
SMURFEN: A System Framework for Rule Sharing Collaborative

Intrusion Detection

Carol Fung1, Quanyan Zhu2, Raouf Boutaba1, 3, and Tamer Başar2
1David R. Cheriton School of Computer Science,

University of Waterloo, Ontario, Canada, {j22fung,rboutaba}@uwaterloo.ca
2Department of Electrical and Computer Engineering,

University of Illinois at Urbana-Champaign, USA. {zhu31,basar1}@illinois.edu
3Division of IT Convergence Engineering, POSTECH, Pohang, KB 790-784, Korea.

Abstract—Intrusion Detection Systems (IDSs) are designed to
monitor network traffic and computer activities in order to
alert users about suspicious intrusions. Collaboration among
IDSs allows users to benefit from the collective knowledge
and information from their collaborators and achieve more
accurate intrusion detection. However, most existing collaborative
intrusion detection networks rely on the exchange of intrusion
data which raises privacy concerns. To overcome this problem, we
propose SMURFEN: a Rule Sharing intrusion detection network,
which provides a platform for IDS users to effectively share
their customized detection knowledge in an IDS community.
An automatic rule propagation mechanism is proposed based
on a decentralized two-level optimization problem formulation.
We evaluate our rule sharing system through simulations and
compare our results to existing knowledge sharing methods such
as random gossiping and fixed neighbors sharing schemes.

I. INTRODUCTION

In recent years, Internet intrusions have become more so-
phisticated and difficult to detect. With the increasing com-
plexity of software and systems, thousands of vulnerabili-
ties are being discovered and exposed for exploitation every
year. Attacks usually appear before security vendors release
their defense technology and software vendors release their
corresponding patches (e.g., zero-day attacks). Attacks from
the Internet are usually accomplished with the assistance of
malicious code (a.k.a. malware), including worms, viruses,
Trojan horses, and Spyware. An example is the Conflick er
worm which infected more than 3 million servers from year
2008 to 2009, with an estimated economic loss of $9.1 billion
[1]. Recent intrusion attacks compromise a large number
of nodes to form botnets. Hackers not only harvest private
data and identify information from compromised nodes, but
also use those compromised nodes to launch attacks such
as distributed-denial-of-service (DDoS) attacks, distribution of
spam messages, or organized phishing attacks.

To protect computer users from malicious intrusions, In-
trusion Detection Systems (IDSs) are designed to monitor
network traffic and computer activities by raising intrusion

The research by the authors from University of Illinois is partially
supported by AFOSR under MURI Grant FA9550-09-1-0643 and by the
Boeing Company through Information Trust Institute. This research is also
partially supported by the Natural Science and Engineering Council of Canada
(NSERC) under its discovery program and partially by WCU (World Class
University) program through the Korea Science and Engineering Foundation
funded by the Ministry of Education, Science and Technology (Project No.
R31-2008-000-10100-0).

alerts to network administrators or security officers. IDSs
can be categorized into host-based (HIDS) or network-based
(NIDS) according to their targets, and signature-based or
anomaly-based according to their detection methodologies. A
NIDS monitors the network traffic from/to one or a group
of computers and compare the data with known intrusion
patterns. A HIDS monitors the activities of one computer but
has a deeper insight by tracking the file systems and system
logs of the host computer. A signature-based IDS identifies
malicious code if a match is found with a pattern in the attack
signature database. An anomaly-based IDS, on the other hand,
monitors the traffic volume or behavior of the computer and
raise alerts when they are out of a predefined normal scope.
Compared to HIDS, an NIDS has a broader view of the status
of the network it monitors, but may miss some intrusions
which are hard to detect by observing network traffic only. A
signature-based IDS can accurately identify intrusions and the
false positive rate is low compared to anomaly-based detection.
However, it is not effective for zero-day attacks, polymorphic,
and metamorphic malware [2]. An anomaly-based IDS may
detect zero-day attacks by analyzing their abnormal behaviors.
However, an anomaly-based detection usually generates a high
false positive rate.

Traditional IDSs work independently from each other and
rely on downloading new signatures or detection rules from the
corresponding security vendor’s signature/rule base to remain
synchronized with new detection knowledge. However, the
increasing number and diversity of intrusions render it not
effective to rely on the detection knowledge from a single
vendor, since not a single vendor can cover all the possible in-
trusions due to limited labor and available technology. Indeed,
vendors usually choose to cover high priority intrusions which
may have large influence among their clients or have high risk
levels. Collaborative intrusion detection networks (CIDNs)
provide a platform for IDSs to take advantage of the collective
knowledge from collaborators to improve the overall detection
capability and accuracy. However, most existing CIDNs, such
as [3], [4], [5], [6], and [7], rely on the sharing of intrusion data
with others, which raises privacy concerns. Instead, sharing
detection knowledge such as malware signatures and intrusion
detection rules, causes less privacy concern.

In reality, expert IDS users, including security analysts,
network administrators, and security system programmers,

create their own detection rules or customize existing ones
to improve detection accuracy specifically for their individual
environment [8]. A new detection rule created by one user may
be adopted directly by another user if they have similar net-
work/computer configurations. For example, a new intrusion
detection rule created to minimize vulnerability of a software
can be adopted by others using the same software. An expert
user who creates new rules for newly revealed vulnerabilities
may share their rules with others who are subject to similar
vulnerabilities and interests. Sharing rules among a large group
of users can be an effective way to improve the overall security
among all users.

In this paper, we leverage the benefit of intrusion detection
knowledge sharing and propose SMURFEN, a rule sharing
collaborative intrusion detection network, where intrusion de-
tection knowledge is shared among users who share similar
interests in the community. The framework is based on a
peer-to-peer overlay, where each user maintains a list of
collaborators and send his/her feedback through the P2P
system. Accordingly, an automatic knowledge dissemination
mechanism is proposed to allow users effectively share de-
tection rules with other users without overwhelming their
receiving capacities. We demonstrate using simulation that
the proposed rule sharing mechanism can effectively improve
the overall security of the community and provides incentive-
compatibility and fairness to the collaborators.

The rest of the paper is organized as follows. In Section
II, we give an overview of collaborative intrusion detection
systems and information sharing paradigms. We evaluate the
proposed system using simulation in Section IV. Finally, we
conclude the paper in Section V.

II. RELATED WORK

Traditional IDS collaboration utilizes the collective intru-
sion information and knowledge from other IDSs to improve
accuracy in intrusion detection. Existing CIDNs can be cat-
egorized into information-based and expertise-based. In an
information-based CIDN, IDSs collect intrusion data such as
intrusion alerts or fire wall logs from other nodes to perform
overall intrusion detection for the whole network. Most works
proposed in the last few years are information-based CIDNs,
such as [3], [4], and [5]. They are especially effective in
detecting epidemic worms or attacks, and most of them require
homogeneous participant IDSs. In an expertise-based CIDN,
suspicious data samples are sent to expert collaborators for di-
agnosis. Feedbacks from the collaborators are then aggregated
to help the sender IDS detect intrusions. Examples of such
CIDNs include those given in [9] and [7]. Expertise-based
CIDNs may involve heterogeneous IDSs and are effective in
detecting many intrusion types including malware, scannings,
and vulnerability exploitations.

However, both types of CIDNs rely on the sharing of
intrusion data, which raises privacy concerns. Therefore, it
greatly discourages users from collaborating with unknown
parties. In contrast, sharing detection knowledge, such as
detection rules and malware signatures, does not involve the

sharing of sensitive data. Hence, it can effectively eliminate
the privacy concern in IDS collaboration. In fact, some open
source IDSs, such as Snort [10], use mailing lists to allow users
to contribute and share their own detection rules. However,
mailing lists do not provide customized filtering and they
do not scale well either, making it inefficient for frequent
knowledge exchange within large communities.

Information and knowledge propagation in a community can
be realized through gossiping. Gossiping is a communication
paradigm where information is propagated through multi-
hop pair-wise communication. Gossiping has been used to
exchange information in distributed collaborative intrusion de-
tection, such as local gossiping [11], and global gossiping [12].
Sharing observations from distributed nodes is useful to detect
and throttle fast spreading computer worms. It is effective
for communications in ad hoc or random networks, where
a structured communication topology is hard to establish.
However, traditional gossiping relies on random pairs-wise
communication and information flooding. Therefore, it is not
suitable when the network is large and the messages are only
intended to be delivered to a small set of nodes. Mailing list
broadcasting can be seen as a special type of gossiping where
one node communicates with every other node in the network
to deliver messages. Most existing IDS vendors, such as Snort,
use broadcasting to deliver their vendor certified intrusion
detection rules.

Publish-subscribe systems can also be used for information
delivery among IDSs, such as [13], [5]. Compared to gossip-
ing, publish-subscribe systems allow customized information
delivery. They can be either topic-based [14], or content-
based, such as [13], [5]. In a topic-based system, publishers
and subscribers are connected by predefined topics; content
is published on well-advertised topics to which users can
subscribe based on their interests. In a content-based system,
users’ interests are expressed through queries, and a content
filtering technique is used to match the publishers’ content to
the subscriber. However, a simple publish-subscribe system
does not take into account the quality of the information.
It also does not provide incentives for IDSs to contribute to
the collaboration network. SMURFEN measures the trust of
nodes, and provides an incentive-compatible rule sharing.

III. SMURFEN: A DETECTION RULE SHARING

INTRUSION DETECTION NETWORK

An intrusion detection rule is a detection policy which
specifies the pattern of suspicious attacks. Each rule can
trigger an alert once the pattern is matched. Detection rules
can be vulnerability-based or exploit-based. A vulnerability
is a software defect or system misconfiguration that allows
attackers to gain access or interfere with system operations.
Common examples of software vulnerabilities are software
buffer overflo ws and HTTP header injection. A vulnerability-
based detection rule specifies the pattern of attacks on a
specific vulnerability. The patterns can be the IP address,
port number, protocol flags, and context of the data payload.
An exploit-based detection rule specifies the common patterns

of general attacks. Comparatively the exploit-based detection
causes higher false positives than vulnerability-based detec-
tion, but is effective when the vulnerabilities are unknown.

Defense against attackers is a challenging problem since a
defender needs to know all possible attacks to ensure network
security, whereas an attacker only needs to know a few attack
techniques to succeed. It is often impossible for one person
or a small group of defenders to know all attack techniques
but is common to have knowledge about some attacks. As
a result, the attackers have a significant advantage over the
defenders. This motivates defenders to share knowledge with
others to overcome their weakness. In fact, some open source
intrusion detection systems, such as Snort and OSSEC [15],
allow users to create and edit detection rules, which provides
an opportunity for users to contribute and exchange intrusion
detection rules. The purpose of SMURFEN is to provide such
a platform for users to share their detection rules with others
effectively. We focus on an efficient rule sharing mechanism
design and compare it with other possible solutions such as
random gossiping and fix ed neighbors sharing mechanisms.

A. The SMURFEN Framework

3

8

7

6

1

4

2

5

M
ap

pi
ng

(1
, x

)

(R
ul

e
x)

K d1

(Rule x)K
d1

(Feedback x)K
d7 (List of F

eedback x)K d6

Acquaintances: 3, 7, 8
Finger map: 2, 3, 5

Feedback
collector

Receiver

Receiver

Fig. 1. SMURFEN design of 8 nodes on a Chord ring: nodes 3 and 7 receive
a rule from node 1. The feedbacks are collected by node 6.

The SMURFEN framework is built on a DHT-based peer-
to-peer (p2p)[16] communication overlay as illustrated in Fig.
1. Each node maintains a list of neighbors to communicate and
exchange intrusion detection rules with. We call such a list the
acquaintance list. In the rest of this paper, we use the terms
acquaintance and neighbor interchangeably. Note that the
acquaintance relationship is symmetric, i.e., if node i is in node
j’s acquaintance list, then node j is in node i’s acquaintance
list. Each node may have a long list of acquaintances and
each acquaintance j has a certain probability pij ∈ (0, 1] to
be chosen to receive rules from the sender node i. A user on
the receiver side evaluates rules sent from its neighbors and
may choose to “ accept” or “ reject” the rule. The decision is
then recorded by a Bayesian learning algorithm to update the
trust value of the sender. The trust value from i to j is the
probability that the rules from the sender i are useful to the
receiver j. The higher a collaborator’s trust, the more helpful it
is in collaboration. The decision is also sent to a corresponding

rule feedback collector. The feedback collector is a random
node in the P2P network, determined by a hashed key from
the rule ID and the sender ID. The corresponding node holding
the key will host the feedback of the rule. Inexperienced users
can check feedback from others before they make their own
decision whether to accept the rule or not. Users can also
report false positives and true positives about the rule, so
that the rule creator can collect feedback and make updates
accordingly. More details about the feedback collector are
provided in section III-E.

B. Snort Rules

Many intrusion detection systems, such as Snort, allow
users to create and edit their own detection rules in their
rule base. Snort base rules are certified by the Vulnerability
Research Team (VRT) [17], after being tested by security
experts. Snort rules are vulnerability-based and written in plain
text; hence can be easily interpreted and edited by users. Snort
rules obtained from third parties can be adopted directly or
indirectly with some changes. Snort rules can be independent
or can be grouped together into rule units. The basic rule
structure includes two logical sections: the header section and
the option section. The rule header contains the rule’s action,
protocol, source and destination IP addresses and network
masks, and the source and destination ports information. The
rule option section contains alert messages and information
on which parts of the packet should be inspected to determine
whether the rule action should be taken [18]. Fig. 2 illustrates
a simple Snort rule. When a TCP packet with the destination
IP and port number matching the specified pattern and data
payload containing the specified binary content is detected, a
“mounted access” alert is raised.

Fig. 2. An Example of Snort Rule (adapted from [18])

C. Join or Leave SMURFEN

To prevent the man-in-the-middle attack, the communication
between each pair of nodes is signed by the private key of
the sender. When a new node joins the network, it creates a
public/private key pair (Ke,Kd), and registers a new ID into
the p2p network by sending a join request to any node in the
network. After that, the new node sends connection requests to
random nodes in the network and acquaintance relationships
are established when the requests are accepted. When a node
leaves a network, it is not required to send a notification to
other nodes. When a node does not receive response from an
acquaintance, it automatically sets the acquaintance status to
be inactive and seeks new replacement.

D. Trust Evaluation and Acquaintance Management
Each node in the network shares its intrusion detection

knowledge with their acquaintances. However, trust evaluation
is necessary to distinguish good/bad nodes in the network.
Each IDS evaluates the trust values of others by rating the

quality of the intrusion detection knowledge from them. If a
detection rule is accepted, a corresponding credit is recorded
for the sender. If a rule is rejected, a debit is recorded for
the sender. A Bayesian learning algorithm [19] is then used to
update the trust value of the sender based on the usefulness
of rules sent from the past. An accept will increase the trust
value of the sender and a reject will penalize it. The trust
value of node i perceived by node j can be seen as the level
of helpfulness that node i is to the receiver node j. The more
helpful a collaborator, the higher its trust value.

The acquaintance relationship is based on a mutual consent.
Every new acquaintance is assigned a low trust value at
the beginning and needs to pass a probation period before
becoming a collaborator. During the probation period, the trust
value of the new acquaintance will be evaluated by its peers.
When the probation period expires, new acquaintance gaining
high trust values will replace those with low trust values in
the list. Acquaintances with trust lower than a certain threshold
will be removed and new ones are recruited regularly.

E. Feedback Collector

When a user receives new rules from the community, she/he
may evaluate the rules and determine whether or not to adopt
the rule. A SMURFEN system includes feedback collectors to
record the feedback on the rules from users. Less experienced
users may check the feedback from others before making their
decisions. As shown in Fig. 3, rule author “ A” propagates a
new rule i to its acquaintances R1 and R2. Both rule receivers
can retrieve and send feedback from/to the feedback collector
C, which is a random node in the P2P network determined
by the key mapping of the creator and the rule ID. Replicas
collectors can be used to improve the availability of feedback
collector service. All feedbacks are signed by their authors to
prevent from malicious tampering.

CA

R1

R2

C

M

A transfers the Bloom filter of
its acquaintance list to C

C and its replicas are
chosen by H(IDA,IDrule)

Send feedback
of rule i

Retrieve feedback of rule i

Malicious
feedbackrule i

rule i

Fig. 3. Feedback Collection in SMURFEN. The malicious node M attempts
to leave fraudulent feedback but was blocked since it does not match the
Bloom filter on the feedback collector.

Moreover, to avoid feedback fraudulence, each feedback
collector maintains a Bloom filter [20] of the authorized
nodes list. The rule author hashes all of its acquaintances
into a Bloom filter and passes it to the feedback collector.
Only nodes with hashed IDs matching the Bloom filter are
allowed to leave feedback on the collector. The use of Bloom
filter not only reduces the communication overhead to transfer
long acquaintance lists, it also avoids unnecessary information
leaking from the rule author.

F. SMURFEN Knowledge Propagation

Intrusion detection knowledge propagation mechanism is an
essential part of the SMURFEN system, where IDSs decide the
propagation rates to their neighbors. An appropriate propaga-
tion design will not only provide incentive-compatibility which
discourages free-riders and rewards contributors, it will also
provide fairness to all participants and be robust to malicious
insiders. In this work, we use a game-theoretical approach for
each IDS to decide its rule propagation rates and we prove
that the system yields to a Nash equilibrium.

We model our system based on a two-level optimization
problem, i.e., a public utility optimization together with a
private utility optimization. Each IDS i controls two decision
variables, namely, ~ri and ~Ri. ~ri is the rule propagation rate
from node i to its neighbors. To prevent from denial of
service attacks from malicious neighbors, a node i also sets
a requested sending rate ~Ri, which sets the upper bound of
the sending rates from all neighbors. At the lower level, a
node i solves the public optimization problem (PPi) where
it chooses ~ri to maximize the aggregated satisfaction levels
of its neighbors. The public objective function aggregates the
satisfaction level of all neighbors by the their trust factors.
The public utility can be viewed as a public altruistic utility
in that a node i seeks to satisfy its neighbors by choosing rule
propagation rates ~ri. At the upper level, a node i determines ~Ri

to solve a private optimization problem (Pi) to maximize the
total return benefit from all neighbors. The return benefit is the
aggregated return from neighbors weighted by their trust. The
private objective indicates that a node intends to maximize its
own level of satisfaction by choosing an appropriate level of
request. The request capacity is imposed to prevent excessive
incoming traffic as a result of high level of requests. The
choice of ~Ri at the upper level influences the decision-making
at the lower optimization level.

The entailed mathematical description of the model for rule
propagation can be found in [21]. We have shown that the
knowledge propagation model based on the two-level design
possesses a Nash equilibrium that satisfies the property r∗ij =
R∗

ij , ∀i, j ∈ N , which we call a prime Nash equilibrium [21].

G. An Example

For a better understanding of the rule sharing framework, we
illustrate the mechanism with an example (see Fig. 1). Assume
that user 1 (on node 1) detects a new software vulnerability
and creates a new Snort rule x to protect the system before
the official release from the VRT. User 1 is part of the rule
sharing network. The new rule is automatically propagated
to its acquaintances through a propagation process (to be
described in Section III-F). User 3 and user 7 receive rule
x from user 1. The user 7 finds rule x to be useful to her/his
network and can choose to accept or reject it. The decision
is then notified to a feedback collector on node 6. If the rule
is adopted and alerts are triggered by rule x, the decision
whether it is a true or false alarm is also forwarded to node
6. Users can reject a formally accepted rule any time when
it causes large false positives or does not detect any attack

after a certain amount of time. Rule x is also propagated to
node 3. The user 3 finds that the rule covers vulnerabilities but
does not have enough experience to judge the quality of the
rule, she/he chooses to inspect the feedback from other users
about the rule from the feedback collector. The decision of
acceptance or rejection can be delayed to allow enough time
for observation.

H. Discussion

Our rule propagation is based on the assumption that users
of the IDSs are capable of understanding the exchanged
rules and make “accept” or “reject” decisions based on their
judgments. Inexperienced users can take advantage of the
feedback collector system to see the ranking of the new rule
before making their decisions. Note that duplicated rules will
be automatically filtered out in the receiver side. For example,
user receives rule #x from both neighbor A and neighbor B.
The same rule from neighbor B will be abandoned since it
came later than the other one. Users should also have the
capability to distinguish detection rules which have overlap-
ping functionalities. For example, different rules targeting on
the same threat may not be adopted by the receiver since the
receiver notice the overlap. This way, only the neighbor sent
the earliest version of detection rules will be rewarded.

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9P
er

ce
nt

ag
e

of
 D

et
ec

te
d

A
tta

ck
s

(%
)

Percentage of Expert Nodes

Vendor’s Rules Only
With Rule Sharing

Fig. 4. Intrusion Detection Accuracy with and without Rule Sharing

IV. EVALUATION

In this section, we use a simulation network to demonstrate
the appealing properties of the SMURFEN system. All our
experiments are based on the average of a large number of
experiment replications with different random seeds. Confi-
dence intervals are small enough to be neglected.

A. Simulation Setup
We simulate a network of n nodes. Each node i ∈

{1, 2, · · · , n} is labeled with an expertise level ei ∈ [0, 1],∀j ∈
N , which is the probability that a rule propagated by node
i is effective for intrusion detection. Note that the higher
the expertise level, the higher the trust value. Each node i

contributes detection rules to the network following a Poisson
distribution with an average arrival rate r̂i. Tij is learned
by j through past experiences using the Bayesian learning
method described in [19]. The rule propagation follows the
two-level game design described in Section III-F. In this
section, we show some selected results on efficienc y, incentive
compatibility, fairness, and robustness of the system.

B. Intrusion Detection Accuracy

In this experiment, we evaluate the effectiveness of intrusion
detection using rule sharing. We configure a network of 100
nodes with the same set of vulnerabilities, comprising expert
nodes with expertise level 0.9 and novice nodes with expertise
level 0.1. Each node has on average 10 randomly selected
neighbors. We simulate 20 attacks on the network. 10 attacks
are detectable by vendor released rules, and 10 attacks are
not covered by the vendor but detectable by rules created and
shared among the IDSs in the network. We observe the average
percentage of attacks detected by each IDS in the network,
with and without rule sharing, and with different ratios of
expert nodes. Fig. 4 shows that with the rule sharing capa-
bility, the average percentage of detected attacks is improved
significantly compared to the case without sharing. The higher
the ratio of expert nodes, the higher the detection rate. This is
because expert nodes effectively improve the propagation of
high quality rules in the network.

C. Information Quality
In this experiment we compare the information quality using

the traditional mailing list and SMURFEN propagation system.
When using mailing list propagation method, detection rules
are broadcast to all users in the network, while in SMURFEN
rules are propagated following the two-level optimization
game. We set up a network with size starting from 10 nodes
and we increase it by 30 nodes each round till 130. Among
all the nodes, 20% are expert nodes with expertise level 0.9,
80% are novice nodes with expertise level 0.1.

Fig. 5 shows the information quality for both methods.
We define the information quality to be the percentage of
useful rules that nodes receive. We see that when using the
SMURFEN system, the information qualities received by both
the low-expertise and the high-expertise nodes are significantly
improved compared to the mailing list method. The high-
expertise nodes receive higher quality rules than low-expertise
nodes, which reflects the incentive-compatibility of the system.

D. Incentive Compatibility and Fairness
Incentive compatibility is a required feature for a collabo-

ration network since it determines the long-term sustainability
of the system. In an incentive-compatible system, a well-
behaving node benefits more than an ill-behaving one. In
this experiment, we vary the expertise level of a participating
node, and observe the output of its return benefit, which is the
expected number of useful rules a node receives per day.

In this experiment, we configure a network with 30 nodes
with random expertise levels in [0, 1]. We change the expertise
level of node 0 from 0.1 to 1.0 and observe its return benefit.
We compare our results with two other information propa-
gation methods, namely uniform gossiping and best neighbor
mechanism. In the uniform gossiping mechanism, rules are
propagated to randomly selected nodes uniformly from the
neighborhood. The receiver drops rules from less compatible
neighbors if the total receiving rate is over limit. In the best
neighbor mechanism, rules are always propagated to a few
fix ed (best) neighbors. The sending capacity and receiving

 0

 10

 20

 30

 40

 50

 60

 70

 20 40 60 80 100 120

P
er

ce
nt

ag
e

of
 U

se
fu

l R
ul

es
 (

%
)

Network Size (Nodes)

Mailing list
SMURFEN-low expertise

SMURFEN- high expertise

Fig. 5. Information Quality Comparison

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
et

ur
n

B
en

ef
it

Expertise Level

SMURFEN
Uniform Gossiping

Best Neighbors

Fig. 6. Incentive on Expertise Levels

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20

In
flu

en
ce

Contrubution Rate

Expertise=1.0
Expertise=0.6
Expertise=0.2

Fig. 7. The Influence vs. Sending Rate

capacity also apply to the uniform gossiping and best neighbor
propagation. Therefore, we also configure their sending and
receiving capacities to be 100 rules/day.

Fig. 6 shows that uniform gossiping provides no incentive
to nodes with higher expertise levels. On the other hand, the
best neighbor propagation scheme provides incentive but no
fairness. Nodes of the same expertise levels may have very
different return benefit. This is because under the best neighbor
mechanism, nodes form collaboration groups. Nodes of the
same expertise level may join different groups. Since the return
benefit largely depends on which group a node belongs to,
nodes with the same expertise levels may have significantly
different return benefit. On the contrary, SMURFEN has a
continuous concave utility on the return benefit over expertise
levels. It ensures incentive compatibility as well as fairness.
E. Robustness of the System

The purpose of this experiment is to demonstrate the ro-
bustness of the system in the face of denial-of-service attacks.
We define the influence of a node i to be the total number
of rules received by all the neighbors of i per day. The
larger the influence of a node, the higher potential of damage
the node can cause once it is malicious. From Fig. 7, we
see that the influence of a node is bounded in the system.
This is because the SMURFEN system enforces propagation
agreements between each pair of nodes. Each node sets a
propagation limit to all its neighbors using the two-level game
(see Section III-F). Therefore, when a node intends to launch a
DoS attack, the amount of rules it is allowed to send to others
is bounded by the limits set by its neighbors. Nodes sending
excessive traffic to neighbors will be revealed as potential
malicious nodes, and thus removed from the neighbor list of
others.

V. CONCLUSION

In this paper, we have introduced a peer-to-peer rule sharing
framework called SMURFEN for collaborative intrusion de-
tection. The propagation mechanism has been derived from a
decentralized two-level optimization problem formulation. We
have shown that our system effectively improves the system-
wide intrusion detection accuracy, and has the properties of
incentive compatibility, fairness, scalability, and robustness to
denial-of-service attacks. By simulation, we have corroborated
these important CIDN properties. As future work, we intend to
show system robustness to different insider attacks and design
a resilient and robust topology for the collaborative network.

REFERENCES

[1] “ZDnet. ” http://www.zdnet.com/blog/security/confick ers-estimated-
economic-cost-91-billion/3207 [Last accessed in July 6, 2011].

[2] P. Li, M. Salour, and X. Su, “A survey of internet worm detection
and containment,” Communications Surveys & Tutorials, IEEE, vol. 10,
no. 1, pp. 20–35, 2008.

[3] J. Ullrich, “DShield. ” http://www.dshield.org/indexd.html.
[4] V. Yegneswaran, P. Barford, and S. Jha, “Global intrusion detection in

the domino overlay system,” in NDSS’04.
[5] M. Cai, K. Hwang, Y. Kwok, S. Song, and Y. Chen, “Collaborati ve

internet worm containment,” IEEE Security & Privacy, vol. 3, no. 3,
pp. 25–33, 2005.

[6] C. Fung, O. Baysal, J. Zhang, I. Aib, and R. Boutaba, “T rust manage-
ment for host-based collaborative intrusion detection,” in 19th IFIP/IEEE
Intl. Workshop on Distributed Systems, 2008.

[7] J. Oberheide, E. Cooke, and F. Jahanian, “Clouda v: N-version antivirus
in the network cloud,” in Proc. of the 17th USENIX Security Symp.,
2008.

[8] J. Goodall, W. Lutters, and A. Komlodi, “I know my network: collabo-
ration and expertise in intrusion detection,” in ACM conf. on Computer
supported cooperative work, 2004.

[9] C. Fung, J. Zhang, I. Aib, and R. Boutaba, “Rob ust and scalable trust
management for collaborative intrusion detection,” in 11th IFIP/IEEE
Intl. Symp. on Integrated Network Management, 2009.

[10] “Snort. ” http://www.snort.org/ [Last accessed in July 6, 2011].
[11] D. Dash, B. Kveton, J. Agosta, E. Schooler, J. Chandrashekar,

A. Bachrach, and A. Newman, “When gossip is good: Distributed
probabilistic inference for detection of slow network intrusions,” in
AAAI’06.

[12] G. Zhang and M. Parashar, “Cooperati ve detection and protection against
network attacks using decentralized information sharing,” Cluster Com-
puting, vol. 13, no. 1, pp. 67–86, 2010.

[13] C. Zhou, S. Karunasekera, and C. Leckie, “Ev aluation of a decentralized
architecture for large scale collaborative intrusion detection,” in Inte-
grated Network Management, 2007. IM’07. 10th IFIP/IEEE Intl. Symp.
on, pp. 80–89, IEEE, 2007.

[14] V. Ramasubramanian, R. Peterson, and E. G. Sirer, “Corona: a high
performance publish-subscribe system for the world wide web,” in
NSDI’06.

[15] “OSSEC. ” http://www.ossec.net/ [Last accessed in July 6, 2011].
[16] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,

“Chord: A scalable peer-to-peer lookup service for internet applications,”
in ACM SIGCOMM, pp. 149–160, ACM, 2001.

[17] http://www.csoonline.com/article/593237/inside-sourcefire-s -
vulnerability-research-team?page=2 [Last accessed in July 6, 2011].

[18] M. Roesch and C. Green, “Snort users manual,” Snort Release, vol. 1,
April 2010.

[19] C. Fung, Q. Zhu, R. Boutaba, and T. Başar, “SMURFEN: A Knowledge
Sharing Intrusion Detection Network,” Tech. Rep. CS-2011-06, Univer-
sity of Waterloo, http://www.cs.uwaterloo.ca/research/tr/2011/CS-2011-
06pdf.pdf, 2011.

[20] A. Broder and M. Mitzenmacher, “Netw ork applications of bloom filters :
A survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[21] Q. Zhu, F. Fung, R. Boutaba, and T. Başar, “A game-theoretic approach
to rule sharing mechanism in networked intrusion detection systems,”
in Proc. of 50th IEEE CDC and ECC, To appear, 2011.

