop count (along
with the standard deviation) per name registration and resolu-
tion respectively against the total number of published names.
Hop count for name resolution is higher than that of name reg-
istration for the following reasons: (i) name resolution queries
include two resolution steps and (ii) spans more peers that
registration. Hop counts for both name registration and reso-
lution are quite high in our experiments due to a lacking in our
implementation of the list-decoding algorithm. In Plexus [3],
[4] extended Golay codes were used for routing where the
number of maximum hops is bounded by 6. But unfortunately
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there is no list decoding algorithm for the Golay codes. So
we had to use the Reed-Muller codes in all our experiments.
There are many theoretical papers on list decoding of Reed-
Muller codes but there is still no implementation available. In
our experiments we have used a brute-force implementation
of the list-decoding algorithm which caused the high number
of hop counts for both name registration and resolution. We
are working on a more efficient implementation which will
improve our results. Theoretically, if we keep the decoding
radius within the Johnson Bound [31] (which will be the
case in our approach) the maximum number of hops will be
bounded by 30 and the actual average hop count per name
registration and resolution will be much lower (in our current
implementation hop count is bounded by 250). As expected
these metrics are not dependent on the number of published
names. They depend solely on the number of alive peers in
the network. Figure 10(c) and 10(d) show the percentage of
total peers accessed per name registration and name resolution
respectively. Accessing a peer and its replica are considered
as separate events in these experiments. Surprisingly enough,
at most ∼0.17% and ∼0.46% peers are accessed per name
registration and name resolution respectively.

C. Fault Tolerance

For testing the robustness of our naming scheme against
peer failure we start with a network of 20,000 peers, publish
names and then gradually decrease the network size to 5,000.
We measured the percentage of lost names, average number
of records found per name resolution, and hit percentage.
We have performed these experiments without name mapping
republishing by group leaders. Evaluation of the effect of name
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republishing is examined in the next section. However we used
the built-in replication mechanism of Plexus, where each peer
has a single replica that stores the same information as the
original peer and can be reached in just one hop. Figure 11(a)
reports the percentage of name loss against peer count. We
report a name as lost whenever a random peer fails to resolve
that name. We report data for 50,000 and 60,000 names, which
are shown as the solid and dotted lines respectively. By only
utilizing the one node replication scheme of Plexus, our system
is quite robust against peer failures. A network with 60,000
names lost only 1.5% names, where peer population dropped
to one–forth of its initial size.

Figure 12(a) and 12(b) show the average number of name
records found per name resolution for 50,000 and 60,000
names respectively. With a peer population of 20,000 each
name resolution finds around 12∼14 records. When the popu-
lation falls to 5,000, still around 2 records are found on average
per name resolution. With the decrease in peer population,
amount of storage required per peer to store naming data in-
creases. Peers begin to index larger portions of the namespace
and as a result the number of peers storing the same name
mapping begins to decrease. But with decreasing peer count,
name resolution queries start to span more and more peers
and discover almost all alive peers storing a particular name
mapping. This is shown in Figure 13(a) and 13(b). Here hit
percentage is the percentage of discovered peers among the
peers actually storing a particular name mapping. As peer
population decreases hit percentage increases from 80% to
100%. Since only 1.5% names are lost, our name resolution
process can ensure almost 100% search completeness.

D. Effects of Refresh Rate

In our naming system group leaders periodically republish
name mappings. The periodicity of this operation is termed as
the refresh rate. The value of refresh rate provides a tradeoff
between name availability and message overhead. A small
value lead to an increase in name availability but at the cost
of increased message overhead. On the other hand a large
refresh rate decreases message overhead but increases the
risk of name mapping losses. As was shown in Figure 11(a)



without any sort of republishing around 1.5% names are
lost when a network is reduced from 20,000 to 5,000 peers.
In Figure 11(b) we perform the same experiment with two
different refresh rate values. When names are republished once
per day the percentage of lost names drops to 0.8% which is
close to half of the name loss percentage with no republishing
(∼1.5%). When refresh rate is equal to 12 Hours, the name
loss percentage drops below 0.1%. Now lowering the value
even further does not provide much improvement. Because
in our experiments there is no peer rejoins. So, once a name
mapping gets lost there is no one in the network who can
republish it.

VIII. CONCLUSION

In this paper we have presented a scalable, fault-tolerant,
distributed, and persistent naming scheme for structured P2P
networks. Our naming scheme provides a flat namespace with
no explicit structure. Users can have both human-friendly and
secure names in our system. Through simulations we have
shown that, error correcting code based namespace partitioning
achieves uniform distribution of naming data across peers.
At most 0.17% and 0.46% peers are accessed per name
registration and name resolution respectively, which makes
our system extremely scalable. The robustness of our system
was also demonstrated through experiments. By using only
the single peer replication scheme built in Plexus our system
looses only ∼1.5% names in the face of 75% peer failure and
without any name republishing. Simulation results also show
that, with a moderate refresh rate value of 12 hours, the name
loss percentage becomes negligible (∼0.1%). The originality
of our work lies in the application of a structured routing
and indexing framework like Plexus for achieving a persistent
naming scheme for P2P networks. Though our naming scheme
is designed for a P2P web hosting platform, we belief that this
approach can have significant impact on other existing P2P
applications. The naming scheme also had application in the
emerging filed of content centric networks. As a future work
we plan to evaluate the performance of our naming system
using real P2P overlay traces and more realistic testbeds such
as Planetlab or ModelNet.

REFERENCES

[1] Peer-to-peer, wikipedia, the free encyclopedia. [Online]. Available:
http://en.wikipedia.org/wiki/Peer-to-peer

[2] Napster website. [Online]. Available: http://www.napster.com.
[3] R. Ahmed and R. Boutaba, “Distributed pattern matching: a key to

flexible and efficient p2p search,” IEEE Journal on Selected Areas in
Communications, vol. 25, no. 1, pp. 73–83, 2007.

[4] ——, “Plexus: a scalable peer-to-peer protocol enabling efficient subset
search,” IEEE/ACM Trans. Netw., vol. 17, pp. 130–143, February 2009.

[5] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, pp. 422–426, July 1970.

[6] Universally unique identifier, wikipedia, the free encyclopedia. [Online].
Available: http://en.wikipedia.org/wiki/Universally unique identifier

[7] O. B. Karimi, S. Yousefi, M. Fathy, and M. Mazoochi, “Availability
in peer to peer management networks,” in LNCS: Challenges for Next
Generation Network Operations and Service Management. Springer,
Oct. 2008, vol. 5297/2008, pp. 552–555.

[8] T. Schwarz, Q. Xin, and E. Miller, “Availability in global peer-to-peer
storage systems,” in Proceedings of the 2nd IPTPS, July 2004.

[9] K. Kim, “Time-related replication for p2p storage system,” in Proceed-
ings of International Conference on Networking, Apr. 2008, pp. 351–
356.

[10] J. Sacha, J. Dowling, R. Cunningham, and R. Meier, “Discovery of
stable peers in a self-organising peer-to-peer gradient topology,” in
Proceedings of the 6th IFIP Int. Conference on Distributed Applications
and Interoperable, 2006.

[11] S. Blond, F. Fessant, and E. Merrer, “Finding good partners in
availability-aware p2p networks,” in Proceedings of the 11th Interna-
tional Symposium on Stabilization, Safety, and Security of Distributed
Systems(SSS), 2009.

[12] N. Shahriar, M. Sharmin, R. Ahmed, and R. Boutaba, “Diurnal avail-
ability for peer-to-peer systems,” CoRR, vol. abs/1101.4260, 2011.

[13] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A dis-
tributed anonymous information storage and retrieval system,” Lecture
Notes in Computer Science (LNCS), vol. 2009, pp. 46–66, 2001.

[14] M. Deshpande, A. Amit, M. Chang, N. Venkatasubramanian, and
S. Mehrotra, “Flashback: A peer-to-peer web server for flash crowds,”
in Proceedings of the 27th Int. Conference on Distributed Computing
Systems, 2007.

[15] H. B. Ribeiro, L. C. Lung, A. O. Santin, and N. L. Brisola, “Implement-
ing a peer-to-peer web browser for publishing and searching web pages
on internet,” in Proceedings of International Conference on Advanced
Information Networking and Applications, 2007, pp. 754–761.

[16] B. Cohen, “Incentives build robustness in BitTorrent,” in Workshop on
Economics of Peer-to-Peer systems, vol. 6. Citeseer, 2003, pp. 68–72.

[17] N. Paskin, “Digital object identifier (DOI R©) system,” Forthcoming
publication in the third edition of the Encyclopedia of Library and
Information Sciences (Taylor & Francis Group). Final reviewed and
corrected text February, 2009.

[18] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A data-oriented (and beyond) network
architecture,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 181–192,
August 2007.

[19] C. Dannewitz, “NetInf: An Information-Centric Design for the Future
Internet,” in Proc. 3rd GI/ITG KuVS Workshop on The Future Internet,
2009.

[20] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” Communications
Surveys Tutorials, IEEE, vol. 7, no. 2, pp. 72 – 93, quarter 2005.

[21] S. Ajmani, D. E. Clarke, C.-H. Moh, and S. Richman, “Conchord:
Cooperative sdsi certificate storage and name resolution,” in LNCS: Peer-
to-Peer Systems. Springer, Jan 2002, vol. 2429/2002, pp. 141–154.

[22] R. Cox, A. Muthitacharoen, and R. T. Morris, “Serving dns using a peer-
to-peer lookup service,” in LNCS: Peer-to-Peer Systems. Springer, Jan
2002, vol. 2429/2002, pp. 155–165.

[23] X. Li and C. G. Plaxton, “On name resolution in peer-to-peer networks,”
in Proceedings of ACM international workshop on Principles of mobile
computing, 2002, pp. 82–89.

[24] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” SIGCOMM Comput. Commun. Rev., vol. 32,
no. 4, pp. 73–86, 2002.

[25] M. Haque, R. Ahmed, and R. Boutaba, “Qpm: Phonetic aware p2p
search,” in Peer-to-Peer Computing, 2009. P2P ’09. IEEE Ninth In-
ternational Conference on, sept. 2009, pp. 131 –134.

[26] B. Wilcox-OHearn. (2003, September) Names: Decentralized, secure,
human-meaningful: Choose two. [Online]. Available: http://zooko.com/
distnames.html

[27] C. Dannewitz, J. Golic, B. Ohlman, and B. Ahlgren, “Secure naming for
a network of information,” in INFOCOM IEEE Conference on Computer
Communications Workshops , 2010, march 2010, pp. 1 –6.

[28] Challenge response authentication, wikipedia, the free encyclopedia.
[Online]. Available: http://en.wikipedia.org/wiki/Challenge-response
authentication

[29] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement, ser. IMC ’06. New York, NY, USA: ACM,
2006, pp. 189–202.

[30] S. C. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn in
a dht (awarded best paper!),” in USENIX Annual Technical Conference,
General Track. USENIX, 2004, pp. 127–140.

[31] S. Johnson, “A new upper bound for error-correcting codes,” IEEE
Transactions on Information Theory, vol. 8, pp. 203–207, 1962.


